

EMC TEST REPORT

Report Number: 100764703BOX-001a Project Number: G100764703

Report Issue Date: 7/12/2012

Product Designation: FD100SL

Standards: FCC 47CFR Part 15 Subpart C Section 15.231 (2012) Industry Canada RSS-210 Issue 8 December 2010 Industry Canada RSS-Gen Issue 3 December 2010

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 Client: Philips Lifeline 111 Lawrence Street Framingham, MA 01702

Report prepared by Reviewer

Nicholas Abbondante/Staff Engineer

Report reviewed by

Vathana F. Ven/Senior Project Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Fundamental Field Strength (CFR47 Part 15 Subpart C Section 15.231(b) IC RSS-210 Annex 1.1.2 and Table A)	Pass
7	Occupied Bandwidth (CFR47 Part 15 Subpart C Sections 15.215, 15.231(c) IC RSS-Gen Section 4.6, IC RSS-Gen A1.1.3)	Pass
8	Radiated Spurious Emissions (CFR47 Part 15 Subpart C Sections 15.205, 15.209, and 15.231(b)(1-3), IC RSS-Gen Section 7.2.2 Table 3 and Section 7.2.5 Table 5, IC RSS-210 Annex 1.1.2 and Table A)	Pass
9	Duty Cycle (CFR47 Part 15 Section 15.35 and Subpart C Section 15.231(b)(2) IC RSS-Gen Section 4.5)	Pass
10	5 Second Shut Off Time (CFR47 Part 15 Subpart C Section 15.231(a)(1) IC RSS-210 Section A1.1.1(a))	Pass
11	AC Line-Conducted Emissions (CFR47 FCC Part 15 Subpart C 15.207; IC RSS-Gen Section 7.2.4)	N/A, Battery
12	Revision History	

Non-Specific EMC Report Shell Rev. May 2012

3 Client Information

This EUT was tested at the request of:

Company:	Philips Lifeline		
	111 Lawrence Street		
	Framingham, MA 01702		
Contact:	Clyde Dottin		
Telephone:	508-988-1313		
Fax:	240-536-3263		
Email:	clyde.dottin@philips.com		

4 Description of Equipment Under Test

Equipment Under Test				
Description Manufacturer Model Number Serial Number				
Emergency Alert	Philips Lifeline	FD100SL	BOX1206150828-001	
Pendant (US Version)				
Emergency Alert	Philips Lifeline	FD100SL	BOX1206150828-003	
Pendant (US Version)	<u> </u>			

Receive Date:	06/15/2012
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The FD100SL is an emergency alert pendant

Equipment Under Test Power Configuration				
Rated Voltage Rated Current Rated Frequency Number of Phases				
3.6Volt Battery	NA	NA	NA	

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	BOX1206150828-001 is configured as a normal operating device
2	BOX1206150828-003 is configured to transmit nearly continuously

5 System Setup and Method

	Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	NONE					

Support Equipment					
Description Manufacturer Model Number Serial Number					
NONE					

5.1 Method:

Configuration as required by ANSI C63.4 (2003)

5.2 EUT Block Diagram:

Internal 3.6V Battery

Integral Antenna

6 Fundamental Field Strength

6.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart C Section 15.231 and RSS 210

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB \\ AG = Amplifier Gain in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\label{eq:result} \begin{array}{l} {\sf RA} = 52.0 \ d{\sf B}\mu{\sf V} \\ {\sf AF} = \ 7.4 \ d{\sf B}/{\sf m} \\ {\sf CF} = \ 1.6 \ d{\sf B} \\ {\sf AG} = 29.0 \ d{\sf B} \\ {\sf FS} = 32 \ d{\sf B}\mu{\sf V}/{\sf m} \end{array}$

To convert from $dB\mu V$ to μV or mV the following was used:

 $UF = 10^{(NF \ / \ 20)} \text{ where } UF = Net \text{ Reading in } \mu V$ $NF = Net \text{ Reading in } dB \mu V$

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
Dav003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012
Barooo	Trodulor oldion	Barlo moti amonto	1 100	1 200020/100/1	00/11/2011	00/02/2012

Software Utilized:

Name Manufacturer		Version
EMI Boxborough	Intertek	8/27/2010

6.3 Results:

The sample tested was found to Comply. The Fundamental field strength must meet the following limits:

Fundamental Frequency (MHz), excluding	Field Strength of the Fundamental ^(Note 1)	Field Strength of Unwanted Emissions ^(Note 1)		
restricted band frequencies of RSS-Gen	(microvolts/m at 3 metres)	(microvolts/m at 3 metres)		
40.66-40.70	See Section A2.7			
70-130	1,250	125		
130-174	1,250 to 3,750*	125 to 375		
174-260 (Note 2)	3,750	375		
260-470 (Note 2)	3,750 to 12,500*	375 to 1,250		
Above 470 12,500		1,250		

Note 1: Limits on the field strength of emissions, as shown in this table, are based on the average value of the measured emissions. As an alternative, compliance with the limits in this table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector.

