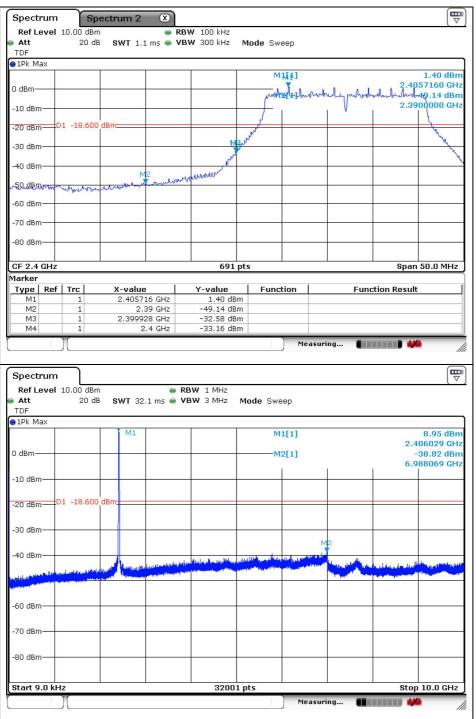


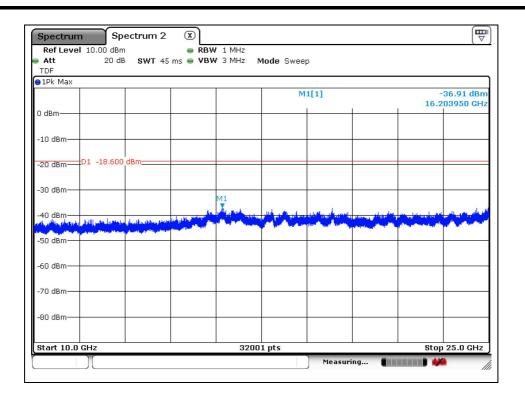
High Channel ₩ X Spectrum Spectrum 2 Ref Level 20.00 dBm RBW 100 kHz SWT 1 ms 👄 VBW 300 kHz 30 dB Att Mode Sweep TDF ●1Pk Max M1[1] 1.20 dBr 2.455740 GH 10 dBn M2[1] -45.10 dBn 2.483500 GH 0 dBm philos for the under and the -10 dBr D1 -18,800 dBn -20 dB -30 dBr 40 dBn whenter marc -50 dBm -60 dBm -70 dBm CF 2.4835 GHz 691 pts Span 70.0 MHz Marker Ref | Trc Y-value Function **Function Result** Туре X-value 2.45574 GHz 1.20 dBm -45.10 dBm M2 2.4835 GHz МЗ 2.49241 GHz 43.42 dBm M4 2.5 GHz -45.30 dBm Measuring... ₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1 M1[1] 8 49 dBn 2.456339 GHz 0 dBm-M2[1] -39.12 dBn 6.861509 GH: -10 dBm D1 -18.800 dBr -20 dBm--30 dBm M2 40 dBm -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring... 2

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2019.04.24)(1)

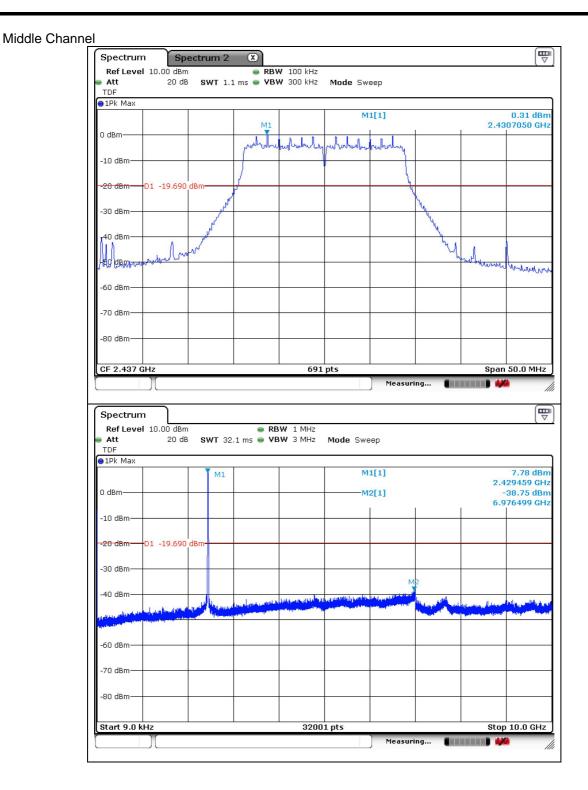


The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



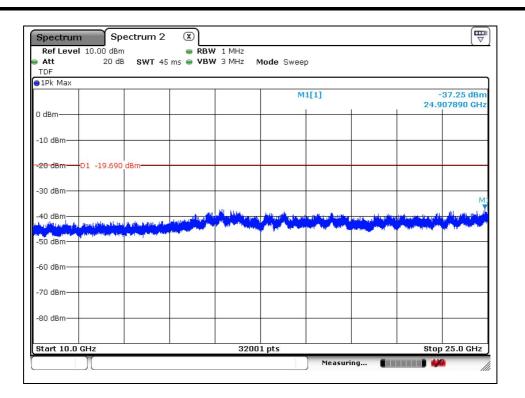
OFDM: 802.11n_HT20 (MCS0)

