

Nemko Test Report:	4648RUS1		
Applicant:	Andrew Corporation 108 Rand Park Drive Garner, NC 27529 USA		
Equipment Under Test: (E.U.T.)	Node G 1940 RF Enhancer		
In Accordance With:	CFR 47, Part 24, Subpart E Broadband PCS Repeaters		
Tested By:	Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136		
TESTED BY: David Light,	Senior Wireless Engineer	DATE : _	24 April 2007
APPROVED BY: Harry	Ward, Verificator	DATE : _	25 th April 2007

Number of Pages: 42

Table of Contents

SECTION 1.	SUMMARY OF TEST RESULTS	3
SECTION 2.	GENERAL EQUIPMENT SPECIFICATION	5
SECTION 3.	RF POWER OUTPUT	7
SECTION 4.	OCCUPIED BANDWIDTH	8
SECTION 5.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
SECTION 6.	FIELD STRENGTH OF SPURIOUS	30
SECTION 7.	TEST EQUIPMENT LIST	32
ANNEX A - TE	ST DETAILS	33
ANNEX B - TE	ST DIAGRAMS	39

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Section 1. Summary of Test Results

Manufacturer Andrew Corporation

Model No.: Node G 1940

Serial No.: 22

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with CFR 47, Part 24, Subpart E.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. None See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Summary Of Test Data

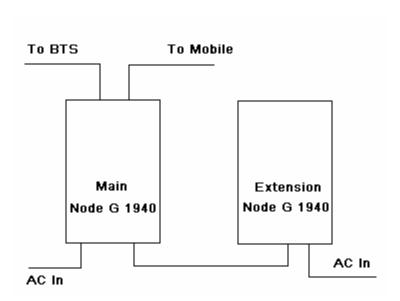
	PARA.		
NAME OF TEST	NO.	SPEC.	RESULT
RF Power Output	24.232	100W	Complies
Occupied Bandwidth	2.1049	Input/Output	Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	Complies
Frequency Stability	24.235		NA

Footnotes:

- (1) Modulation characteristics were not tested since the E.U.T. processes but does not produce a modulated waveform.
- (2) Frequency stability was not tested since the enhancer does not perform any frequency translation.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940


Section 2. General Equipment Specification

Supply Voltage Input:				
Frequency Bands:	Downlink:	Block A:	1930 – 1945 MHz	:
		Block D:	1945 – 1950 MHz	<u>:</u>
		Block B:	1950 – 1965 MHz	
		Block E:	1965 – 1970 MHz	
		Block F:	1970 – 1975 MHz	
		Block C:	1975 – 1990 MHz	
Frequency Bands:	Uplink:	Block A:	1850 – 1865 MHz	,
Trequency Bunds.	Оршик.	Block B:	1865 – 1870 MHz	
		Block C:	1870 – 1885 MHz	
		Block D:	1885 – 1890 MHz	
		Block E:	1890 – 1895 MHz	
		Block F:	1895 – 1910 MHz	
Type of Modulation an	d Designator:	CDMA GSM (F9W) (GXW		CDMA EDGE F9W) (G7W)
System Gain:		100 dB		
Output Impedance:		50 ohms		
RF Output (Rated):	Uplink	_ _	1.12 W 30.5 dBm	
RF Output (Rated):	Downlink	_ _	20 W 43 dBm	
Frequency Translation	:	F1-F1 ⊠	F1-F2	N/A
Band Selection:		Software	Duplexer	Fullband

Description of EUT

The Andrew Node G 1940 is an RF enhancer for GSM systems. It is capable of filtering and amplifying from 1 to 8 GSM & EDGE channels across the entire band.

System Diagram

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 24.232

TESTED BY: David Light DATE: 24 April 2007

Test Results: Complies.

