

TEST REPORT

Report Numbe	r	RAPA12-O-152	
Type of Equipment		USB dongle type Wireless LAN equipment	
Model Name		WifiAn-Mini	
FCC ID		BDD-WifiAn-Mini	
	Name	ENJsoft Inc.	
Applicant Logo		en ENJsoft	
	Address	#1002, Ace Techno Tower 2-cha, 19, Digitalro 31 gil, Guro-gu, Seoul, Korea	
Manufacturer Address		ENJsoft Inc.	
		#1002, Ace Techno Tower 2-cha, 19, Digitalro 31 gil, Guro-gu, Seoul, Korea	
Application dat	e	January 20, 2012	
Date of test		February 6, 2012 to February 24, 2012	
Date of issue		February 29, 2012	
Total Page		83 pages (including this page)	

SUMMARY

The equipment complies with FCC Part 15.247: Operation within the bands 902 MHz - 928 MHz, 2 400 MHz - 2 483.5 MHz, and 5 725 MHz - 5 850 MHz.

This test report contains only the results of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

Date : February 29, 2012

Tested by Chang Young, Choi Deputy General Manager

Date : February 29, 2012

Reviewed by **Sukil, Park** Executive Managing Director

CONTENTS

	Page
1. General description of EUT	3
1.1 Applicant	3
1.2 Manufacturer	3
1.3 Basic description of EUT	3
1.4 Technical specification of EUT	4
2. General information of test	5
2.1 Standards applied for testing	5
2.2 Description of EUT modification	5
2.3 Peripheral equipments and cables used for testing	5
2.4 Information of test program	6
3. Technical information of equipment	8
3.1 Antenna information	8
4. Measurement data	9
4.1 6 dB bandwidth	9
4.2 Maximum peak output power	17
4.3 Maximum power spectral density	32
4.4 Conducted spurious and out of band emission	47
4.5 Radiated emission in restricted band	62
4.6 Radiated emission in band edge	66
4.7 Power line conducted emission	77
5. RF Exposure Compliance Requirement	82
6. List of measuring equipments	83

1. General description of EUT

1.1 Applicant

 Company name 	: ENJsoft Inc.
Address	: #1002, Ace Techno Tower 2-cha, 19, Digitalro 31 gil, Guro-gu, Seoul, Korea
 Contact person 	: Young A Choi
Phone/Fax	: 82-2-2109-1161 / 82-2-2109-1166

1.2 Manufacturer

 Company name 	:	ENJsoft Inc.
Address	:	#1002, Ace Techno Tower 2-cha, 19, Digitalro 31 gil, Guro-gu, Seoul, Korea
 Contact person 	:	Young A Choi

: USB dongle type Wireless LAN equipment

• Phone / Fax : 82-2-2109-1161 / 82-2-2109-1166

1.3 Basic description of EUT• Product name :

 Model name 	:	WifiAn-Mini
FCC ID	:	BDD-WifiAn-Mini
 Serial number 	:	Not available(Proto Type)
 Frequency 	:	2 412 ~ 2 462 MHz
 Channel number 	:	11 Channels
 Modulation method 	:	BPSK, QPSK, CCK, OFDM
 FCC Rule Part(s) 	:	FCC Part 15 Subpart C Section 15.247
 FCC classification 	:	DTS / Digital Transmission System
 Date of test 	:	February 6, 2012 to February 24, 2012
 Date of issue 	:	February 29, 2012
 Place of test 	:	Head office
		824, Anyang megavalley, 799, Gwanyang-dong, Dongan-gu, Anyang-si, Gyeonggi-do 431-767, Korea
		<u>Open area test site</u>
		80, Jeil-ri, Yangji-myun, Cheoin-gu, Yongin-si, Gyeonggi-do 449-825, Korea
		(FCC Registration Number : 337229)
		(IC Submission Number : 143881)
		(KCC Designation Number : KR0027)

1.4 Technical specification of EUT

Chip		RTL8188CU
LED		Link/Activity
	Frequency band	2.412 GHz ~ 2.462 GHz
		802.11n: Up to 150 Mbps
	Wireless signal rates	802.11g: Up to 54 Mbps
		802.11b: Up to 54 Mbps
	Wireless transmit power	14 dBm (MAX EIRP)
	Modulation	OFDM / CCK / 16-QAM / 64-QAM
	Transmission distance	Maximum: 30 m
	Transmission distance	Stable: 15 m
Wireless Specification		135 Mbps: -68 dBm @ 10% PER
opcomoulion		108 Mbps: -68 dBm @ 10% PER
	Receive sensitivity	54 Mbps: -68 dBm @ 10% PER
		11 Mbps: -85 dBm @ 8% PER
		64/128 bit WEP
	Wireless security	WPA2 (AES)
		USA, Canada (FCC): 11 channels
	Number of selectable channels	Europe(CE): 13 channels
		Japan: 14 channels
Interface		USB2.0 Hi-Speed connector
Fasiment		Operating Temperature: 0 to 40°C
		Storage Temperature: 0 to 40°C
Environment		Operating Humidity: -10 to 90 % non-condensing
		Storage Humidity: -5 to 95 % non-condensing

2. General information of test

2.1 Standards applied for testing

Applied Standard : 47 CFR Part 15, Subpart C			
FCC Rule	Description of Test	Result	
15.203 / 15.204	Antenna information	Pass	
15.207	Power line conducted emissions	Pass	
15.209	Radiated emission in restricted band	Pass	
15.247(a)	6 dB bandwidth	Pass	
15.247(b)	Maximum peak output power	Pass	
15.247(d)	Conducted spurious and out of band emission	Pass	
15.247(d)	Radiated emission in band edge	Pass	
15.247(e)	Power spectral density	Pass	

2.2 Description of EUT modification

During the test, there was no mechanical or circuitry modification to improve RF and spurious characteristic, and any RF and spurious suppression device(s) was not added against the device tested.

2.3 Peripheral equipments and cables used for testing

• Type of peripheral equipment used

Description	Model Name	Serial No.	Manufacturer	FCC ID
EUT	WifiAn-Mini	N/A	ENJsoft Inc.	BDD-WifiAn-Mini
Control PC	NT-P560	EY9993HQ00078A	Samsung	-

• Type of cable used

Device from	Device to	Type of Interface	Type of Cable	Length
EUT	Control PC	SPI Interface	Direct insertion	-

2.4 Information of test program

• Skin of program

🚟 Realtek Realtek 11n S	Single Chip 92C USB WLAN	I MP Diagnostic Program 0.0023.1217.20	10 📃 🗖 🔀
Start Testing MAP	E-FUSE	1*1_PG Quit Reset Help	
Setting Testing Item None Tx Pwr[A] Tx Pwr[B] 63 2 14 Channel 1 3 Data Rate MCS 0 4 Preamble Long Gl 5 Signal Location 20M 6 - Signal Location 20M 6 - Rx Filter Rx Physical Match only	Tx Packet Setting Packet Pattern Random Packet Length 1000 Packet Counts Mac Address Self Get Self Set 48022A898CEA Tx Dest Set	Test Result Result Message Tx Packets 0 Rx Packets OK 0 Rx Packets Err 0 EEPROM/EFUSE W Hw Map W Hw Map R Hw Map U Efuse EE via Byte Offset Value Image: Comparison of the second state	MAC/RF Register/PowerTrack RF RfPath_A Offset Value Reg Read Reg Write RF Read RF Write T×PwrTrack Start Thermal Val TSSI Val Miscellaneous Auto Function None DBG FIELD Initial Gain

- ① Testing Item; selected by "Continuous TX" for all mode
 - Testing Item
 None
 Packets Tx
 Packets Rx
 Continuous Tx
 Single Tone Tx
 Carrier Suppression
 WPS Button
- ② TX Pwr(A); selected by "35" for all mode (range; 0 to 63)

Tx Pwr(A)		
35	-	
35	~	
36		
37		
38		
39		
40		
41		
42		
43	_	
44		
45		
46		
47		
48		
49		
50	~	

③ Channel; selected by "1", "6", "11" for 802.11b/g/n (20 MHz) mode and "3", "6", "9" for 802.11n (40 MHz) mode

C	hannel
1	-
1 2 3	
2	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

④ Data Rate; selected by "CCK 1M" to "CCK11M" for 802.11b mode,

"OFDM 6M" to "OFDM 54M" for 802.11g mode and "MCS 0" to "MCS 7" for 802.11n (20 MHz and 40 MHz) mode

Data Rate	
MCS 0	•
CCK 1M	^
CCK 2M	
CCK 5.5M	
CCK 11M	
OFDM 6M	
OFDM 9M	
OFDM 12M	
OFDM 18M	
OFDM 24M	_
OFDM 36M	
OFDM 48M	
OFDM 54M	
MCS 0	~

⑤ Preamble; selected by "Long Preamble" and "Short Preamble" for 802.11b mode and "Long GI" and "Short GI" for other mode

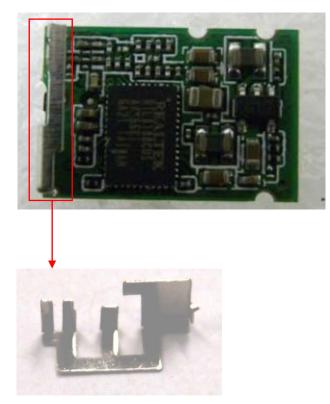
Preamble	
Long Gl	-
Long Preamble	
Short Preamble	
Long Gl	
Short GI	

(6) Signal Location; selected by "20M" for 802.11b/g/n (20 MHz) mode and "40M" for other mode

Signal Location		
20M	-	
20M		
40M		

3. Technical information of equipment

3.1 Antenna information


3.1.1 Electrical properties

- Frequency range: 2.4 to 2.5 GHz
- Impedance: 50 Ω Nominal
- VSWR: 1.92:1 Max
- Return loss: -10 dB Max
- Radiation: Omni-directional
- Gain (Peak): 2 dBi
- Polarization: Linear, Vertical
- Admitted power: 1 W

3.1.2 Physical properties

- Antenna material: FPCB
- Cable type: O.D. 1.13//70 mm
- Operating temperature: -10 to 60℃
- Storage temperature: -10 to 70℃

3.1.3 Picture of antenna

3.1.4 Requirement of antenna

The conducted output power limit specified in this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

4. Measurement data

4.1 6 dB bandwidth

4.1.1 Definition

A 6 dB Bandwidth is width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each lower 6 dB of the total mean power of a given emission

4.1.2 Specification

FCC Rules Part 15, Section 15.247(a)(2)

4.1.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01"

4.1.4 Measurement set-up

4.1.5 Test equipment

Equipment	Model name	Manufacturer
EUT	WifiAn-Mini	ENJsoft Inc.
Control PC	NT-P560	Samsung
Spectrum Analyzer	N9020A	Agilent

4.1.6 Test procedure

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 1 to 5 % of the emission bandwidth
- ③ Set VBW ≥ 3 x RBW
- ④ Detector = Peak
- (5) Trace mode = max hold
- 6 Sweep = auto couple
- ⑦ Measure the 6 dB bandwidth

4.1.7 Test condition

- Test place: Shield room
- Test mode: Maximum output power
- Test environment : 27°C, 53 % R.H.

4.1.8 Limit

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5 850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.9 Test result of IEEE802.11b mode

	Data rate (Mbps)	Preamble -	Measured bar	ndwidth (MHz)
Frequency (MHz)			6 dB bandwidth	99% bandwidth
2 412	11	Long Preamble	10.32	15.00
2 437	11	Long Preamble	10.30	14.96
2 462	11	Long Preamble	10.31	14.95

4.1.10 Test result of IEEE 802.11g mode

	Dete rete (Mhrse)	Droomblo	Measured bar	ndwidth (MHz)
Frequency (MHz)	Data rate (Mbps)	Preamble	6 dB bandwidth	99% bandwidth
2 412	54	Long GI	16.68	17.09
2 437	54	Long GI	16.65	17.08
2 462	54	Long GI	16.67	17.10

4.1.11 Test result of IEEE 802.11n (20 MHz) mode

	Dete rete (Mikne)	Droomblo	Measured bar	ndwidth (MHz)
Frequency (MHz)	Data rate (Mbps)	Preamble	6 dB bandwidth	99% bandwidth
2 412	MCS 7	Long GI	17.66	18.09
2 437	MCS 7	Long GI	17.69	18.10
2 462	MCS 7	Long GI	17.66	18.09

4.1.12 Test result of IEEE 802.11n (40 MHz) mode

	Data rata (Mhna)	Droomblo	Measured bar	ndwidth (MHz)
Frequency (MHz)	Data rate (Mbps)	Preamble	6 dB bandwidth	99% bandwidth
2 422	MCS 7	Long GI	36.51	36.44
2 437	MCS 7	Long GI	36.51	36.41
2 452	MCS 7	Long GI	36.50	36.42

4.1.13 Plots of 6 dB bandwidth

① 2412 MHz at IEEE802.11b

 \rightarrow 6 dB bandwidth: 10.32 MHz

2 2437 MHz at IEEE802.11b

→ 6 dB bandwidth: 10.30 MHz

③ 2462 MHz at IEEE802.11b

→ 6 dB bandwidth: 10.31 MHz

④ 2412 MHz at IEEE802.11g

\rightarrow 6 dB bandwidth: 16.68 MHz

⑤ 2437 MHz at IEEE802.11g

→ 6 dB bandwidth: 16.65 MHz


6 2462 MHz at IEEE802.11g

\rightarrow 6 dB bandwidth: 16.67 MHz

⑦ 2412 MHz at IEEE802.11n (20 MHz)

→ 6 dB bandwidth: 17.66 MHz

⑧ 2437 MHz at IEEE802.11n (20 MHz)

