

TEST REPORT

Report Number: 13179110-E1V2

Applicant: APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A

Model: A2176

FCC ID : BCG-E3539A

> IC: 579C-E3539A

EUT Description: **SMARTPHONE**

Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

> ISED RSS-247 ISSUE 2 **ISED RSS-GEN ISSUE 5**

Date of Issue:

September 30, 2020

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

FAX: (510) 661-0888

NVLAP Lab code: 200065-0

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	9/21/2020	Initial Issue	Vien Tran
V2	9/30/2020	Addressed TCB Questions	Francisco Guarnero

TABLE OF CONTENTS

REI	PORT R	REVISION HISTORY	2
TAI	BLE OF	CONTENTS	3
1.	ATTES	STATION OF TEST RESULTS	6
2.	TEST :	SUMMARY	7
3.	TEST	METHODOLOGY	7
4.	FACIL	ITIES AND ACCREDITATION	7
5.	DECIS	SION RULES AND MEASUREMENT UNCERTAINTY	8
5	5.1. M	ETROLOGICAL TRACEABILITY	8
5	.2. DI	ECISION RULES	8
5	5.3. M	EASUREMENT UNCERTAINTY	8
6.	EQUIP	MENT UNDER TEST	9
6	i.1. El	UT DESCRIPTION	9
6	i.2. M	AXIMUM OUTPUT POWER	9
6	.3. DI	ESCRIPTION OF AVAILABLE ANTENNAS	10
6	5.4. S	OFTWARE AND FIRMWARE	10
6	5.5. W	ORST-CASE CONFIGURATION AND MODE	10
6	5.6. DI	ESCRIPTION OF TEST SETUP	11
7.	TEST A	AND MEASUREMENT EQUIPMENT	16
8.	MEAS	UREMENT METHODS	17
9.	ANTE	NNA PORT TEST RESULTS	18
9).1. O	N TIME AND DUTY CYCLE	18
9) dB AND 99% BANDWIDTH2	
	9.2.1.	HIGH POWER BASIC DATA RATE GFSK MODULATION	
		HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	
	9.2.4.	HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION2	24
9		OPPING FREQUENCY SEPARATION	
	9.3.1.		
9	9.4. NO 9.4.1.	UMBER OF HOPPING CHANNELS HIGH POWER BASIC DATA RATE GFSK MODULATION	27 วล
Ω		VERAGE TIME OF OCCUPANCY	
9	9.5.1.		31
9		UTPUT POWER	
	9.6.1.	HIGH POWER BASIC DATA RATE GFSK MODULATION	36
		Page 3 of 147	

9.6.2.	HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION	36
9.6.3.	HIGH POWER ENHANCED DATA RATE QPSK MODULATION	
9.6.4.	HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION	
9.6.5.	HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	
9.6.6.	HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION	
9.6.7.	LOW POWER BASIC DATA RATE GFSK MODULATIONLOW POWER BASIC DATA RATE TXBF GFSK MODULATION	
9.6.8. 9.6.9.	LOW POWER BASIC DATA RATE TABLE GESK MODULATION	
9.6.10.	LOW POWER ENHANCED DATA RATE TXBF QPSK MODULATION	
9.6.11.	LOW POWER ENHANCED DATA RATE 8PSK MODULATION	
9.6.12.	LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION	
	'ERAGE POWER	
9.7. Av 9.7.1.	HIGH POWER BASIC DATA RATE GFSK MODULATION	
9.7.1.	HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION	
9.7.3.	HIGH POWER ENHANCED DATA RATE QPSK MODULATION	
9.7.4.	HIGH POWER BASIC DATA RATE TXBF QPSK MODULATION	
9.7.5.	HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	
9.7.6.	HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION	45
9.7.7.	LOW POWER BASIC DATA RATE GFSK MODULATION	46
9.7.8.	LOW POWER BASIC DATA RATE TXBF GFSK MODULATION	
9.7.9.	LOW POWER ENHANCED DATA RATE QPSK MODULATION	
9.7.10.	LOW POWER BASIC DATA RATE TXBF QPSK MODULATION	
9.7.11.	LOW POWER ENHANCED DATA RATE 8PSK MODULATION	
9.7.12.	LOW POWER BASIC DATA RATE TXBF 8PSK MODULATION	48
9.8. CC	NDUCTED SPURIOUS EMISSIONS	49
9.8.1.	HIGH POWER BASIC DATA RATE GFSK MODULATION	
9.8.2.	HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION	
9.8.3.	HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	
9.8.4.	HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION	
9.8.5.	LOW POWER BASIC DATA RATE GFSK MODULATIONLOW POWER BASIC DATA RATE TXBF GFSK MODULATION	
9.8.6. 9.8.7.	LOW POWER BASIC DATA RATE TABE GESK MODULATION	
9.8.7. 9.8.8.	LOW POWER ENHANCED DATA RATE 8PSK MODULATION	
9.0.0.	LOW FOWER BASIC DATA HATE TABLEST SKINDDOLATION	
10. RAD	ATED TEST RESULTS	82
10.1.	TRANSMITTER ABOVE 1 GHz	8/
10.1.1.	HIGH POWER BASIC DATA RATE GFSK MODULATION	
10.1.2.	HIGH POWER BASIC DATA RATE TX BF GFSK MODULATION	
10.1.3.	HIGH POWER ENHANCED DATA RATE 8PSK MODULATION	
10.1.4.	HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION	
10.1.5.	LOW POWER BASIC DATA RATE GFSK MODULATION	114
10.1.6.	LOW POWER BASIC DATA RATE TXBF GFSK MODULATION	122
10.1.7.	LOW POWER ENHANCED DATA RATE 8PSK MODULATION	
10.1.8.	LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION	134
10.2. \	NORST CASE BELOW 1 GHZ	138
10.3. \	WORST CASE 18-26 GHZ	140
11. AC P	OWER LINE CONDUCTED EMISSIONS	142
11.1. A	AC POWER LINE WITH LAPTOP	143
	AC POWER LINE WITH AC/DC ADAPTER	
11.Z. F		140
	Page 4 of 147	

FCC ID: BCG-E3539A IC: 579C-E3	REPORT NO: 13179110-E1V2	DATE: 9/30/2020
	FCC ID: BCG-E3539A	IC: 579C-E3539A

12. SETUP PHOTOS

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A

EUT DESCRIPTION: SMARTPHONE

MODEL: A2716

SERIAL NUMBER: C7CD603Z08HK, C7CCT014Q90Y

DATE TESTED: MAY 12, 2020 – SEPTEMBER 06, 2020

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Complies
ISED RSS-247 Issue 2 Complies
ISED RSS-GEN Issue 5 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For

UL Verification Services Inc. By:

Prepared By:

Chin Pang Senior Engineer

Consumer Technology Division
UL Verification Services Inc.

Tony Li Test Engineer

Consumer Technology Division UL Verification Services Inc.

Page 6 of 147

2. TEST SUMMARY

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	Per ANSI C63.10,
See Comment		Daty Cycle	purposes only	Section 11.6.
See Comment	RSS-GEN 6.7	20dB BW/99% OBW	Reporting	ANSI C63.10 Sections
See Comment		200B BVV/99 // OBVV	purposes only	6.9.2 and 6.9.3
15.247 (a)(1)	RSS-247 (5.1) (b)	Hopping Frequency Separation	Complies	None.
15.247 (a)(1)(iii)	RSS-247 (5.1) (d)	Number of Hopping Channels	Complies	None.
15.247 (a)(1)(iii)	RSS-247 (5.1) (d)	Average Time of Occupancy	Complies	None.
15.247 (b)(1)	RSS-247 (5.4) (b)	Output Power	Complies	None.
See Comment		Average Power	Reporting	Per ANSI C63.10,
See Comment		Average Fower	purposes only	Section 11.9.2.3.2.
15.247 (d)	RSS-247 (5.5)	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Complies	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Complies	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 662911, RSS-GEN Issue 5, and RSS-247 Issue 2.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
☐ Chamber A (IC:2324B-1)	☐ Chamber D (IC:22541-1)	□ Chamber I (IC: 2324A-5)
☐ Chamber B (IC:2324B-2)		☑ Chamber J (IC: 2324A-6)
☐ Chamber C (IC:2324B-3)	☐ Chamber F (IC:22541-3)	
	☐ Chamber G (IC:22541-4)	☐ Chamber L (IC: 2324A-3)
	☐ Chamber H (IC:22541-5)	☐ Chamber M (IC: 2324A-2)