Low Channel



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

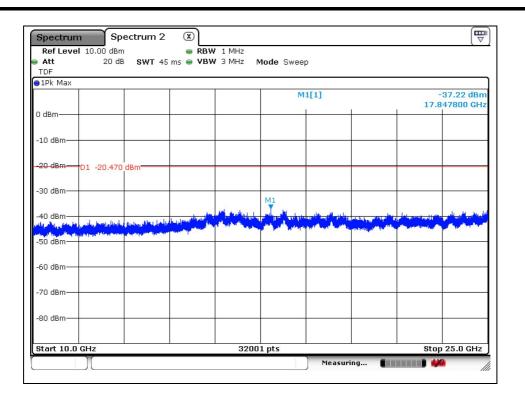
 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr


 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)



High Channel ₩ X Spectrum Spectrum Ref Level 10.00 dBm RBW 100 kHz SWT 1 ms 👄 VBW 300 kHz 20 dB Att Mode Sweep TDF ●1Pk Ma> M1[1] 0.47 dBr 2.455740 GH 0 dBn -52.12 dBn which had a first all had a M2[1] 2.483500 GH -10 dB 20 01 -20.470 dBm -30 dBm 40 dBrr 13 MA 50 dBm -60 dBm -70 dBm -80 dBm CF 2.4835 GHz 691 pts Span 70.0 MHz Marker Type Ref Trc Function **Function Result** X-value Y-value 2.45574 GHz -0.47 dBm M2 2.4835 GHz -52.12 dBm МЗ 2.49809 GHz -50.71 dBm M4 2.5 GHz -52.04 dBm Measuring... ₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1[1] 7.11 dBn M1 2.455399 GHz 0 dBm M2[1] -39.12 dBn 6.998689 GH: -10 dBm 20 dBr D1 -20.470 dBr -30 dBm 40 dBm estit. -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring... 2 **HEAD**

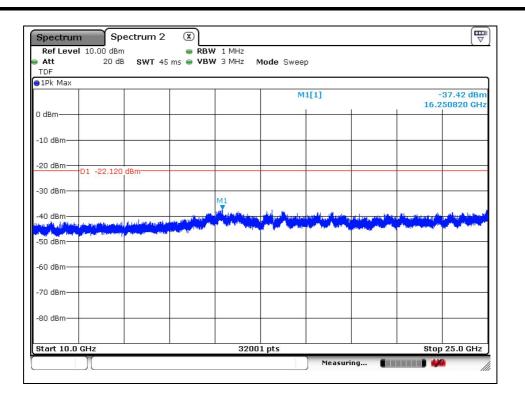
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2019.04.24)(1)

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

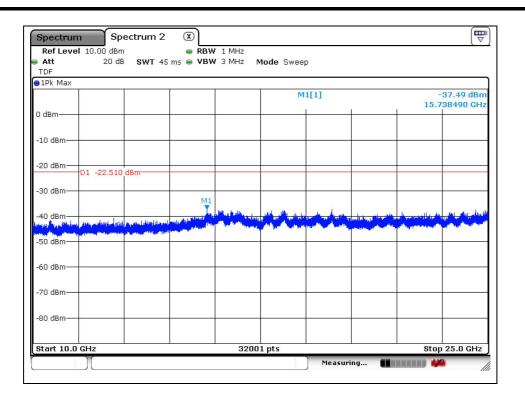


OFDM: 802.11n_HT40 (MCS0)

Low Channel

Spectrur		octr	um 2	x						m
	1 10.00 dBn)	100 kHz					[\]
🖷 Att			WT 1 n		300 kHz	Mode Swee	эp			
TDF										
						M	1[1]			-2.12 dBm
0 dBm		-				1.04	M:	1	2	.417080 GHz -48.12 dBm
-10 dBm—						pull	at the half have	when while	Julouhilduly	6,90000 GHz
								- I V		
-20 dBm-	D1 -22.120	dBm-								-
-30 dBm—										\mathbf{X}
-40 dBm					M	Y				Ny .
				1 Margaret M	12 minune					howhere
-50 dBm	mener	- Andrewe	wwwww.	Ka. dago do do como						- COL
-60 dBm—										
-70 dBm—		_								
-80 dBm										
-80 0BM-										
CF 2.4 GH	z				691	pts			Span	100.0 MHz
Marker										
Type Re	ef Trc	X	2 4170	D8 GHz	<u>Y-value</u> -2.12 dB	Func	tion	Fur	nction Resu	lt
M2	1			39 GHz	-48.12 dB	m				
M3 M4	1			93 GHz .4 GHz	-39.28 dB -39.28 dB					
			2		39.20 UL		Maas	uring 🚺		
							Jineas	aring		n In
Country										
Spectrur				- 0						
e Att	l 10.00 dBn 10.00 dB		WT 32.		BW 1 MHz BW 3 MHz	Mode Swe	eep			
TDF										
●1Pk Max	1	1					4541			E 04 dDm
			M1			IM	1[1]		2	5.04 dBm 411959 GHz
0 dBm						M	2[1]			-39.15 dBm
							I			.095279 GHz
-10 dBm										
-20 dBm										
	D1 -22.120) dBm-								
-30 dBm—										
						Ĩ.	M2			
-40 dBm—					درا ^س ارمیالی مرابعین	لمالطر إلامحاسب	الايالة ما ي المأور	and a second state	an harana	وروب الأنقار بي والجور
L. A. Barris	المتلافرين المتخر المروط		Alley Martin	No. of Concession, Name	a line plant of the	Second Street and Street	indiana antiki ini	and the second sec	in a stage delay with	and the second states and
King all constrained in the second	distant and some									
-60 dBm—		-								
-70 dBm—		-			+					
-80 dBm—										
Start 9.0	Hz				3200	1 pts				p 10.0 GHz
Start 9.0	kHz				3200	1 pts	Meas	uring 🚺	Sto	pp 10.0 GHz

