

CERTIFICATION TEST REPORT

Report Number.: 12162294-E2V2

Applicant : APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

Model: A1984, A2107, A2108

FCC ID : BCG-E3220A

ISED ID: 579C-E3220A

EUT Description: SMARTPHONE

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 2

Date Of Issue:

August 24, 2018

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	08/17/18	Initial Issue	Chin Pang
V2	08/24/18	Addressed TCB Questions	Tony Li

TABLE OF CONTENTS

RI	EPOR	RT REVISION HISTORY	2
T	ABLE	OF CONTENTS	3
1.	АТ	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	6
4.	CA	LIBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	SAMPLE CALCULATION	7
	4.3.	MEASUREMENT UNCERTAINTY	7
5.	EQ	QUIPMENT UNDER TEST	8
	5.1.	EUT DESCRIPTION	ε
	5.2.	DIFFERENCE IN MODEL NUMBER	8
	5.3.	MAXIMUM OUTPUT POWER	8
	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	8
	5.5.	SOFTWARE AND FIRMWARE	8
	5.6.	WORST-CASE CONFIGURATION AND MODE	
	5.7.	DESCRIPTION OF TEST SETUP	
6.	ME	EASUREMENT METHOD	15
7.	TE	ST AND MEASUREMENT EQUIPMENT	16
8.	AN	ITENNA PORT TEST RESULTS	17
		ON TIME AND DUTY CYCLE	
		99% BANDWIDTH	
	8.2		
	8.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	8.2 8.2	\ 1 /	
	8.3.	· · · ·	
	8.3	3.1. HIGH POWER BLE (1Mbps)	27
	8.3	3.2. HIGH POWER BLE (2Mbps)	29
	8.3		31
	8.3	,	
	<i>8.4.</i> 8.4		35
		l.2. HIGH POWER BLE (1Mbps)	
		I.3. LOW POWER BLE (1Mbps)	
		Page 3 of 152	

DATE: 8/24/2018

IC: 579C-E3220A

	ID: BCG-E3220A	C. 5/9C-E322UA
	8.4.4. LOW POWER BLE (2Mbps)	39
8	8.5.1. HIGH POWER BLE (1Mbps)	40 41 42
8	6. POWER SPECTRAL DENSITY	45 47 49
	7. CONDUCTED SPURIOUS EMISSIONS	54 56 58
9.	RADIATED TEST RESULTS	62
g	.1. LIMITS AND PROCEDURE	_
	.1. LIMITS AND PROCEDURE	
g	9.2.1. HIGH POWER BLE (1Mbps)	
9	9.2.1. HIGH POWER BLE (1Mbps)	
9	.2. TRANSMITTER ABOVE 1 GHz	
9	9.2.1. HIGH POWER BLE (1Mbps)	
9	9.2.1. HIGH POWER BLE (1Mbps). 9.2.2. HIGH POWER BLE (2Mbps). 9.2.3. LOW POWER BLE (1Mbps). 9.2.4. LOW POWER BLE (2Mbps). 3. Worst Case Below 1 GHz	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 APPLE PARK WAY

CUPERTINO, CA 95014, U.S.A.

EUT DESCRIPTION: SMARTPHONE

MODEL: A1984, A2107, A2108

SERIAL NUMBER: C7CWL004K3P2

DATE TESTED: JUNE 1, 2018 – JULY 27, 2018

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Complies

ISED RSS-247 Issue 2 Complies

ISED RSS-GEN Issue 5 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For

UL Verification Services Inc. By:

Chin Pany

Prepared By:

Chin Pang

CONSUMER TECHNOLOGY DIVISION

Senior Engineer

UL Verification Services Inc.

Jingang Li

CONSUMER TECHNOLOGY DIVISION

Lab Engineer

UL Verification Services Inc.