Measurement Data:

Direction	Modulation	Modulation Output per Comp Channel Pot (dBm) (dE		Composite Power (W)
Uplink	EDGE	24.5	27.5	0.562
Downlink	EDGE	36.5	39.5	8.913
Uplink	GSM	27.5	30.5	1.122
Downlink	GSM	40.0	43.0	20.0

Equipment Used: 1082-1036-1064-1064-1604

Measurement Uncertainty: ____+/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Section 4. Occupied Bandwidth

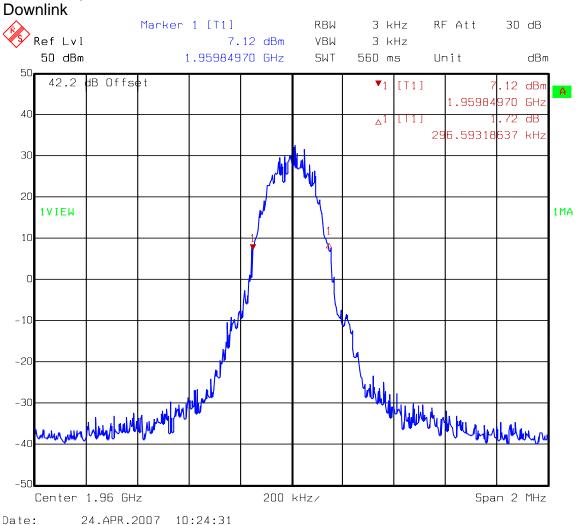
NAME OF TEST: Occupied Bandwidth PARA. NO.: 24.238

TESTED BY: David Light DATE: 24 April 2007

Test Results: Complies.

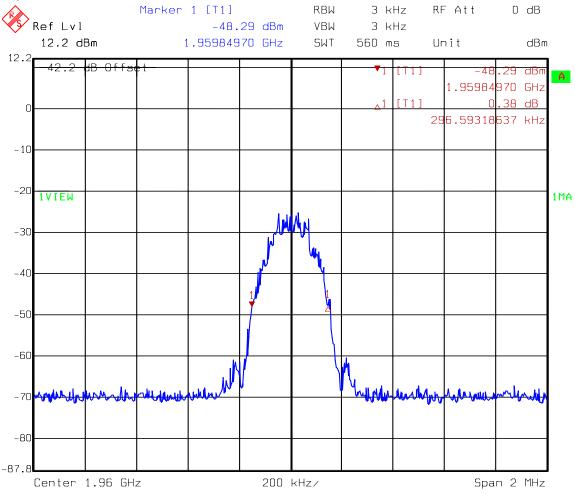
Test Data: See attached plot(s).