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{LAB}
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.39 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.07 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The Apple iPhone is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, 5G, CDMA, IEEE 802.11a/b/g/n/ac/ax, Bluetooth, Ultra-Wideband, GPS, NFC and WPT. All models support at least one UICC based SIM. The second SIM is either an UICC based p-SIM (physical SIM) or e-SIM (electronic SIM). The device supports a built-in inductive charging transmitter and receiver. The rechargeable battery is not user accessible.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Config	Frequency Range	Mode	Output	Output
		(MHz)		Power	Power
				(dBm)	(mW)
		2402 - 2480	Basic GFSK	20.56	113.76
	High Power	2402 - 2480	DQPSK	18.28	67.30
ANT 4		2402 - 2480	Enhanced 8PSK	18.34	68.23
ANT 4		2402 - 2480	Basic GFSK	12.91	19.54
	Low Power	2402 - 2480	DQPSK	11.23	13.27
		2402 - 2480	Enhanced 8PSK	11.29	13.46
		2402 - 2480	Basic GFSK	20.45	110.92
	High Power	2402 - 2480	DQPSK	18.29	67.45
ANT 3		2402 - 2480	Enhanced 8PSK	18.32	67.92
	Low Power	2402 - 2480	Basic GFSK	12.84	19.23
		2402 - 2480	DQPSK	11.29	13.46
		2402 - 2480	Enhanced 8PSK	11.33	13.58
		2402 - 2480	Basic GFSK TxBF	20.39	109.40
BF, ANT 4 + ANT 3	High Power	2402 - 2480	DQPSK TxBF	20.27	106.41
		2402 - 2480	Enhanced 8PSK TxBF	20.29	106.91
		2402 - 2480	Basic GFSK TxBF	15.83	38.28
	Low Power	2402 - 2480	DQPSK TxBF	14.31	26.98
		2402 - 2480	Enhanced 8PSK TxBF	14.34	27.16

Note: GFSK, DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on these modes to showing compliance. For average power data please refer to section 9.7.

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Range (GHz)	ANT 4 (dBi)	ANT 3 (dBi)
2.4	-2.3	-0.6

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was FW Version: 18.1.148.558

6.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on ANT 4 and ANT 3, it was determined that X (Flatbed) was the worst-case orientation for ANT 4 and 2TX Beamforming and Y (Landscape) orientation for ANT 3.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT was set to transmit at highest power on Low/Middle/High channels.

Radiated emissions below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmits at the channel with the highest output power as worst-case scenario. There were no emissions found below 30MHz within 20dB of the limit.

For below 1GHz tests EUT was connected to AC power adapter as the worst case; and for above 1GHz, the worst-case configuration reported was tested with EUT only. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BT and 5GHz bands, No noticeable emission was found.

GFSK, DQPSK, 8PSK average power are all investigated, The GFSK & 8PSK power are the worst case. For average power data please refer to section 9.7.

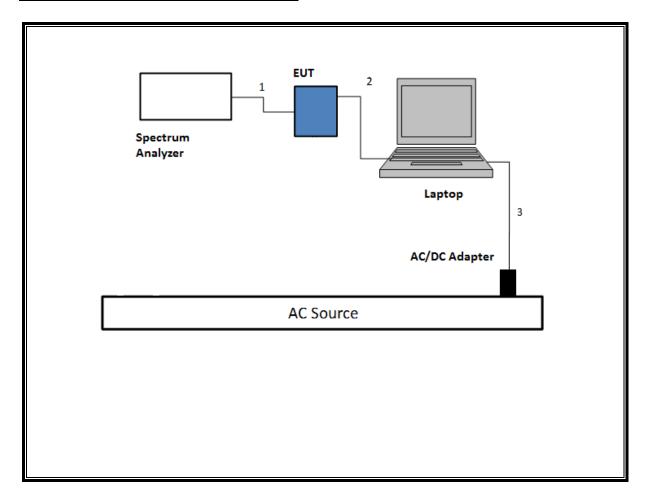
Worst-case data rates as provided by the client were:

GFSK mode: DH5 8PSK mode: 3-DH5

Beamforming: GFSK, DH5, 8PSK, 3-DH5

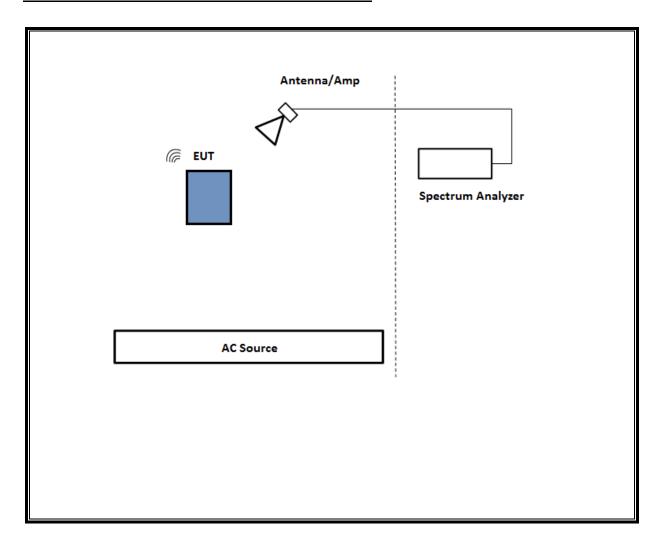
There are two vendors of the WiFi/Bluetooth radio modules: variant 1 and variant 2. The WiFi/Bluetooth radio modules have the same mechanical outline (e.g., the same package dimension and pin-out layout), use the same on-board antenna matching circuit, have an identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances.

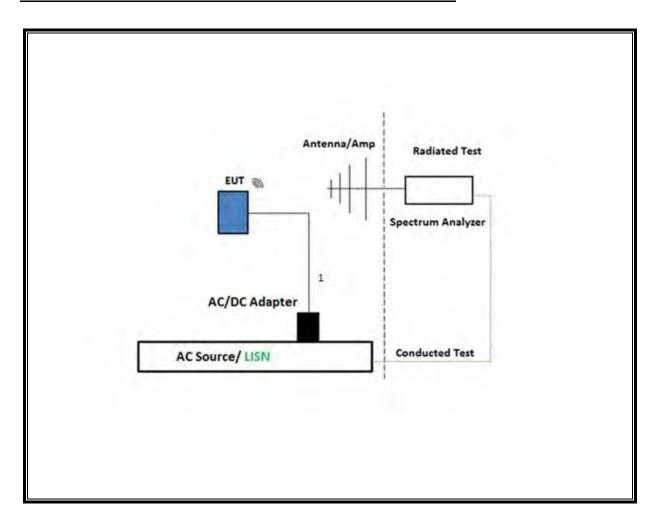
Baseline testing was performed on the two variants to determine the worst case on all conducted power and radiated emissions.


DESCRIPTION OF TEST SETUP 6.6.

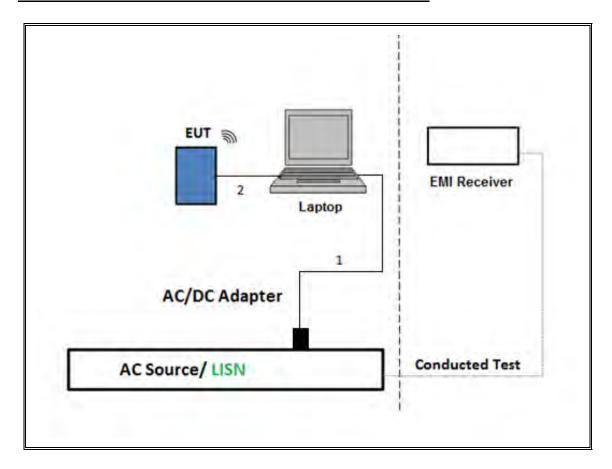
SUPPORT TEST EQUIPMENT							
D	escription	Manufacturer	Model	Serial Nu	mber	FCC ID/ DoC	
	Laptop	Apple	A1398	C02PM012	2G3QD	DQS- BRCM1069	
Laptop	AC/DC adapter	Liteon Technology	PA-1450-BA1	B123	3	N/A	
EUT /	AC/DC adapter	Apple	A1385	D29325SM03	XDHLHC9	N/A	
		I/O CAE	BLES (RF CONDUC	TED TEST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	Antenna	1	SMA	Un-shielded	0.2	To spectrum Analyzer	
2	USB	1	USB	Shielded	1.0	N/A	
3	AC	1	AC	Un-shielded	2	N/A	
I/O CABLES (RF RADIATED TEST)							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	1	AC	Un-shielded	2	N/A	
2	USB	1	USB	Un-shielded	1	N/A	

TEST SETUP


The EUT is connected to a test laptop during the tests. Test software exercised the radio card.