Jingen G

Page 5 of 152

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, KDB 558074 D01 v04, ANSI C63.10-2013, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd
	☐ Chamber D	☐ Chamber K
(ISED:2324B-1)	(ISED:22541-1)	(ISED:2324A-1)
☐ Chamber B		☐ Chamber L
(ISED:2324B-2)	(ISED:22541-2)	(ISED:2324A-3)
	☐ Chamber F	
(ISED:2324B-3)	(ISED:22541-3)	
	☐ Chamber G	
	(ISED:22541-4)	
	☐ Chamber H	
	(ISED:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through C are covered under ISED company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under ISED company address code 22541 with site numbers 22541 -1 through 22541-5, respectively. Chambers K and L are covered under ISED company address code 2324A with site numbers 2324A-1 and 2324A-3, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The Apple iPhone, is a smartphone with multimedia functions (music, application support, and video), cellular GSM, GPRS, EGPRS, UMTS, LTE, TD-SCDMA, CDMA, IEEE 802.11a/b/g/n/ac, Bluetooth, GPS and NFC. All models support at least one UICC based SIM. The second SIM is either UICC based, electronic SIM (e-SIM), or second SIM is not present. The device has a built-in inductive charging receiver which is not user accessible. The rechargeable battery is not user accessible.

5.2. DIFFERENCE IN MODEL NUMBER

Model A2107, A2108 is electrically identical to Model A1984. Three model numbers are allocated for marketing and logistic purposes only. A1984 was used to perform all final tests.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Antenna	Configuration	Frequency Range	Mode	Output Power	Output Power
		(MHz)		(dBm)	(mW)
	Pstandalone		BLE 1M	20.32	107.67
Ant 2	Plow	2402 - 2480	DLE TIVI	10.38	10.92
AIIL Z	Pstandalone	2402 - 2400	BLE 2M	20.29	106.83
	Plow			10.29	10.68
	Pstandalone		BLE 1M	20.35	108.47
Ant F	Plow 2402 - 2480	DLE IIVI	10.38	10.90	
Ant 5	Pstandalone	2 4 02 - 2400	BLE 2M	20.29	106.98
	Plow		DLE ZIVI	10.32	10.77

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Range	Ant. 2	Ant. 5
(GHz)	(dBi)	(dBi)
2.4	-2.8	-4.9

5.5. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was v16.1.232.

5.6. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in three orthogonal orientations X, Y and Z on Ant 2 (Antenna 2) and Ant 5 (Antenna 5). It was determined that X (Flatbed) orientation was the worst-case orientation for both Ant 2 and Ant 5.

Pstandalone is high power and Plow is low power.

Radiated band edge, harmonic, and spurious emissions from 1GHz to 18GHz were performed with the EUT set to transmit at highest power on Low/Middle/High channels.

Radiated emissions below 30MHz, below 1GHz, 18-26GHz and power line conducted emissions were performed with the EUT transmitting at the channel with the highest output power as worst-case scenario.

For below 1GHz tests, EUT was connected to AC power adapter as the worst case; and for above 1GHz tests, the worst-case configuration reported was with EUT only. There was no emission found below 30MHz within 20dB of the limit. For AC line conducted emission, test was investigated with AC power adapter and with laptop.

For simultaneous transmission of multiple channels in the 2.4GHz BLE and 5GHz bands. No noticeable new emission was found.

There are two vendors of the WiFi/Bluetooth radio modules: variant 1 and variant 2. The WiFi/Bluetooth radio modules have the same mechanical outline (e.g., the same package dimension and pin-out layout), use the same on-board antenna matching circuit, have an identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances.

Baseline testing was performed on the two variants to determine the worst case on all conducted power and radiated emissions.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