Equipment Used: 1036-1082-1604-1064-1065


Measurement Uncertainty: 1X10⁻⁷ ppm

Temperature: 22 °C

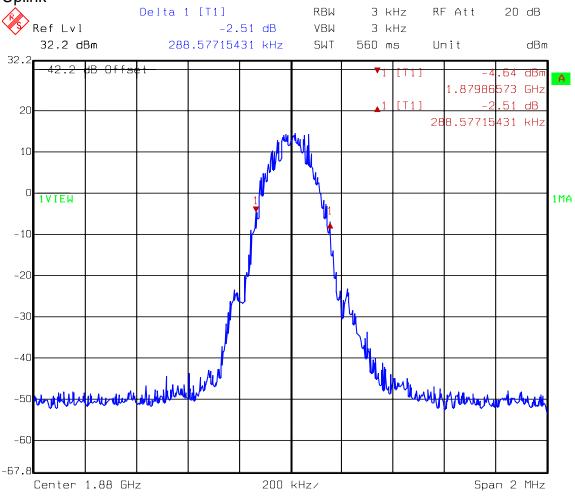
Relative Humidity: 48 %


Test Data - Occupied Bandwidth

GSM - Output

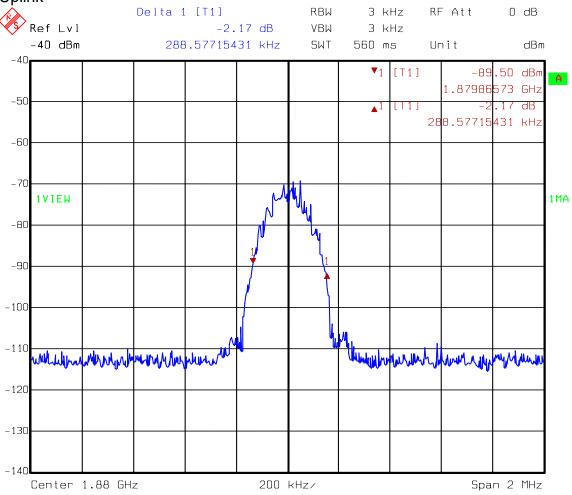
Test Data - Occupied Bandwidth

GSM - Input Downlink



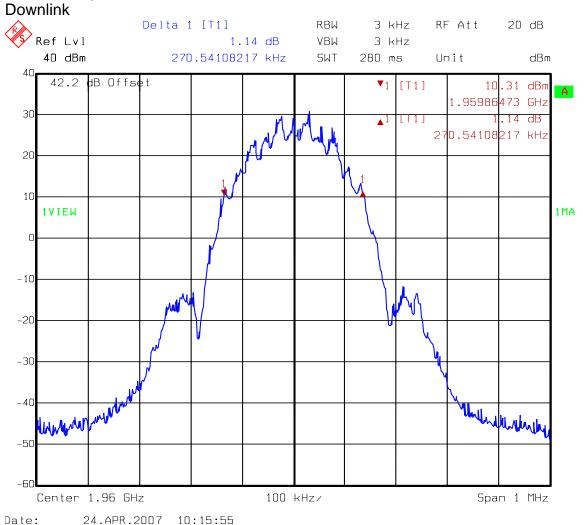
Date:

24.APR.2007 10:25:38

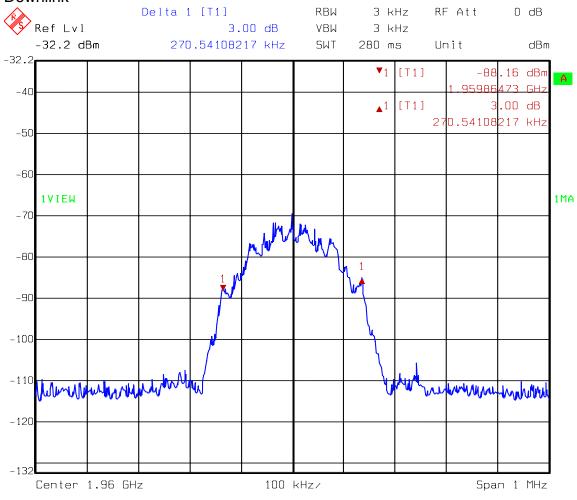

Test Data – Occupied Bandwidth

GSM - Output Uplink

Test Data – Occupied Bandwidth

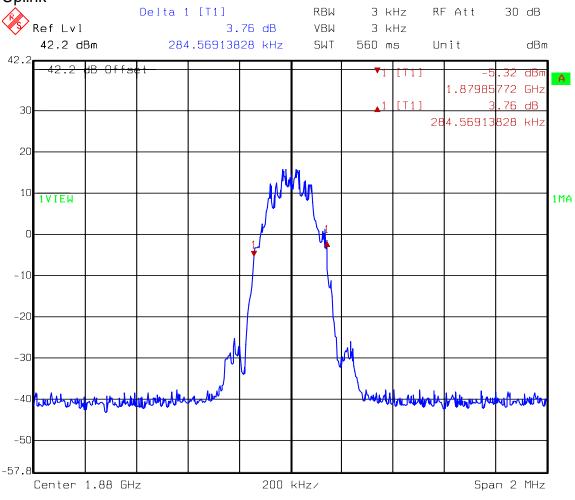

GSM - Input Uplink

Date: 24.APR.2007 11:14:33

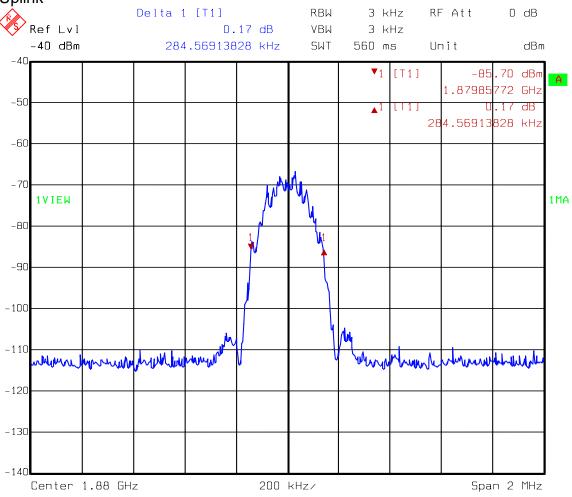

Test Data - Occupied Bandwidth

EDGE - Output

Test Data - Occupied Bandwidth


EDGE - Input Downlink

Date: 24.APR.2007 10:18:25


Test Data – Occupied Bandwidth

EDGE - Output Uplink

Test Data – Occupied Bandwidth

EDGE - Input Uplink

Date: 24.APR.2007 11:17:33

EQUIPMENT: Node G 1940

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 24.238

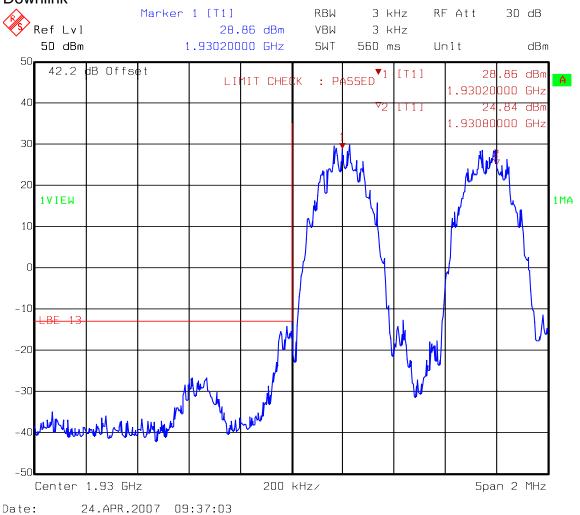
TESTED BY: David Light DATE: 24 April 2007

Test Results: Complies.

Test Data: See attached plot(s).