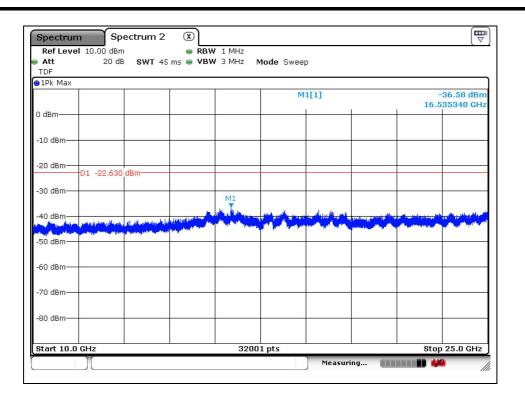
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

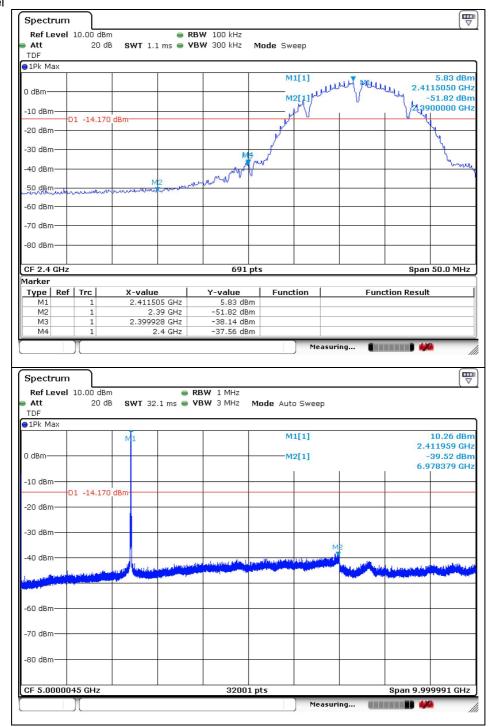
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

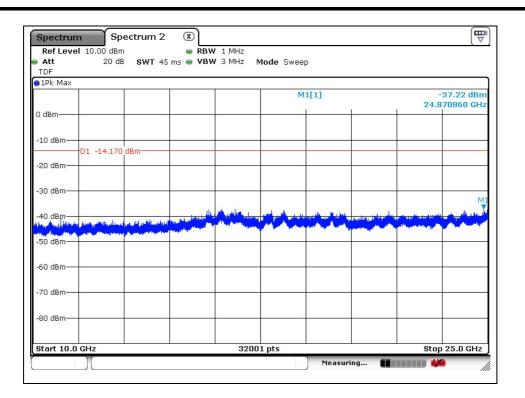

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

High Channel ₩ X Spectrum Spectrum Ref Level 10.00 dBm RBW 100 kHz SWT 1 ms 👄 VBW 300 kHz 20 dB Att Mode Sweep TDF ●1Pk Ma> M1[1] 2.63 dBr 2.429490 GH 0 dBn M2[1] -52.96 dBn Mullinder Juliulalla LL. 2.483500 GH -10 d**B** -20 d<mark>8</mark>m -22,630 dBm -30, dBm 🖡 dBm m MB 50 dBn -60 dBm -70 dBm -80 dBm CF 2.4635 GHz 691 pts Span 100.0 MHz Marker Ref | Trc Function **Function Result** Туре X-value Y-value 2.63 dBm 2.42949 GHz M2 2.4835 GHz -52.96 dBm МЗ 2.4865 GHz -51.74 dBm M4 2.5 GHz -53.28 dBm Measuring... ₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1[1] 4 53 dBn 2.443839 GHz 0 dBm M2[1] -39.70 dBn 6.914629 GH -10 dBm -20 dBm D1 -22.630 dBn -30 dBm M 40 dBm -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring...