SETUP DIAGRAM FOR CONDUCTED TESTS

DATE: 9/30/2020 IC: 579C-E3539A


SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz

DATE: 9/30/2020

IC: 579C-E3539A

DATE: 9/30/2020 IC: 579C-E3539A

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment were utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight Technologies Inc	N9030A	T1466	01/23/2021	01/23/2020
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T712	03/09/2021	03/10/2020
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	138301	03/03/2021	03/03/2020
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179522	02/20/2021	02/20/2020
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T346	07/20/2021	07/20/2020
RF Amplifier, 1-18GHz	MITEQ	AFS42-00101800- 25-S-42	171460	05/06/2021	05/06/2020
EMI Test Receiver	Rohde & Schwarz	ESW44	PRE0179372	02/25/2021	02/25/2020
Antenna, Horn Double Ridge Guide 700MHz to 18GHz	A.H. Systems, Inc.	SAS-571	T963	01/25/2021	01/25/2020
*Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	T1571	08/20/2021	08/20/2020
*Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T899	08/23/2020	08/23/2019
*Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	PRE0180174	06/01/2020	06/01/2019
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179376	04/03/2021	04/03/2020
Antenna, Horn	ETS-Lindgren	3117	EMC4294	11/01/2020	06/14/2020
Amplifier, 100MHz-18GHz	AMPLICAL	AMP0.1G18-47-20	PRE0197319	05/04/2021	05/04/2020
Antenna Horn, 18 to 26GHz	ARA	SWH-28	T125	04/17/2021	04/17/2020
Pre-Amp 18-26GHz	Agilent Technology	8449B	T404	04/08/2021	04/08/2020
Power Meter, P-series single channel	Keysight	N1911A	PRE0177682	01/21/2021	01/21/2020
Power Sensor	Keysight	N1921A	T1226	02/13/2021	02/13/2020

AC Line Conducted							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
EMI Test Receiver 9kHz- 7GHz	Rohde & Schwarz	ESR	T1436	02/20/2021	02/20/2020		
Power Cable, Line Conducted Emissions	UL	PR1	T861	10/27/2020	10/27/2019		
LISN for Conducted Emissions CISPR-16	FISCHER CUSTOM COMMUNICATIONS	FCC-LISN-50/250- 25-2-01	PRE0186446	01/23/2021	01/23/2020		
UL AUTOMATION SOFTWARE							
Radiated Software UL UL EMC Ver 9.5, Mar 6, 2020							
Conducted Software UL UL EMC 2020.2.26							
AC Line Conducted Software	UL	UL EMC	Ver 9.5	, February 21,	2020		

^{*}Testing was completed before equipment calibration date

8. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Carrier Frequency Separation: ANSI C63.10-2013 Section 7.8.2

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4 & 13

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3, 6.5 & 13

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3, 6.6 & 13

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5 & 13

AC Powerline conducted emissions: ANSI C63.10-2013, Section 6.2.

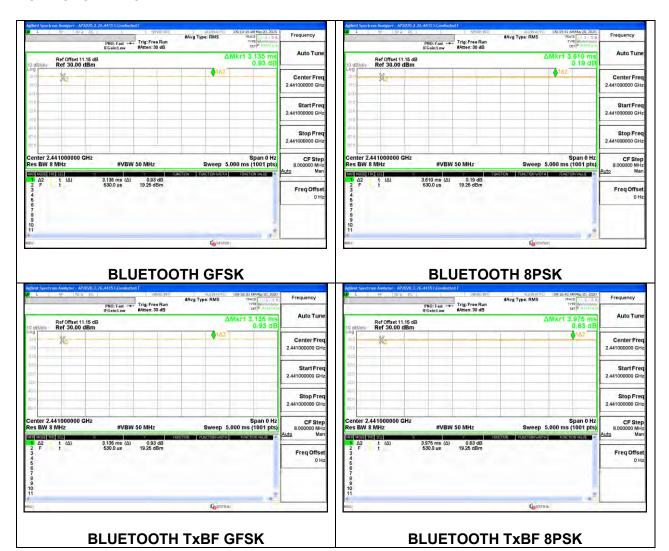
9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE


ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/T
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth GFSK	3.14	3.14	1.00	100.0	0.00	0.010
Bluetooth 8PSK	3.61	3.61	1.00	100.0	0.00	0.010
Bluetooth GFSK TxBF	3.14	3.14	1.00	100.0	0.00	0.010
Bluetooth 8PSK TxBF	3.98	3.98	1.00	100.0	0.00	0.010

Note: Low power duty cycle is same as high power

DUTY CYCLE PLOTS

DATE: 9/30/2020

IC: 579C-E3539A

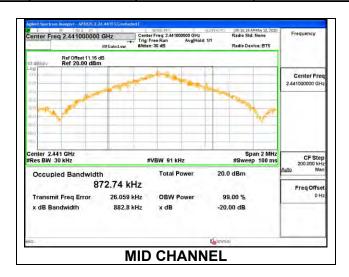
9.2. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

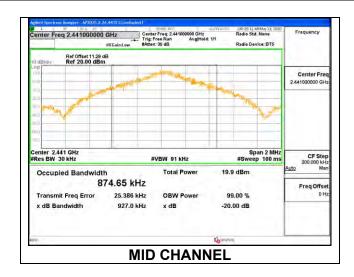
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq 3xRBW. The sweep time is coupled.


RESULTS

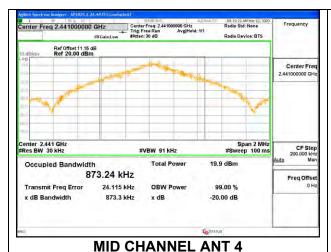
Only High-Power modes result is reported, it covers all Low Power modes. Only Mid channel plot is reported to show setting parameter complies with testing method/procedure.

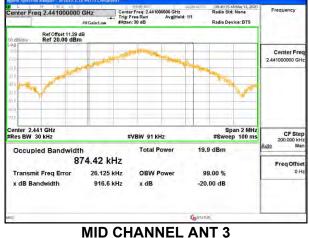
9.2.1. HIGH POWER BASIC DATA RATE GFSK MODULATION


ANT 4

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.862	0.873
Mid	2441	0.883	0.873
High	2480	0.883	0.872

<u>ANT 3</u>

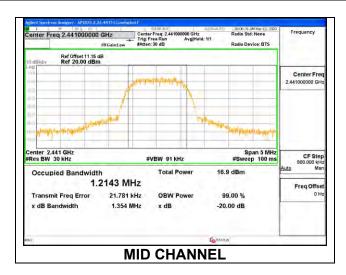

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.927	0.875
Mid	2441	0.927	0.875
High	2480	0.927	0.873



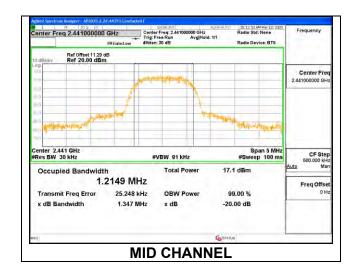
9.2.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Channel	Frequency	20dB Bandwidth	20dB Bandwidth	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3	ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2402	0.887	0.919	0.875	0.873
Mid	2441	0.873	0.917	0.873	0.874
High	2480	0.883	0.917	0.872	0.873

Note: Test procedures and setting on beamforming mode are same as BT basic and EDR mode

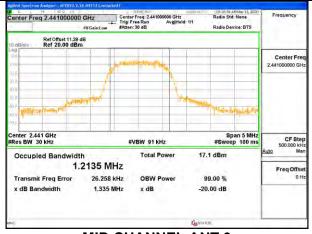


9.2.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION


ANT 4

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.363	1.215
Mid	2441	1.354	1.214
High	2480	1.364	1.225


ANT 3


Channel	Frequency 20dB Bandwidth		99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.355	1.223
Mid	2441	1.347	1.215
High	2480	1.369	1.216

9.2.4. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

Channel	Frequency	20dB Bandwidth	20dB Bandwidth	99% Bandwidth	99% Bandwidth
		ANT 4	ANT 3	ANT 4	ANT 3
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)
Low	2402	1.343	1.368	1.211	1.221
Mid	2441	1.338	1.335	1.211	1.214
High	2480	1.377	1.367	1.224	1.213

MID CHANNEL ANT 3

9.3. HOPPING FREQUENCY SEPARATION

LIMITS

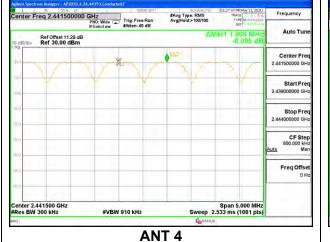
FCC §15.247 (a) (1)

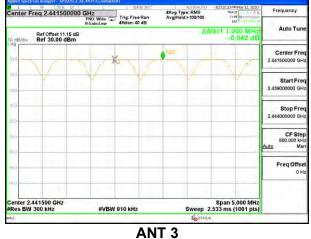
RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to VBW >= 3xRBW. The sweep time is coupled.