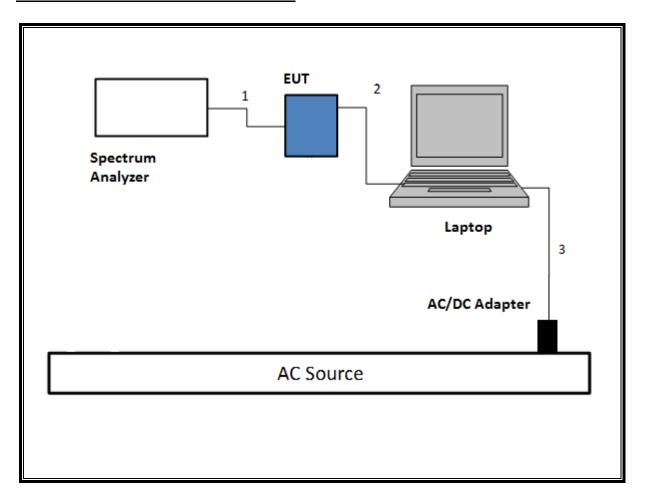
Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
laptop	Apple	Macbook Pro	C02P41RZG086	FCC DoC		
Laptop AC/DC adapter	Liteon Technology	PA-1450-BA1	B123	NA		
EUT AC Adapter	Apple	A1385	D292365CDYADHLHC3	NA		

I/O CABLES (CONDUCTED TEST)

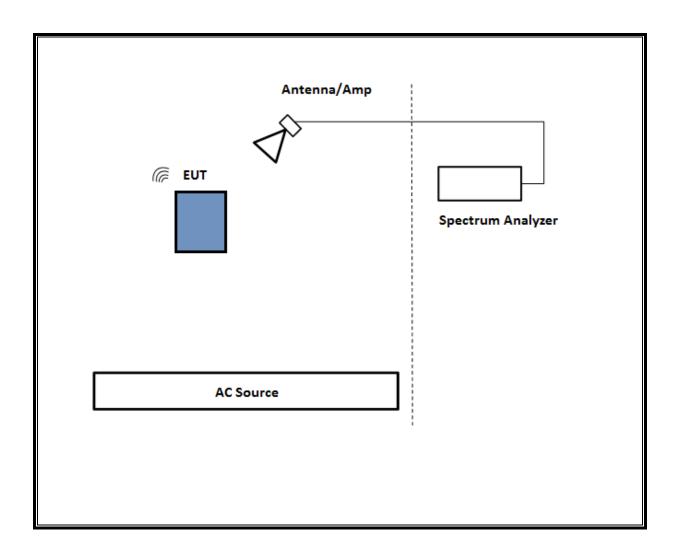
	I/O Cable List								
Cable	Port	Remarks							
No		ports	Туре		Length (m)				
1	Antenna	1	SMA	Un-Shielded	0.2	To spectrum Analyzer			
2	USB	1	USB	Shielded	1	N/A			
3	AC	1	AC	Un-shielded	2	N/A			

I/O CABLES (RADIATED ABOVE 1 GHZ)

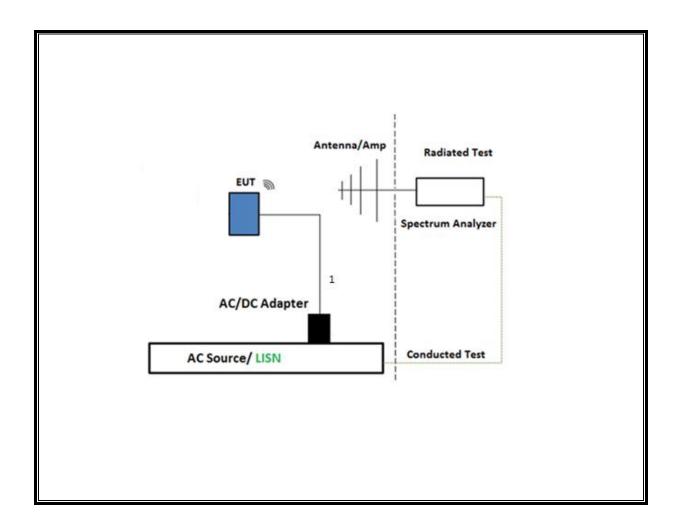
	I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
NA	NA .						

