

# Appendix B. Maximum Permissible Exposure



## 1. Maximum Permissible Exposure

## 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.25 m normally can be maintained between the user and the device.

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> , H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|------------------------------------------------------------------------|
| 0.3-3.0                  | 614                                  | 1.63                                 | (100)*                         | 6                                                                      |
| 3.0-30                   | 1842 / f                             | 4.89 / f                             | (900 / f)*                     | 6                                                                      |
| 30-300                   | 61.4                                 | 0.163                                | 1.0                            | 6                                                                      |
| 300-1500                 |                                      |                                      | F/300                          | 6                                                                      |
| 1500-100,000             |                                      |                                      | 5                              | 6                                                                      |

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> ,  H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| 0.3-1.34                 | 614                                  | 1.63                                 | (100)*                         | 30                                                                      |
| 1.34-30                  | 824/f                                | 2.19/f                               | (180/f)*                       | 30                                                                      |
| 30-300                   | 27.5                                 | 0.073                                | 0.2                            | 30                                                                      |
| 300-1500                 |                                      |                                      | F/1500                         | 30                                                                      |
| 1500-100,000             |                                      |                                      | 1.0                            | 30                                                                      |

Note: f = frequency in MHz ; \*Plane-wave equivalent power density

## 1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density:  $Pd (W/m^2) = \frac{E^2}{377}$ 

E = Electric field (V/m)

- **P** = Average RF output power (W)
- G = EUT Antenna numeric gain (numeric)
- d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.25m, as well as the gain of the used antenna, the RF power density can be obtained.



## 1.3. Calculated Result and Limit

#### For 5GHz UNII Band:

#### Antenna Type : PCB Antenna

Conducted Power for IEEE 802.11ac VHT 40: 14.76dBm

| Directional<br>Gain (dBi) | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) | Average<br>Output Power<br>(mW) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|---------------------------|---------------------------|----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 8.19                      | 6.5966                    | 14.7629                          | 29.9428                         | 0.025162                                      | 1                                                      | Complies    |

Note:  $DirectionalGain = 10 \cdot 10$ 

$$\mathbf{Dg}\left[\frac{\sum_{j=1}^{N_{\mathrm{ANT}}} \left\{\sum_{k=1}^{N_{\mathrm{ANT}}} g_{j,k}\right\}^{2}}{N_{\mathrm{ANT}}}\right]$$

#### For 5GHz ISM Band:

#### Antenna Type : PCB Antenna

#### Conducted Power for IEEE 802.11ac VHT20: 27.67 dBm

| Directional<br>Gain (dBi) | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) |          | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|---------------------------|---------------------------|----------------------------------|----------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 8.19                      | 6.5966                    | 27.6680                          | 584.5225 | 0.491190                                      | 1                                                      | Complies    |

Note: DirectionalGain = 
$$10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{xx}} \left\{ \sum_{k=1}^{N_{xx}} \frac{1}{N_{xx}} \right\}}{N_{xx}} \right]$$

#### Antenna Type : PCB Antenna

#### Conducted Power for IEEE 802.11ac VHT20: 27.00 dBm

| Directional<br>Gain | Antenna Gain<br>(numeric) | Average<br>Output Power<br>(dBm) | Average<br>Output Power<br>(mW) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|---------------------|---------------------------|----------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 7.46                | 5.5760                    | 27.0033                          | 501.5664                        | 0.356272                                      | 1                                                      | Complies    |

Note: DirectionalGain = 
$$10 \cdot \log \left| \frac{\sum_{j=1}^{N_{\text{ANT}}} \sum_{k=1}^{N_{\text{ANT}}} g_{j,k}}{N_{ANT}} \right|$$

#### **CONCULSION:**

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

#### LPD = Limit of power density

Therefore, the worst-case situation is 0.491190 / 1 + 0.356272 / 1 = 0.847462, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

