KTL Test Report:	8R01059
Applicant:	Allen Telecom Group 140 Vista Centre Drive Forest, Virginia 24551
Equipment Under Test: (E.U.T.)	Brite Cell PCS
n Accordance With:	FCC Part 24, Subpart E Broadband PCS Repeaters
Tested By:	KTL Ottawa Inc. 3325 River Road, R.R. 5 Ottawa, Ontario K1V 1H2
Authorized By:	
	T. Tidwell, Wireless Group Manager
Date:	
Total Number of Pages:	61

EQUIPMENT: Brite Cell PCS

Table of Contents

Section 1. Summary of Test Results

General

Summary of Test Data

Section 2. General Equipment Specification

Specifications

Description of Modifications for Class II Permissive Change

Modifications Made During Testing

Theory of Operation

System Diagram

Section 3. RF Power Output

Test Results

Measurement Data

Power Over Bandwidth Graphs

Section 4. Occupied Bandwidth

Occupied Bandwidth (CDMA)

Test Results

CDMA Input and Output Graphs

Occupied Bandwidth (GSM)

Test Results

GSM Input and Output Graphs

Occupied Bandwidth (NADC)

Test Results

NADC Input and Output Graphs

Section 5. Spurious Emissions at Antenna Terminals

Test Results

Test Data

Graphs

Section 6. Field Strength of Spurious

Test Results

Test Data

Test Data - Radiated Emissions - Uplink

Test Data - Radiated Emissions - Downlink

Photographs of Test Setup

Pre-Scan Data

EQUIPMENT: Brite Cell PCS

Table of Contents, continued

Section 7. Frequency Stability

Test Results Measurement Data Graphs

Section 8. Test Equipment List

Annex A - Test Methodologies

RF Power Output
Occupied Bandwidth (CDMA)
Occupied Bandwidth (GSM)
Occupied Bandwidth (NADC)
Spurious Emission at Antenna Terminals
Field Strength of Spurious
Frequency Stability

Annex B - Test Diagrams

R.F. Power Output Occupied Bandwidth Spurious Emissions at Antenna Terminals Field Strength of Spurious Frequency Stability

on this report. This report applies only to the items tested.

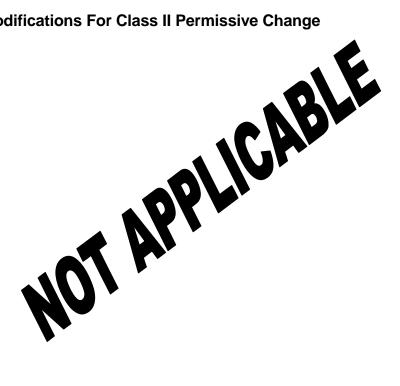
Section 1.	Summary of Test Results		
Manufacturer:	Allen Telecom Group		
Model No.:	Brite Cell PCS		
Serial No.:	982701926		
General:	All measurements are traceable to	nation	al standards.
These tests were cond compliance with FCC	ducted on a sample of the equipment for Part 24, Subpart E.	or the p	urpose of demonstrating
New Submissi	on		Production Unit
Class II Permi	ssive Change		Pre-Production Unit
T N B Equip	ment Code		
THIS	TEST REPORT RELATES ONLY TO T	HE ITE	M(S) TESTED.
THE FOLLOWING D	DEVIATIONS FROM, ADDITIONS TO, SPECIFICATIONS HAVE BEEN M See "Summary of Test Da	IADE.	
	NYLAP		
	NVLAP LAB CODE: 100	351-0	
TESTED BY:Kevin C	arr, Technologist	_ DA	TE:
TECHNICAL REVIE	W:	_ DA	TE:
KTL Ottawa Inc. authorizes the company's employees only.	above named company to reproduce this report provi	ided it is r	reproduced in its entirety and for use by the
Any use which a third party ma	akes of this report, or any reliance on or decisions to be	e made ba	sed on it, are the responsibility of such third

parties. KTL Ottawa Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based

EQUIPMENT: Brite Cell PCS

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	MEAS.	RESULT
RF Power Output	24.232	100W	0.063 W	Complies
Occupied Bandwidth (CDMA)	24.238	Input/Output	Plot	Complies
Occupied Bandwidth (GSM)	24.238	Input/Output	Plot	Complies
Occupied Bandwidth (NADC)	24.238	Input/Output	Plot	Complies
Spurious Emissions at Antenna	24.238(a)	-13 dBm	-13.0	Complies
Terminals				
Field Strength of Spurious Emissions	24.238(a)	-13 dBm	-19.6 dBm	Complies
		E.I.R.P.		
Frequency Stability	24.235		N/A	N/A

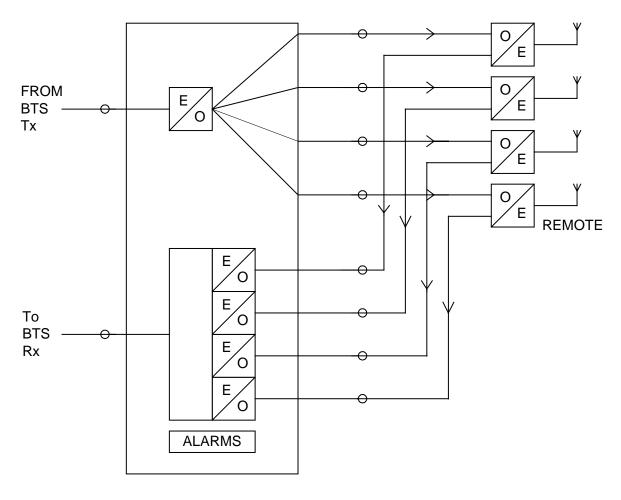

Footnotes For N/A's:

Test Conditions: Temperature: 18 °C

Humidity: 25 %

Section 2.	General Equip	oment Specifica	ition		
Supply Voltage Input:		120 VAC, 60 Hz			
Frequency Range:	Downlink:	1930 – 1990 GHz			
Frequency Range:	Uplink:	Not Tested			
Type of Modulation an Designator:	nd		CDMA (F9W)	GSM (GXW)	NADC (DXW)
AGC Threshold:		Not Applicable			
Output Impedance:		50 ohm			
Gain:		4.5 dB Nominal			
Max Input Power:		16.0 dBm			
RF Output (Rated):	Single: Composite:	15.0 dBm 18.0 dBm / 2 Cha	nnel		
Frequency Translation	: :		F1-F1	F1-F2	N/A
Band Selection:			Software	Duplexer Change	Fullband Coverage

Description of Modifications For Class II Permissive Change


Modifications Made During Testing

Theory of Operation

The Brite Cell Dual Band is an active indoor coverage system incorporating fibre optic and RF technologies. The device operates in the 800 MHz cell band and the 1990 MHz band. It features dual RF outputs and can operate from a 120 VAC line or battery. This system is hardwired to the base station and only re-transmits the downlink signal.

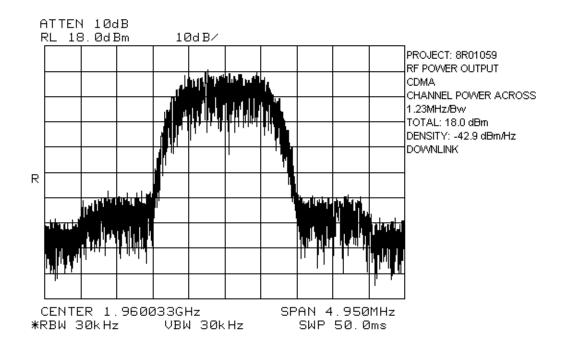
System Diagram

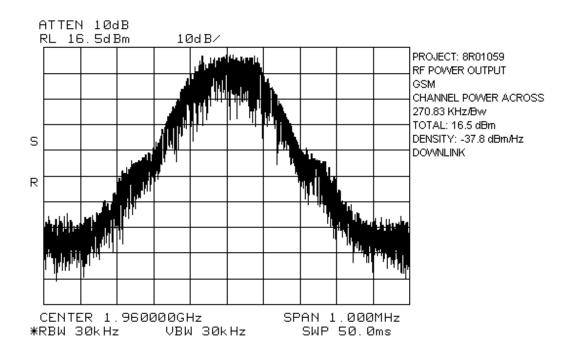
LOCAL INTERFACE

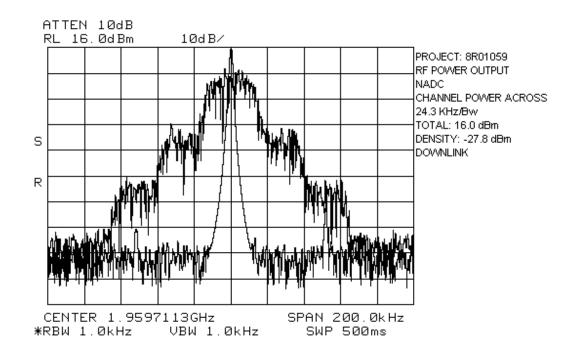
EQUIPMENT: Brite Cell PCS

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.985


TESTED BY: Kevin Carr DATE: December 23, 1998


Test Results: Complies.

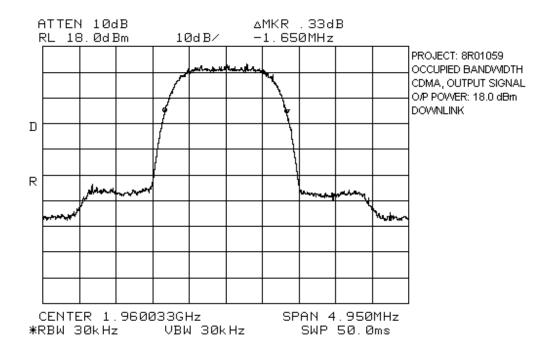

Measurement Data:

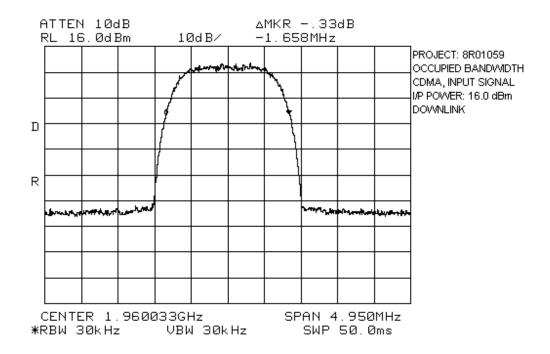
	Modulation	Per Channel Output Power	Composite Output Power
	Type	(dBm)	(dBm)
Downlink	CDMA	15.0	18.0
Downlink	GSM	13.5	16.5
Downlink	NADC	13.0	16.0

Page 10 of 51

EQUIPMENT: Brite Cell PCS

Section 4. Occupied Bandwidth


NAME OF TEST: Occupied Bandwidth (CDMA) PARA. NO.: 2.917(c)


TESTED BY: Kevin Carr DATE: December 23, 1998

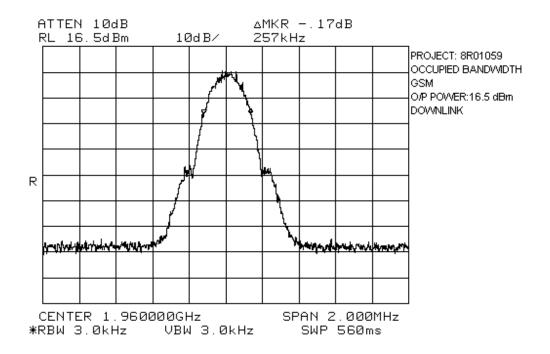
Test Results: Complies.