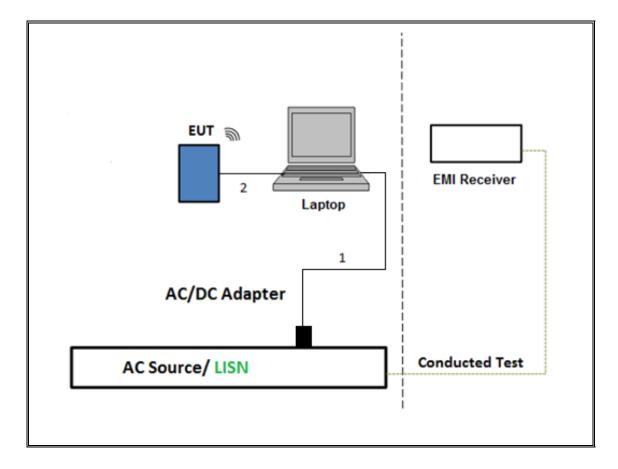

I/O CABLES (BELOW 1GHz AND AC POWER LINE TEST WITH ADAPTER AND LAPTOP)

	I/O Cable List							
Cable No	Port	# of identical	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	AC	1	AC	Un-shielded	2	N/A		
2	USB	1	USB	Un-shielded	1	N/A		


TEST SETUP

The EUT is connected to a test laptop during the tests. Test software exercised the EUT.


SETUP DIAGRAM FOR CONDUCTED TESTS


SETUP DIAGRAM FOR RADIATED TESTS Above 1 GHz

SETUP DIAGRAM FOR Below 1GHz and AC LINE CONDUCTED TEST

TEST SETUP- AC LINE CONDUCTED: LAPTOP CONFIGURATION

6. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 558074 D01 v04, Section 6.

6 dB BW: KDB 558074 D01 v04, Section 8.1.

Output Power: KDB 558074 D01 v04, Section 9.1.3.

Power Spectral Density: KDB 558074 D01 v04, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v04, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v04, Section 12.1.

Band-edge: KDB 558074 D01 v04, Section 12.1.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due		
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800-25-S-42	T931	02/24/2019		
*Amplifier, 1 to 18GHz	Miteq	AFS42-00101800-25-S-42	T1165	06/12/2018		
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800-25-S-42	T491	05/19/2019		
Amplifier, 1 to 18GHz	Miteq	AFS42-00101800-25-S-42	T740	12/30/2018		
Amplifier, 1 to 8GHz	Miteq	AFS42-00101800-25-S-42	T1131	12/30/2018		
*Pre-Amp 18-26GHz	Agilent Technology	8449B	T404	07/23/2018		
*Antenna, Horn 1-18GHz	ETS Lindgren	3117	T120	07/02/2018		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T862	05/24/2019		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T346	04/03/2019		
Antenna, Horn 1-18GHz	ETS Lindgren	3117	T119	04/03/2019		
*Antenna, Horn 1-18GHz	ETS Lindgren	3117	T136	07/02/2018		
Antenna Horn, 18 to 26GHz	ARA	MWH-1826	T89	01/18/2019		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB1	T130	10/16/2018		
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	T340	12/15/2018		
Spectrum Analyzer, PXA 3Hz to 44GHz	Keysight	N9030A	T906	02/16/2019		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T342	02/22/2019		
**Power Meter, P-series single channel	Keysight	N1911A	T1268	06/25/2019		
Power Sensor	Keysight	N1921A	T1225	04/10/2019		
Antenna, Active Loop 9KHz to 30MHz	ETS-Lindgren	6502	T757	09/14/2018		
	A	C Line Conducted				
EMI Test Receiver 9Khz- 7GHz	Rohde & Schwarz	ESCI7	T1436	01/25/2019		
Power Cable, Line Conducted Emissions	UL	PG1	T861	08/31/2018		
**LISN for Conducted Emissions CISPR-16	Fischer	50/250-25-2-01	T1310	06/19/2019		
UL AUTOMATION SOFTWARE						
Radiated Software	UL	UL EMC	Ver 9.5, Ap	oril 26, 2016		
Conducted Software	UL	UL EMC	Ver 5.4, Octo	ober 13, 2016		
AC Line Conducted Software				ay 26, 2015		