RESULTS

Only High Power GFSK mode result is reported since EDR (QPSK/8PSK) has exact same channel plan.

9.3.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

HOPPING FREQUENCY SEPARATION

9.4. NUMBER OF HOPPING CHANNELS

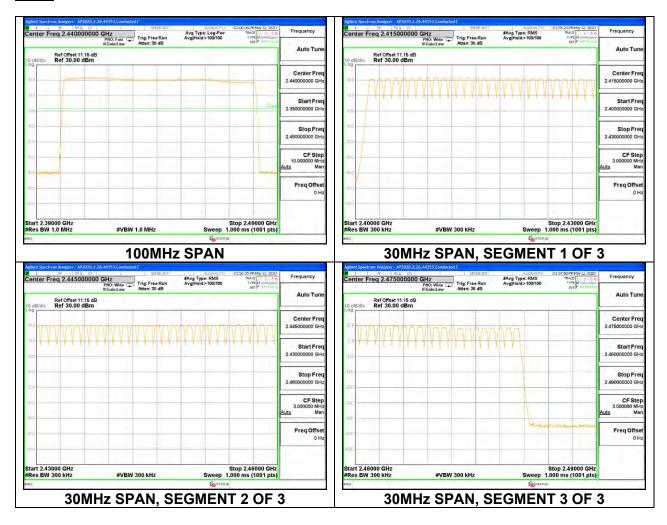
LIMITS

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

RESULTS


Normal Mode: 79 Channels Observed. Only High Power GFSK mode result is reported since EDR (QPSK/8PSK) has exact same channel plan.

9.4.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

ANT 4

ANT 3

9.5. AVERAGE TIME OF OCCUPANCY

LIMITS

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

Only High Power GFSK mode result is reported since EDR (QPSK/8PSK) has exact same timing.

9.5.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	ıl Mode					
DH1	0.367	31	0.114	0.4	-0.286	
DH3	1.620	16	0.259	0.4	-0.141	
DH5	2.860	9	0.257	0.4	-0.143	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH M	GFSK AFH Mode					
DH1	0.367	7.75	0.028	0.4	-0.372	
DH3	1.62	4	0.065	0.4	-0.335	
DH5	2.86	2.25	0.064	0.4	-0.336	

DATE: 9/30/2020

IC: 579C-E3539A

ANT 3

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK Norma	l Mode					
DH1	0.367	31	0.114	0.4	-0.286	
DH3	1.620	15	0.243	0.4	-0.157	
DH5	2.860	10	0.286	0.4	-0.114	
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
GFSK AFH M	GFSK AFH Mode					
DH1	0.367	7.75	0.028	0.4	-0.372	
DH3	1.62	3.75	0.061	0.4	-0.339	
DH5	2.86	2.5	0.072	0.4	-0.329	

DATE: 9/30/2020

IC: 579C-E3539A

9.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

TEST PROCEDURE

Measurements was perform using a power meter with wideband peak power sensor.

DIRECTIONAL ANTENNA GAIN

For 1 TX:

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

For 2 TX:

Tx chains are correlated for power due to the device supporting Beamforming. The directional gains are as follows:

	ANT 4	ANT 3	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	-2.30	-0.60	-1.37	1.60

RESULTS

9.6.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

ANT 4

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
	(141112)	(dDIII)	(abiii)	(ub)
Low	2402	20.44	21	-0.56
Middle	2441	20.56	21	-0.44
High	2480	20.35	21	-0.65

ANT 3

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	2402	20.39	21	-0.61	
Middle	2441	20.45	21	-0.55	
High	2480	20.21	21	-0.79	

9.6.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

ANT 4 + ANT 3

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	17.28	17.33	20.32	21	-0.68
Middle	2441	17.34	17.41	20.39	21	-0.61
High	2480	17.3	17.28	20.30	21	-0.70

9.6.3. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.23	21	-2.77
Middle	2441	18.28	21	-2.72
High	2480	18.15	21	-2.85

ANT 3

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	/N/LU=\	(dDm)	(dDm)	(dp)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.22	21	-2.78
Middle	2441	18.29	21	-2.71
High	2480	18.21	21	-2.79

9.6.4. HIGH POWER ENHANCED DATA RATE TXBF QPSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	17.23	17.25	20.25	21	-0.75
Middle	2441	17.24	17.27	20.27	21	-0.73
High	2480	17.22	17.20	20.22	21	-0.78

9.6.5. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.29	21	-2.71
Middle	2441	18.34	21	-2.66
High	2480	18.19	21	-2.81

ANT 3

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	/a and A			()=)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	18.27	21	-2.73
Middle	2441	18.32	21	-2.68
High	2480	18.24	21	-2.76

9.6.6. HIGH POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	17.24	17.26	20.26	21	-0.74
Middle	2441	17.26	17.30	20.29	21	-0.71
High	2480	17.22	17.21	20.23	21	-0.77

9.6.7. LOW POWER BASIC DATA RATE GFSK MODULATION

ANT 4

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.76	21	-8.24
Middle	2441	12.91	21	-8.09
High	2480	12.64	21	-8.36

ANT 3

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.68	21	-8.32
Middle	2441	12.84	21	-8.16
High	2480	12.59	21	-8.41

9.6.8. LOW POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	12.71	12.84	15.79	21	-5.21
Middle	2441	12.79	12.85	15.83	21	-5.17
High	2480	12.65	12.68	15.68	21	-5.32

9.6.9. LOW POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.20	21	-9.8
Middle	2441	11.23	21	-9.77
High	2480	11.19	21	-9.81

<u>ANT 3</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
	(171112)	(dbiii)	(ubiii)	(ub)
Low	2402	11.28	21	-9.72
Middle	2441	11.29	21	-9.71
High	2480	11.24	21	-9.76

9.6.10. LOW POWER ENHANCED DATA RATE TXBF QPSK MODULATION

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.25	11.33	14.30	21	-6.70
Middle	2441	11.27	11.32	14.31	21	-6.69
High	2480	11.23	11.29	14.27	21	-6.73

9.6.11. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.27	21	-9.73
Middle	2441	11.29	21	-9.71
High	2480	11.24	21	-9.76

<u>ANT 3</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency Output Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.32	21	-9.68
Middle	2441	11.33	21	-9.67
High	2480	11.27	21	-9.73

9.6.12. LOW POWER ENHANCED DATA RATE TXBF 8PSK MODULATION

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Output Power	Output Power	Total Power	Limit	Margin
		ANT 4	ANT 3			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	11.28	11.35	14.33	21	-6.67
Middle	2441	11.30	11.36	14.34	21	-6.66
High	2480	11.25	11.32	14.30	21	-6.70

9.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

Measurements was performed using a power meter with wideband average power sensor.