Equipment Used: 1082-1036-1604-1065-1064

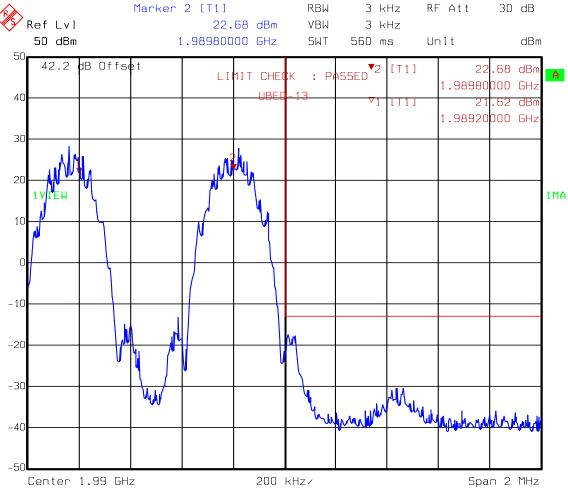
Measurement Uncertainty: +/- 1.7 dB


Temperature: 22 °C

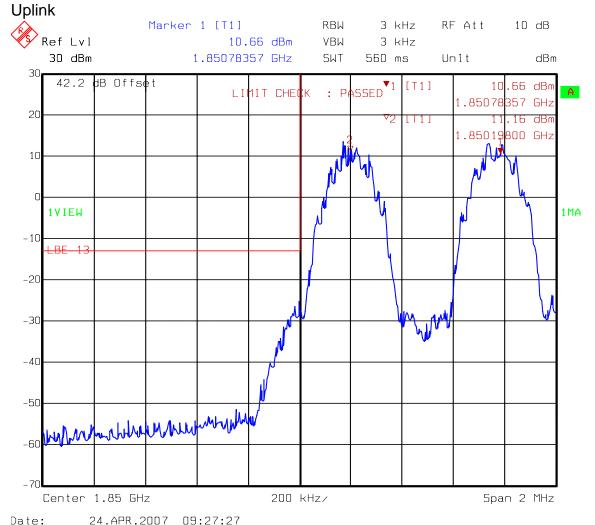
Relative Humidity: 48 %

Test Data – Spurious Emissions at Antenna Terminals

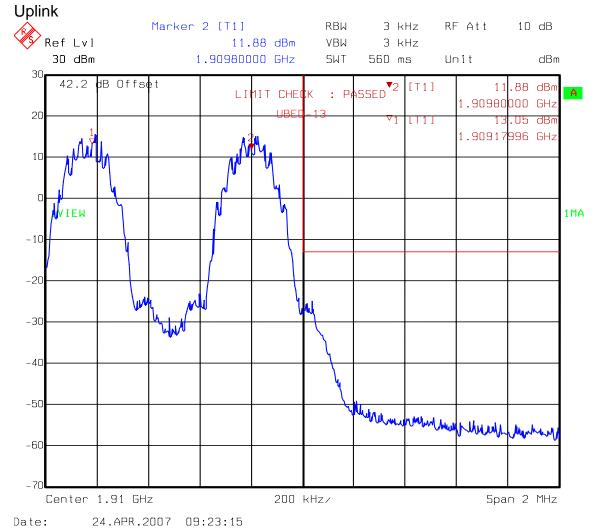
Lower Bandedge Intermodulation EDGE


Downlink

Test Data – Spurious Emissions at Antenna Terminals


Upper Bandedge Intermodulation EDGE

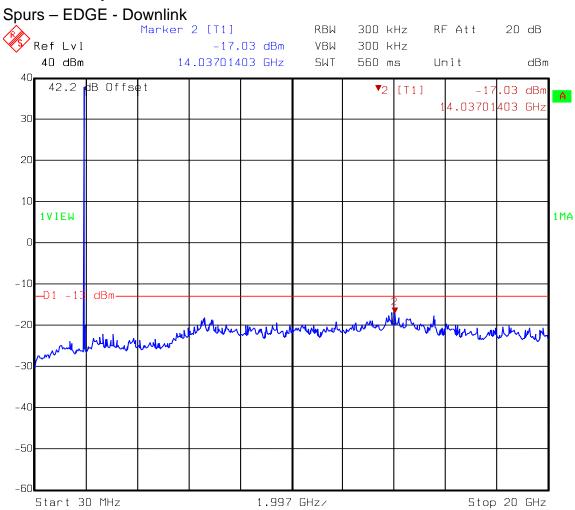
Downlink


Test Data – Spurious Emissions at Antenna Terminals

Lower Bandedge Intermodulation EDGE

Test Data – Spurious Emissions at Antenna Terminals

Upper Bandedge Intermodulation EDGE

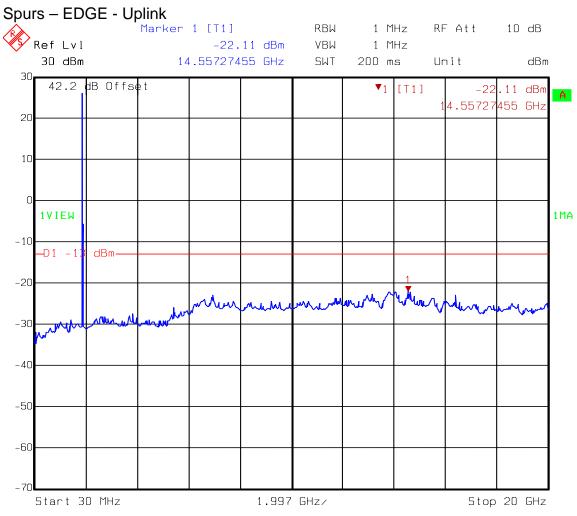


Date:

24.APR.2007 10:13:17

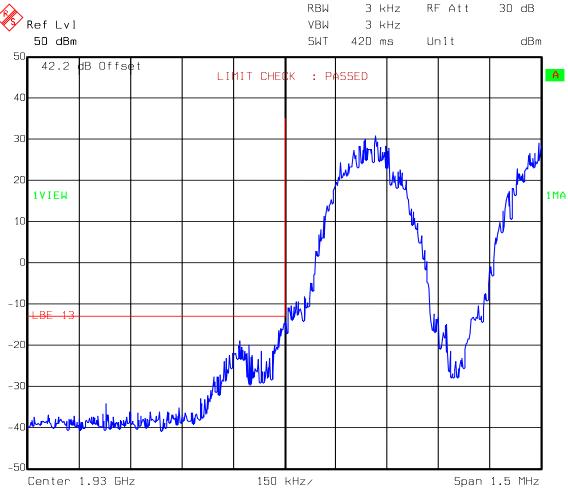
EQUIPMENT: Node G 1940

Test Data – Spurious Emissions at Antenna Terminals



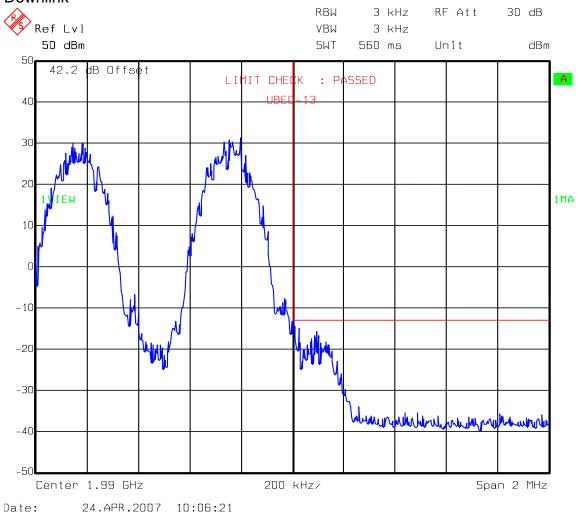
Date:

24.APR.2007 09:19:21

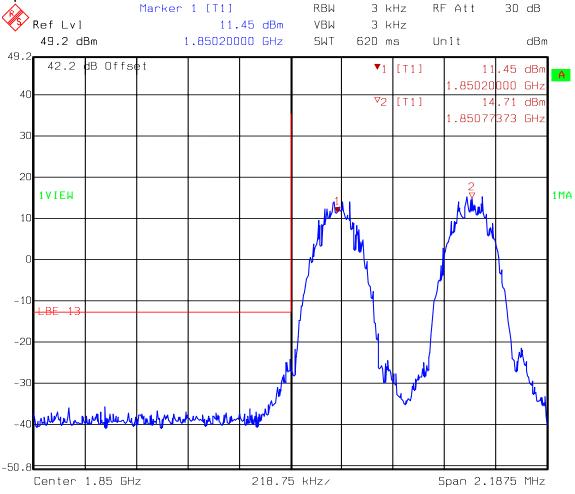

EQUIPMENT: Node G 1940

Test Data – Spurious Emissions at Antenna Terminals

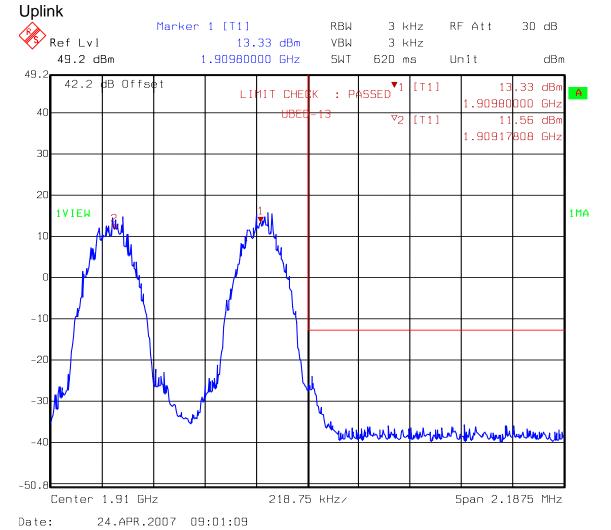
Test Data – Spurious Emissions at Antenna Terminals