\rightarrow 6 dB bandwidth: 17.69 MHz

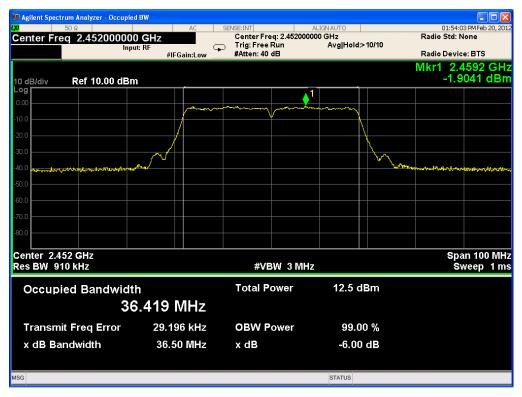


9 2462 MHz at IEEE802.11n (20 MHz)

→ 6 dB bandwidth: 17.66 MHz

10 2422 MHz at IEEE802.11n (40 MHz)

\rightarrow 6 dB bandwidth: 36.51 MHz



1 2437 MHz at IEEE802.11n (40 MHz)

📕 Agilent Spectrum Analyzer - Occupied BW 01:52:54 PM Feb 20, 2 Center Freq: 2.437000000 GHz Trig: Free Run Avg #Atten: 40 dB Radio Std: None Center Freq 2.437000000 GHz Avg|Hold>10/10 Input: RF #IFGain:Low Radio Device: BTS Mkr1 2.4442 GHz -2.4612 dBm Ref 10.00 dBm 10 dB/div Log Center 2.437 GHz Res BW 910 kHz Span 100 MHz Sweep 1 ms #VBW 3 MHz **Occupied Bandwidth Total Power** 12.0 dBm 36.414 MHz Transmit Freq Error 37.530 kHz **OBW Power** 99.00 % x dB Bandwidth 36.51 MHz x dB -6.00 dB STATUS MSG

→ 6 dB bandwidth: 36.51 MHz

12 2452 MHz at IEEE802.11n (40 MHz)

→ 6 dB bandwidth: 36.50 MHz

4.2 Maximum peak output power

4.2.1 Definition

Maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

4.2.2 Specification

FCC Rules Part 15, Section 15.247(b)(3)

4.2.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01"

4.2.4 Measurement set-up

4.2.5 Test equipment

Equipment	Model name	Manufacturer
EUT	WifiAn-Mini	ENJsoft Inc.
Control PC	NT-P560	Samsung
Spectrum Analyzer	N9020A	Agilent

4.2.6 Test procedure (Peak mode)

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 1 MHz
- ③ Set VBW = 3 MHz
- ④ Set the span \ge 105 to 130 % of the emission bandwidth
- 5 Detector = Peak
- 6 Trace mode = max hold
- \bigcirc Sweep = auto couple
- 8 Allow trace to fully stabilize
- 9 Measure the maximum output power

4.2.7 Test procedure (Averaging mode)

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 1 MHz
- ③ Set VBW ≥ 3 MHz
- ④ Set the span \geq 105 to 130 % of the emission bandwidth
- (5) Detector = Power average (RMS)
- 6 Sweep time = auto couple
- \bigcirc Trace mode = power averaging mode over a minimum of 100 traces
- \otimes Number of measurement point in the sweep \geq 2 x (span/RBW).

Therefore, sweep point more than 1001

9 Measure the maximum output power

4.2.8 Test condition

- Test place: Shield room
- Test mode: Maximum output power
- Test environment: 27°C, 53 % R.H.

4.2.9 Limit

For systems using digital modulation in the 902 - 928 MHz, 2 400 - 2 483.5 MHz, and 5 725 - 5 850 MHz bands: 1 Watt.

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

Power must be summed across all antennas and antenna elements.

The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level.

If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

4.2.10 Test result of IEEE802.11b mode

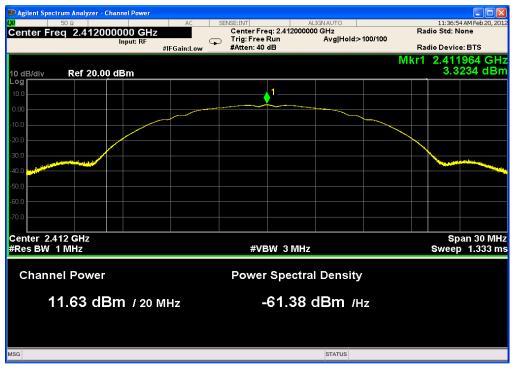
	Data rata (Mhna)	Preamble	Measured p	oower (mW)
Frequency (MHz)	Data rate (Mbps)	Preamble	Peak mode	Average mode
2 412	1	Long Preamble	14.55	7.14
2 437	1	Long Preamble	14.76	7.35
2 462	1	Long Preamble	14.52	7.05

4.2.11 Test result of IEEE 802.11g mode

	Data rata (Mhna)	Preamble	Measured p	oower (mW)
Frequency (MHz)	Data rate (Mbps)	Freample	Peak mode	Average mode
2 412	6	Long GI	14.96	2.72
2 437	6	Long GI	14.55	2.62
2 462	6	Long GI	14.83	2.56

4.2.12 Test result of IEEE 802.11n (20 MHz) mode

	Data rata (Mhna)	Droomblo	Measured p	oower (mW)
Frequency (MHz)	Data rate (Mbps)	Preamble	Peak mode	Average mode
2 412	MCS 7	Long GI	15.21	2.59
2 437	MCS 7	Long GI	13.93	2.68
2 462	MCS 7	Long GI	13.93	2.46

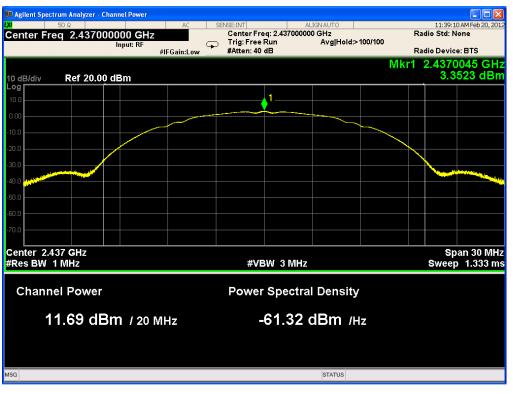

4.2.13 Test result of IEEE 802.11n (40 MHz) mode

Frequency (MHz)	Data rata (Mhaa)	Preamble	Measured power (mW)		
	Data rate (Mbps)	Freample	Peak mode	Average mode	
2 422	MCS 7	Long GI	13.61	2.34	
2 437	MCS 7	Long GI	13.49	2.37	
2 452	MCS 7	Long GI	13.49	2.30	

4.2.14 Plot of output power

① 2 412 MHz at IEEE802.11b

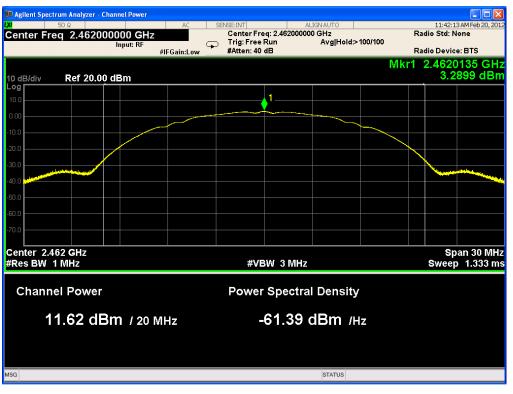
→ Output Power (Peak mode): 11.63 dBm / 14.55 mW


2 2 412 MHz at IEEE802.11b

→ Output Power (Average mode): 8.54 dBm / 7.14 mW

③ 2 437 MHz at IEEE802.11b

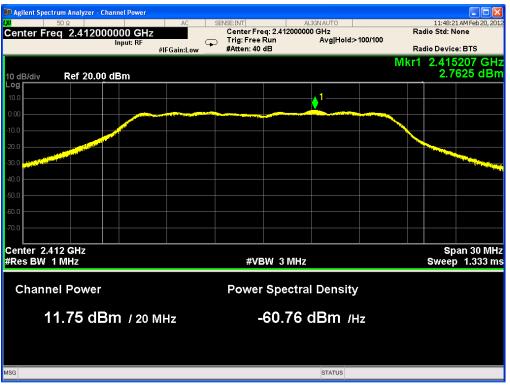
→ Output Power (Peak mode): 11.69 dBm / 14.76 mW


④ 2 437 MHz at IEEE802.11b

→ Output Power (Average mode): 8.66 dBm / 7.35 mW

5 2 462 MHz at IEEE802.11b

→ Output Power (Peak mode): 11.62 dBm / 14.52 mW

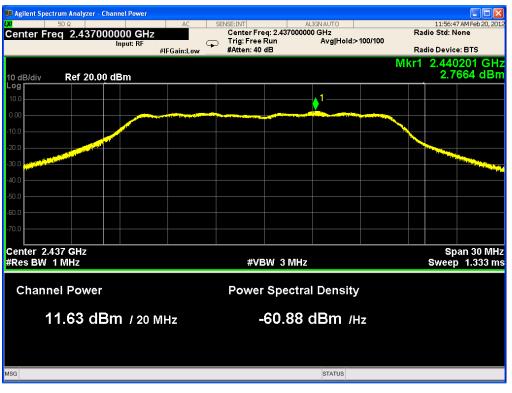

6 2 462 MHz at IEEE802.11b

→ Output Power (Average mode): 8.48 dBm / 7.05 mW

⑦ 2 412 MHz at IEEE802.11g

→ Output Power (Peak mode): 11.75 dBm / 14.96 mW

[®] 2 412 MHz at IEEE802.11g



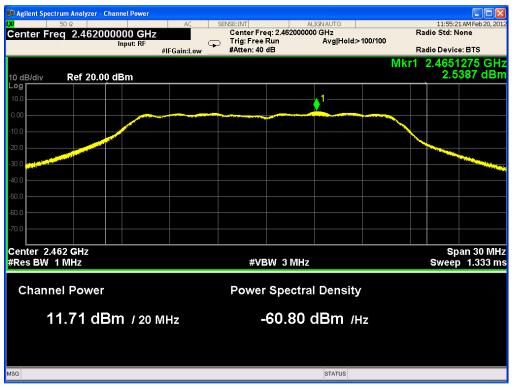
→ Output Power (Average mode): 4.35 dBm / 2.72 mW

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

9 2 437 MHz at IEEE802.11g

→ Output Power (Peak mode): 11.63 dBm / 14.55 mW

10 2 437 MHz at IEEE802.11g

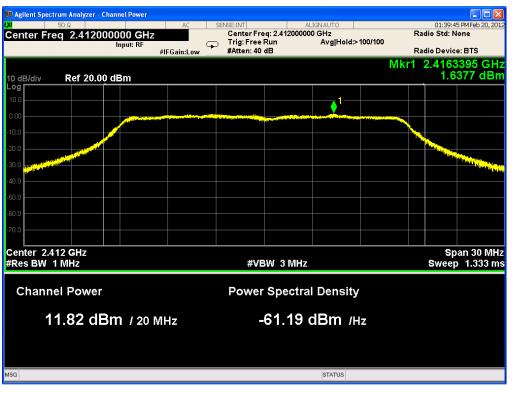


→ Output Power (Average mode): 4.19 dBm / 2.62 mW

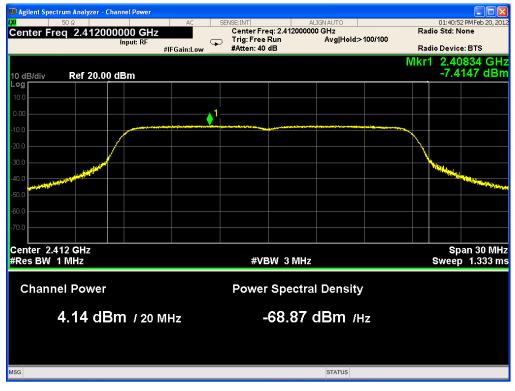
It should not be reproduced in full or partly without the written approval by TCA of RAPA.

1 2 462 MHz at IEEE802.11g

→ Output Power (Peak mode): 11.71 dBm / 14.83 mW


12 2 462 MHz at IEEE802.11g

→ Output Power (Average mode): 4.08 dBm / 2.56 mW



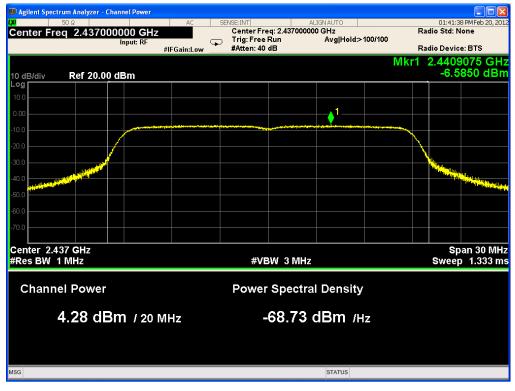
(3) 2 412 MHz at IEEE802.11n (20 MHz)

→ Output Power (Peak mode): 11.82 dBm / 15.21 mW

(2 412 MHz at IEEE802.11n (20 MHz)

→ Output Power (Average mode): 4.14 dBm / 2.59 mW

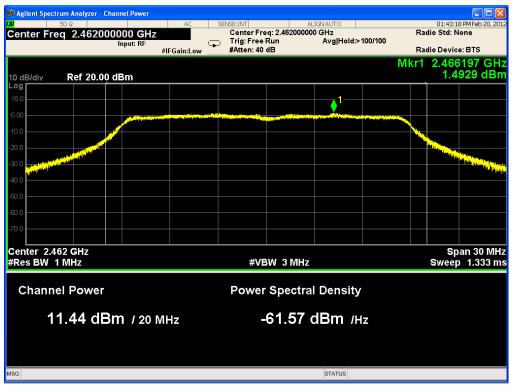
It should not be reproduced in full or partly without the written approval by TCA of RAPA.