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

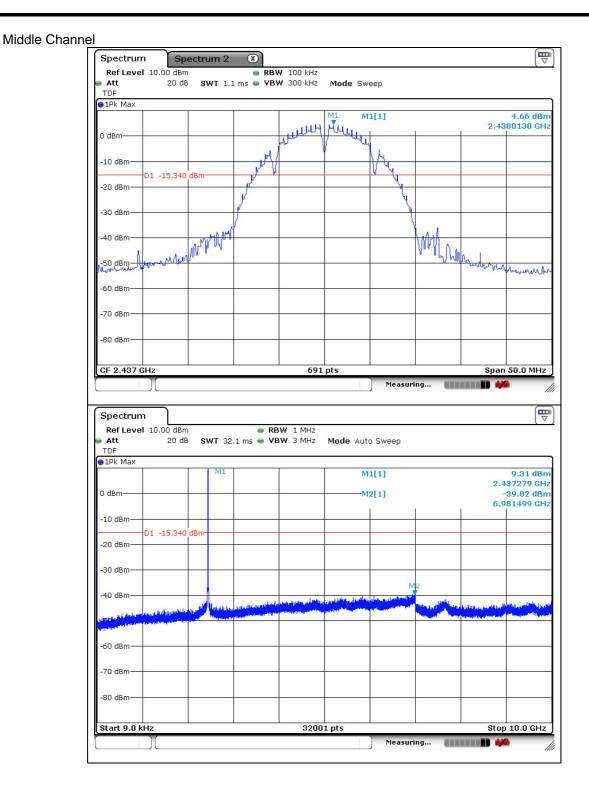

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

Test Condition: DC 12 V

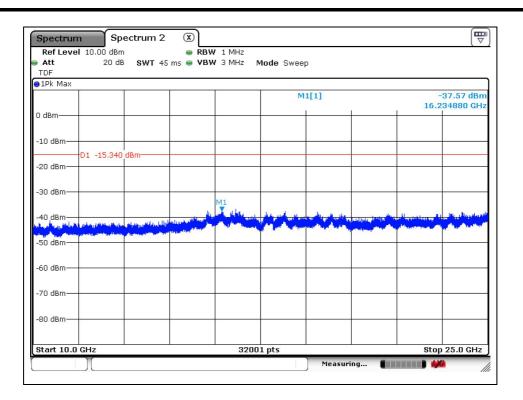

DSSS: 802.11b (1 Mbps)

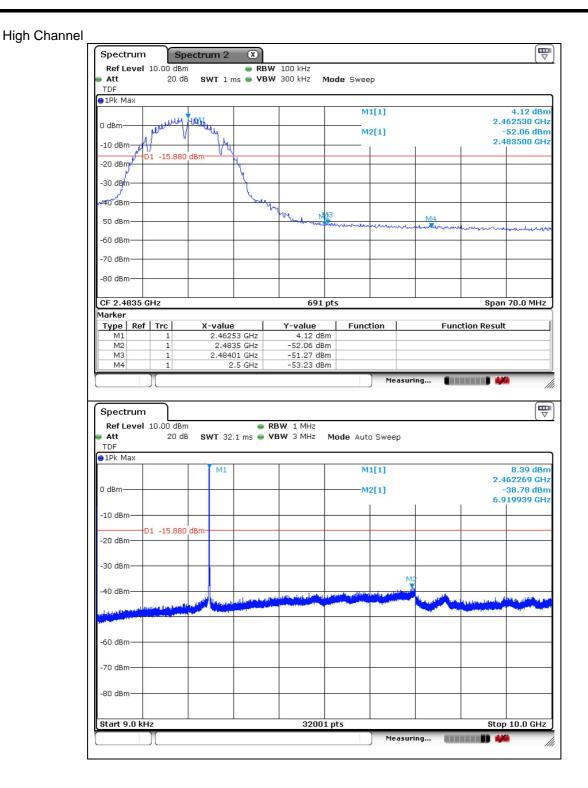
Low Channel

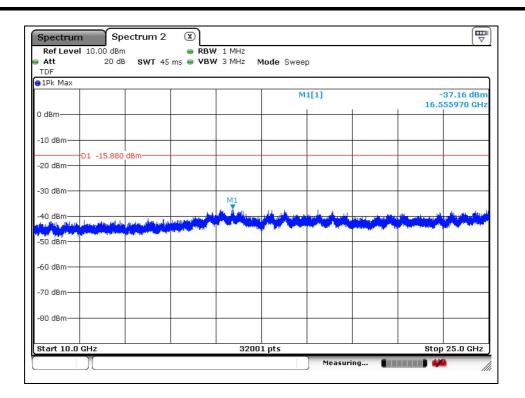
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