Lower Bandedge Intermodulation GSM Downlink

Test Data – Spurious Emissions at Antenna Terminals


Upper Bandedge Intermodulation GSM

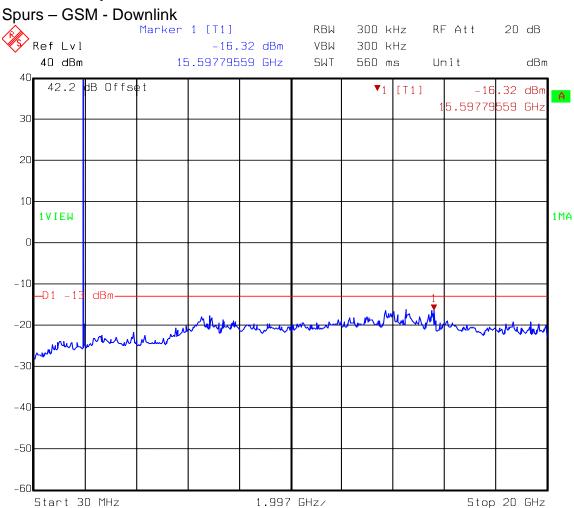
Downlink


Test Data – Spurious Emissions at Antenna Terminals

Lower Bandedge Intermodulation GSM Uplink

Test Data – Spurious Emissions at Antenna Terminals

Upper Bandedge Intermodulation GSM

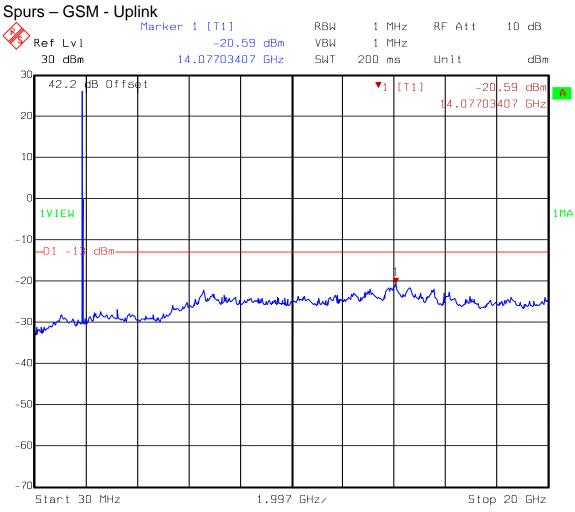


Date:

24.APR.2007 10:23:03

EQUIPMENT: Node G 1940

Test Data – Spurious Emissions at Antenna Terminals



Date:

24.APR.2007 09:10:05

EQUIPMENT: Node G 1940

Test Data – Spurious Emissions at Antenna Terminals

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 24.238

TESTED BY: David Light DATE: 24 April 2007

Test Results: Complies.

Test Data: See attached table.

Equipment Used: 1464-1484-1485-1019-791-759-790-993

Measurement Uncertainty: +/-1.7 dB

Temperature: 22 °C

Relative Humidity: 48 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Test Data - Radiated Emissions

Frequency	Meter Reading	Substitution Level	Pre-Amp Gain	Substitution Antenna Gain	EIRP	Limit	Margin	Polarity	Comments
(MHz)	(dBm)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)		
3920	-48.3	-37.9	32.1	10.2	-27.8	-13.0	-14.7500	V	
5880	-57.3	-48.3	31.4	10.6	-37.7	-13.0	-24.7300	V	
3920	-46.6	-44.8	32.1	10.2	-34.7	-13.0	-21.6500	Н	
5880	-59.8	-54.6	31.4	10.6	-44.0	-13.0	-31.0300	Н	
7840	-58.2	-50.4	32.6	11.2	-39.2	-13.0	-26.2400	Н	
Notes:					-	-			

All other emissions were below the noise floor which was at least 20 dB below the specification limit.

Analyzer settings: RBW=VBW=1 MHz / Peak detector.

EIRP = Substitution Level (dB) + Substitution Antenna Gain (dBi)

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

Section 7. Test Equipment List

Nemko ID	nko ID Description Manu Mode		Serial Number	Calibration Date	Calibration Due
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/24/07	01/24/09
1484	Cable	Storm PR90-010-072	N/A	10/02/06	10/02/07
1485	Cable	Storm PR90-010-216	N/A	10/02/06	10/02/07
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	04/30/06	04/30/07
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	04/30/06	04/30/07
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	05/26/06	05/26/08
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/01/05	08/02/07
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	03/30/07	03/29/08
760	Antenna biconical	Electro Metrics MFC-25	477	01/19/07	01/19/08
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1064	ATTENUATOR	NARDA 776B-20	NONE	CBU	N/A
1065	ATTENUATOR	NARDA 776B-10	NONE	CBU	N/A
1604	ATTENUATOR	NARDA 776B-20	NONE	N/A	N/A

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

ANNEX A - TEST DETAILS

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts

peak E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base

station transmitter exceed 100 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or spectrum analyzer. Power output is measured with the maximum rated input level.