(2 437 MHz at IEEE802.11n (20 MHz)

→ Output Power (Peak mode): 11.44 dBm / 13.93 mW

16 2 437 MHz at IEEE802.11n (20 MHz)

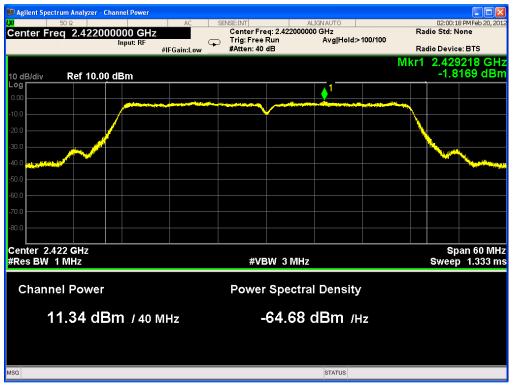


→ Output Power (Average mode): 4.28 dBm / 2.68 mW

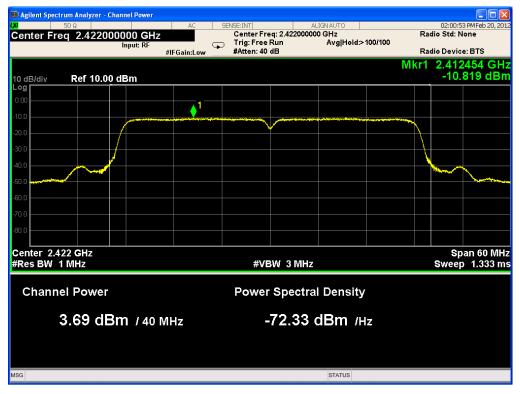
It should not be reproduced in full or partly without the written approval by TCA of RAPA.

1 2 462 MHz at IEEE802.11n (20 MHz)

→ Output Power (Peak mode): 11.44 dBm / 13.93 mW


18 2 462 MHz at IEEE802.11n (20 MHz)

→ Output Power (Average mode): 3.91 dBm / 2.46 mW

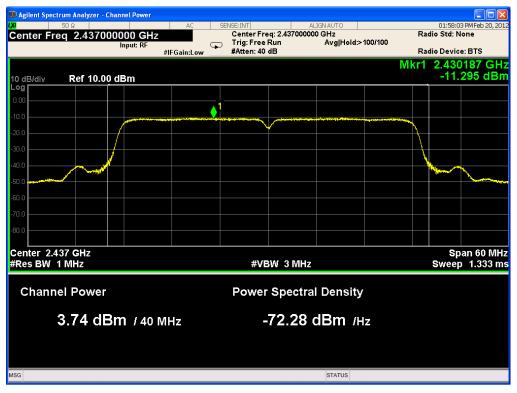


(19) 2 422 MHz at IEEE802.11n (40 MHz)

→ Output Power (Peak mode): 11.34 dBm / 13.61 mW

20 2 422 MHz at IEEE802.11n (40 MHz)

→ Output Power (Average mode): 3.69 dBm / 2.34 mW

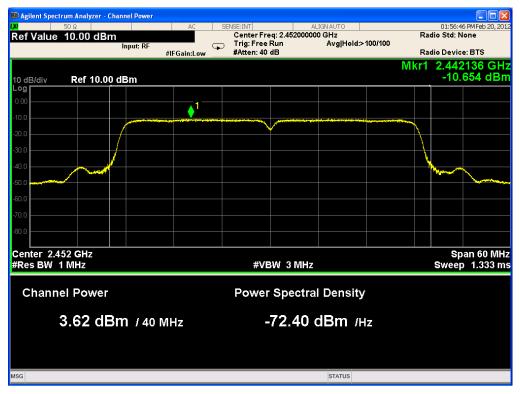


2 437 MHz at IEEE802.11n (40 MHz)

→ Output Power (Peak mode): 11.30 dBm / 13.49 mW


2 437 MHz at IEEE802.11n (40 MHz)

→ Output Power (Average mode): 3.74 dBm / 16.33 mW



2 452 MHz at IEEE802.11n (40 MHz)

→ Output Power (Peak mode): 11.30 dBm / 13.49 mW

2 452 MHz at IEEE802.11n (40 MHz)

→ Output Power (Average mode): 3.62 dBm / 2.30 mW

4.3 Maximum power spectral density

4.3.1 Definition

The maximum spectral density is defined as the highest level in Watts per Hertz generated by the transmitter within the power envelope.

4.3.2 Specification

FCC Rules Part 15, Section 15.247(e)

4.3.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01"

4.3.4 Measurement set-up

4.3.5 Test equipment

Equipment	Model name	Manufacturer
EUT	WifiAn-Mini	ENJsoftn Inc.
Control PC	NT-P560	Samsung
Spectrum Analyzer	N9020A	Agilent

4.3.6 Test procedure (Peak mode)

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 100 kHz
- ③ Set VBW ≥ 300 kHz
- ④ Set the span \geq 105 to 130 % of the emission bandwidth
- (5) Detector = peak
- 6 Trace mode = max hold
- ⑦ Sweep = auto couple
- 8 Allow trace to stabilize fully
- (9) Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW
- Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB)

4.3.7 Test procedure (Averaging mode)

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 100 kHz
- ③ Set VBW ≥ 300 kHz
- ④ Set the span \geq 105 to 130 % of the emission bandwidth
- ⑤ Detector = power average (RMS)
- 6 Number of measurement point in the sweep $\geq 2 \times (\text{span/RBW})$
- ⑦ Sweep time ≥ 10 x (number of measurement point in sweep) x (transmission symbol period)
- ⑧ Perform the measurement over a single sweep
- Ise the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW
- Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB)

4.3.8 Test condition

- Test place: Shield room
- Test mode: Maximum output power
- Test environment: 27 °C, 53 % R.H.

4.3.9 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.10 Test result of IEEE802.11b mode

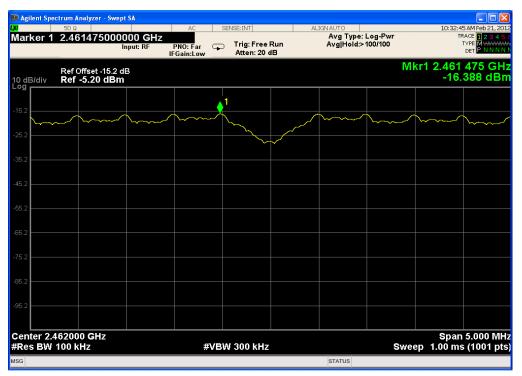
Frequency (MHz)	Data rata (Mhna)	Preamble	Measured PSD (dBm)		
	Data rate (Mbps)	Preample	Peak mode	Average mode	
2 412	1	Long Preamble	-16.39	-24.45	
2 437	1	Long Preamble	-16.86	-24.48	
2 462	1	Long Preamble	-16.47	-24.55	

4.3.11 Test result of IEEE 802.11g mode

Frequency (MHz)	Data rata (Mhaa)	Preamble	Measured PSD (dBm)		
	Data rate (Mbps)	Fleample	Peak mode	Average mode	
2 412	6	Long GI	-24.09	-31.50	
2 437	6	Long GI	-23.89	-31.44	
2 462	6	Long GI	-24.01	-31.54	

4.3.12 Test result of IEEE 802.11n (20 MHz) mode

Frequency (MHz)	Data rata (Mhaa)	Data rata (Mhas) Broamhla		PSD (dBm)
	Data rate (Mbps)	Preamble	Peak mode	Average mode
2 412	MCS 7	Long GI	-24.63	-31.84
2 437	MCS 7	Long GI	-24.93	-32.15
2 462	MCS 7	Long GI	-24.98	-32.14


4.3.13 Test result of IEEE 802.11n (40 MHz) mode

Frequency (MHz)	Data rata (Mbpa)	Preamble	Measured PSD (dBm)		
	Data rate (Mbps)	Freample	Peak mode	Average mode	
2 422	MCS 7	Long GI	-27.75	-34.86	
2 437	MCS 7	Long GI	-27.84	-34.89	
2 452	MCS 7	Long GI	-27.94	-35.22	

4.3.14 Plot of power spectral density

① 2 412 MHz at IEEE802.11b

→ Power Spectral Density (Peak mode): -16.39 dBm

2 412 MHz at IEEE802.11b

→ Power Spectral Density (Average mode): -24.45 dBm

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

③ 2 437 MHz at IEEE802.11b

	ctrum Analyzer -	Swept SA							
arker 1	^{50 Ω} 2.4375150	000000 GHz Input: RF	PNO: Far	SENSE:INT Trig: Free R Atten: 20 dl	un	IGNAUTO Avg Type: Avg Hold:>*	100/100	TF	8 AM Feb 21, 20: RACE 1 2 3 4 5 TYPE M WAAAAA DET P N N N N
0 dB/div .og	Ref Offset -1 Ref -5.20 c	5.2 dB I Bm					M	kr1 2.437 -16.	515 GH 861 dBr
15.2						1			
25.2	~~~~	~~~~~		Juny	كمسمر		~~~~~́	~~~~	~~~~
35.2					~~				
45.2									
55.2									
65.2									
75.2									
35.2									
95.2									
enter 2.4 Res BW	137000 GHz 100 kHz		#VB	W 300 kHz			Swe	Span ep 1.00 ms	5.000 MH s (1001 pt
SG						STATUS			

→ Power Spectral Density (Peak mode): -16.86 dBm

④ 2 437 MHz at IEEE802.11b

	50 Ω		AC	SENSE:INT	AL	IGN AUTO	- (=++++)		55 AM Feb 21, 2
arker 1	2.437660	000000 GH		 Trig: Free F Atten: 10 d 		Avg Type:	Pwr(RMS)	Т	RACE 1234 TYPE WWWWW DET A NNN
dB/div	Ref Offset -′ Ref -15.20	15.2 dB I dBm					M	kr1 2.437 -2	660 G 4.48 dE
.2						♦ ¹			
.2									
.2									
2									
.2									
2									
2									
2									
6									
	437000 GHz 100 kHz	2	#VI	300 kHz	:		#Sv	Spar veep 100	n 5.000 M s (1001 p

→ Power Spectral Density (Average mode): -24.48 dBm

5 2 462 MHz at IEEE802.11b

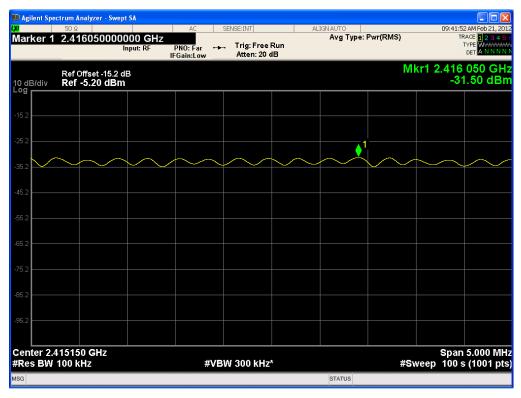
agnent spe	ctrum Analyzer - Sw 50 Ω	rept SA	AC	SENSE:INT	ALI	IGN AUTO		11:05:4	49 AM Feb 21, 20:
	2.46148000	Input: RF	PNO: Far FGain:Low	Tuine France F	lun	Avg Type: Avg Hold>1		T	RACE 12345 TYPE MWWWW DET PNNNN
0 dB/div	Ref Offset -15.2 Ref -5.20 dB						M	kr1 2.461 -16	480 GH .473 dBi
15.2				1					
25.2	~~~~~			June	كممرير				
35.2									
15.2									
55.2									
65.2									
/5.2									
35.2									
95.2									
	462000 GHz 100 kHz		#VB	W 300 kHz			Swee	Spar ep 1.00 m	⊥ n 5.000 MH s (1001 pt
SG						STATUS			

→ Power Spectral Density (Peak mode): -16.47 dBm

⑥ 2462 MHz at IEEE802.11b

	50 Ω		AC	SENSE:INT	AL	IGNAUTO			2 AM Feb 21, 2
arker 1	2.46132000	Input: RF	PNO: Far G	⊃ Trig: Free I Atten: 10 ¢		Avg Type: F	wr(RMS)	т	RACE 1234 TYPE WWWW DET ANNN
dB/div	Ref Offset -15. Ref -15.20 c	2 dB IBm					Mk	r1 2.461 -24	320 G 4.55 dE
			↓ ¹						
.2									
.2									
.2									
.2									
.2									
.2									
.2									
)5									
	162000 GHz							Span eep 100 s	5.000 N
es BW	100 kHz		#VB	W 300 kHz			#Sw	eep 100 s	s (1001 p

→ Power Spectral Density (Average mode): -16.55 dBm



⑦ 2 412 MHz at IEEE802.11g

	ctrum Analyzer - Swept SA				
larker 1	50 Ω 2.416350000000 Inpur		SENSE:INT Trig: Free Run Atten: 20 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold>100/100	09:36:41 AM Feb 21, 20: TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N
0 dB/div og r	Ref Offset -15.2 dB Ref -5.20 dBm			Ν	/lkr1 2.416 350 GH -24.085 dBr
5.2					
25.2					
15.2					
5.2					
5.2					
5.2					
5.2					
5.2					
5.2					
	415150 GHz 100 kHz	#VE	300 kHz	Sw	Span 5.000 Mi eep 1.00 ms (1001 pt
G				STATUS	

→ Power Spectral Density (Peak mode): -24.09 dBm

⑧ 2412 MHz at IEEE802.11g

→ Power Spectral Density (Average mode): -31.50 dBm

9 2 437 MHz at IEEE802.11g

Agilent Spectrum Analyzer - S 50 Ω		AC S	ENSE:INT	ALIGN AUTO		09:53:54 AM Feb 21, 2
arker 1 2.4413450	Input: RF	PNO: Far 😱 FGain:Low	Trig: Free Run Atten: 10 dB	Avg Type: Avg Hold⇒		TRACE 1234 TYPE MWAAA DET PNNN
Ref Offset -15 dB/div Ref -15.20	5.2 dB d B m				Mk	r1 2.441 345 GH -23.893 dB
					♦ ¹	
5.2		$\sim \sim$			\sim	
j.2						
.2						
.2						
.2						
.2						
.2						
06						
enter 2.440220 GHz			** 000 1-11-		•	Span 5.000 M
tes BW 100 kHz		#VB\	N 300 kHz	STATUS	Sweep	o 1.00 ms (1001 p