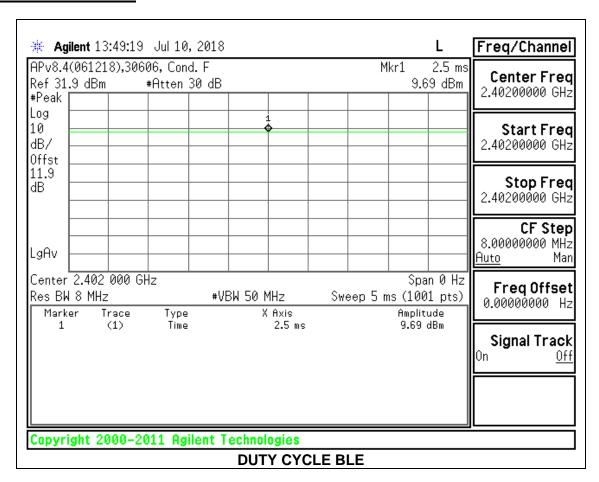
^{*}Testing is completed before equipment expiration date.

^{**}Testing began after the calibration date.

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

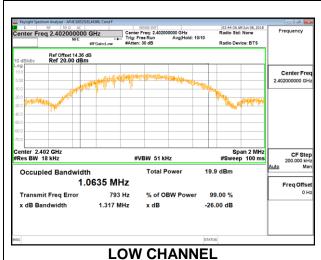
PROCEDURE

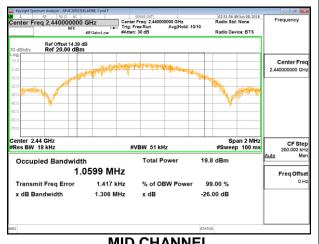
ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
BLE	100.000	100.000	1.000	100.00%	0.00	0.010

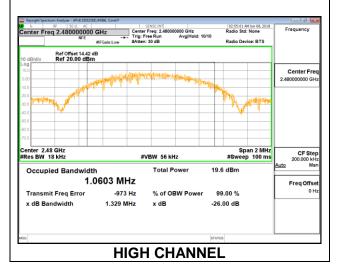
DUTY CYCLE PLOTS

99% BANDWIDTH 8.2.

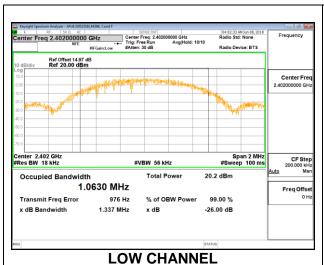

LIMITS

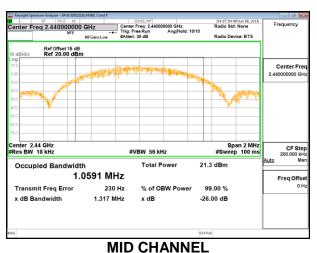

None; for reporting purposes only.

RESULTS


8.2.1. HIGH POWER BLE (1Mbps)

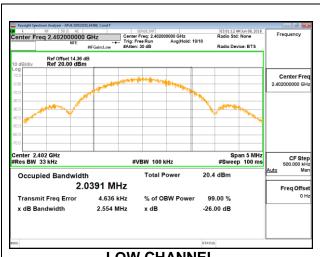
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0635
Middle	2440	1.0599
High	2480	1.0603

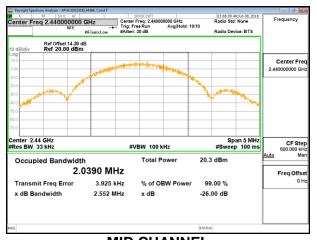



MID CHANNEL

Antenna 5

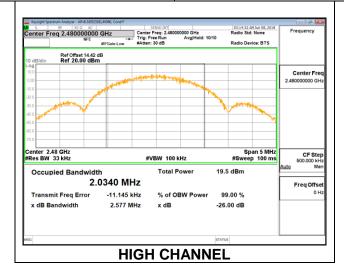
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0630
Middle	2440	1.0591
High	2480	1.0624

