

Nemko Test Report:

Nemko Test Report:	40098RUS1		
Applicant:	Andrew Corporation 620 N. Greenfield Parkway Garner, NC 27529 USA		
Equipment Under Test: (E.U.T.)	TFBM7		
FCC Identifier:	BCR-TFBM7		
In Accordance With:	CFR 47, Part 27, Subpart C Miscellaneous Wireless Communication Services		
Tested By:	Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136		
TESTED BY: David Light, Se	DATE: 05 November 2009		
APPROVED BY: Tom Tidwe	DATE: 12 November 2009		

PROJECT NO.: 40098RUS1

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	GENERAL EQUIPMENT SPECIFICATION	5
SECTION 3.	RF POWER OUTPUT	6
SECTION 4.	OCCUPIED BANDWIDTH	7
SECTION 5.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	10
SECTION 6.	FIELD STRENGTH OF SPURIOUS	14
SECTION 7.	TEST EQUIPMENT LIST	15
ANNEX A - TE	ST DETAILS	16
ANNEX B - TE	ST DIAGRAMS	21

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

Section 1. Summary of Test Results

Manufacturer Andrew Corporation

Model No.: TFBM7

Serial No.: 000000001

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with CFR 47, Part 27, Subpart C.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

EQUIPMENT: TFBM7

Summary Of Test Data

	PARA.		
NAME OF TEST	NO.	SPEC.	RESULT
RF Power Output	27.50(d)	1000 Watts ERP	Complies
Occupied Bandwidth	2.1049	Input/Output	Complies
Spurious Emissions at Antenna Terminals	27.53(c)	-13 dBm	Complies
Field Strength of Spurious Emissions	27.53(c)	-13 dBm E.I.R.P. Comp	
Frequency Stability	27.54	Must stay in band	NA ¹

¹Frequency stability testing was not performed since the device does not translate the frequency of the input signal.

EQUIPMENT: TFBM7

Section 2. General Equipment Specification

Supply Voltage Input:	120 Vac
Frequency Bands: Downlink:	728 to 757 Mhz
Frequency Bands: Uplink:	NA
-	
Type of Modulation and Designator:	LTE (F9W)
System Gain:	60.5 dB
Output Impedance:	50 ohms
RF Output (Rated): Downlink	0.400 W 26 dBm
RF Output (Rated): Uplink	NA W NA dBm
Frequency Translation:	F1-F1 F1-F2 N/A
Band Selection:	Software Duplexer Fullband

Description of EUT

The TFBM7 is a single band medium power booster designed to distribute 700MHz Commercial band signals using the built-in auxiliary channel of a remote unit. The Automatic Level Control (ALC) compensates for level variations of the auxiliary channel.

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 27.50

TESTED BY: David Light DATE: 05 November 2009

Test Results: Complies.

Measurement Data:

Direction	Composite Power (dBm)	Composite Power (W)
Downlink	26.0	0.400
Uplink	NA	NA

Equipment Used: 1036-1082-1472

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %

EQUIPMENT: TFBM7

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

Section 4. Occupied Bandwidth

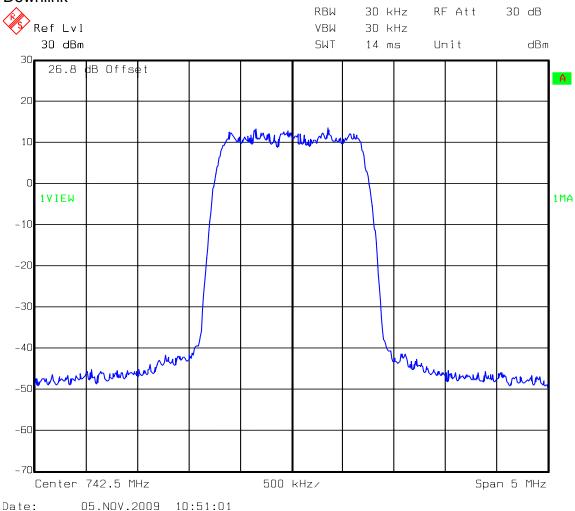
NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

TESTED BY: David Light DATE: 05 November 2009

Test Results: Complies.

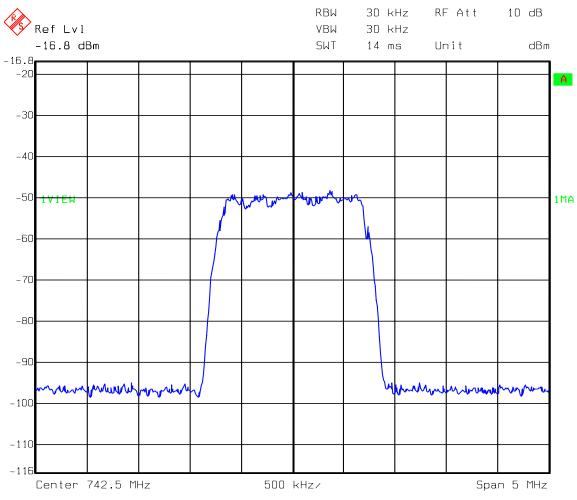
Test Data: See attached plot(s).