→ Power Spectral Density (Peak mode): -23.89 dBm

10 2 437 MHz at IEEE802.11g

2 dB Bm	FGain:Low	Atten: 10 d			M	kr1 2.441 -3	050 G 1.44 dl
		~	<u></u>				
	#VB	W 300 kHz*	ķ		#S\	Spar weep 100	n 5.000 l s (1001
		#VB	#VBW 300 kHz	#VBW 300 kHz*	#VBW 300 kHz*		#VBW 300 kHz* #Sweep 100

→ Power Spectral Density (Average mode): -31.44 dBm

1 2 462 MHz at IEEE802.11g

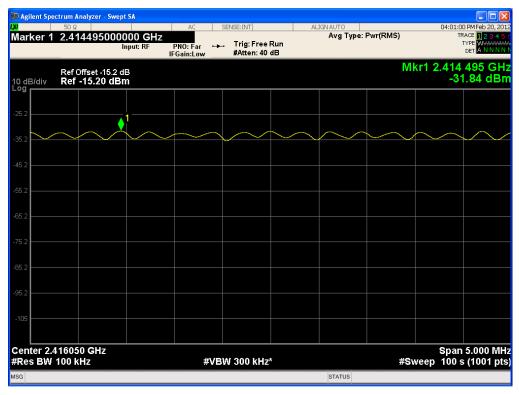
	<mark>trum Analyzer - Sw</mark> 50 Ω		AC	SENSE:INT	AL	.IGN AUTO		10:08	34 AM Feb 21, 2
arker 1	2.46635000	Input: RF	PNO: Far 🕞 FGain:Low	Trig: Free F Atten: 10 d	Run B	Avg Type: Avg Hold:>			TRACE 1 2 3 4 TYPE MWWW DET PNNN
dB/div	Ref Offset -15.2 Ref -15.20 dl						Μ	kr1 2.46 -24	6 350 GI 1.010 dB
.2							↓ ¹		
.2	~~~~			/ ~~~	\sim	~~~``	$\sim \sim$		\sim
2									
2									
2									
2									
2									
2									
enter 2.4 tes BW 1	65140 GHz 100 kHz		#VB	W 300 kHz			Swe	Spa ep 1.00 m	n 5.000 M 1s (1001 p
i						STATUS			

→ Power Spectral Density (Peak mode): -24.01 dBm

12 2 462 MHz at IEEE802.11g

	6 050 (
	31.54 d
s BW 100 kHz #VBW 300 kHz* #Sweep 100	an 5.000) s (1001

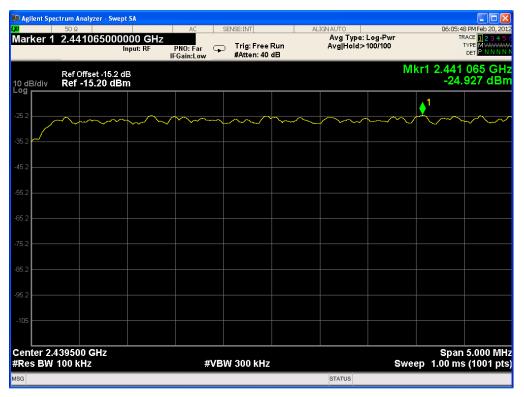
→ Power Spectral Density (Average mode): -31.54 dBm



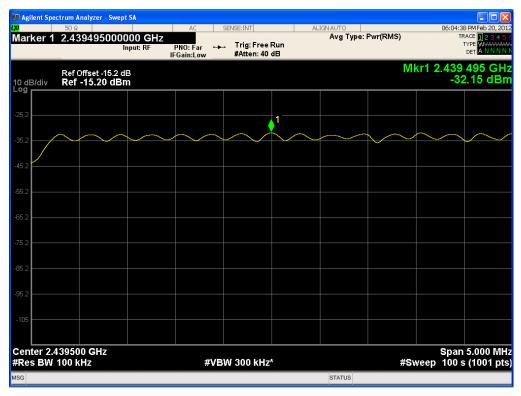
(3) 2 412 MHz at IEEE802.11n (20 MHz)

Agilent Spect	trum Analyzer - Swe	pt SA					
XI	50 Ω		AC	SENSE:INT	ALIGN AUTO		03:57:37 PM Feb 20, 201
Marker 1	2.416065000	Input: RF	PNO: Far G) Trig: Free Run #Atten: 40 dB	Avg Type: Avg Hold>	100/100	TRACE 12345 TYPE MWWWW DET PNNNN
0 dB/div	Ref Offset -15.2 Ref -15.20 dE	dB Sm				Mkr	1 2.416 065 GH -24.625 dBn
25.2				∳ ¹			
	\sim		$\overline{}$				
35.2							
45.2							
55.2							
65.2							
5.2							
.2							
95.2							
105							
enter 2.4 Res BW 1	16050 GHz 100 kHz		#VB	W 300 kHz		Sweep	Span 5.000 MH 1.00 ms (1001 pt
SG					STATUS		

→ Power Spectral Density (Peak mode): -24.63 dBm


(2 412 MHz at IEEE802.11n (20 MHz)

→ Power Spectral Density (Average mode): -31.84 dBm

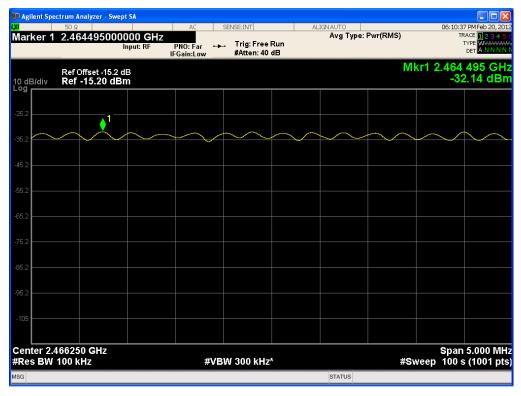


(b) 2 437 MHz at IEEE802.11n (20 MHz)

→ Power Spectral Density (Peak mode): -24.93 dBm

16 2 437 MHz at IEEE802.11n (20 MHz)

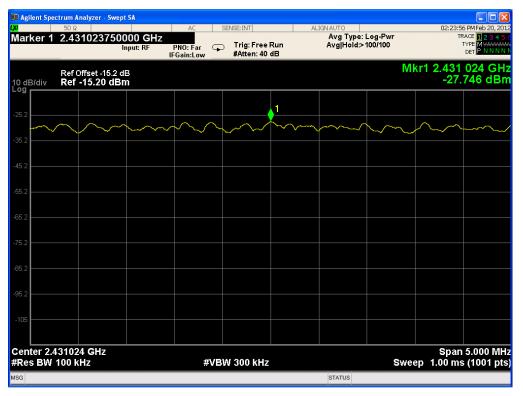
→ Power Spectral Density (Average mode): -32.15 dBm



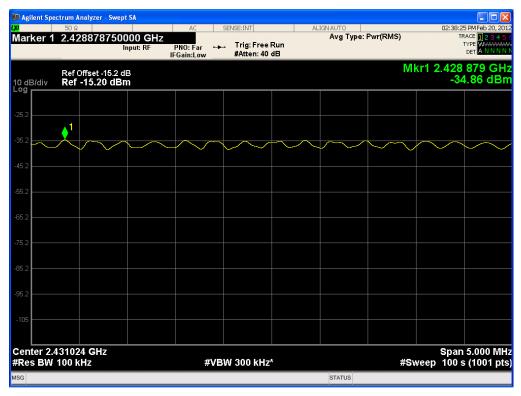
1 2 462 MHz at IEEE802.11n (20 MHz)

50 Ω			
-L 4 0 4000000000 CU	AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	06:07:50 PM Feb 20, 20: TRACE 1 2 3 4 5
arker 1 2.466080000000 GH Input: RF	PNO: Far Trig: Free Run IFGain:Low #Atten: 40 dB	Avg Hold:>100/100	TYPE MWWWW DET PNNNN
Ref Offset -15.2 dB dB/div Ref -15.20 dBm		MI	kr1 2.466 080 GH -24.983 dBr
2	1		
2			
2			
2			
2			
2			
2			
2			
15			
nter 2.466250 GHz			Span 5.000 Mł
es BW 100 kHz	#VBW 300 kHz	Swee	ep 1.00 ms (1001 pt

→ Power Spectral Density (Peak mode): -24.98 dBm

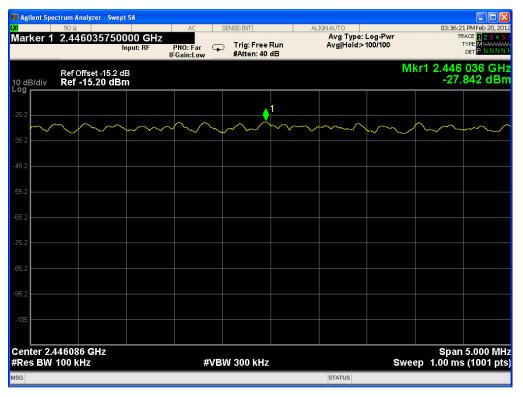

18 2 462 MHz at IEEE802.11n (20 MHz)

→ Power Spectral Density (Average mode): -32.14 dBm

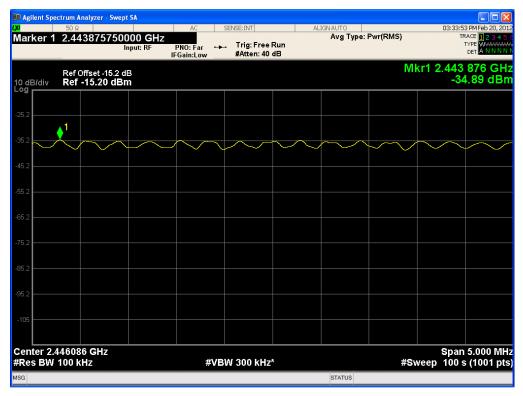


(19) 2 422 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Peak mode): -27.75 dBm

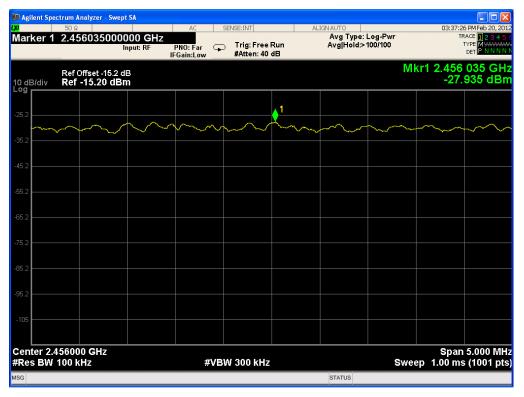

20 2 422 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Average mode): -34.86 dBm

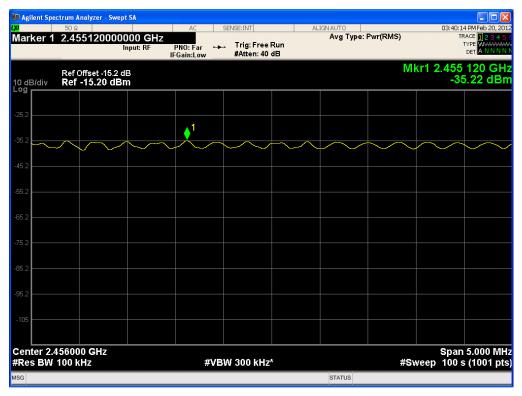


2 437 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Peak mode): -27.84 dBm


2 437 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Average mode): -34.89 dBm



23 2 452 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Peak mode): -27.94 dBm

2 452 MHz at IEEE802.11n (40 MHz)

→ Power Spectral Density (Average mode): -35.22 dBm

4.4 Conducted spurious and out of band emission

4.4.1 Definition

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on RF conducted measurement.

4.4.2 Specification

FCC Rules Part 15, Section 15.247(d)

4.4.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01"

4.4.4 Measurement set-up

Control PC	<u> </u>	EUT		Spectrum Analyzer
------------	----------	-----	--	----------------------

4.3.5 Test equipment

Equipment	Model name	Manufacturer
EUT	WifiAn-Mini	ENJsoft Inc.
Control PC	NT-P560	Samsung
Spectrum Analyzer	N9020A	Agilent

4.4.6 Test procedure

- ① Connect the equipment as "Measurement set-up"
- 2 Set RBW = 100 kHz
- ③ Set VBW ≥ 300 kHz
- ④ Set span to encompass the spectrum to be examined
- (5) Detector = peak
- 6 Trace mode = max hold
- ⑦ Sweep = auto couple
- (8) Allowed the trace to stabilize

4.4.7 Test Condition

- Test place: Shield room
- Test mode: Maximum output power
- Test environment: 27°C, 53 % R.H.

4.4.8 Limit

The peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured inband peak PSD level.