* Linear interpolation with frequency F in MHz:

For 130-174 MHz: FS (microvolts/m) = (56.82 x F)-6136

For 260-470 MHz: FS (microvolts/m) = (41.67 x F)-7083

For a fundamental frequency of 319.5 MHz, this corresponds to a limit of 95.88 dBuV/m peak and 75.88 dBuV/m average at a 3 meter test distance.

6.4 Setup Photographs:

Intertek

6.5 Plots/Data:

					Radiated I	Emissions	;					I
Company:	Philips Life	line					Antenna	a & Cables:	N	Bands: N.	LF. HF. SHF	
Model #:	FD100SL						Antenna:	145106 V10m	08-15-2012.txt	145106 H10m	08-15-2012.txt	
Serial #:	BOX12061	50828-001					Cable(s):	145-410 10mTrk	A 09-04-2012.txt	NONE.		
Engineers:	John R. Ca	auvel			Location:	10M ALSE	Barometer:	dav003		Filter:	NONE	
Project #:	G1007647	03	Date(s):	06/28/12								
Standard:	FCC Part ?	15 Subpart C	15.231/IC	RSS-210			Temp/Humic	lity/Pressure:	21	53%	994	
Receiver:	R&S ESI (145128) 08-2	23-2012	Limit Di	stance (m):	3						
PreAmp:	PRE145003	3 10-04-12.txt		Test Di	stance (m):	10						
F	reAmp Use	ed? (Y or N):	Y	Voltage/	Frequency:	3.6V I	Battery	Freque	ncy Range:	30-10	00Mhz	
	Net = Read	ding (dBuV/m	n) + Antenn	a Factor (dB	31/m) + Cal	ole Loss (dE	B) - Preamp	Factor (dB)	- Distance	Factor (dB)	
Peak: P	K Quasi-Pe	eak: QP Ave	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	B = Restricte	ed Band; Ba	andwidth de	noted as RI	BW/VBW	_
	Ant.			Antenna	Cable	Pre-amp	Distance					Í
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	İ
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
No	te: Fundam	ental Field S	trength (no	preamp) Av	verage obta	ined using 2	20.98 dB du	ty cycle fac	tor applied t	to peak rea	ding	l
		-		-	Note: Ori	entation 1			-	-		l
PK	V	319.500	59.74	14.29	3.25	0.00	-10.46	87.74	95.88	-8.14	120/300 kHz	l I
AVG	V	319.500	38.76	14.29	3.25	0.00	-10.46	66.76	75.88	-9.12	120/300 kHz	l
PK	Н	319.500	44.16	14.19	3.25	0.00	-10.46	72.06	95.88	-23.82	120/300 kHz	l
AVG	Н	319.500	23.18	14.19	3.25	0.00	-10.46	51.08	75.88	-24.80	120/300 kHz	l
		-		-	Note: Ori	entation 2					-	l I
PK	V	319.500	53.09	14.29	3.25	0.00	-10.46	81.09	95.88	-14.79	120/300 kHz	l
AVG	V	319.500	32.11	14.29	3.25	0.00	-10.46	60.11	75.88	-15.77	120/300 kHz	l
PK	Н	319.500	61.11	14.19	3.25	0.00	-10.46	89.01	95.88	-6.87	120/300 kHz	l I
AVG	Н	319.500	40.13	14.19	3.25	0.00	-10.46	68.03	75.88	-7.85	120/300 kHz	i i
	-				Note: Ori	entation 3						l I
PK	V	319.500	50.45	14.29	3.25	0.00	-10.46	78.45	95.88	-17.43	120/300 kHz	i i
AVG	V	319.500	29.47	14.29	3.25	0.00	-10.46	57.47	75.88	-18.41	120/300 kHz	l I
PK	Н	319.500	60.53	14.19	3.25	0.00	-10.46	88.43	95.88	-7.45	120/300 kHz	l I
AVG	Н	319.500	39.55	14.19	3.25	0.00	-10.46	67.45	75.88	-8.43	120/300 kHz	i
Т	est Persor	nnel: Joh	n R. Cauv	el J.R.	C			Test	Date: 6-	28-2012		
Supervis	ing/Reviev Engin	wing leer:	olas Abb		NA							
(vvne				Dart 15 Qu	bnart			Tost		oo Data		
-				Fail 15 50	opan			Test Le	evels. Se	ee Dala		