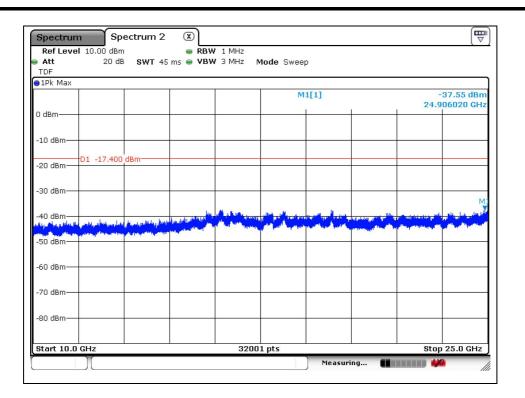

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2019.04.24)(1) A4(210 mm × 297 mm)





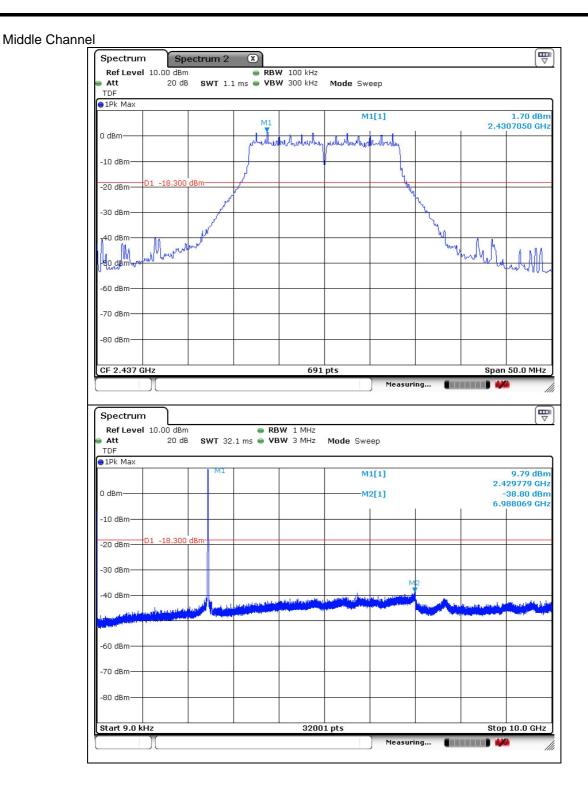
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

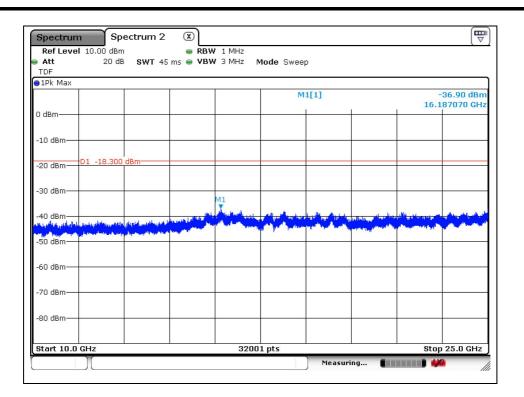

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

OFDM: 802.11g (6 Mbps)

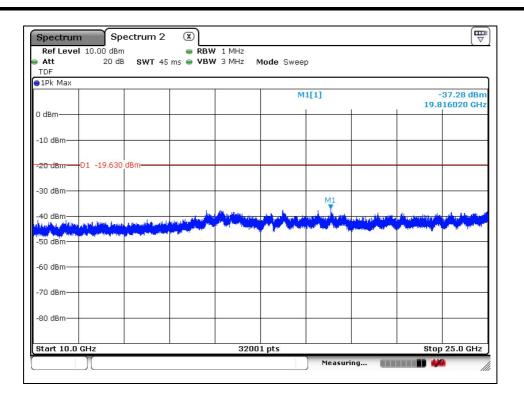
Low Channel ₩ Spectrum 2 Spectrum X Ref Level 10.00 dBm RBW 100 kHz SWT 1.1 ms 👄 VBW 300 kHz Att 20 dB Mode Sweep TDF ⊖1Pk Max 2.60 dBn MM1] 2.4057160 GHz py py bur hertreter 0 dBm 50.44 dBr 2.3900000 GH -10 dBm 17.40 -20 dBrr -30 dBm -40 dBm July M 50 dBr -60 dBm -70 dBm -80 dBm CF 2.4 GHz 691 pts Span 50.0 MHz Marker Туре Ref | Trc Function **Function Result** X-value Y-value 2.405716 GHz 2.60 dBm M1 M2 2.39 GHz 2.399855 GHz -50.44 dBm MЭ -31.82 dBm M4 2.4 GHz -31.79 dBm Measuring... ₩ Spectrum Ref Level 10.00 dBm RBW 1 MHz 20 dB SWT 32.1 ms 👄 VBW 3 MHz Att Mode Auto Sweep TDF ⊖1Pk Max M1[1] 10.07 dBn 2.404779 GHz -38.73 dBn 0 dBm M2[1] 6.637769 GH -10 dBm -17.400 dBr D1 -20 dBm -30 dBm M2 40 dBm -60 dBrr -70 dBm -80 dBm Stop 10.0 GHz Start 9.0 kHz 32001 pts Measuring...