RESULTS

9.7.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	19.97
Middle	2441	19.99
High	2480	19.92

ANT 3

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	19.95
Middle	2441	19.97
High	2480	19.93

9.7.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	16.93	16.94	19.95
Middle	2441	16.97	16.99	19.99
High	2480	16.90	16.88	19.90

9.7.3. HIGH POWER ENHANCED DATA RATE QPSK MODULATION

ANT 4

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	15.90	
Middle	2441	15.96	
High	2480	15.80	

ANT 3

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	15.92	
Middle	2441	15.97	
High	2480	15.87	

9.7.4. HIGH POWER BASIC DATA RATE TXBF QPSK MODULATION

Tested By:	19431	
Date:	9/6/2020	

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	14.89	14.92	17.92
Middle	2441	14.95	14.96	17.97
High	2480	14.86	14.86	17.87

9.7.5. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION

ANT 4

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	15.95	
Middle	2441	15.96	
High	2480	15.89	

ANT 3

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	15.94	
Middle	2441	15.98	
High	2480	15.92	

9.7.6. HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION

<u>ANT 4 + ANT 3</u>

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	14.91	14.93	17.93
Middle	2441	14.96	14.98	17.98
High	2480	14.87	14.88	17.89

9.7.7. LOW POWER BASIC DATA RATE GFSK MODULATION

ANT 4

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	12.43	
Middle	2441	12.48	
High	2480	12.41	

<u>ANT 3</u>

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	12.41	
Middle	2441	12.46	
High	2480	12.38	

9.7.8. LOW POWER BASIC DATA RATE TXBF GFSK MODULATION

Tested By:	19431	
Date:	9/6/2020	

	Channel	Frequency	Average Power	Average Power	Total Power
١			ANT 4	ANT 3	
		(MHz)	(dBm)	(dBm)	(dBm)
	Low	2402	12.44	12.43	15.45
	Middle	2441	12.49	12.49	15.50
ĺ	High	2480	12.41	12.38	15.41

9.7.9. LOW POWER ENHANCED DATA RATE QPSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	8.89	
Middle	2441	8.93	
High	2480	8.88	

ANT 3

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	8.91	
Middle	2441	8.94	
High	2480	8.87	

9.7.10. LOW POWER BASIC DATA RATE TXBF QPSK MODULATION

Tested By:	19431
Date:	9/6/2020

Channel	Frequency	Average Power	Average Power	Total Power
		ANT 4	ANT 3	
	(MHz)	(dBm)	(dBm)	(dBm)
Low	2402	8.92	8.93	11.94
Middle	2441	8.95	8.95	11.96
High	2480	8.89	8.87	11.89

9.7.11. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

<u>ANT 4</u>

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	8.95	
Middle	2441	8.97	
High	2480	8.91	

ANT 3

Tested By:	19431
Date	9/6/2020

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	8.93	
Middle	2441	8.95	
High	2480	8.92	

9.7.12. LOW POWER BASIC DATA RATE TXBF 8PSK MODULATION

Tested By:	19431
Date:	9/6/2020

ĺ	Channel	Frequency	Average Power	Average Power	Total Power
١			ANT 4	ANT 3	
		(MHz)	(dBm)	(dBm)	(dBm)
ĺ	Low	2402	8.92	8.94	11.94
ĺ	Middle	2441	8.97	8.96	11.98
ĺ	High	2480	8.90	8.88	11.90

9.8. CONDUCTED SPURIOUS EMISSIONS

LIMITS

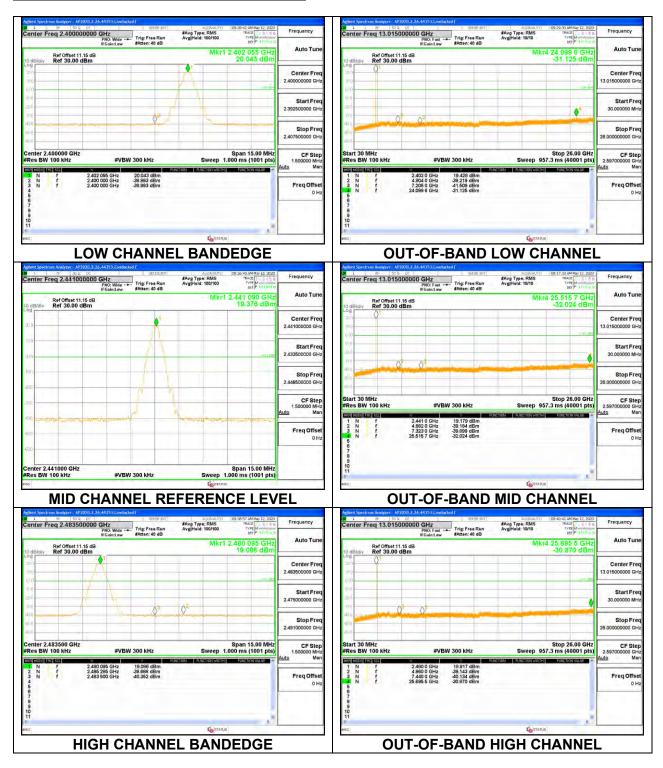
FCC §15.247 (d)

RSS-247 5.5

Limit = -20 dBc

TEST PROCEDURE

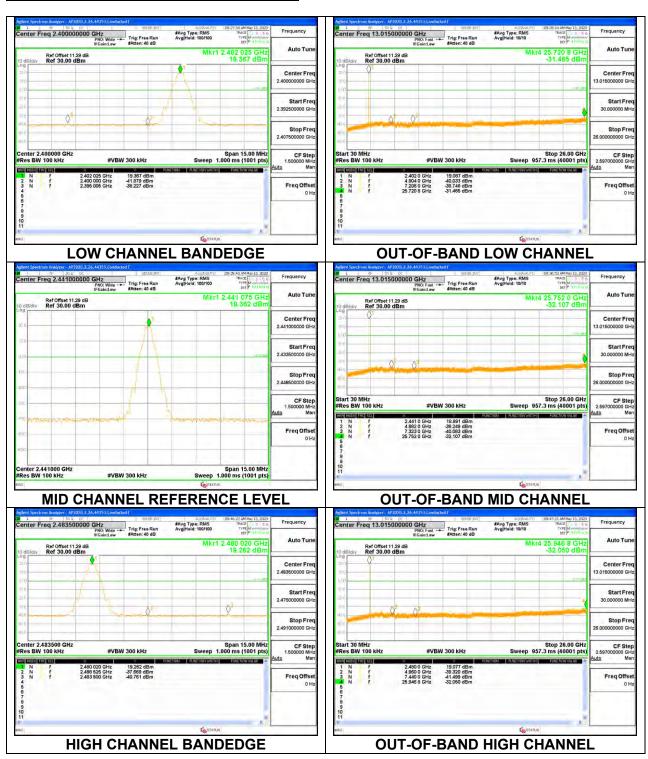
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

9.8.1. HIGH POWER BASIC DATA RATE GFSK MODULATION

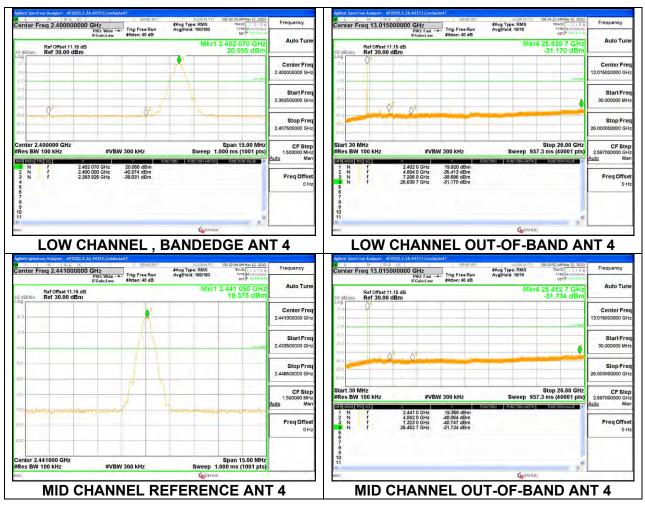

ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

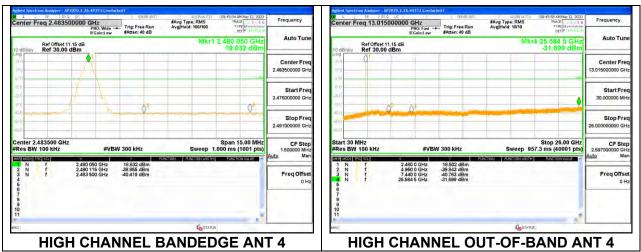
ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

DATE: 9/30/2020

IC: 579C-E3539A

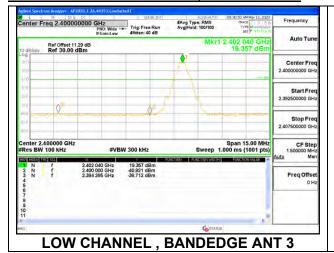

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

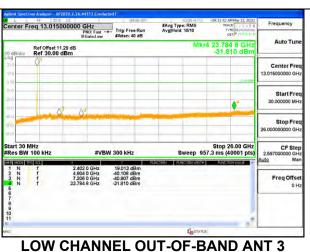


9.8.2. HIGH POWER BASIC DATA RATE TXBF GFSK MODULATION

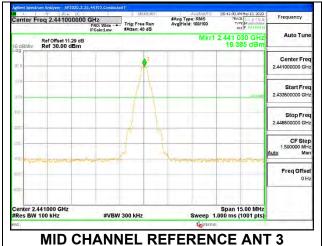

Note: Test procedure on beamforming mode is same as BT basic and EDR mode

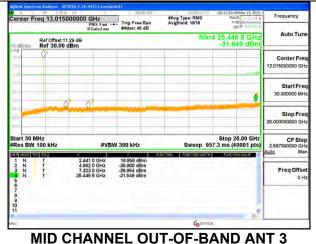
ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