Input Voltage: 3.6V Battery Pretest Verification w/ Ambient Signals or BB Source: YES

Product Standard: C and IC RSS-210

Ambient Temperature:	21 °C
Relative Humidity:	53 %
Atmospheric Pressure:	995 mbars

Deviations, Additions, or Exclusions: None

7 Occupied Bandwidth

7.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart C Section 15.231 and RSS 210

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
Dav003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012

Software Utilized:

Name	Manufacturer	Version
None		

7.3 Results:

The sample tested was found to Comply. The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. Therefore the bandwidth must not exceed 798.8 kHz.

7.4 Setup Photographs:

Deviations, Additions, or Exclusions: None

Intertek

8 Radiated and Spurious Emissions

8.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart C Section 15.231 and RSS 210

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB \\ AG = Amplifier Gain in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\label{eq:result} \begin{array}{l} {\sf RA} = 52.0 \ d{\sf B}\mu{\sf V} \\ {\sf AF} = \ 7.4 \ d{\sf B}/{\sf m} \\ {\sf CF} = \ 1.6 \ d{\sf B} \\ {\sf AG} = 29.0 \ d{\sf B} \\ {\sf FS} = 32 \ d{\sf B}\mu{\sf V}/{\sf m} \end{array}$

To convert from $dB\mu V$ to μV or mV the following was used:

 $UF = 10^{(NF / 20)} \text{ where } UF = Net \text{ Reading in } \mu V$ $NF = Net \text{ Reading in } dB\mu V$

Example:

$$\label{eq:FS} \begin{split} &\mathsf{FS} = \mathsf{RA} + \mathsf{AF} + \mathsf{CF} - \mathsf{AG} = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ &\mathsf{UF} = 10^{(32\ \mathsf{dB}\mu\mathsf{V}\,/\,20)} = 39.8\ \mu\mathsf{V}/\mathsf{m} \end{split}$$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
Dav003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough	Intertek	8/27/2010

8.3 Results:

The sample tested was found to Comply. The spurious emissions must meet the following limits:

Fundamental Frequency (MHz), excluding restricted band frequencies of RSS-Gen	Field Strength of the Fundamental ^(Note 1) (microvolts/m at 3 metres)	Field Strength of Unwanted Emissions ^(Note 1) (microvolts/m at 3 metres)
40.66-40.70	See Se	ection A2.7
70-130	1,250	125
130-174	1,250 to 3,750*	125 to 375
174-260 (Note 2)	3,750	375
260-470 (Note 2)	3,750 to 12,500*	375 to 1,250
Above 470	12,500	1,250

Note 1: Limits on the field strength of emissions, as shown in this table, are based on the average value of the measured emissions. As an alternative, compliance with the limits in this table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector.

* Linear interpolation with frequency F in MHz: For 130-174 MHz: FS (microvolts/m) = (56.82 x F)-6136 For 260-470 MHz: FS (microvolts/m) = (41.67 x F)-7083

For a fundamental frequency of 319.5 MHz, this corresponds to a limit of 75.88 dBuV/m peak and 55.88 dBuV/m average at a 3 meter test distance.