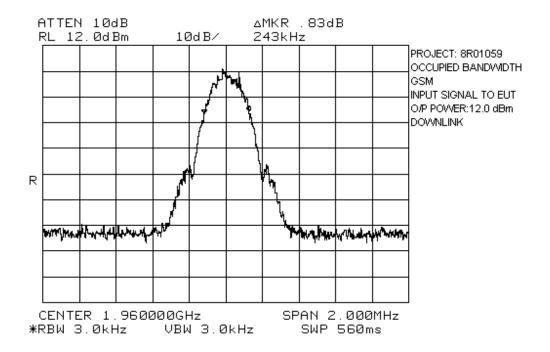
Test Data: See attached graph(s).

Page 14 of 51

KTL Ottawa

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059


EQUIPMENT: Brite Cell PCS


NAME OF TEST: Occupied Bandwidth (GSM) PARA. NO.: 2.917(c)

TESTED BY: Kevin Carr DATE: November 30, 1998

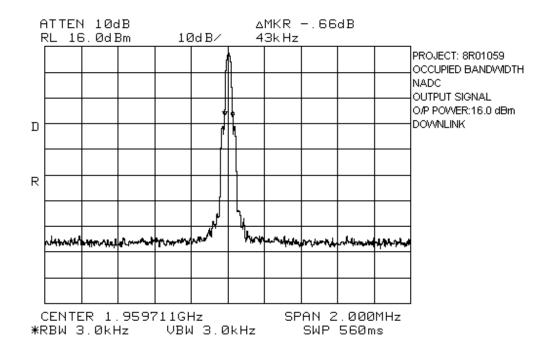
Test Results: Complies.

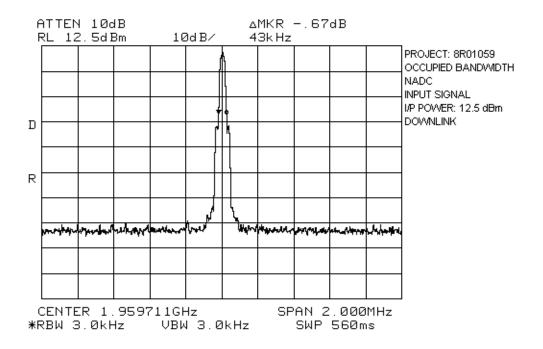
Test Data: See attached graph(s).

KTL Ottawa

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

EQUIPMENT: Brite Cell PCS


NAME OF TEST: Occupied Bandwidth (NADC) PARA. NO.: 2.917(c)


TESTED BY: Kevin Carr DATE: December 17, 1998

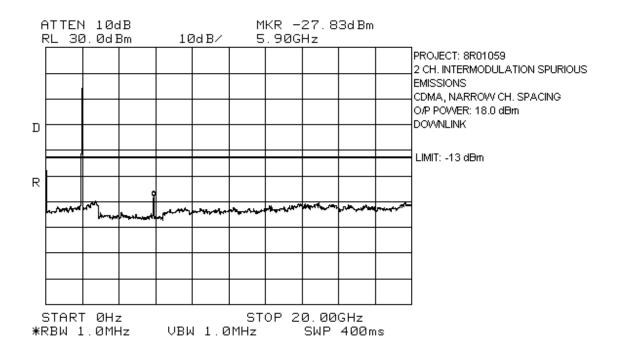
Test Results: Complies.

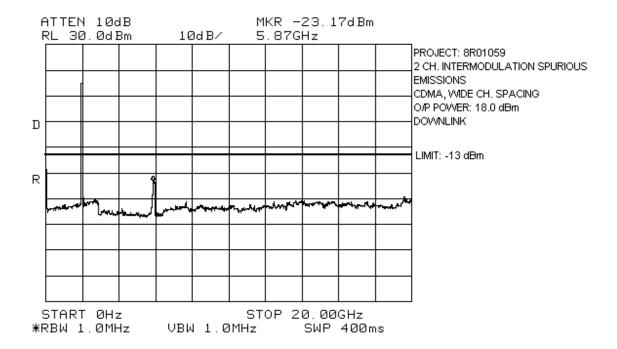
Test Data: See attached graph(s).

