

EMF TEST REPORT

Test Report No. : OT-24N-RWD-033

Reception No. : 2411003922

Applicant : LG Electronics USA

Address : 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, 07632, United States

Manufacturer : LG Electronics Inc.

Address : 222, LG-ro, Jinwi-myeon, Pyeontaek-si, Gyeonggi-do 17709, Republic of Korea

Type of Equipment : Electric Vehicle Charger

FCC ID : BEJ-EVD350DL

Model Name : EVD350DL-PN

Multiple Model Name: N/A

Serial number : N/A

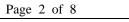
Total page of Report : 8 pages (including this page)

Date of Incoming : November 01, 2024

Date of Issuing : November 19, 2024

SUMMARY

The equipment complies with the requirements of FCC CFR 47 § 1.1307


This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

 $This \ report \ is \ not \ correlated \ with \ the \ ''KS \ Q \ ISO/IEC \ 17025 \ and \ KOLAS \ accreditation'' \ of \ Korean \ Laboratory \ Accreditation \ Scheme.$

Tested by Dong-Yeon, Han / Prj. Engineer ONETECH Corp.

Reviewed by Tae-Ho, Kim / Chief Engineer ONETECH Corp. Approved by Jae-Ho, Lee / Chief Engineer ONETECH Corp.

CONTENTS

	Page
1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	5
2.1 PRODUCT DESCRIPTION	
2.3 MODEL DIFFERENCES.	5
3. EUT MODIFICATIONS	5
4. MAXIMUM PERMISSIBLE EXPOSURE	6
4.1 RF Exposure Calculation	
4.2 EUT DESCRIPTION	
AA CLA CAR AREA MDE CLARA DAGA ANGE	_

DUELECH

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-24N-RWD-033	November 19, 2024	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : LG Electronics USA

Address : 111 Sylvan Avenue, North Building, Englewood Cliffs, New Jersey, 07632, United States

Contact Person: David, Kim / Team leader, LGEUS NA Policy & Regulatory Affairs

Telephone No.: +201-470-2696
FCC ID: BEJ-EVD350DL
Model Name: EVD350DL-PN

Brand Name : Serial Number : N/A

Date: November 19, 2024

DEVICE TYPE	DXX – Low Power Communication Device Transmitter
E.U.T. DESCRIPTION	Electric Vehicle Charger
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	KDB 447498 D01 Interim General RF Exposure Guidance v06
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
MODIFICATIONS ON THE EQUIPMENT	
TO ACHIEVE COMPLIANCE	None

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The LG Electronics USA, Model EVD350DL-PN (referred to as the EUT in this report) is a Electric Vehicle Charger. The product specification described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Electric Vehicle Charger
TRANSMITTING FREQUENCY	13.560 MHz
MODULATION	ASK
ANTENNA TYPE	PCB Antenna
LIST OF EACH OSC. or CRY.	
FREQ.(FREQ. >= 1 MHz)	8 MHz

2.3 Model Differences

-. None

3. EUT MODIFICATIONS

-. None

4. MAXIMUM PERMISSIBLE EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are $180/f^2$ mW/cm² for the frequency range between 1.34 MHz and 30 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 EUT Description

Kind of EUT	Electric Vehicle Charger			
MAX. RF OUTPUT POWER	$59.52~\mathrm{dB}\mu\mathrm{V/m}$			
	☐ Portable (< 20 cm separation)			
Device Category	■ Mobile (> 20 cm separation)			
	□ Others			
_	■ MPE			
Exposure	□ SAR			
Evaluation Applied	□ N/A			

4.3 Calculated MPE Safe Distance

Calculated MPE Safe Distance(13.56 MHz RFID)

Culculated 111 E bate Distance (15:00 1111E 111 12)												
Frequency (MHz)	Operating Mode	Target Power W/tolerance	Max tune up power Antenna Gain Distance (mW/cm²) (cm)		Max tune up Antenna Gain Safe power Distance (m		Antenna Gain		Antenna Ga		Power Density (mW/cm²) @ 20 cm	Limit (mW/
		(dBm)			Linear	(cm)	Separation	cm²)				
13.56	RFID	-35.68 ± 0.5	-35.18	0.000 303	-	-	0.004 9	0.000 000 06	0.98			