The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

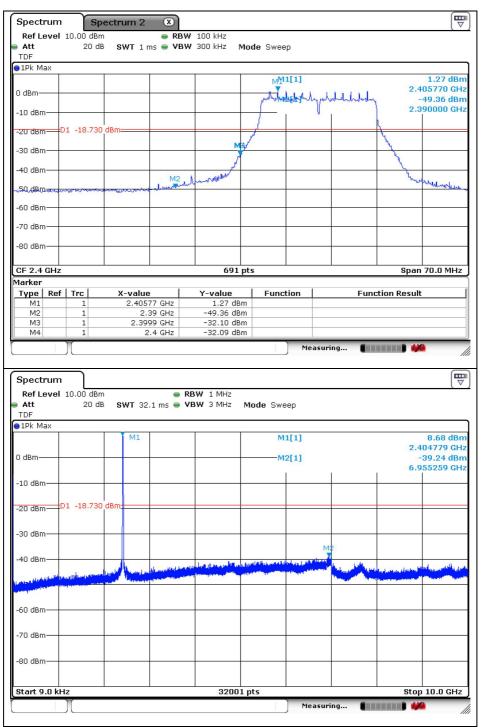

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-19(2019.04.24)(1)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

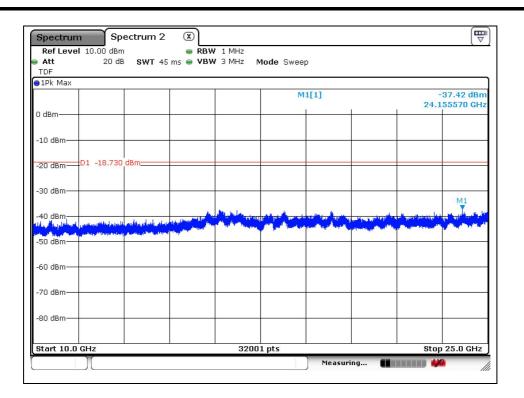

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel ₩ X Spectrum Spectrum Ref Level 10.00 dBm RBW 100 kHz SWT 1.1 ms 👄 VBW 300 kHz Att 20 dB Mode Sweep TDF ●1Pk Ma> M1[1] 0.37 dBr 2.4695350 GH OdBr -50.57 dBn republication M2[1] 2.4835000 GH -10 dBm D1 -19.630 20 -30 dBm -40 dBm Ma 50 dBm ...town -60 dBm -70 dBm -80 dBm CF 2.4835 GHz 691 pts Span 50.0 MHz Marker Type Ref Trc Function **Function Result** X-value Y-value 0.37 dBm -50.57 dBm 2.469535 GHz M2 2.4835 GHz МЗ 2.499491 GHz -51.72 dBm M4 2.5 GHz -53.54 dBm Measuring... -----₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1 M1[1] 8 43 dBn 2.456959 GHz 0 dBm-M2[1] -39.48 dBn 6.914319 GH -10 dBm -20 dBm D1 -19.630 dBr -30 dBm M 40 dBm -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring... 2

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

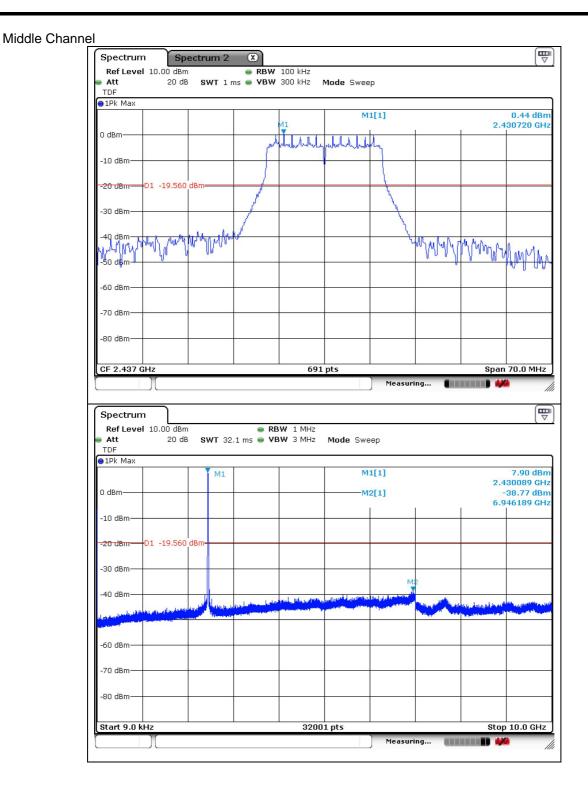


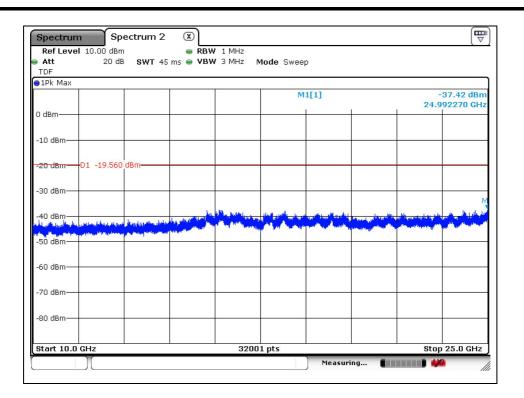
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