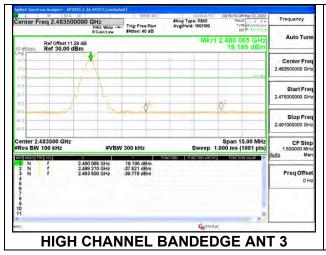


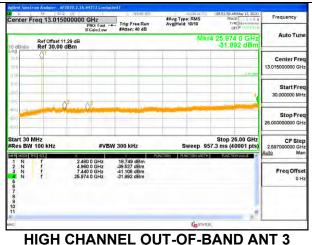


ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

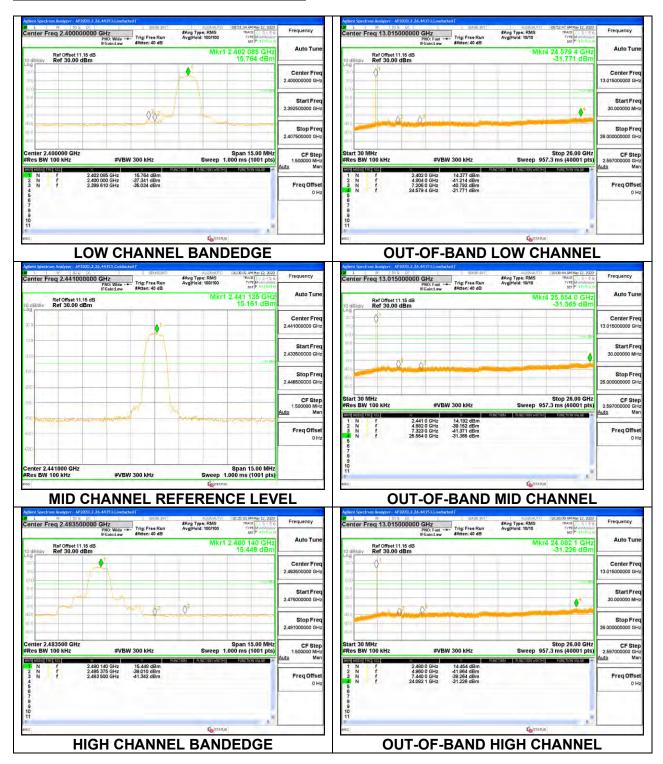

ANT 3 SPURIOUS EMISSIONS, NON-HOPPING





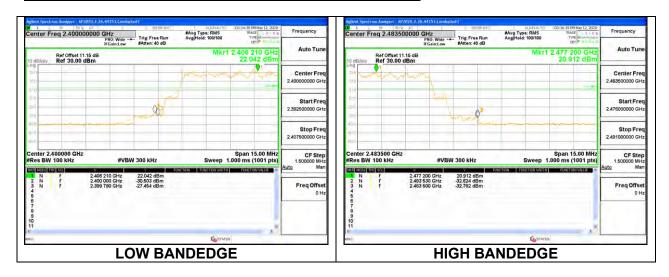

DATE: 9/30/2020

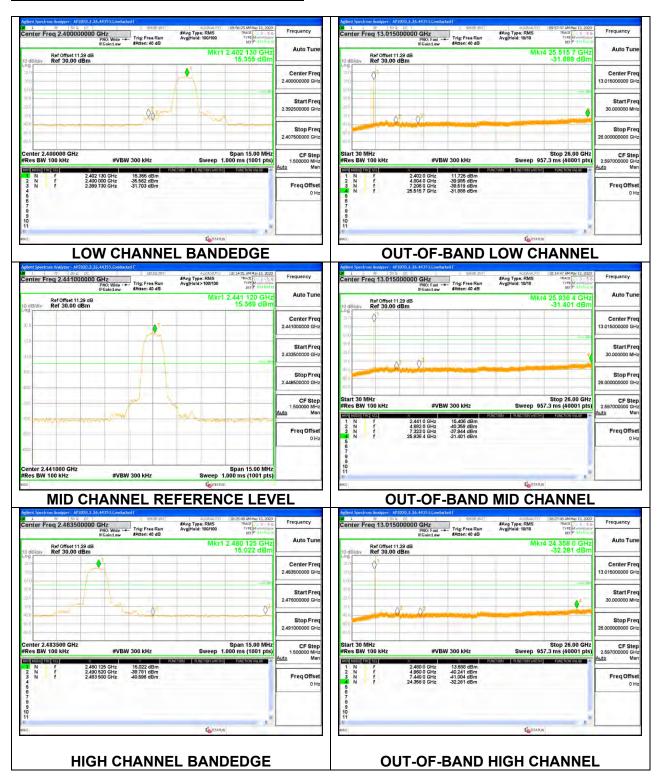
IC: 579C-E3539A



ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

9.8.3. HIGH POWER ENHANCED DATA RATE 8PSK MODULATION


ANT 4 SPURIOUS EMISSIONS, NON-HOPPING


DATE: 9/30/2020

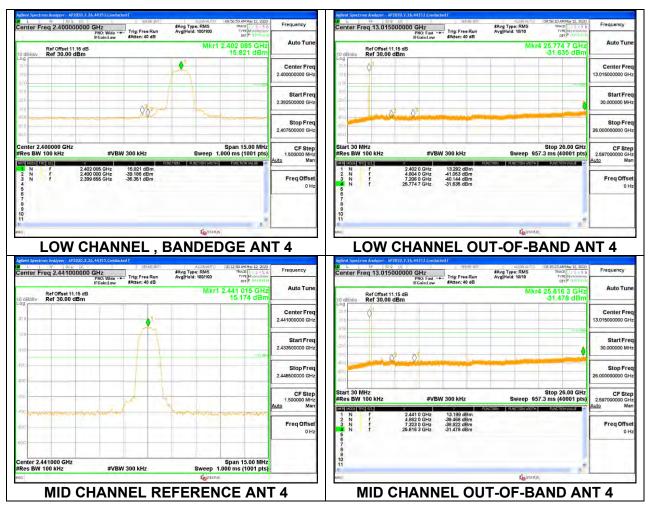
IC: 579C-E3539A

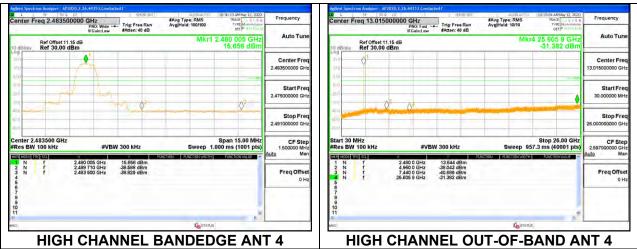
ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