8.4 Setup Photographs:

Intertek

8.5 Plots/Data:

Radiated Emissions

Company:	Philips Life	line					Antenna	a & Cables:	Ν	Bands: N, I	LF, HF, SHF	
Model #:	FD100SL						Antenna:	145106 V10m	08-15-2012.txt	145106 H10m	08-15-2012.txt	
Serial #:	BOX12061	50828-001					Cable(s):	145-410 10mTrk	A 09-04-2012.txt	NONE.		
Engineers:	John R. Ca	auvel			Location:	10M ALSE	Barometer:	dav003		Filter:	NONE	
Project #:	G1007647	03	Date(s):	06/28/12								
Standard:	FCC 47CF	R Part 15 Su	ubpart C Śe	ction 15.23	1 and RSS	210	Temp/Humid	litv/Pressure:	21	53%	994	
Receiver:	R&S ESI (145128) 08-2	23-2012	Limit Dis	stance (m):	3		,				
PreAmp:	PRE145003	, 10-04-12.txt		Test Dis	stance (m):	10						
P	reAmp Use	d? (Y or N):	Y	Voltage/	Frequency:	3.6V E	Battery	Freque	ncy Range:	30-10	00Mhz	
	Net = Read	ding (dBuV/m	n) + Antenn	a Factor (dE	31/m) + Cat	ole Loss (dE	3) - Preamp	Factor (dB)	- Distance	Factor (dB))	
Peak: Pl	K Quasi-Pe	eak: QP Ave	rage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	= Restricte	d Band; Ba	ndwidth dei	noted as RI	BW/VBW	
	Ant.			Antenna	Cable	Pre-amp	Distance					I
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
	Note	e: Spurious e	emissions (r	noise floor a	t 960MHz),	average ob	tained using	g 20.98 dB	duty cycle fa	actor		Ì
PK	V	639.000	31.11	19.70	4.38	28.30	-10.46	37.35	75.88	-38.53	120/300 kHz	l
AVG	V	639.000	10.13	19.70	4.38	28.30	-10.46	16.37	55.88	-39.51	120/300 kHz	Ì
PK	V	958.500	43.68	23.40	5.33	27.74	-10.46	55.13	75.88	-20.75	120/300 kHz	l
AVG	V	958.500	22.70	23.40	5.33	27.74	-10.46	34.15	55.88	-21.73	120/300 kHz	Ì
QP	V	960.000	15.22	23.40	5.33	27.73	-10.46	26.67	46.00	-19.33	120/300 kHz	RB

Report Number: 100764703BOX-001a

Issued: 07/12/2012

Intertek

Intertek

Special Radiated Emissions

Company: Model #: Serial #:	Philips Life FD100SL BOX12061	line					Antenna: Antenna: Cable(s):	a & Cables: 145106 V10m 145-410 10mTrk	N 08-15-2012.txt A 09-04-2012.txt	Bands: N, I 145106 H10m NONE.	LF, HF, SHF 08-15-2012.txt		
Engineers:	John R. Ca	auvel			Location:	10M ALSE	Barometer:	dav003		Filter:	NONE		
Project #:	G1007647	03	Date(s):	06/28/12									
Standard:	FCC 47CF	R Part 15 S	ubpart C Se	ection 15.23	1 and RSS	210	Temp/Humio	ditv/Pressure:	21	53%	995		
Receiver:	R&S ESI (145128) 08-	23-2012	Limit Di	stance (m):	3		,					
PreAmp:	PRE145014	12-16-2012.txt		Test Di	stance (m):	3							
Pi	eAmp Use	d? (Y or N):	Y	Voltage/	Frequency:	3.6V I	Battery	Freque	ncy Range:	1-3.	2Ghz		
	Net = Read	ling (dBuV/n	n) + Antenn	a Factor (dl	31/m) + Cal	ble Loss (d	3) - Preamp	Factor (dB)) - Distance	Factor (dB)		
Peak: Pł	K Quasi-Pe	ak: QP Ave	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RE	B = Restrict	ed Band; Ba	andwidth de	noted as R	BW/VBW		
	Ant.			Antenna	Cable	Pre-amp	Distance						
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
		Note	e: Spurious	emissions,	average ob	tained using	g 20.98 dB (duty cycle fa	actor				
PK	Н	1278.000	53.25	25.40	6.18	33.95	0.00	50.88	74.00	-23.12	1/3 MHz		RB
AVG	Н	1278.000	32.27	25.40	6.18	33.95	0.00	29.90	54.00	-24.10	1/3 MHz		RB
PK	Н	1597.500	68.22	27.50	7.04	33.74	0.00	69.02	74.00	-4.98	1/3 MHz	RB	RB
AVG	Н	1597.500	47.24	27.50	7.04	33.74	0.00	48.04	54.00	-5.96	1/3 MHz	RB	RB
PK	Н	1917.000	53.44	28.92	7.64	33.84	0.00	56.16	75.88	-19.72	1/3 MHz		
AVG	Н	1917.000	32.46	28.92	7.64	33.84	0.00	35.18	55.88	-20.70	1/3 MHz		
PK	Н	2236.500	55.96	30.35	8.30	34.05	0.00	60.56	74.00	-13.44	1/3 MHz	RB	RB
AVG	Н	2236.500	34.98	30.35	8.30	34.05	0.00	39.58	54.00	-14.42	1/3 MHz	RB	RB
PK	V	2556.000	48.92	31.22	9.01	34.28	0.00	54.87	75.88	-21.01	1/3 MHz		
AVG	V	2556.000	27.94	31.22	9.01	34.28	0.00	33.89	55.88	-21.99	1/3 MHz		
PK	V	2875.500	51.14	33.62	9.89	34.43	0.00	60.22	74.00	-13.78	1/3 MHz	RB	RB
AVG	V	2875.500	30.16	33.62	9.89	34.43	0.00	39.24	54.00	-14.76	1/3 MHz	RB	RB
PK	V	3195.000	46.67	34.60	10.30	34.72	0.00	56.85	75.88	-19.03	1/3 MHz		
AVG	V	3195.000	25.69	34.60	10.30	34.72	0.00	35.87	55.88	-20.01	1/3 MHz		