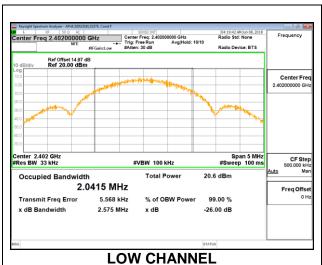

04:15:06 AMJun 08, 20 Radio Std: None Radio Device: BTS Center Fre Span 2 MHz #Sweep 100 ms CF Stej 200.000 kH #VBW 56 kHz Total Power Occupied Bandwidth 1.0624 MHz Transmit Freq Error 1.664 kHz % of OBW Power 99.00 % x dB Bandwidth 1.329 MHz x dB -26.00 dB

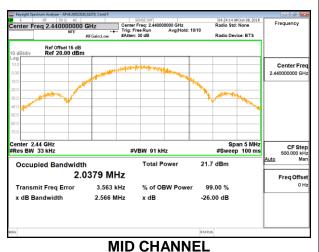

HIGH CHANNEL

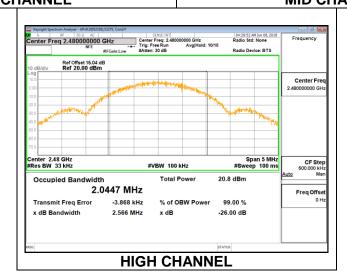
8.2.2. HIGH POWER BLE (2Mbps)

Antenna 2

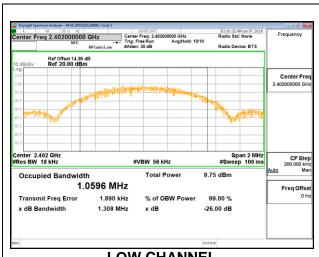

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	2.0391
Middle	2440	2.0390
High	2480	2.0340

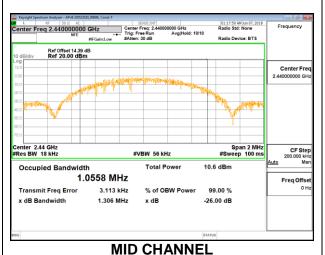



LOW CHANNEL

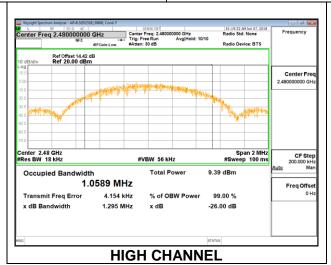

MID CHANNEL

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	2.0415
Middle	2440	2.0379
High	2480	2.0447

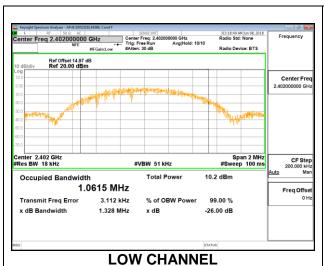




8.2.3. LOW POWER BLE (1Mbps)


Antenna 2

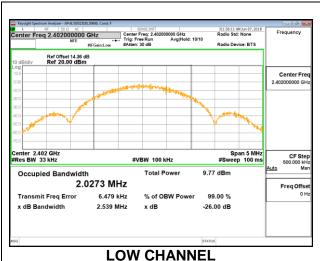
Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0596
Middle	2440	1.0558
High	2480	1.0589

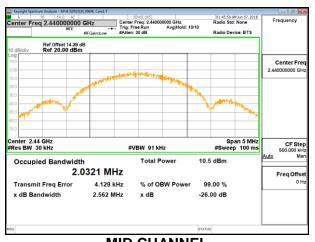


LOW CHANNEL

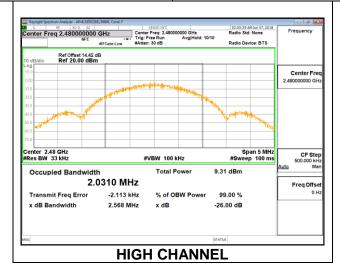
Antenna 5

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0615
Middle	2440	1.0568
High	2480	1.0588