4.4.9 Test result of IEEE802.11b

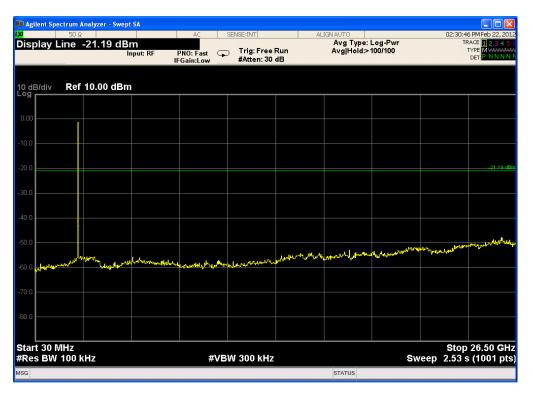
Conducted spurious emission								
Frequency (MHz)	Frequency (MHz) Level (dBm) Attenuation (dBc) Limit (dBc)							
Low channel / 2 412 MHz								
2 412.00	-1.19	-	-	-				
2 400.00	-40.04	38.85	20.00	18.85				
Middle channel / 2 437 MHz								
2 437.00	-1.66	-	-	-				
2 484.70	-56.95	55.29	20.00	35.29				
	High channel / 2 462 MHz							
2 462.00	-1.27	-	-	-				
2 483.50	-54.43	53.16	20.00	33.16				

4.4.10 Test result of IEEE802.11g

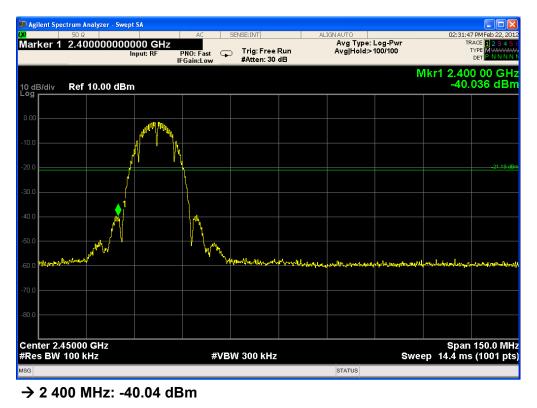
	Conduc	ted spurious emissi	on				
Frequency (MHz)	Frequency (MHz)Level (dBm)Attenuation (dBc)Limit (dBc)Margin (dB						
	Low	channel / 2 412 MHz					
2 412.00	-8.89	-	-	-			
2 400.00	-38.85	29.96	20.00	9.96			
	Middle	e channel / 2 437 MHz	Z				
2 437.00	-8.69	-	-	-			
2 398.65	-60.47	51.78	20.00	31.78			
	High	channel / 2 462 MHz					
2 462.00	2 462.00 -8.81						
2 483.50	-58.71	49.90	20.00	29.90			

4.4.11 Test result of IEEE802.11n (20 MHz)

	Conducted spurious emission					
Frequency (MHz)	Level (dBm)	Attenuation (dBc)	Limit (dBc)	Margin (dB)		
	Low	channel / 2 412 MHz				
2 412.00	-8.89	-	-	-		
2 400.00	-40.71	31.82	20.00	11.82		
	Middle	e channel / 2 437 MH	Z			
2 437.00	-9.78	-	-	-		
2 519.95	-58.01	48.23	20.00	28.23		
	High	channel / 2 462 MHz				
2 462.00	-9.73	-	-	-		
2 483.50	-57.45	47.72	20.00	27.72		


4.4.12 Test result of IEEE802.11n (40 MHz)

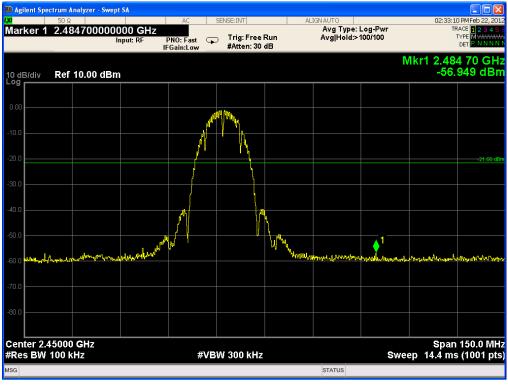
	Conducted spurious emission					
Frequency (MHz)	Level (dBm)	Attenuation (dBc)	Limit (dBc)	Margin (dB)		
	Low	channel / 2 422 MHz				
2 422.00	-12.55	-	-	-		
2 400.00	-42.65	30.10	20.00	10.10		
	Middle channel / 2 437 MHz					
2 437.00	-12.64	-	-	-		
2 400.00	-57.01	44.37	20.00	24.37		
	High channel / 2 452 MHz					
2 452.00	-12.74	-	-	-		
2 483.50	-57.57	44.83	20.00	24.83		


4.4.13 Plot of conducted spurious and out of band emission

① Spurious emission (2 412 MHz at IEEE802.11b)

\rightarrow 30 MHz to 26.5 GHz: No data

② Out of band emission (2 412 MHz at IEEE802.11b)

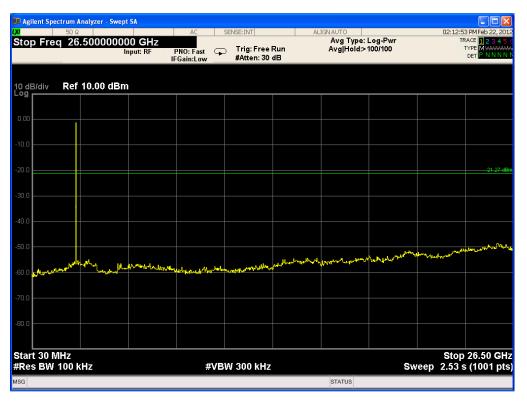


③ Spurious emission (2 437 MHz at IEEE802.11b)

	50 Ω		AC	SENSE:INT	ALIGN AUTO		02:25:12 F	MFeb 22, 20
op Fred	q 26.50000	Input: RF	PNO: Fast G	⊃ Trig: Free Run #Atten: 30 dB	Avg Type: Avg Hold⇒	Log-Pwr 100/100	TY	CE 1 2 3 4 PE M W M M ET P N N N
dB/div	Ref 10.00 c	IBm						
.0								
.0								-21.66
.0								
.0								
.0								مىرىدى <u>ارى</u>
	more and	hor and the second and the second and the second	manul man manul man	man and a star way of a star of a star of the star of	www.halash- washer My where	m www.	un nan de la care	••• ^{//}
.0								
.0								
art 30 M es BW	IHz 100 kHz		#VE	W 300 kHz		Sw	Stop 2 eep 2.53 s (6.50 G

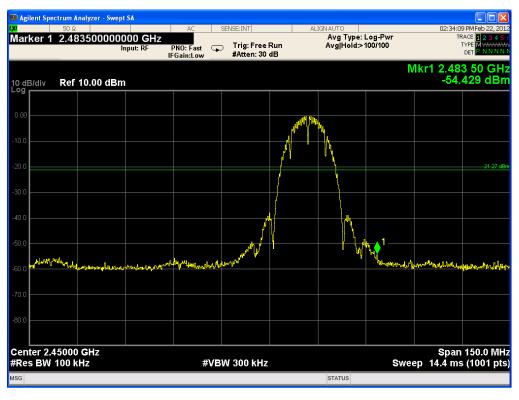
\rightarrow 30 MHz to 26.5 GHz: No data

④ Out of band emission (2 437 MHz at IEEE802.11b)



→ 2 484.7 MHz: -56.95 dBm

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

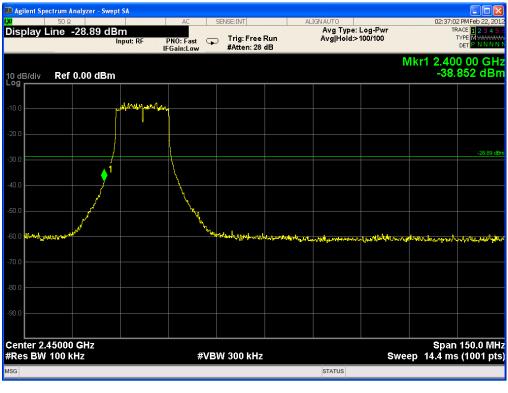


⑤ Spurious emission (2 462 MHz at IEEE802.11b)

\rightarrow 30 MHz to 26.5 GHz: No data

6 Out of band emission (2 462 MHz at IEEE802.11b)

→ 2 483.5 MHz: -54.43 dBm



⑦ Spurious emission (2 412 MHz at IEEE802.11g)

50 Ω	A	SENSE:INT	ALIGN	AUTO	04:41:49 PM Feb 22, 20
splay Line -28.89 d	Bm Input: RF PNO: F IFGain:I		e Run 🛛 🗛	Avg Type: Log-Pwr wg Hold:>100/100	TRACE 1234 TYPE MWWW DET PINNN
dB/div Ref 0.00 dBr	n				
.0					
.0					
.0					-28.89
o					
.0					
	- Altoney	- the state	- when a challen	welly and the second start	Marken and Droph and and a start and
and the second s		Jon Market Market Market			
.0					
.0					
o					
art 30 MHz tes BW 100 kHz		#VBW 300 kH	Z	s	Stop 26.50 G weep 2.53 s (1001 p

\rightarrow 30 MHz to 26.5 GHz: No data

[®] Out of band emission (2 412 MHz at IEEE802.11g)

→ 2 400 MHz: -38.85 dBm

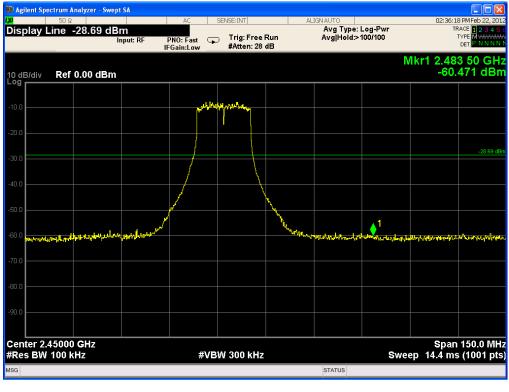


Image: Spurious emission (2 437 MHz at IEEE802.11g)

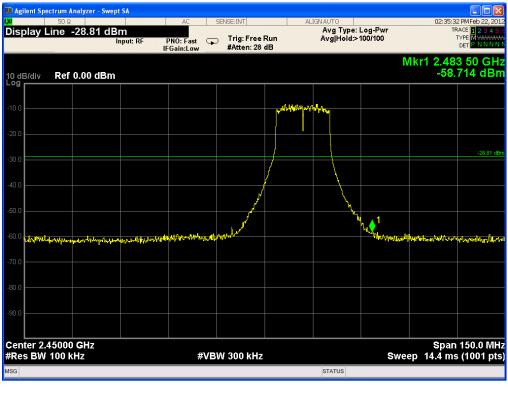
	50 Ω		AC	SENSE:INT	ALIGN AUTO		04:47:5	i8 PM Feb 22, 20
splay L	ine -28.69	dBm Input: RF	PNO: Fast 🛛 IFGain:Low	Trig: Free Run #Atten: 28 dB		:: Log-Pwr >100/100	T	RACE 1234 TYPE MUMANA DET PNNN
dB/div	Ref 0.00 dE	3m						
.0								
								-28.69
0								
0								
					م المرابع المحمد المرابع	and when may have	J.m. marth All Indon	Mary Mary Mary
0 NHAIN	and the second for the second second	with the second second second	arturn as and what	and the second				
.0								
.0								
.0								
art 30 N	IHz						Stor	26.50 G
	100 kHz		#VI	BW 300 kHz		Sv	Stop veep 2.53	s (1001 p

\rightarrow 30 MHz to 26.5 GHz: No data

⁽¹⁾ Out of band emission (2 437 MHz at IEEE802.11g)

→ 2 483.5 MHz: -60.47 dBm

It should not be reproduced in full or partly without the written approval by TCA of RAPA.



① Spurious emission (2 462 MHz at IEEE802.11g)

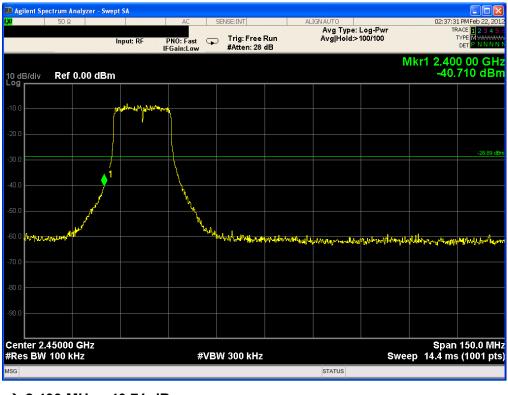
	50 Ω		AC	SENSE:INT	AL	IGNAUTO		04:56:3	9 PM Feb 22, 2
splay L	ine -28.81	dBm Input: RF	PNO: Fast ⊂ IFGain:Low	Trig: Free R #Atten: 28 d		Avg Type: Avg Hold:>	Log-Pwr 100/100	TI	RACE 1234 TYPE MWATH DET PNNN
dB/div	Ref 0.00 dE	ßm							
.0									
.0									
.0									-28.81
.0									
.0					Mulatranshilesting	ر مەربىيە مەربىيە مەربىيە مۇلىر	aly walder My 19	All all proved in the	hermon
.0 <mark>Monsh</mark>	Martin Martin	meterson	and a star way and a star of the	- Canada - C					
.0									
.0									
.0									
art 30 M			,44 g					Stop	26.50 G
	100 kHz ment Complete		#VI	BW 300 kHz			SW	eep 2.53	a רטטיז א

\rightarrow 30 MHz to 26.5 GHz: No data

⁽²⁾ Out of band emission (2 462 MHz at IEEE802.11g)

→ 2 483.5 MHz: -58.71 dBm

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

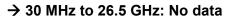

③ Spurious emission (2 412 MHz at IEEE802.11n / 20 MHz)

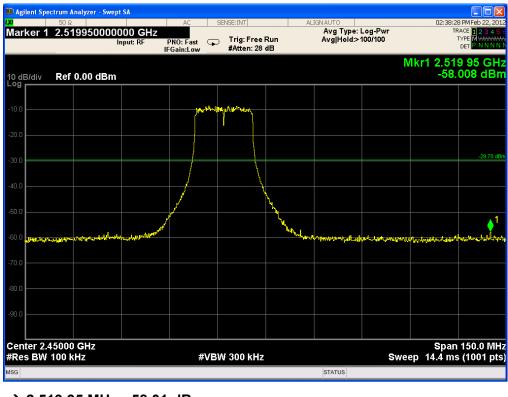
 Maglent Spectrum Analyzer - Swept SA
 AC
 SENSE.INT
 ALIGNATIO
 O42034PMFeb 22.015

 Display Line -29.43 dBm
 Input: RF
 PN0: Fast
 Trig: Free Run
 Avg1/pet.Log-Pwr
 Avg1/pet.Log-

\rightarrow 30 MHz to 26.5 GHz: No data

^{(]} Out of band emission (2 412 MHz at IEEE802.11n / 20 MHz)


→ 2 400 MHz: -40.71 dBm



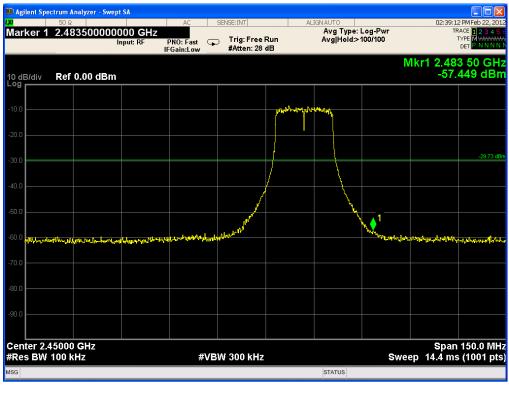
(5 Spurious emission (2 437 MHz at IEEE802.11n / 20 MHz)

📕 Agilent Spectrum Analyzer - Swept SA 04:21:05 PMFeb 22, 201; SENSE:INT Avg Type: Log-Pwr Avg|Hold: 100/100 Display Line -29.73 dBm PNO: Fast Trig: Free Run IFGain:Low #Atten: 28 dB TYPE DET 10 dB/div Ref 0.00 dBm مليد ا Stop 26.50 GHz Sweep 2.53 s (1001 pts) Start 30 MHz #VBW 300 kHz #Res BW 100 kHz STATUS

⁽⁶⁾ Out of band emission (2 437 MHz at IEEE802.11n / 20 MHz)

→ 2 519.95 MHz: -58.01 dBm

It should not be reproduced in full or partly without the written approval by TCA of RAPA.