Equipment Used: 1036-1082-1472


Measurement Uncertainty: 1X10⁻⁷ ppm

Temperature: 22 °C

Relative Humidity: 48 %


Test Data - Occupied Bandwidth

Output Downlink

Test Data – Occupied Bandwidth

Input Downlink

EQUIPMENT: TFBM7

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services

PROJECT NO.: 40098RUS1

Section 5. Spurious Emissions at Antenna Terminals

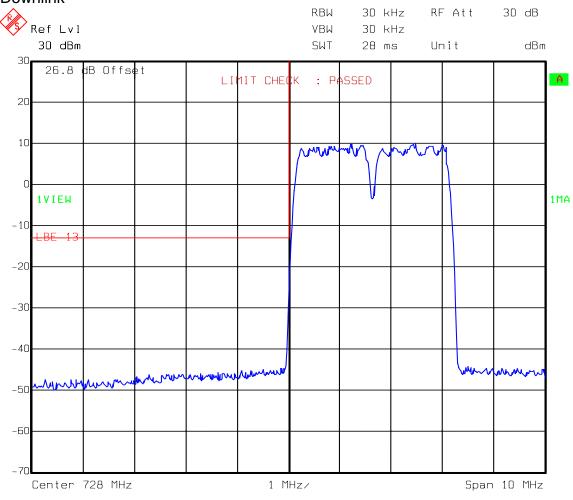
NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 27.53

TESTED BY: David Light DATE: 05 November 2009

Test Results: Complies.

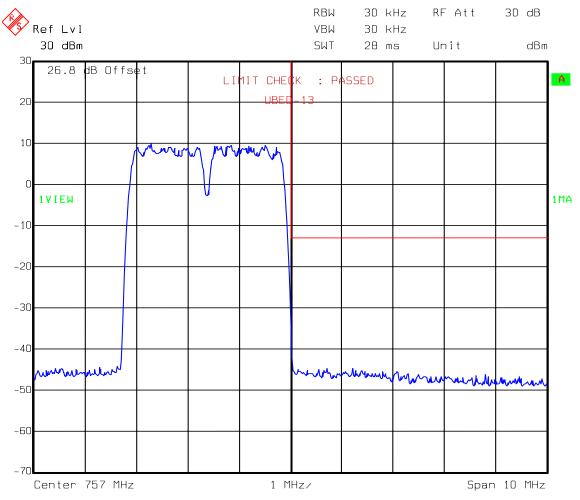
Test Data: See attached plot(s).

Equipment Used: 1036-1082-1472

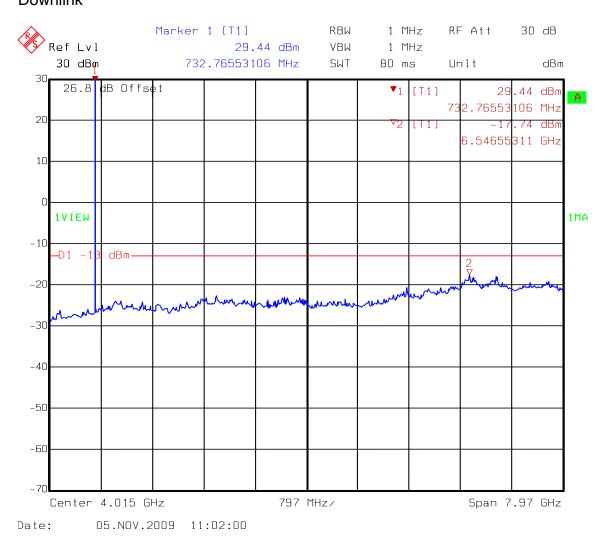

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %


Test Data – Spurious Emissions at Antenna Terminals

Low Band Edge Downlink


Test Data – Spurious Emissions at Antenna Terminals

High Band Edge Downlink

EQUIPMENT: TFBM7

Test Data – Spurious Emissions at Antenna TerminalsSPURS Downlink

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 27.53

TESTED BY: David Light DATE: 04 November 2009

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor, which was at least 20 dB below the

specification limit of -13 dBm.

Equipment Used: 1464-1484-1485-1016-993-791-1763

Measurement Uncertainty: +/-1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %

RBW=VBW=100 kHz below 1000 MHz RBW=VBW=1 MHz above 1000 MHz

Peak detector

EQUIPMENT: TFBM7

Section 7. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	01/19/09	01/20/11
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	02/27/09	02/28/11
1484	Cable	Storm PR90-010-072	N/A	06/23/09	06/23/10
1485	Cable	Storm PR90-010-216	N/A	06/23/09	06/23/10
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	06/23/09	06/23/10
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/31/09	08/31/10
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	05/28/09	05/28/10
1763	Bilog Antenna	Schaffner CBL 6111D	22926	11/04/08	11/04/09

CFR 47, PART 27, SUBPART C
Miscellaneous Wireless Communication Services
PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

ANNEX A - TEST DETAILS

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

NAME OF TEST: RF Power Output

Method Of Measurement:

Detachable Antenna:

The channel power integrated across the carrier's bandwidth at antenna terminals is measured using a spectrum analyzer. Power output is measured with the maximum rated input level.