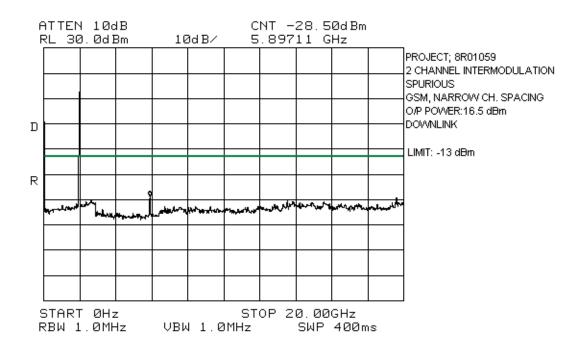
Page 20 of 51

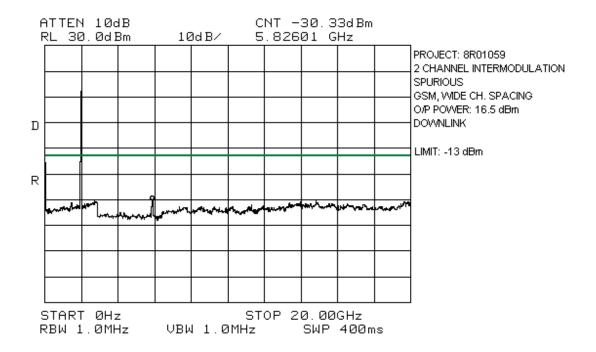
EQUIPMENT: Brite Cell PCS

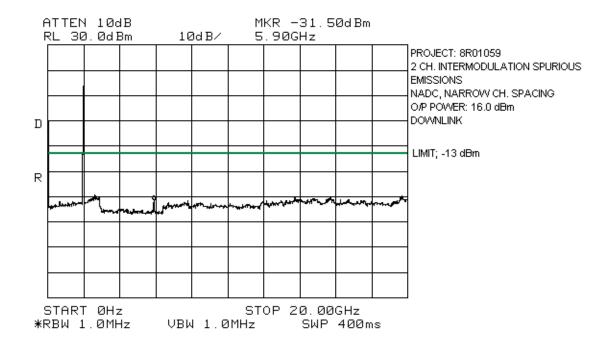
Section 5. Spurious Emissions at Antenna Terminals

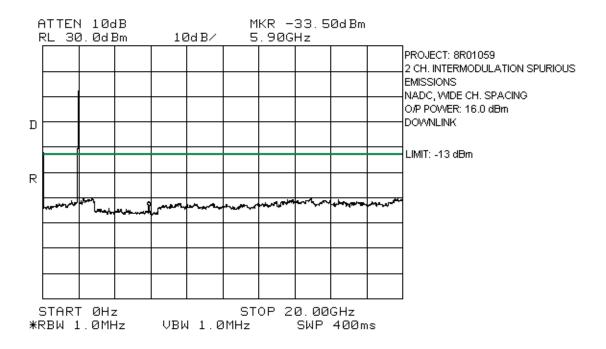

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 2.917(e)

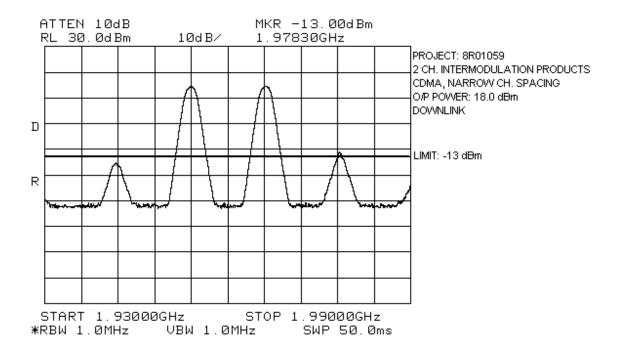

TESTED BY: Kevin Carr DATE: December 23, 1998

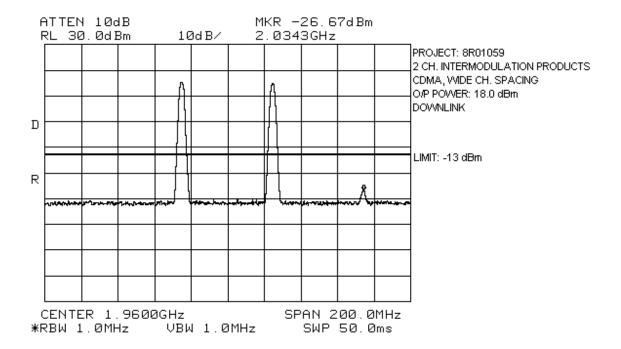

Test Results: Complies.

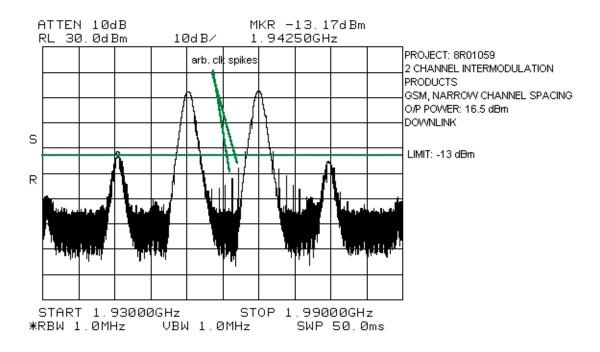

Test Data:

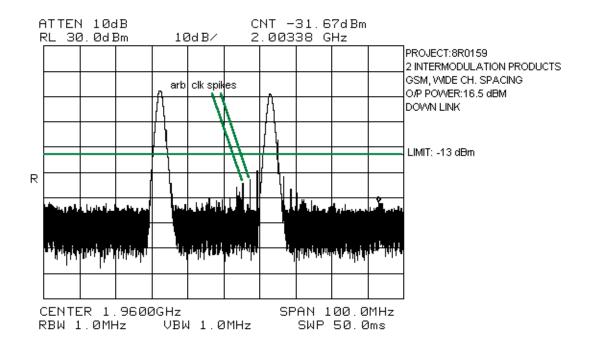

NAME OF TEST	WORST-CASE SPURIOUS LEVEL(dBm)
0 to 20 GHz spurious (Downlink)	-23.83
2 - signal intermodulation (Downlink)	-13.0
Lower band edge spurious (Downlink)	-33.5
Upper band edge spurious (Downlink)	-33.17