Test Personnel:	John R. Cauvel J.R.C	Test Date:	6-28-2012
Supervising/Reviewing			
Engineer:	-1-1-1		
(Where Applicable)	Nicholas Abbondante		
	FCC CFR 47 Part 15 Subpart	Test Levels:	See Data
Product Standard:	C and IC RSS-210		
Input Voltage:	3.6V Battery		
Pretest Verification w/		Ambient Temperature:	21 ºC
Ambient Signals or	NEO.	Relative Humidity:	53 %
BB Source:	YES		
		Atmospheric Pressure:	995 mbars

Deviations, Additions, or Exclusions: None

9 Duty Cycle

9.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart C Section 15.231 and RSS 210

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
Dav003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012

Software Utilized:

Name	Manufacturer	Version
None		

9.3 Results:

There is no limit on duty cycle, it is used to obtain the average value of emissions. The duty cycle average factor was determined to be 20.98 dB.

Intertek

9.4 Plots/Data:

Report Number: 100764703BOX-001a

Date: 28.JUN.2012 23:01:34 Complete 17.6ms pulse train consisting of 1 long word, 1 medium word, and ~58 short words

Issued: 07/12/2012

28.JUN.2012 22:53:47 17.6 ms burst shown with a 100ms span – only one burst

Typical burst interval – long burst interval (always greater than 100ms)

Typical burst interval – short burst interval (always greater than 100ms)

Date: 28.JUN.2012 23:00:11

Typical burst interval – long time domain snapshot. At 1s/division, the sequence of twelve pulses extends over nearly 3.5 seconds.

Intertek		
Report Number: 100764703BOX-001a	Issued: 07/12/2012	
Note that the burst length is 17.6 me consisting of F	9 abort 129 25up words, and madium 501 up word	

Note that the burst length is 17.6 ms consisting of 58 short 128.25us words, one medium 501 us word, and one long 986 us word. The burst interval is always at least 100 ms, and no more than one burst occurs in a 100 ms timeframe. Per the explanation below, the pulse train consists of 12 smaller pulse trains randomly spaced over 3.5 seconds.

Per Robert Venditti from Philips Lifeline:

When the button is pushed, the device will send out one message consisting of 12 pulses randomly spaced over a ~3500 msec period. A feature of our system is to determine the location of the button push via the closest receiver. This is done by measuring the RSSI of the 12 pulses in one message. Because the RSSI reading of a single pulse can be noisy or affected by interference, it is important for the receiver to average the RSSI signal of all pulses received. The averaging of the pulses' RSSI is key in making the locating decision. Because the "closest receiver" concept is not an exact science when using RF signal strength, we were able to make it work reasonably well using the averaging of the pulse train.

Total on time in burst = 58*128.25us + 1*501us + 1*986us = 8.93 ms on time in burst Pulse Train length = ~ 3.5 s (>100ms) Duty cycle percentage = 8.93/100 = 8.93%

The duty cycle correction factor is therefore 20*LOG(0.0893) = 20.98 dB

Test Personnel:	John R. Cauvel J,R.C	Test Date:	6-28-2012
Supervising/Reviewing			
Engineer: (Where Applicable)	Nicholas Abbondante MNA		
	FCC CFR 47 Part 15 Subpart	Test Levels:	See Data
Product Standard:	C and IC RSS-210		
Input Voltage:	3.6V Battery		
Pretest Verification w/		Ambient Temperature:	21 °C
Ambient Signals or BB Source:	YES	Relative Humidity:	53 %
		Atmospheric Pressure:	995 mbars

Deviations, Additions, or Exclusions: None

10 5 Second Shut Off

10.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart C Section 15.231 and RSS 210

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
Dav003	Weather Station	Davis Instruments	7400	PE80529A39A	08/17/2011	08/02/2012

Software Utilized:

Name	Manufacturer	Version
None		

10.3 Results:

The sample tested was found to Comply. A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

10.4 Plots/Data:

Deviations, Additions, or Exclusions: None

11 Revision History

Revision Level	Date	Report Number	Notes
0	6/28/2012	100764703BOX-001	Original Issue
1	07/02/2012	100764703BOX-001a	Updated duty cycle calculation and corresponding average results reflecting details provided by Philips Lifeline.