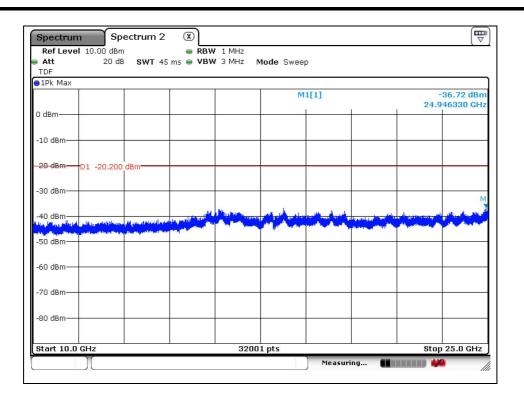


OFDM: 802.11n_HT20 (MCS0)

Low Channel



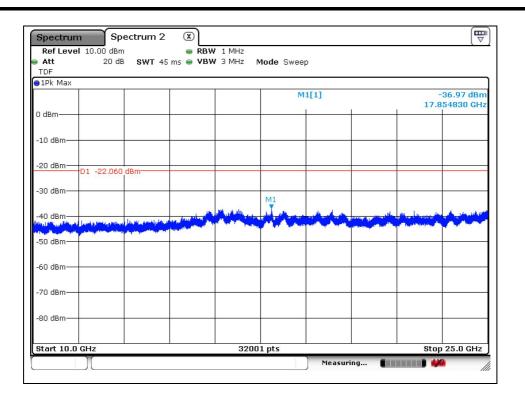

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

High Channel ₩ X Spectrum Spectrum Ref Level 10.00 dBm RBW 100 kHz SWT 1 ms 👄 VBW 300 kHz 20 dB Att Mode Sweep TDF ●1Pk Ma: M1[1] 0.20 dBr 2.455740 GH 0 dBn which has a producted by M2[1] -51.49 dBn 2.483500 GH -10 dB 20 01 -20.200 dBm -30 dBm 40 dBrr 50 dBm -60 dBm -70 dBm -80 dBm CF 2.4835 GHz 691 pts Span 70.0 MHz Marker Type Ref Trc Function **Function Result** X-value Y-value 2.45574 GHz 0.20 dBm M2 2.4835 GHz -51.49 dBm МЗ 2.48391 GHz -50.38 dBm M4 2.5 GHz -53.00 dBm Measuring... ₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1[1] 7 22 dBn M1 2.464769 GHz 0 dBm M2[1] -39.33 dBn 6.812129 GH -10 dBm 20 dBm D1 -20.200 dB -30 dBm M2 40 dBm -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring... 2

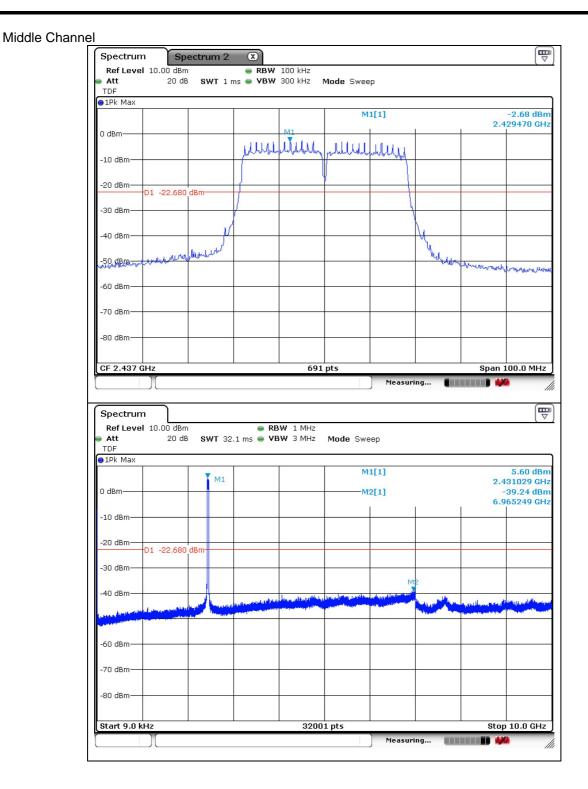
The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.