⑦ Spurious emission (2 462 MHz at IEEE802.11n / 20 MHz)

📕 Agilent Spectrum Analyzer - Swept SA 04:14:53 PM Feb 22, 201; SENSE:INT Avg Type: Log-Pwr Avg|Hold: 100/100 Display Line -29.78 dBm PNO: Fast Trig: Free Run IFGain:Low #Atten: 28 dB TYPE DET 10 dB/div Ref 0.00 dBm ۰ł. Stop 26.50 GHz Sweep 2.53 s (1001 pts) Start 30 MHz #VBW 300 kHz #Res BW 100 kHz STATUS

→ 30 MHz to 26.5 GHz: No data

⁽¹⁾ Out of band emission (2 462 MHz at IEEE802.11n / 20 MHz)

→ 2 400 MHz: -57.45 dBm

⁽¹⁾ Spurious emission (2 422 MHz at IEEE802.11n / 40 MHz)

	50 Ω		AC	SENSE:INT	ALIGN AUTO			PM Feb 22, 2
		Input: RF	PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 28 dB		e: Log-Pwr ≻100/100	Т	ACE 1234 YPE M MAAAAA DET P N N N
dB/div	Ref 0.00 c	lBm						
.0								
.0								-32.55
								-02.00
.0								
.0							بالحين	ne hours
.0	harha	al the the series	المحمدية الرور وسيروم والماسية	Mall Hall Malanta Market	Land and the state of the state	welly war work	Warden Kilowan and	
مر المراجع الألب م			and the second of the second					
.0								
.0								
.0								
art 30 M			43.41	200 200			Stop	26.50 G
	100 kHz nment Comple		#VI	3W 300 kHz		SV	veep 2.53 s	(1001 p

\rightarrow 30 MHz to 26.5 GHz: No data

20 Out of band emission (2 422 MHz at IEEE802.11n / 40 MHz)

→ 2 400 MHz: -42.65 dBm

2) Spurious emission (2 437 MHz at IEEE802.11n / 40 MHz)

	50 Ω		AC	SENSE:INT	ALIGN AUTO			13 PM Feb 22, 21
		Input: RF	PNO: Fast G IFGain:Low	Trig: Free Rur #Atten: 28 dB		e: Log-Pwr I: 100/100	Т	RACE 1234 TYPE MWMM DET PNNN
dB/div	Ref 0.00 d	Bm						
.0								
.0	1							
.0								-32.64
.0								
.0					hat an all of the second selection of the	manyan	Wall-sal-celledered and	dor tone out the pro-
Mary	ward ward	wild Martingende	provinget and a state of the st	have any half a faith and a spectral and the spectrum of the s				
.0								
.0								
.0								
art 30 N							Stop weep 2.53	26.50 G
es DW	100 kHz		#VE	300 kHz		5	weep 2.53 s	s (1001 p

\rightarrow 30 MHz to 26.5 GHz: No data

22 Out of band emission (2 437 MHz at IEEE802.11n / 40 MHz)

→ 2 400 MHz: -57.01 dBm

3 Spurious emission (2 452 MHz at IEEE802.11n / 40 MHz)

📕 Agilent Spectrum Analyzer - Swept SA 04:09:40 PMFeb 22, 201; SENSE:INT Avg Type: Log-Pwr Avg|Hold>100/100 Display Line -32.74 dBm PNO: Fast Trig: Free Run IFGain:Low #Atten: 28 dB TYPE DET 10 dB/div Ref 0.00 dBm 32.74 dt Stop 26.50 GHz Sweep 2.53 s (1001 pts) Start 30 MHz #VBW 300 kHz #Res BW 100 kHz MSG 🗼 Alignment Completed STATUS

→ 30 MHz to 26.5 GHz: No data

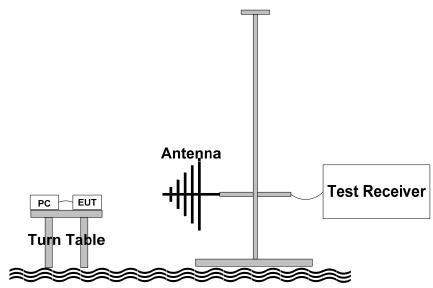
2 Out of band emission (2 452 MHz at IEEE802.11n / 40 MHz)

→ 2 483.5 MHz: -57.57 dBm

4.5 Radiated emission in restricted band

4.5.1 Definition

A radiated emission is a emission from the equipment when transmitting into a non-radiating load on frequencies that are restricted band sufficient to ensure transmission of information of required quality for the class of communications desired.


4.5.2 Specification

FCC Rules Part 15, Section 15.205(a) / Section 15.209(a) / Section 15.247(d)

4.5.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01" ANSI C63.4 (2009) Section 8.3.1

4.5.4 Measurement set-up

4.5.5 Test equipment list

Equipment	Model name	Manufacture
EUT	WifiAn-Mini	ENJsoft Inc.
Control PC	NT-P560	Samsung
Spectrum Analyzer	ESPI7	Rohde & Schwarz
Spectrum Analyzer	N9020A	Agilent
Loop Antenna	6502	EMCO
Bi-conical Antenna	VHA9103	Schwarzbeck
Log Periodic Antenna	VULP9118A	Schwarzbeck
Horn Antenna	BBHA-9120D	Schwarzbeck
Pre-Amplifier	JS4-00102600-26-5P	MITEQ

4.5.6 Test Procedure

- ① The EUT is placed on a turntable, which is 0.8 meter high above ground.
- ② The turntable rotates 360 degrees to determine the position of the maximum emission level.
- ③ EUT is set 3.0 meters away from the receiving antenna, broadband antenna, which is mounted on an antenna mast.
- ④ The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level form the EUT.
- (5) Both horizontal and vertical polarizations of the antenna are set on measurement.
- ⑥ In order to find out the maximum emission levels, all of the EUT location were manipulated according to ANSI 63.4 during the radiated emission measurement.
- ⑦ The EUT was tested in 3 orthogonal planes.
- ⑧ The bandwidth of test receiver is set at 200 Hz between 9 to 150 kHz, 9 kHz between 0.15 to 30 MHz, 120 kHz between 30 to 1 000 MHz, and 1 MHz between 1 to 26.5 GHz.

4.5.7 Test Condition

- · Test place: OATS
- Test mode: Maximum output power
- Test environment: 18°C, 41 % R.H.

4.5.8 Limit

Section 15.247(b) specifies that emissions which fall in restricted band, as defined in section 15.205(a), must comply with the radiated emission limits specified in section 15.209(a)

FCC Rules Part 15, Section 15.205(a) restricted frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	13.36 – 13.41	322 – 335.4	3.6 - 4.4
0.495 – 0.505	16.42 – 16.423	399.9 – 410	4.5 – 5.15
2.1735 – 2.1905	16.69475 – 16.69525	608 – 614	5.35 – 5.46
4.125 – 4.128	16.80425 – 16.80475	960 – 1240	7.25 – 7.75
4.17725 – 4.17775	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.20725 - 4.20775	37.5 – 38.25	1435 – 1626.5	9.0 - 9.2
6.215 – 6.218	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.26775 - 6.26825	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.31175 – 6.31225	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
8.291 – 8.294	123 – 138	2200 – 2300	14.47 – 14.5
8.362 - 8.366	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.37625 - 8.38675	156.52475 – 156.52525	2483.5 – 2500	17.7 – 21.4
8.41425 – 8.41475	156.7 – 156.9	2690 – 2900	22.01 – 23.12
12.29 – 12.293	162.0125 – 167.17	3260 – 3267	23.6 – 24.0
12.51975 – 12.52025	167.72 – 173.2	3332 – 3339	31.2 – 31.8
12.57675 – 12.57725	240 – 285	3345.8 – 3358	36.43 – 36.5

FCC Rules Part 15, Section 15.209(a) field strength levels specified in the following table:

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 – 1.705	24 000/F(kHz)	30
1.705 – 30	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

4.5.9 Test result of IEEE802.11b mode

Frequency [MHz]	Polarization [H/V]	Detect Mode [Peak/QP/AVG]	Reading [dBµV]		Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
	Operation frequency / 2 412 MHz								
280.0	V	QP	-9.9	19.1	6.0	-	15.2	46.0	30.8
332.0	V	QP	-4.2	16.3	6.2	-	18.3	46.0	27.7
400.0	V	QP	9.1	15.2	7.2	-	31.5	46.0	14.5
612.0	V	QP	-8.5	19.2	9.0	-	19.7	46.0	26.3
4 824.0		Peak	10.2	31.4	18.9	27.1	33.4	74.0	40.6
4 024.0	-	AVG	7.0	51.4	10.9	27.1	30.2	54.0	23.8
	Operation frequency / 2 437 MHz								
280.0	V	QP	-13.8	19.1	6.0	-	11.3	46.0	34.7
400.0	V	QP	11.8	15.2	7.2	-	34.2	46.0	11.8
4 974 0		Peak	8.5	21.6	10.2	07.0	32.0	74.0	42.0
4 874.0	-	AVG	7.1	31.6	19.2	27.3	30.6	54.0	23.4
		С	peratior	n frequency /	2 462 MH	lz			
280.0	V	QP	-14.1	19.1	6.0	-	11.0	46.0	35.0
400.0	V	QP	12.7	15.2	7.2	-	35.1	46.0	10.9
4 0 2 4 0		Peak	8.8	21 7	10.5	40.5 07.4	32.6	74.0	41.4
4 924.0	-	AVG	7.1	31.7	19.5	27.4	30.9	54.0	23.1

4.5.10 Test result of IEEE802.11g mode

Frequency [MHz]	Polarization [H/V]	Detect Mode [Peak/QP/AVG]			Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
	Operation frequency / 2 412 MHz								
280.0	V	QP	-10.5	19.1	6.0	-	14.6	46.0	31.4
400.0	V	QP	9.5	15.2	7.2	-	31.9	46.0	14.1
612.0	V	QP	-9.3	19.2	9.0		18.9	46.0	27.1
4 9 9 4 0		Peak	4.7	24.4	10.0	27.1	27.9	74.0	46.1
4 824.0	-	AVG	-2.8	51.4	31.4 18.9	27.1	20.4	54.0	33.6
Operation frequency / 2 437 MHz									
280.0	V	QP	-12.4	19.1	6.0	-	12.7	46.0	33.3
400.0	V	QP	9.5	15.2	7.2	-	31.9	46.0	14.1
4 874.0		Peak	3.5	31.6	10.2	27.3	27.0	74.0	47.0
4 0/4.0	-	AVG	-2.7	31.0	19.2	21.3	20.8	54.0	33.2
		С	peratior	n frequency /	2 462 M⊢	lz			
280.0	V	QP	-14.3	19.1	6.0	-	10.8	46.0	35.2
400.0	V	QP	12.9	15.2	7.2	-	35.3	46.0	10.7
4 024 0		Peak	0.7	31.7	10.5	27.4	24.5	74.0	49.5
4 924.0	-	AVG	-3.5	31.7	19.5	27.4	20.3	54.0	33.7

Frequency [MHz]	Polarization [H/V]	Detect Mode [Peak/QP/AVG]	Reading [dBµV]		Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
		C	peratior	n frequency /	2 412 MH	lz			
280.0	V	QP	-10.4	19.1	6.0	-	14.7	46.0	31.3
400.0	V	QP	9.9	15.2	7.2	-	32.3	46.0	13.7
612.0	V	QP	-8.7	19.2	9.0		19.5	46.0	26.5
4 00 4 0		Peak	4.1	04.4	10.0	07.4	27.3	74.0	46.7
4 824.0	-	AVG	-2.4	31.4	18.9	27.1	20.8	54.0	33.2
Operation frequency / 2 437 MHz									
280.0	V	QP	-12.9	19.1	6.0	-	12.2	46.0	33.8
400.0	V	QP	9.3	15.2	7.2	-	31.7	46.0	14.3
4 074 0		Peak	4.0	24.6	10.0	07.0	27.5	74.0	46.5
4 874.0	-	AVG	-3.0	31.6	19.2	27.3	20.5	54.0	33.5
		C	peratior	n frequency /	2 462 MH	z			
280.0	V	QP	-15.4	19.1	6.0	-	9.7	46.0	36.3
400.0	V	QP	13.0	15.2	7.2	-	35.4	46.0	10.6
4 004 0		Peak	1.0	04 7	10 5	07.4	24.8	74.0	49.2
4 924.0	-	AVG	-3.4	31.7	19.5	27.4	20.4	54.0	33.6