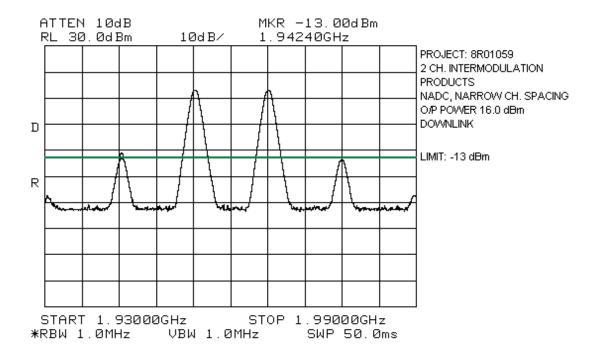


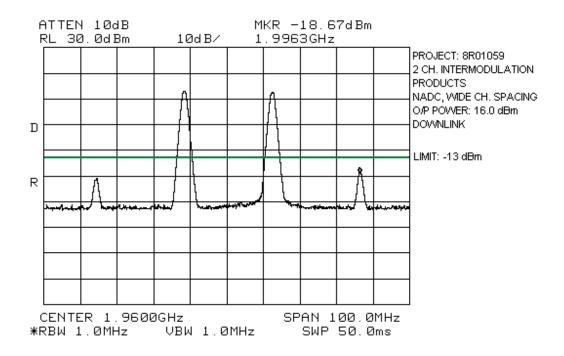


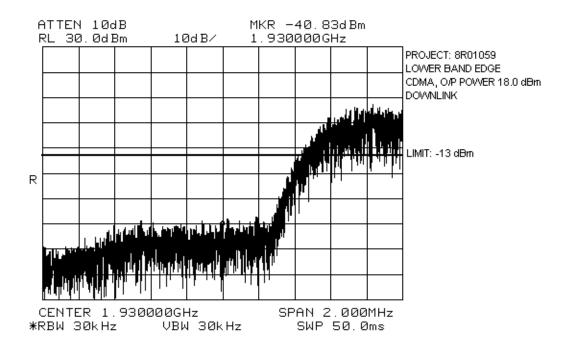


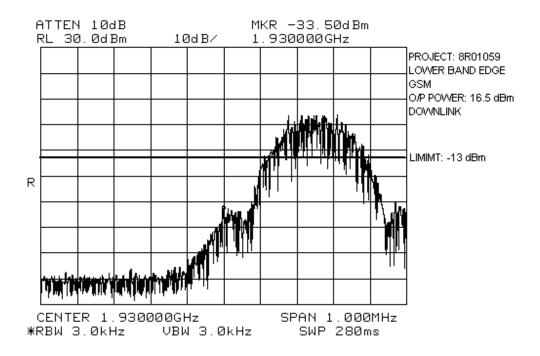


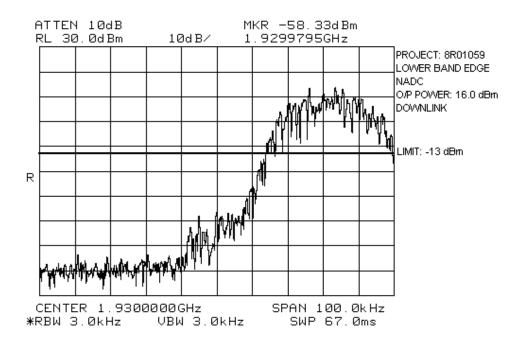


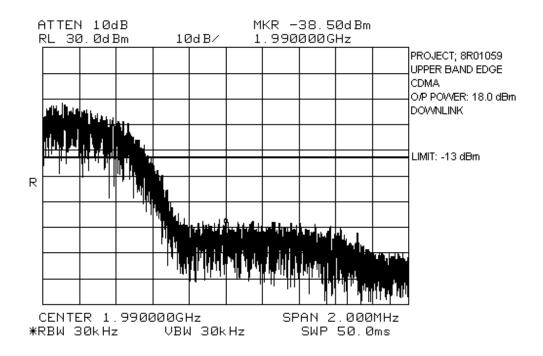


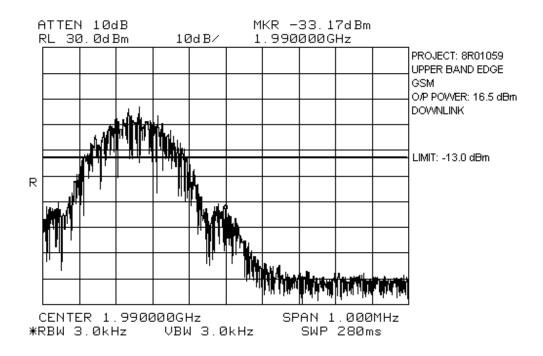


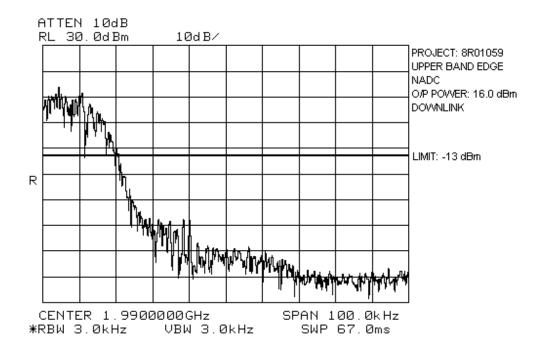












EQUIPMENT: Brite Cell PCS

Section 6. Field Strength of Spurious

NAME OF TEST: Radiated Emissions PARA. NO.: 2.917(e)

TESTED BY: Kevin Carr DATE: December 23, 1998

Test Results: Complies.

The maximum field strength is $75.8 \text{ dB}\mu\text{V/m}$ @ 3m.