 $E.I.R.P[dBm] = Field strength (dB\mu V/m)-95.2 = 59.52 dB\mu V/m - 95.2 = -35.68 dBm$

Limit = $(180/f^2)$ = $(180/13.56^2)$ = 0.98 (mW/cm²)

According to above table, for 13.56 MHz, safe distance,

$$D = 0.282 * \sqrt{(0.000 \ 303 * 1)/1.00} = 0.004 \ 9 \ cm.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 0.000303 * 1 / (4 * \pi * 20^2) = 0.000000006$$

Where:

S = Power Density,

 $P = Radiated Power (Field strength (dB\mu V/m)-95.2)$

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

Calculated MPE Safe Distance(RFID_VPOS Touch)

Frequency (MHz)	Operating Mode	Target Power W/tolerance	Max tune up power		Antenna Gain		Gain Safe Power Density (mW/cm²) Distance @ 20 cm		ntenna Gain Safe Distance (1		Limit (mW/
		(dBm)	(dBm)	(mW)	Log Linear		(cm)	Separation	cm²)		
13.56	RFID	-27.56 ± 0.5	-27.06	0.002	-	-	0.013	0.000 000 4	0.98		

 $E.I.R.P[dBm] = Field\ strength\ (dB\mu V/m) - 95.2 = 67.64\ dB\mu V/m - 95.2 = -27.56dBm$

Limit = $(180/f^2)$ = $(180/13.56^2)$ = 0.98 (mW/cm²)

According to above table, for 13.56 MHz, safe distance,

$$D = 0.282 * \sqrt{(0.002 * 1)/1.00} = 0.013 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 0.002 * 1 / (4 * \pi * 20^2) = 0.000 000 4$$

Where:

S = Power Density,

 $P = Radiated Power (Field strength (dB\mu V/m)-95.2)$

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

Calculated MPE Safe Distance(LTE & WCDMA)

Operating Mode Prediction Frequency Max E		Max EIR	P Power	Prediction distance	Power density at prediction Frequency (S)	MPE Limit
	(MHz)	(dBm)	(mW)	(cm)	(mW/cm²)	(mW/cm²)
WCDMA Band 2	1852.4 ~ 1907.6	24.01	251.77	20.00	0.05009	1.00000
WCDMA Band 4	1712.4 ~ 1752.6	24.00	251.19	20.00	0.04997	1.00000
WCDMA Band 5	826.4 ~ 846.6	26.05	402.72	20.00	0.08012	1.00000
LTE Band 4	1720 ~ 1745	24.30	269.15	20.00	0.05355	1.00000
LTE Band 7	2502.5 ~ 2567.5	22.26	168.27	20.00	0.03348	1.00000
LTE Band 12	699.7 ~ 715.3	24.82	303.39	20.00	0.06036	1.00000
LTE Band 13	779.5 ~ 784.5	24.93	311.17	20.00	0.06191	1.00000
LTE Band 25	1850.7 ~ 1914.3	24.48	280.54	20.00	0.05581	1.00000
LTE Band 26	814.7 ~ 848.3	26.52	448.75	20.00	0.08928	1.00000
LTE Band 30	2307.5 ~ 2312.5	23.22	209.89	20.00	0.04176	1.00000
LTE Band 41	2498.5 ~ 2687.5	22.20	165.96	20.00	0.03302	1.00000

DATA for Intermodulation Transmit

According to above equation, the following result was obtained.

Simultaneous transmission	Operating Mode	Simultaneous MPE	Sum Ratios	Simultaneous	
operations				MPE Limit	
	LTE Band 26	0.089 28			
LTE	13.56 MHz(RFID)	0.000 000 06	0.089 28	< 1	
+ 13.56 MHz(RFID)	13.56 MHz(RFID)	0.000 000 4			