4.5.11 Test result of IEEE802.11n (20 MHz) mode

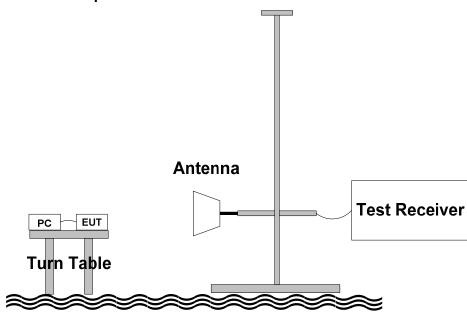
4.5.12 Test result of IEEE802.11n (40 MHz) mode

Frequency [MHz]	Polarization [H/V]	Detect Mode [Peak/QP/AVG]	Reading [dBµV]		Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
	Operation frequency / 2 422 MHz								
280.0	V	QP	-9.9	19.1	6.0	-	15.2	46.0	30.8
400.0	V	QP	7.8	15.2	7.2	-	30.2	46.0	15.8
4 844.0		Peak	2.4	31.5	19.0	0 27.1	25.8	74.0	48.2
4 044.0	-	AVG	-3.0	31.5	19.0		20.4	54.0	33.6
Operation frequency / 2 437 MHz									
280.0	V	QP	-11.8	19.1	6.0	-	13.3	46.0	32.7
400.0	V	QP	7.3	15.2	7.2	-	29.7	46.0	16.3
4 874.0		Peak	2.8	21.6	10.0	27.3	26.3	74.0	47.7
4 0/4.0	-	AVG	-3.4	31.6	19.2		20.1	54.0	33.9
		C	peratior	n frequency /	2 452 M⊦	lz			
280.0	V	QP	-13.1	19.1	6.0	-	12.0	46.0	34.0
332.0	V	QP	-2.9	16.3	6.2	-	19.6	46.0	26.4
400.0	V	QP	10.8	15.2	7.2	-	33.2	46.0	12.8
612.0	V	QP	-6.9	19.2	9.0		21.3	46.0	24.7
4 004 0		Peak	1.0	21 7	10.4	19.4 27.4	24.7	74.0	49.3
4 904.0	-	AVG	-0.6	31.7	19.4		23.1	54.0	30.9

4.6 Radiated emission in band edge

4.6.1 Definition

A radiated emission is a emission from the equipment when transmitting into a non-radiating load on frequencies that are restricted band sufficient to ensure transmission of information of required quality for the class of communications desired.


4.6.2 Specification

FCC Rules Part 15, Section 15.205(a) / Section 15.209(a) / Section 15.247(d)

4.6.3 Method of measurement

Public Notice "558074 D01 DTS Meas Guidance v01" ANSI C63.4 (2009) Section 8.3.1

4.6.4 Measurement set-up

4.6.5 Test equipment list

Equipment	Model name	Manufacturer		
EUT	WifiAn-Mini	ENJsoft Inc.		
Control PC	NT-P560	Samsung		
Spectrum Analyzer	N9020A	Agilent		
Horn Antenna	BBHA-9120D	Schwarzbeck		
Pre-Amplifier	JS4-00102600-26-5P	MITEQ		

4.6.6 Test Procedure (Peak mode)

- (1) Same as (1) to (7) at the test procedure of radiated emission (4.5.6).
- 2 Set the RBW = 1 MHz.
- ③ Set the VBW = 3 MHz.
- ④ Detector = peak
- (5) Span = 100 MHz
- 6 Sweep time = auto couple
- ⑦ Trace mode = max hold (more than 100 trace)

4.6.7 Test Procedure (Average mode)

- (1) Same as (1) to \bigcirc at the test procedure of radiated emission (4.5.6).
- ② Set the RBW = 1 MHz.
- ③ Set the VBW = 3 MHz.
- ④ Detector = RMS
- (5) Span = 100 MHz
- 6 Sweep point = 24 000
- ⑦ Sweep time = 10 s (single sweep)

4.6.8 Test Condition

- Test place: OATS
- Test mode: Maximum output power
- Test environment: 18°C, 41 % R.H.

4.6.9 Limit

Section 15.247(b) specifies that emissions which fall in restricted band, as defined in section 15.205(a), must comply with the radiated emission limits specified in section 15.209(a)

Band edge in restricted frequency bands:

Band edge	Stating frequency (MHz)	Ending frequency (MHz)
Lower	2 300	2 390
Upper	2 483.5	2 500

Field strength levels specified in the following table:

Frequency (MHz)	Field strength (uV/m)	Measurement distance (m)
Above 960	500 (Average) 5 000 (Peak)	3

4.6.10 Test result of IEEE802.11b mode

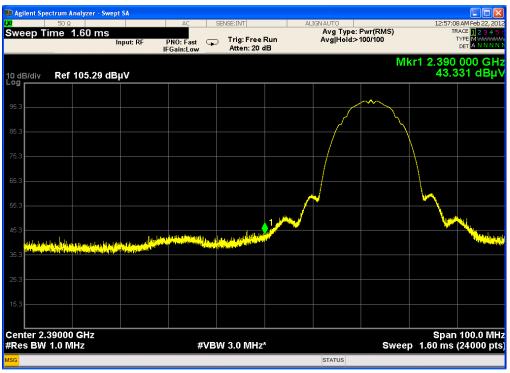
Frequency [MHz]	Detect Mode [Peak/AVG]	Reading [dBµV]	Antenna Factor [dB/m]	Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
Operation frequency / 2 412 MHz								
2 200 0	Peak	32.4	27.3	10.7	27.1	43.3	74.0	30.7
2 390.0	AVG	24.0	27.3	10.7	27.1	34.9	54.0	19.1
			Operation f	requency /	2 462 MHz			
2 483.5	Peak	33.1	27.6	11.2	27.4	44.5	74.0	29.5
2 403.0	AVG	23.7	27.0	11.2	27.4	35.1	54.0	18.9

4.6.11 Test result of IEEE802.11g mode

Frequency [MHz]	Detect Mode [Peak/AVG]	Reading [dBµV]	Antenna Factor [dB/m]	Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
Operation frequency / 2 412 MHz								
2 390.0	Peak	33.4	27.3	10.7	27.1	44.3	74.0	29.7
2 390.0	AVG	23.3	27.5	10.7	27.1	34.2	54.0	19.8
			Operation f	requency /	2 462 MHz			
2 483.5	Peak	33.3	27.6	11.0	11.2 27.4	44.7	74.0	29.3
2 403.0	AVG	23.0	21.0	11.2	21.4	34.4	54.0	19.6

4.6.12 Test result of IEEE802.11n (20 MHz) mode

Frequency [MHz]	Detect Mode [Peak/AVG]	Reading [dBµV]	Antenna Factor [dB/m]	Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
Operation frequency / 2 412 MHz								
2 390.0	Peak	34.4	27.3	10.7	27.1	45.3	74.0	28.7
2 390.0	AVG	23.9	27.5	10.7	27.1	34.8	54.0	19.2
			Operation f	requency /	2 462 MHz			
2 483.5	Peak	32.9	27.6	11.2	27.4	44.3	74.0	29.7
2 403.5	AVG	24.1	27.0	11.2	27.4	35.5	54.0	18.5


4.6.13 Test result of IEEE802.11n (40 MHz) mode

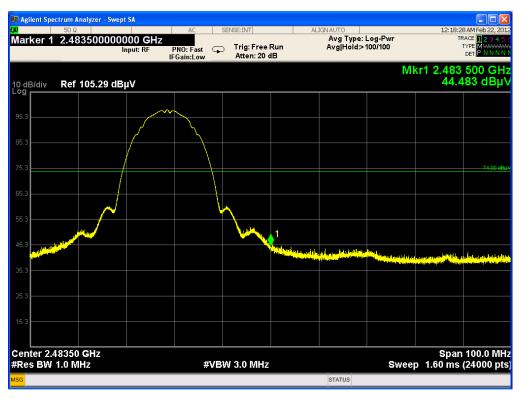
Frequency [MHz]	Detect Mode [Peak/AVG]	Reading [dBµV]	Antenna Factor [dB/m]	Cable Loss [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
Operation frequency / 2 422 MHz								
2 390.0	Peak	32.4	27.3	10.7	27.1	43.3	74.0	30.7
2 390.0	AVG	25.6	27.5	10.7	27.1	36.5	54.0	17.5
			Operation f	requency /	2 452 MHz			
2 483.5	Peak	34.9	27.6	11 0	27.4	46.3	74.0	27.7
2 403.5	AVG	25.6	21.0	27.6 11.2		37.0	54.0	17.0

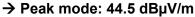
4.6.14 Plot of radiated emission in band edge

① 2 412 MHz at IEEE802.11b

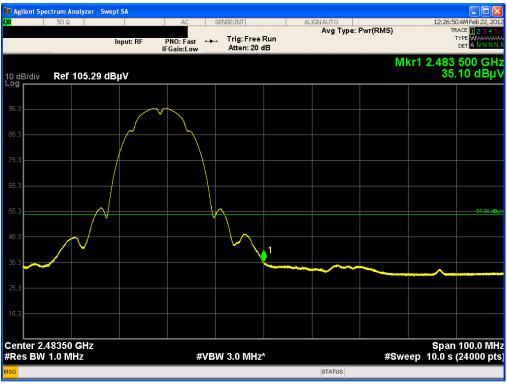
→ Peak mode: 43.3 dBµV/m

② 2 412 MHz at IEEE802.11b



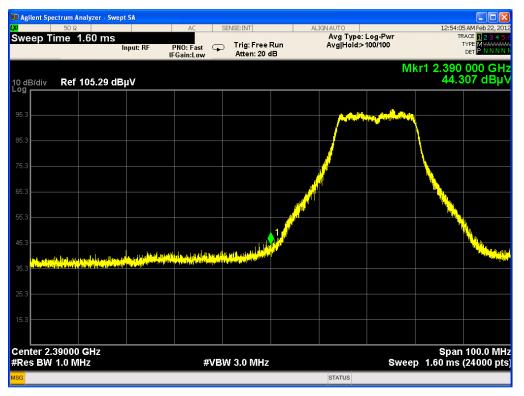

→ Average mode: 34.9 dBµV/m

It should not be reproduced in full or partly without the written approval by TCA of RAPA.



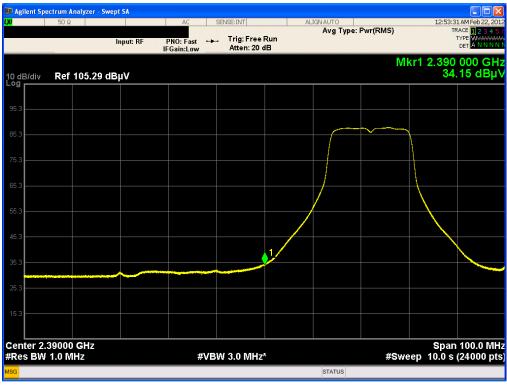
③ 2 462 MHz at IEEE802.11b

④ 2 462 MHz at IEEE802.11b



 \rightarrow Average mode: 35.1 dBµV/m

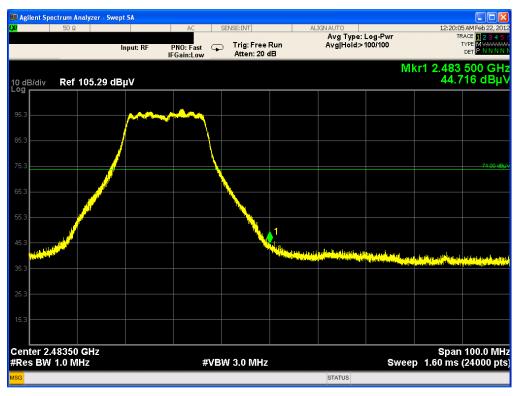
It should not be reproduced in full or partly without the written approval by TCA of RAPA.

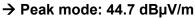


⑤ 2 412 MHz at IEEE802.11g

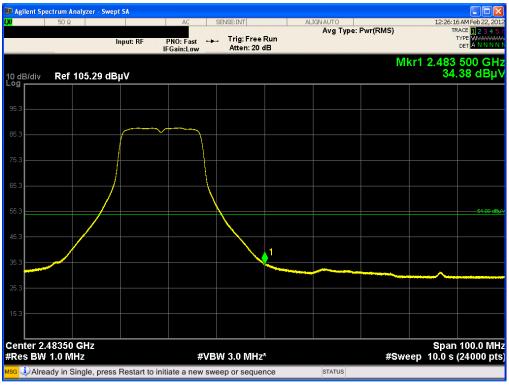
→ Peak mode: 44.3 dBµV/m

6 2 412 MHz at IEEE802.11g



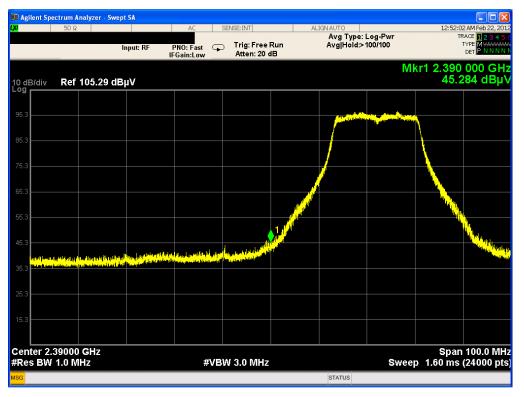

 \rightarrow Average mode: 34.2 dBµV/m

It should not be reproduced in full or partly without the written approval by TCA of RAPA.