Integral Antenna:

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

CFR 47, PART 27, SUBPART C Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

NAME OF TEST: Occupied Bandwidth

Method Of Measurement:

<u>CDMA</u>

Spectrum analyzer settings: RBW=VBW=30 kHz

Span: 5 MHz Sweep: Auto

GSM / EDGE

RBW=VBW= 3 kHz

Span: 1 MHz Sweep: Auto

TDMA

RBW=VBW= 1 kHz

Span: 1 MHz Sweep: Auto

W-CDMA

RBW=VBW= 50 kHz

Span: 10 MHz Sweep: Auto

CFR 47, PART 27, SUBPART C

Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

NAME OF TEST: Spurious Emission at Antenna Terminals

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM / EDGE</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $\begin{array}{lll} \text{VBW: } \geq \text{RBW} & \text{VBW: } \geq \text{RBW} \\ \text{Sweep: Auto} & \text{Sweep: Auto} \end{array}$

Video Avg: 6 Sweeps Video Avg: Disabled

<u>TDMA</u> <u>W-CDMA</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) RBW: 50 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: Disabled Video Avg: 6 Sweeps

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

CFR 47, PART 27, SUBPART C

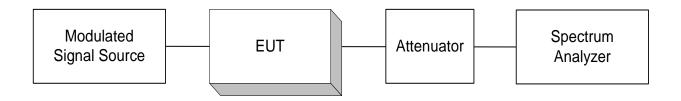
Miscellaneous Wireless Communication Services PROJECT NO.: 40098RUS1

EQUIPMENT: TFBM7

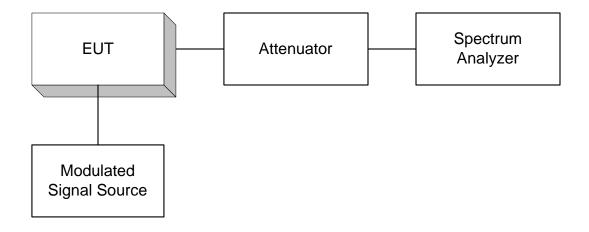
NAME OF TEST: Field Strength of Spurious Radiation

Method of Measurement TIA/EIA-603C

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

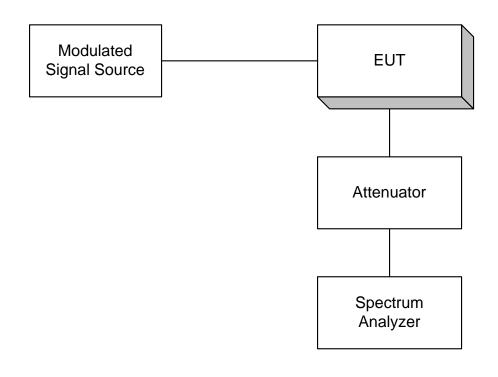

CFR 47, PART 27, SUBPART C
Miscellaneous Wireless Communication Services
PROJECT NO.: 40098RUS1

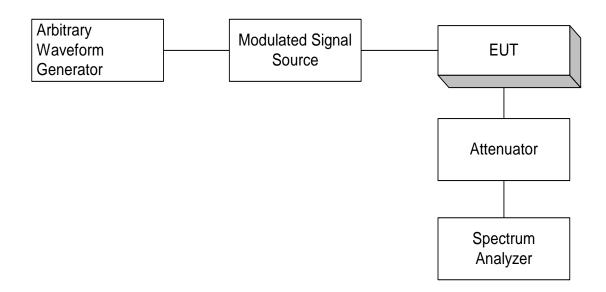
EQUIPMENT: TFBM7


ANNEX B - TEST DIAGRAMS

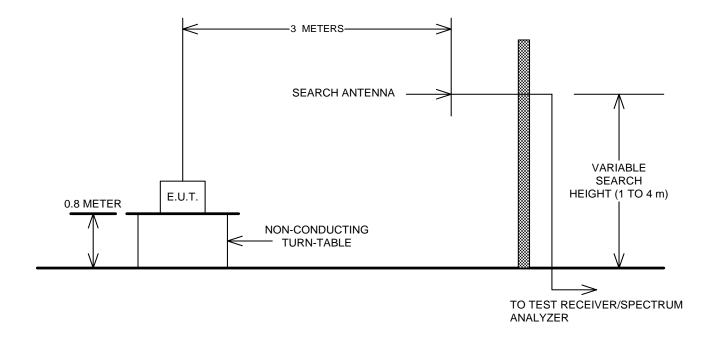
EQUIPMENT: TFBM7

Para. No. 2.985 - R.F. Power Output




Para. No. 2.989 - Occupied Bandwidth

EQUIPMENT: TFBM7


Para. No. 2.991 Spurious Emissions at Antenna Terminals

EQUIPMENT: TFBM7

Para. No. 2.993 - Field Strength of Spurious Radiation