OFDM: 802.11n_HT40 (MCS0)

Low Channel

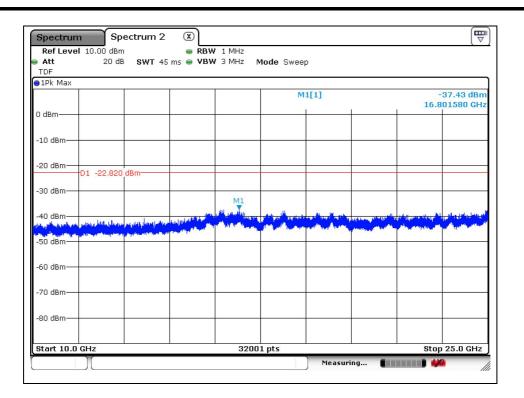
Spectrum	Sr	ectru	ım 2	X									E
Ref Level				•	RBW	100 kHz							(v
Att	20 d	B S \	WT 1	ms 😑	VBW	300 kHz	Mode	Sweep					
TDF 1Pk Max													
								M1[1]	8				-2.06 dBm
0 dBm								M1					16950 GHz
10.10						Jull	half	MM2[1]	Mull	hille	Led .		48.38 dBm
-10 dBm								— ı V					
-20 dBm-	01 -22.060) dBm-						v					
-30 dBm													
					N	4/					1		
-40 dBm			M	12	. Inde							When	
59 dBm	an man and more	- here and	hand	12 Surjulus	where a						_	- My	
-60 dBm													
-70 dBm													
-80 dBm				<u> </u>									
CF 2.41 GH	z					6	91 pts					Span 1	LOO.O MHz
Marker	1 1				-				- 1	_			
Type Ref M1	1	<u>X</u>	-value 2.416	95 GH:	z	Y-value -2.06		Function	_	F	unction	Result	
M2	1		2.	39 GH:	z	-48.38	dBm						
M3 M4	1			87 GH: 2.4 GH:		-39.79 -38.30							
	1				-	30.30	abiii		Measuri				2
									measuri	ng			
													111
													(11)
Ref Level	10.00 dBr		UT 20			W 1 MHz							
			WT 32			W 1 MHz		e Sweep					
Ref Level Att TDF	10.00 dBr		WT 32										
Ref Level Att TDF	10.00 dBr												(▽ 5.30 dBm
Ref Level Att TDF 1Pk Max	10.00 dBr		wт 32 М1					s Sweep M1[1]					(▼ 5.30 dBm 12899 GHz
Ref Level Att TDF 1Pk Max	10.00 dBr							e Sweep					(▽ 5.30 dBm
Ref Level Att TDF 1Pk Max	10.00 dBr							s Sweep M1[1]					5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max	10.00 dBr							s Sweep M1[1]					5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm	10.00 dBr 20 d	B SI						s Sweep M1[1]					5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF IPk Max 0 dBm -10 dBm -20 dBm	10.00 dBr	B SI						s Sweep M1[1]					5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF IPk Max 0 dBm -10 dBm -20 dBm	10.00 dBr 20 d	B SI						s Sweep M1[1]					5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF IPk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 20 d	B SI						s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF IPk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 20 d	B SI		1 ms				s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF IPk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
• Att TDF • 1Pk Max • 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm -60 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm	10.00 dBr 20 d	B SI		1 ms		9 3 MHz		s Sweep M1[1]		2			5.30 dBm 12899 GHz 39.21 dBm
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -80 dBm	10.00 dBr 20 dl	B SI		1 ms		W 3 MHz	Mode	s Sweep M1[1]		2		- 6.9	5.30 dBm 12899 GHz 39.21 dBm 83069 GHz
Ref Level Att TDF 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm	10.00 dBr 20 dl	B SI		1 ms		W 3 MHz		Sweep M1[1] M2[1] M2[1] M2[1]		2		6.9	5.30 dBm 12899 GHz 39.21 dBm 83069 GHz


The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-19(2019.04.24)(1) Tel. +82 31 428 5700 / Fax. +82 31 427 2370


A4(210 mm × 297 mm)

High Channel ₩ X Spectrum Spectrum Ref Level 10.00 dBm RBW 100 kHz SWT 1 ms 👄 VBW 300 kHz 20 dB Att Mode Sweep TDF ●1Pk Max M1[1] 2.82 dBr 2.444560 GH: 0 dBn Lahrand and the later M2[1] -50.92 dBn Milliton for the 2.483500 GH -10 dBm -20 dBm 01 -22.820 dBm -30 dBm -40 dBr hu мама 50 dBr M4 -60 dBm -70 dBm -80 dBm CF 2.4735 GHz 691 pts Span 100.0 MHz Marker Type Ref Trc Function **Function Result** X-value Y-value 2.44456 GHz 2.4835 GHz -2.82 dBm -50.92 dBm M2 МЗ 2.48551 GHz -50.66 dBm M4 2.5 GHz -53.38 dBm Measuring... ₫ Spectrum Ref Level 10.00 dBm 🔵 RBW 1 MHz Att 20 dB SWT 32.1 ms 👄 VBW 3 MHz Mode Sweep TDF 1Pk Max M1[1] 4 53 dBn 2.442899 GHz 0 dBm M2[1] -38.99 dBn 6.898379 GH: -10 dBm -20 dBm D1 -22.820 dBn -30 dBm Ma 40 dBm a dista di la -60 dBm -70 dBm -80 dBm 32001 pts Stop 10.0 GHz Start 9.0 kHz Measuring... 2

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.

The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. This test report does not assure KOLAS accreditation.