ANT 2 CRUBIOUS FMICCIONS, NON HORBING

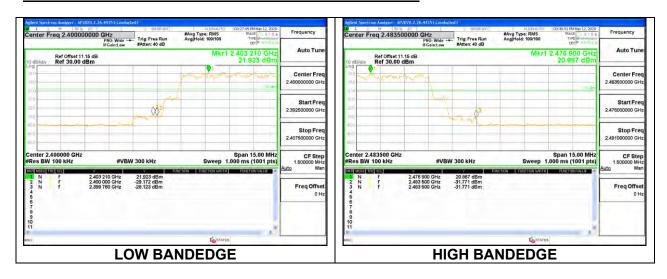
DATE: 9/30/2020

IC: 579C-E3539A

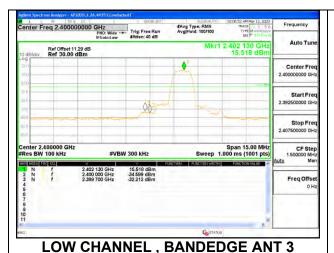

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

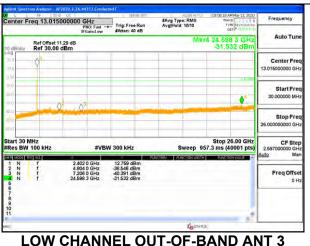


9.8.4. HIGH POWER BASIC DATA RATE TXBF 8PSK MODULATION

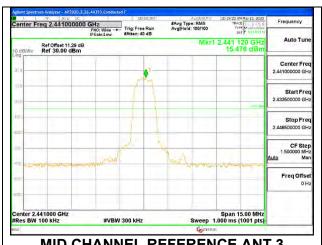

Note: Test procedure on beamforming mode is same as BT basic and EDR mode

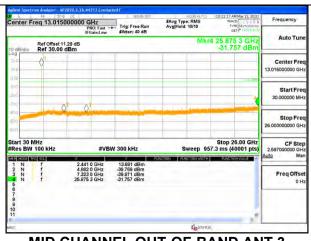
ANT 4 SPURIOUS EMISSIONS, NON-HOPPING



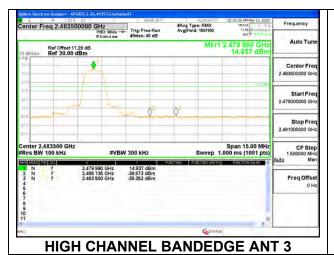


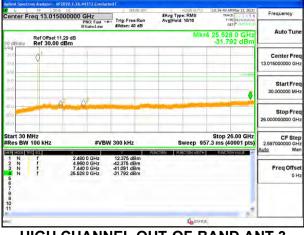
ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON


ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

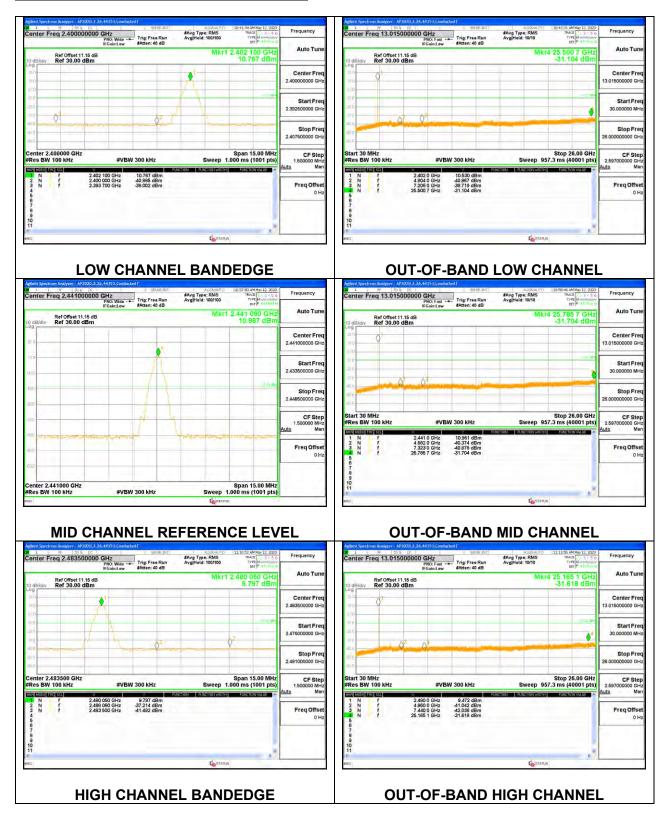


DATE: 9/30/2020

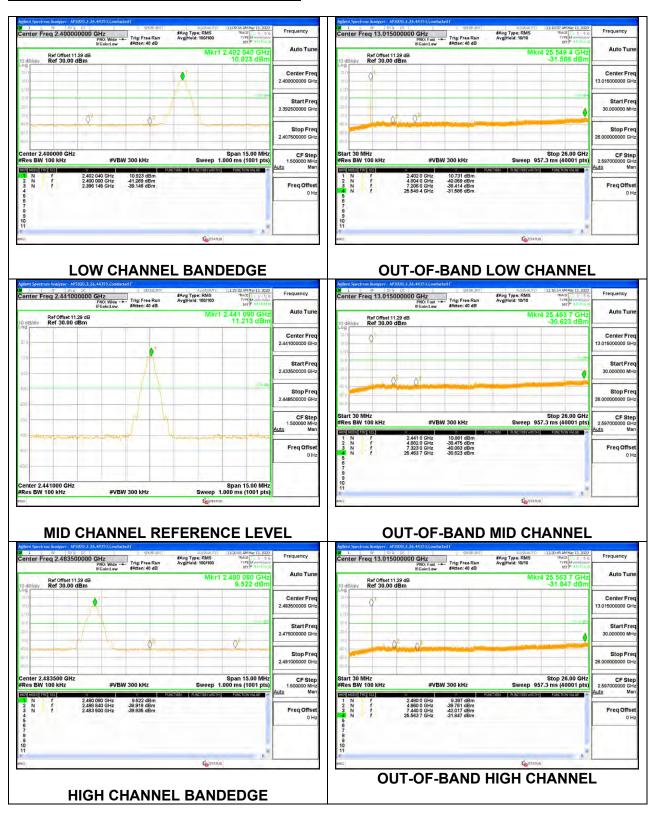

IC: 579C-E3539A



MID CHANNEL REFERENCE ANT 3


HIGH CHANNEL OUT-OF-BAND ANT 3

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON


9.8.5. LOW POWER BASIC DATA RATE GFSK MODULATION

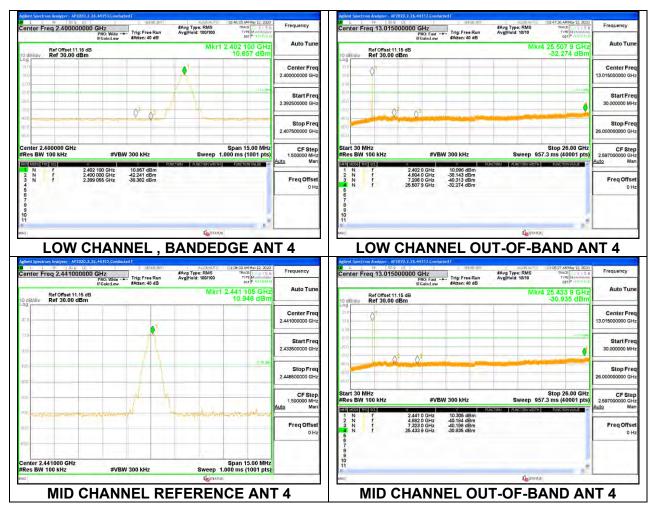
ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

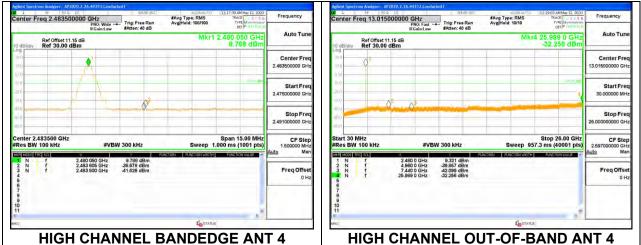
ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON



DATE: 9/30/2020

IC: 579C-E3539A

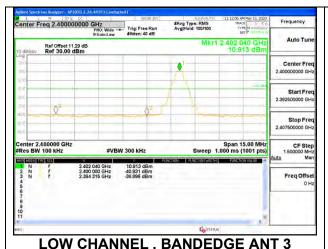

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

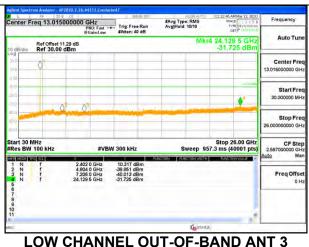


9.8.6. LOW POWER BASIC DATA RATE TXBF GFSK MODULATION

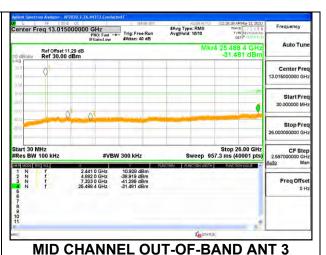
Note: Test procedure on beamforming mode is same as BT basic and EDR mode