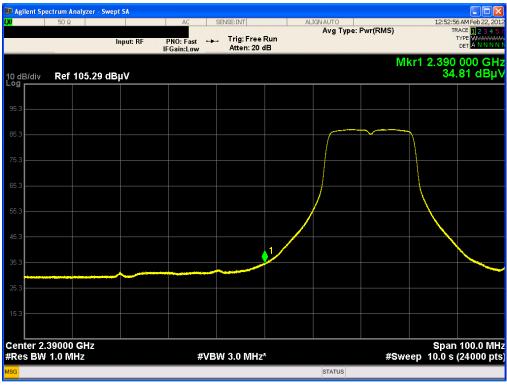
⑦ 2462 MHz at IEEE802.11g

⑧ 2462 MHz at IEEE802.11g



 \rightarrow Average mode: 34.4 dBµV/m

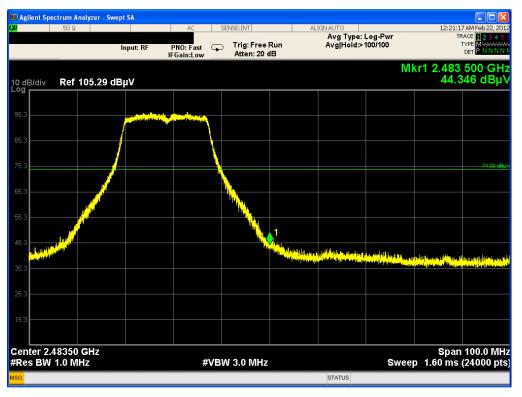
It should not be reproduced in full or partly without the written approval by TCA of RAPA.



9 2 412 MHz at IEEE802.11n / 20 MHz

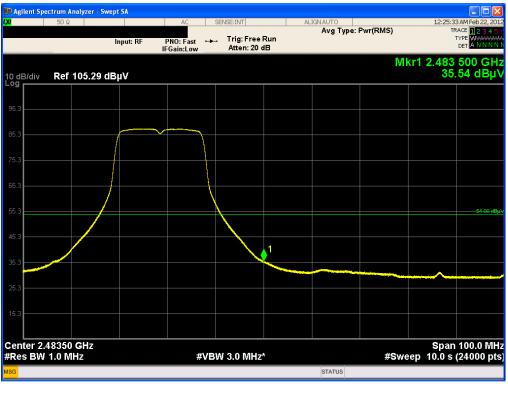
→ Peak mode: 45.3 dBµV/m

10 2 412 MHz at IEEE802.11n / 20 MHz



 \rightarrow Average mode: 34.8 dBµV/m

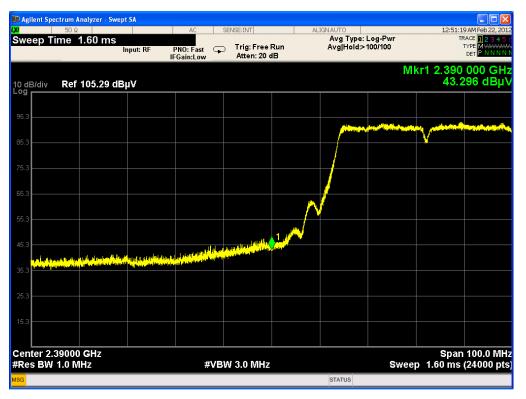
It should not be reproduced in full or partly without the written approval by TCA of RAPA.



① 2 462 MHz at IEEE802.11n / 20 MHz

→ Peak mode: 44.3 dBµV/m

12 2 462 MHz at IEEE802.11n / 20 MHz



 \rightarrow Average mode: 35.5 dBµV/m

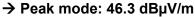
It should not be reproduced in full or partly without the written approval by TCA of RAPA.

3 2 412 MHz at IEEE802.11n / 40 MHz

→ Peak mode: 43.3 dBµV/m

1 2 412 MHz at IEEE802.11n / 40 MHz




 \rightarrow Average mode: 36.5 dBµV/m

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

(B) 2 462 MHz at IEEE802.11n / 40 MHz

16 2 462 MHz at IEEE802.11n / 40 MHz

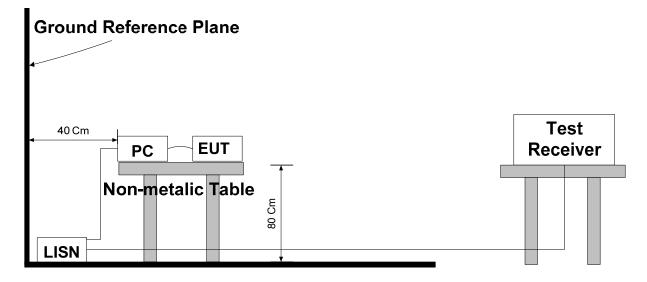
 \rightarrow Average mode: 37.0 dBµV/m

It should not be reproduced in full or partly without the written approval by TCA of RAPA.

4.7 Power line conducted emission

4.7.1 Definition

The power line conducted emission is the emission that is generated or amplified in a equipment and appears between each power line terminal that connects to a public utility line and ground.


4.7.2 Specification

FCC Rules Part 15, Section 15.207(a)

4.7.3 Method of measurement

ANSI C63.4 (2009) Section 7.3.1

4.7.4 Measurement set-up

4.7.5 Test equipment list

Equipment	Model name	Manufacturer
EUT	WifiAn-Mini	ENJsoft Inc.
Control PC	NT-P560	Samsung
Test Receiver	ESS	R&S
LISN	ENV216	R&S

4.7.6 Test Procedure

- ① The EUT was placed on a Non-metallic table with 0.8 m height above the floor.
- (2) The EUT was connected to AC power supply and the input power was supplied through a 50 Ω / 50 μ H ± 5 Ω Line Impedance Stabilization Network (LISN).
- ③ The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.
- ④ Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- (5) The frequency range from 150 kHz to 30 MHz was searched.

4.7.8 Test Condition

- Test place: Shield room
- Test mode: Maximum output power
- Test environment: 21°C, 34 % R.H.

4.7.9 Limit

Frequency (MHz)	Quasi-peak (dBµV)	Average (dBµV)	
0.15 – 0.5	66 to 56	56 to 46	
0.5 – 5	56	46	
5 – 30	60	50	

4.7.10 Test result of not applied EUT (Peak mode)

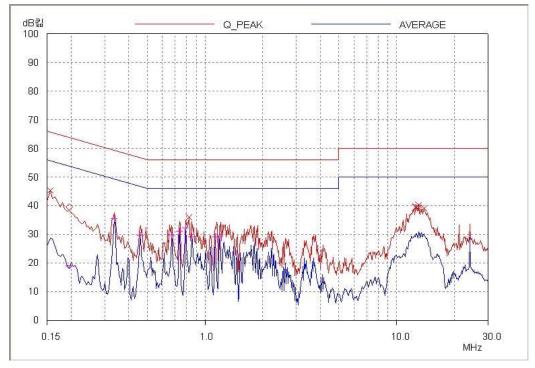
Frequency	Line	Peak (c	Margin	
(MHz)		Emission level	Limits	(dB)
0.155	Н	45.4	65.7	20.3
0.240	N	43.2	62.1	18.9
0.360	N	41.6	58.7	17.1
0.715	N	42.6	56.0	13.4
0.825	Н	36.0	56.0	20.0
0.960	N	41.9	56.0	14.1
12.975	Н	40.3	60.0	19.7

4.7.11 Test result of not applied EUT (Average mode)

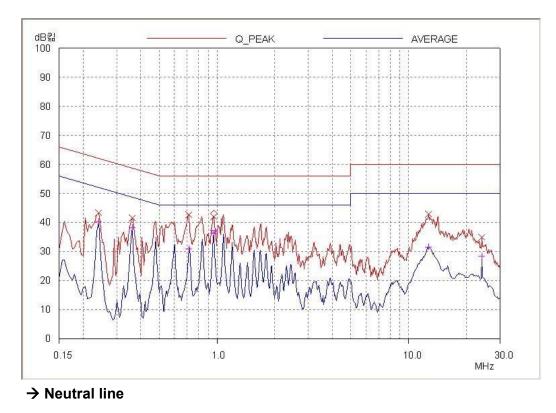
Frequency	Line	Peak (d	Margin		
(MHz)	Line	Emission level	Limits	(dB)	
0.240	Ν	40.2	52.1	11.9	
0.360	Ν	38.3	48.7	10.5	
0.735	Н	31.1	46.0	14.9	
0.795	Н	32.2	46.0	13.8	
0.960	Ν	36.2	46.0	9.8	
12.655	Ν	31.6	50.0	18.4	
24.020	Ν	28.5	50.0	21.5	

Frequency	Line	Peak (d	Margin	
(MHz)	Line	Emission level	Limits	(dB)
0.260	Ν	41.9	61.4	19.5
0.390	N	41.4	58.1	16.6
0.515	Ν	42.7	56.0	13.3
1.155	Ν	43.8	56.0	12.3
12.580	Ν	41.7	60.0	18.3
18.780	Н	37.6	60.0	22.4
24.025	Ν	35.3	60.0	24.7

4.7.12 Test result of applied EUT in the worst case (Peak mode)


4.7.13 Test result of applied EUT in the worst case (Average mode)

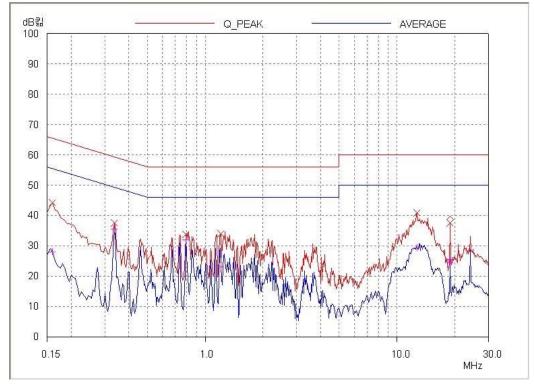
Frequency	Line	Peak (Margin	
(MHz)		Emission level	Limits	(dB)
0.260	Ν	39.8	51.4	11.6
0.390	Ν	38.2	48.1	9.9
0.515	N	35.0	46.0	11.0
0.795	Н	31.9	46.0	14.1
1.155	Ν	34.5	46.0	11.6
12.580	Ν	34.2	50.0	15.8
24.025	Ν	28.8	50.0	21.3



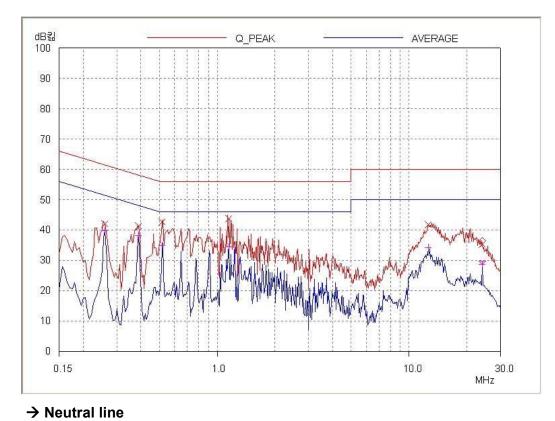
4.7.14 Plot of power line conducted emission

1 EUT not inserted to control PC

→ Hot line



2 EUT not inserted to control PC


It should not be reproduced in full or partly without the written approval by TCA of RAPA.

③ EUT inserted to control PC

→ Hot line

④ EUT inserted to control PC

5. RF exposure compliance requirement

According to FCC part 15 section 15.247(e)(i) and FCC part 1 section 1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to KDB 447498 (2)(a)(i).

5.1 The Max Conducted Peak Output Power is below;

Channel	Frequency	Output	Power	Ant. Gain	EII	RP	Requirement	
Number	(MHz)	(mW)	(dBm)	(dBi)	(dBm)	(mW)	(mW)	
	IEEE802.11b Mode							
1	2 412	14.55	11.63	2.00	13.63	23.07	24.88	
6	2 437	14.76	11.69	2.00	13.69	23.39	24.62	
11	2 462	14.52	11.62	2.00	13.62	23.01	24.37	
	IEEE802.11g Mode							
1	2 412	14.96	11.75	2.00	13.75	23.71	24.88	
6	2 437	14.55	11.63	2.00	13.63	23.07	24.62	
11	2 462	14.83	11.71	2.00	13.71	23.50	24.37	
		IE	EE802.11r	n Mode (20 MH:	z)			
1	2 412	15.21	11.82	2.00	13.82	24.10	24.88	
6	2 437	13.93	11.44	2.00	13.44	22.08	24.62	
11	2 462	13.93	11.44	2.00	13.44	22.08	24.37	
IEEE802.11n Mode (40 MHz)								
3	2 422	13.61	11.34	2.00	13.34	21.58	24.77	
6	2 437	13.49	11.30	2.00	13.30	21.38	24.62	
9	2 452	13.49	11.30	2.00	13.30	21.38	24.47	

EIRP values in the above table are calculated by the following formula.

EIRP= P x G = 11.71 dBm + 2.00 dBi = 13.71 dBm (23.50 mW)

From the requirement data in the above table, SAR requirement: S= 60 / f (GHz) = 60/2.462 = 24.37 mWSo the SAR measurement is not required.

6. Test equipments list

The listing below denotes the test equipments for the test(s).

No.	Equipment	Model	Manufacturer	Serial number	Calibration due date
1	Spectrum Analyzer	ESPI7	R&S	101002	09/28/12
2	Spectrum Analyzer	N9020A	Agilent	MY48010456	02/10/13
3	Test Receiver	ESS	R&S	833776/011	10/07/12
4	LISN	ENV216	R&S	100103	09/28/12
5	Loop Antenna	6502	EMCO	9609-9087	02/10/13
6	Bi-conical Antenna	VHA9103	Schwarzbeck	2217	11/29/12
7	Log-Periodic Antenna	VULP9118A	Schwarzbeck	382	11/29/12
8	Horn Antenna	BBHA 9120 D	Schwarzbeck	395	08/12/12
9	Pre-Amplifier	JS4-00102600-26-5P	MITEQ	383521	02/10/13
10	Turn Table	N/A	Daeil EMC	N/A	N/A
11	Antenna Mast	EAM4.5	Daeil EMC	N/A	N/A
12	Controller	DE200	Daeil EMC	AAA69813111	N/A