Integral Antenna:

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Input/Output

Method Of Measurement:

<u>CDMA</u>

Spectrum analyzer settings: RBW=VBW=30 kHz

Span: 5 MHz Sweep: Auto

GSM / EDGE

RBW=VBW= 3 kHz

Span: 1 MHz Sweep: Auto

<u>TDMA</u>

RBW=VBW= 1 kHz

Span: 1 MHz Sweep: Auto

W-CDMA

RBW=VBW= 100 kHz

Span: 10 MHz Sweep: Auto

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 24.238

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM / EDGE</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

<u>TDMA</u> <u>W-CDMA</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) RBW: 100 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: Disabled Video Avg: 6 Sweeps

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 24.238

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method of Measurement TIA/EIA-603-1992

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

EQUIPMENT: Node G 1940

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

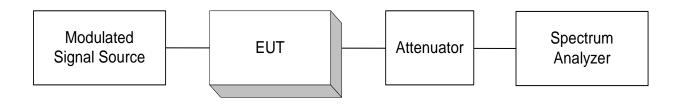
authorized frequency block.

Method Of Measurement:

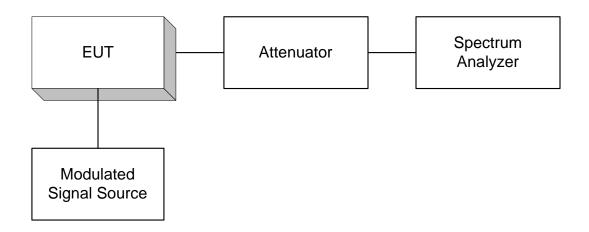
Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

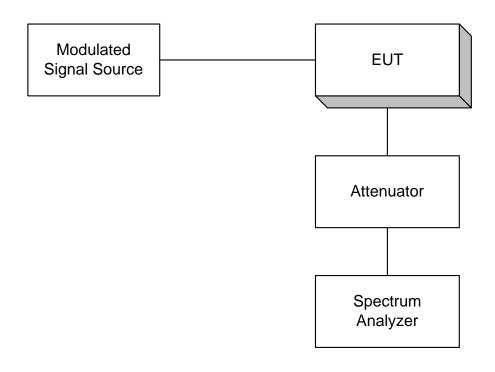
Frequency Stability With Temperature Variation

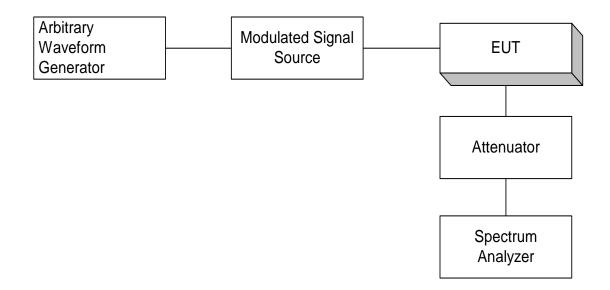

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 4648RUS1

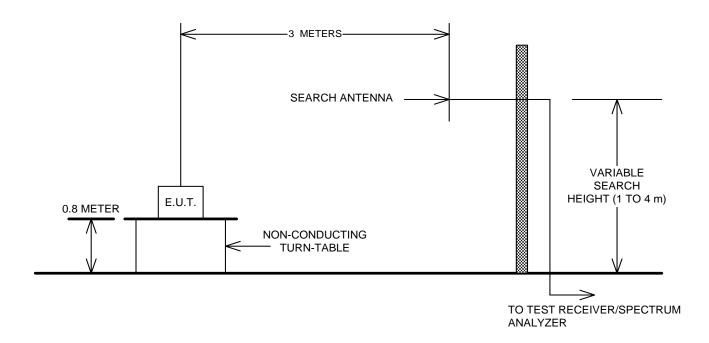

EQUIPMENT: Node G 1940

ANNEX B - TEST DIAGRAMS

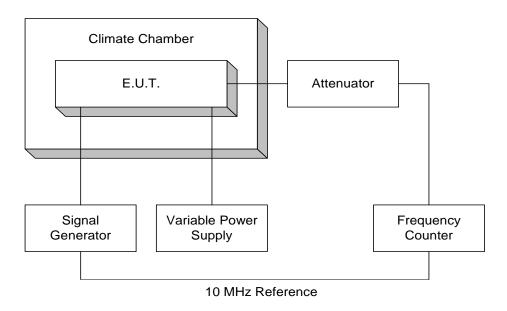

Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth



Para. No. 2.991 Spurious Emissions at Antenna Terminals



Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