ANT 4 SPURIOUS EMISSIONS, NON-HOPPING





ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON


ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

DATE: 9/30/2020

IC: 579C-E3539A

#Avg Type: RMS Avg[Hold: 10/10

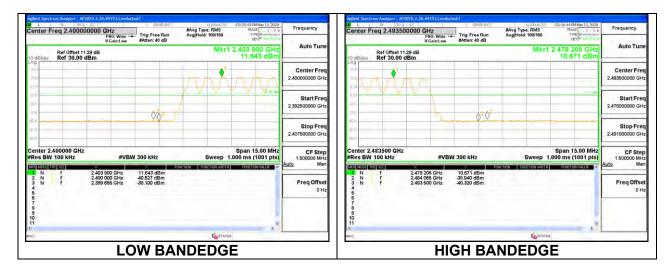
> 4kr4 25.992 9 GH -31.899 dBr

Auto Tu

Center Fre

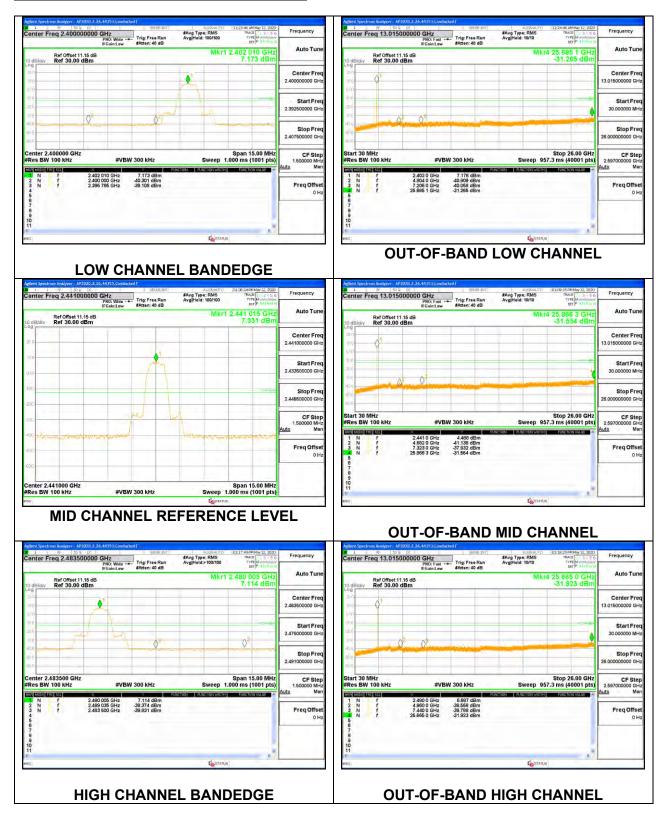
Start Fre

MID CHANNEL REFERENCE ANT 3


HIGH CHANNEL BANDEDGE ANT 3

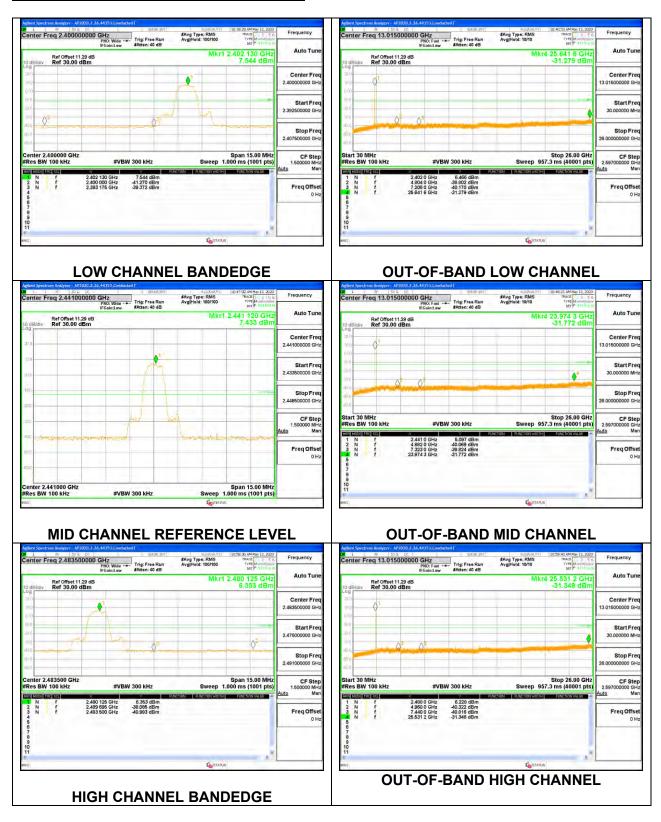
HIGH CHANNEL OUT-OF-BAND ANT 3

enter Freq 13.015000000 GHz
PNO: Fast
PNO: Fast
Enter: 40 dB


Ref Offset 11.29 dB Ref 30.00 dBm

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

9.8.7. LOW POWER ENHANCED DATA RATE 8PSK MODULATION

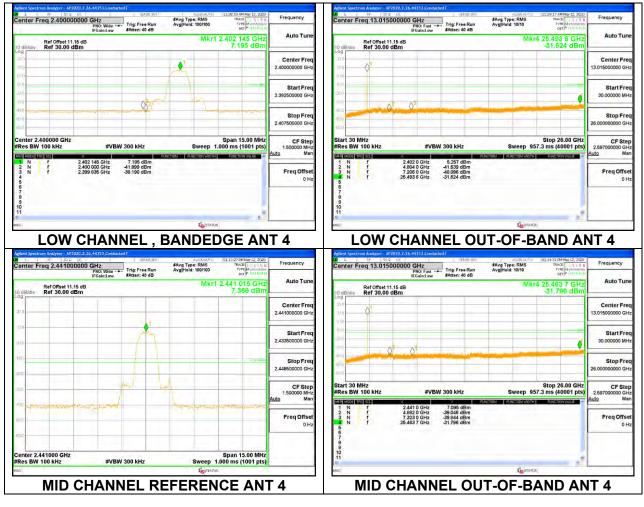

ANT 4 SPURIOUS EMISSIONS, NON-HOPPING

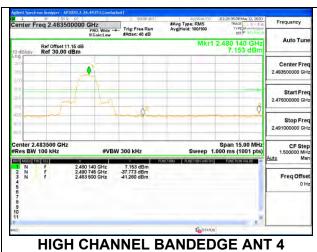
ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

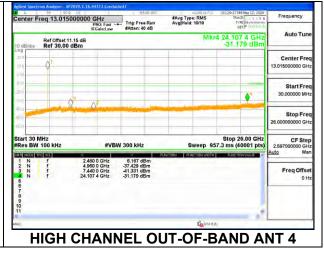

ANT 3 SPURIOUS EMISSIONS, NON-HOPPING

DATE: 9/30/2020

IC: 579C-E3539A

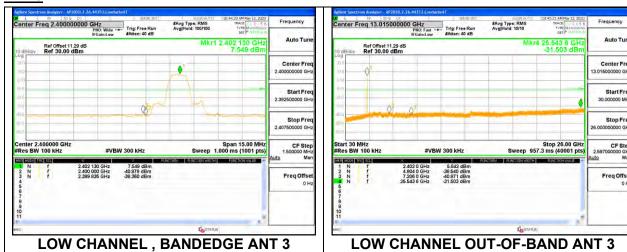

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

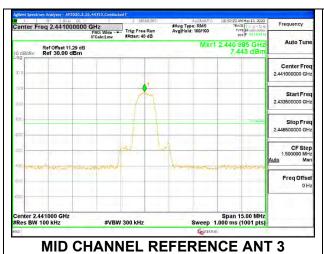


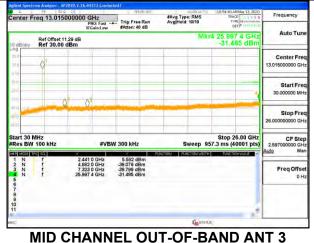

9.8.8. LOW POWER BASIC DATA RATE TXBF 8PSK MODULATION

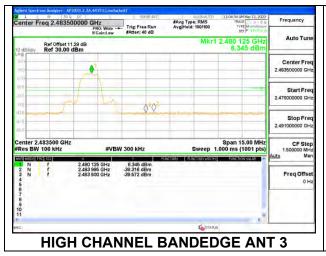
Note: Test procedure on beamforming mode is same as BT basic and EDR mode

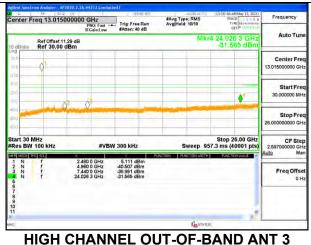
ANT 4




ANT 4 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON




DATE: 9/30/2020 FCC ID: BCG-E3539A IC: 579C-E3539A


ANT 3

ANT 3 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