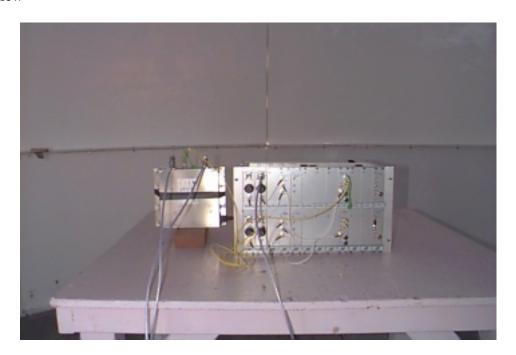
Test Data:

Test Data - Radiated Emissions - Downlink

Test Distance (meters): 3		Range: Shield Room		Receiver: HP 8566B		RBW 100 kHz		Detector: Peak			
Freq. (MHz)	Ant.	Pol. (V/H)	Ant. HGT. (m)	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
3920.0	H2	V			56.0	33.7	-42.6		47.1	82.3	35.2
3920.0	H2	Н			59.9	33.7	-42.6		51.0	82.3	31.3
5880.0	H2	V			51.3	36.3	-44.5		43.1	82.3	39.2
5880.0	H2	Н			50.6	36.3	-44.5		42.4	82.3	39.9
7840	H2	V			45.2	38.4	-43.7		39.9	82.3	42.4
7840	H2	Н			47.0	38.4	-43.7		41.7	82.3	40.6
9800	H2	V			37.8	39.8	-44.3		33.3	82.3	49.0
9800	H2	Н			37.3	39.8	-44.3		32.8	82.3	44.5
11760.0	H2	V			37.7	39.9	-44.8		33.8	82.3	48.5
11760.0	H2	Н			37.9	39.9	-44.8		34.0	82.3	48.3
13720.0	H2	V			38.6	41.5		-9.54	70.6	82.3	11.7
13720.0	H2	Н			38.3	41.5		-9.54	70.2	82.3	12.0
15680	H2	V			38.6	39.5		-9.54	68.6	82.3	13.7
15680	H2	Н			39.4	39.5		-9.54	69.4	82.3	12.9
17640.0	H2	V			40.8	44.5		-9.54	75.8	82.3	6.5
17640.0	H2	Н			39.8	44.5		-9.54	74.8	82.3	7.5
19600.0	SH50-1	V			38.9	40.46		-9.54	68.8	82.3	13.5
19600.0	SH50-1	Н			39.0	40.46		-9.54	69.9	82.3	12.4

Notes:

The spectrum was search up to the 10th harmonic of the fundamental frequency.


B/C = Biconical, B/L = Biconilog, L/P = Log-Periodic, H = Horn, D/P = Dipole

- * Includes cable loss when amplifier is not used.
- ** Includes cable loss.
- () Denotes failing emission level.

Measurements incorporating Dist. Connection were taken at 1 meter.

Photographs of Test Setup

Front View

Rear View

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

EQUIPMENT: Brite Cell PCS

Pre-Scan Data

INSERT PRESCAN GRAPHS

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

	373.86 MHz, 22.7 dBuV. Peak.
Prescan Data	383.7 MHz, 18.2 dBuV. Peak.
i iescali Data	393.53 MHz, 16 dBuV. Peak.
	423.02 MHz, 16.2 dBuV. Peak.
Project Number : 8R01059	432.84 MHz, 20.5 dBuV. Peak.
·	
Project Filename: 8R1059.LST Date: January 5, 1999	442.66 MHz, 22.4 dBuV. Peak.
J - ,	452.5 MHz, 25.9 dBuV. Peak.
Start Frequency : 30 MHz	462.31 MHz, 26.8 dBuV. Peak.
Stop Frequency : 1000 MHz	472.13 MHz, 25.3 dBuV. Peak.
Display Line Value: 24 dBuV	481.95 MHz, 23.5 dBuV. Peak.
	491.79 MHz, 25.7 dBuV. Peak.
	500.01 MHz, 17.2 dBuV. Peak.
Vertical Prescan	501.62 MHz, 22.7 dBuV. Peak.
	511.43 MHz, 16.4 dBuV. Peak.
	521.27 MHz, 24.7 dBuV. Peak.
	531.08 MHz, 26.5 dBuV. Peak.
Top 6 Emissions below 300 MHz from the vertical prescan list:	540.91 MHz, 25.7 dBuV. Peak.
	550.73 MHz, 25 dBuV. Peak.
74.11 MHz, 27.1 dBuV.	560.55 MHz, 25 dBuV. Peak.
73.42 MHz, 26.5 dBuV.	570.37 MHz, 22.6 dBuV. Peak.
73.7 MHz, 26.4 dBuV.	580.19 MHz, 17.3 dBuV. Peak.
74.25 MHz, 25.6 dBuV.	658.77 MHz, 18.1 dBuV. Peak.
73.01 MHz, 24.7 dBuV.	668.63 MHz, 16.6 dBuV. Peak.
75.22 MHz, 24.3 dBuV.	678.45 MHz, 20.4 dBuV. Peak.
	698.08 MHz, 16.7 dBuV. Peak.
Full Emission List below 300 MHz:	717.7 MHz, 16.9 dBuV. Peak.
72.59 MHz, 24.1 dBuV. Peak.	
73.01 MHz, 24.7 dBuV. Peak.	Horizontal Prescan
73.42 MHz, 26.5 dBuV. Peak.	
73.7 MHz, 26.4 dBuV. Peak.	
73.84 MHz, 26.4 dBuV. Peak.	
74.11 MHz, 27.1 dBuV. Peak.	Top Emissions below 300 MHz from the horizontal prescan list:
74.11 MHz, 27.1 dBuV. Feak. 74.25 MHz, 25.6 dBuV. Peak.	Top Emissions below 300 WHZ from the norizontal prescan list.
74.23 MHz, 23.0 dBuV. Feak. 75.22 MHz, 24.3 dBuV. Peak.	
73.22 MHz, 24.3 dbu v. reak.	Full Emission List below 300 MHz:
Top 6 Emissions above 300 MHz from the vertical prescan list:	Full Ellission List below 500 MHZ:
462.31 MHz, 26.8 dBuV.	Top Emissions above 300 MHz from the horizontal prescan list:
531.08 MHz, 26.5 dBuV.	Top Emissions above 500 WHZ from the nortzontal present list.
452.5 MHz, 25.9 dBuV.	369.99 MHz, 23.3 dBuV.
491.79 MHz, 25.7 dBuV.	500.01 MHz, 21.3 dBuV.
472.13 MHz, 25.3 dBuV.	507.24 MHz, 16 dBuV.
550.73 MHz, 25 dBuV.	E HE : : I : I 200 MH
EHE ' ' I' I 200 MI	Full Emission List above 300 MHz:
Full Emission List above 300 MHz:	260 00 MH 222 ID W D 1
200 MIL 165 ID W D 1	369.99 MHz, 23.3 dBuV. Peak.
300 MHz, 16.5 dBuV. Peak.	
	370 MHz, 23.3 dBuV. Peak.
305.06 MHz, 20.4 dBuV. Peak.	500.01 MHz, 21.3 dBuV. Peak.
305.06 MHz, 20.4 dBuV. Peak. 314.89 MHz, 22.4 dBuV. Peak.	
305.06 MHz, 20.4 dBuV. Peak.	500.01 MHz, 21.3 dBuV. Peak.

EQUIPMENT: Brite Cell PCS

Section 7.	Frequency	Stability
------------	------------------	------------------

NAME OF TEST: Freque	ncy Stability	PARA. 1 24.235
TESTED BY:		
Test Results:	Complies/Does Not Complies	mp.

Measurement Data: Standard Text Projector: MHz Standard Text Variage: Vdc

Section 8. Test Equipment List

CAL CYCLE	EQUIPMENT	MANUFACTURER	MODEL	SERIAL	LAST CAL.	NEXT CAL.	
1 Year	Spectrum Analyzer	Hewlett Packard	8565E	FA000981	May 20/98	May 20/99	
1 Year	Spectrum Analyzer-2	Hewlett Packard	8566B	1950A00400	July 22/98	July 22/99	
1 Year	Spectrum Analyzer Display-2	Hewlett Packard	85662A	1950A01177	July 22/98	July 22/99	
1 Year	Quasi Peak Adaptor-2	Hewlett Packard	85650A	2251A00620	July 22/98	July 22/99	
	Power Supply	Astron	VS-50M	8405071	NCR	NCR	
1 Year	Attenuator	Narda	768-20	9507	July 24/98	July 24/99	
1 Year	Attenuator	Narda	765-20	9510	July 24/98	July 24/99	
1 Year	RF Millivoltmeter	Rohde & Schwarz	URV5	FA000420	July 23/98	July 23/99	
1 Year	Insertion Unit	Rohde & Schwarz	URV5-Z4	FA000905	July 23/98	July 23/99	
2 Year	Horn Antenna	EMCO #2	3115	4336	Oct. 30/97	Oct. 30/99	
1 Year	50 ohm Combiner Pad	Mini Circuits	ZA3PD-2	9746	July 23/98	July 23/99	
1 Year	Low Noise Amplifier	Avantek	AWT-8035	1005	Aug. 4/98	Aug. 4/99	
1 Year	Low Noise Amplifier	DBS Microwave	DWT-13035	9623	Aug. 4/98	Aug. 4/99	
1 Year	Signal Generator	Rohde & Schwarz	SM1Q03	1084-8004-03	July 23/98	July 23/99	
1 Year	Arbitrary Waveform Gen.	Sony/Tektronix	AWG2021	J310495	NCR	NCR	
3 Year	Standard Gain Horn	Electro-Metrics	SH-50/60-1	FA000479	July 29/97	July 29/00	
3 Year	RF Generator	Rohde & Schwarz	SME3	DE14439	June 29/96	June 29/99	
1 Year	RF Amp.	Comtest	GPA301	BCS320-1040	NCR	NCR	

NA: Not Applicable NCR: No Cal Required

EQUIPMENT: Brite Cell PCS

FCC ID:

ANNEX A TEST METHODOLOGIES

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

ANNEX A

EQUIPMENT: Brite Cell PCS

FCC ID:

NAME OF TEST: RF Power Output PARA. NO.: 2.985

Test Conditions: Standard Temperature & Humidity

Standard Test Voltage

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts peak

E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base station transmitter exceed 100

watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter. Power output is measured with the maximum rated input level.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

ANNEX A

EQUIPMENT: Brite Cell PCS

FCC ID:

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.989

Test Conditions: Standard Temperature & Humidity

Standard Test Voltage

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as the

width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of

which all emissions are attenuated at least 26 dB.

Method Of Measurement:

CDMA

Spectrum analyzer settings:

RBW: 30 kHz VBW: ≥ RBW Span: 5 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

<u>GSM</u>

RBW: 3 kHz VBW: ≥ RBW Span: 2 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

NADC

RBW: 1 kHz VBW: ≥ RBW Span: 1 MHz Sweep: Auto

Mask: Set markers to -26 dB from peak of CW.

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059

ANNEX A

EQUIPMENT: Brite Cell PCS

FCC ID:

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.991

Test Conditions: Standard Temperature & Humidity

Standard Test Voltage

Minimum Standard: Para. No.24.238(a). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM</u>

RBW: 1 MHz (> 1 MHz from Band Edge)
RBW: 1 MHz (> 1 MHz from Band Edge)
RBW: 3 kHz (< 1 MHz from Band Edge)
RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

<u>NADC</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

VBW: ≥RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

ANNEX A

EQUIPMENT: Brite Cell PCS

FCC ID:

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.993

Test Conditions: Outdoor Range

Standard Test Voltage

Minimum Standard: Para. No.24.238(a). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least $43 + 10 \log (P) dB$.

Calculation Of Field Strength Limit

An example of attenuation requirement of 43 + 10 Log P is equivalent to -13 dBm (5 x 10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions ≤ 1 GHz:

G = 1.64 (Dipole Gain)

P = 10⁻⁵ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V/m} = 84.4 \text{ dB}\mu\text{V/m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain)

 $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$$

FCC PART 24, SUBPART E BROADBAND PCS REPEATERS PROJECT NO.: 8R01059 ANNEX A

EQUIPMENT: Brite Cell PCS

FCC ID:

NAME OF TEST: Frequency Stability PARA. NO.: 2.995

Test Conditions: As per measurement data.

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient to

ensure that the fundamental emission stays within the authorized

frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

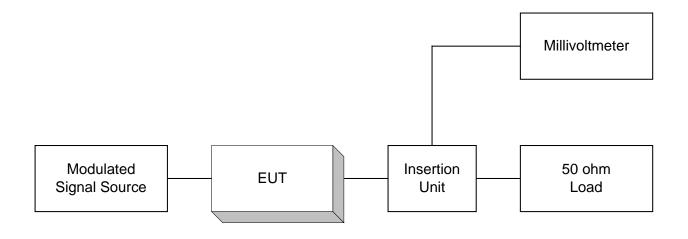
Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

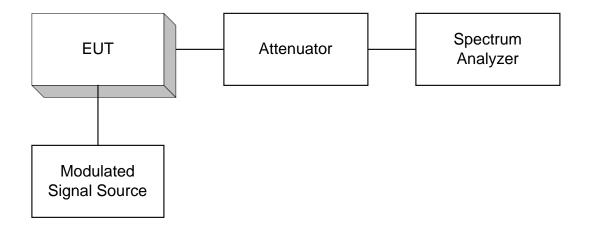
ANNEX B

EQUIPMENT: Brite Cell PCS

FCC ID:


ANNEX B TEST DIAGRAMS

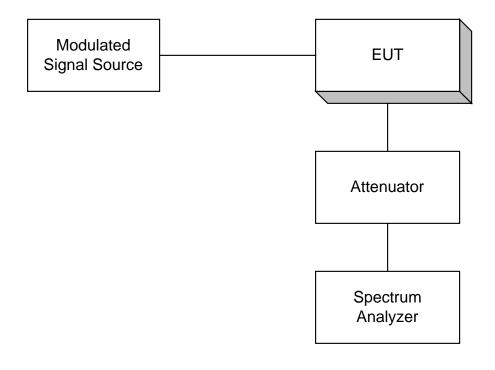
ANNEX B

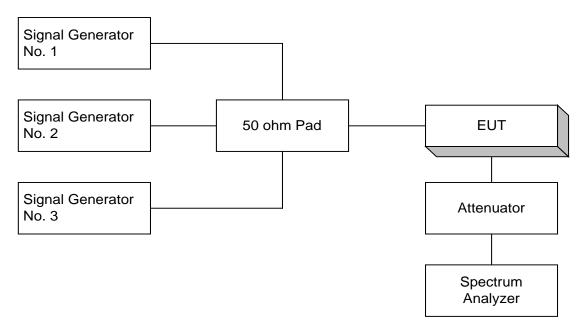

EQUIPMENT: Brite Cell PCS

FCC ID:

Para. No. 2.985 - R.F. Power Output

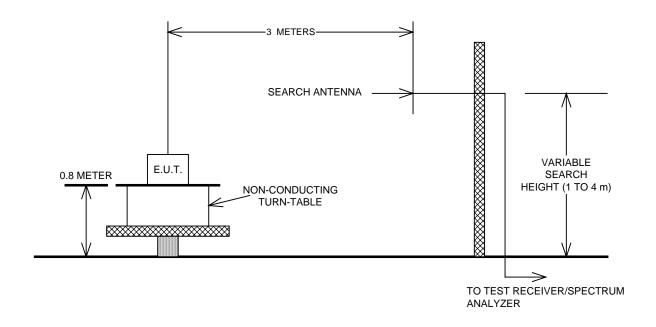
Para. No. 2.989 - Occupied Bandwidth

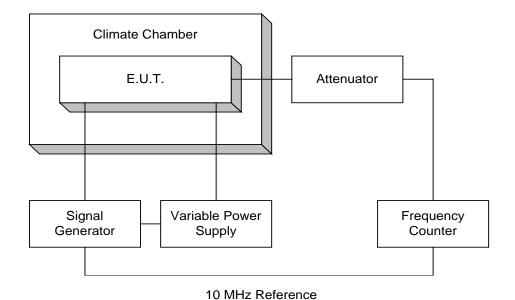



ANNEX B

EQUIPMENT: Brite Cell PCS

FCC ID:


Para. No. 2.991 Spurious Emissions at Antenna Terminals



FCC ID:

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