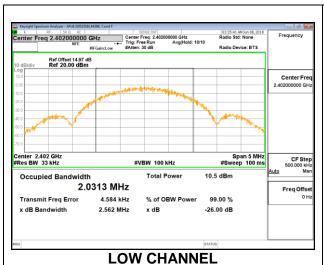


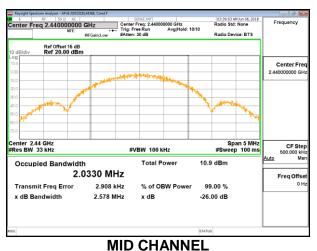

Radio Device: BTS Center Fre Span 2 MHz #Sweep 100 ms CF Stej 200.000 kH #VBW 56 kHz Total Power Occupied Bandwidth 1.0588 MHz Transmit Freq Error 3.675 kHz % of OBW Power 99.00 % x dB Bandwidth 1.315 MHz x dB -26.00 dB **HIGH CHANNEL**

8.2.4. LOW POWER BLE (2Mbps)


Antenna 2

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	2.0273
Middle	2440	2.0321
High	2480	2.0310




MID CHANNEL

Antenna 5

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	2.0313
Middle	2440	2.0330
High	2480	2.0297

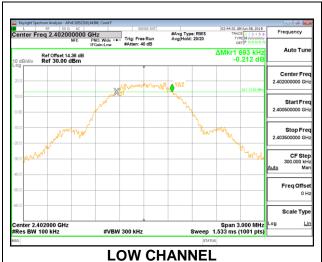
Radio Device: BTS Ref Offset 15.04 dB Ref 20.00 dBm Center Fre Span 5 MHz #Sweep 100 ms CF Stej 500.000 kH #VBW 100 kHz Total Power Occupied Bandwidth 2.0297 MHz Transmit Freq Error 4.025 kHz % of OBW Power 99.00 % x dB Bandwidth 2.553 MHz x dB -26.00 dB

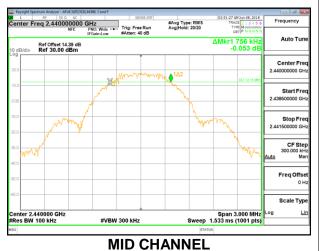
HIGH CHANNEL

8.3. 6 dB BANDWIDTH

LIMITS

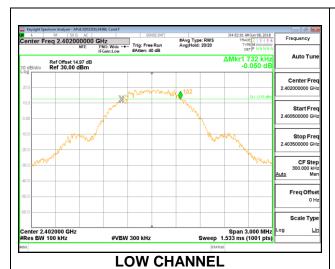
FCC §15.407 (e)

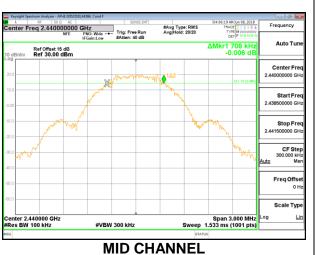

RSS-247 5.2 (a)

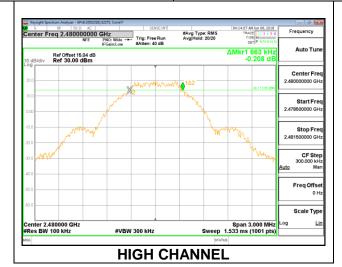

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

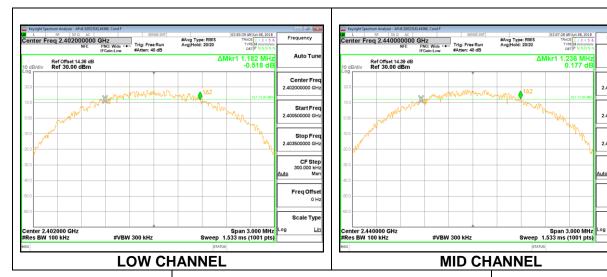
8.3.1. HIGH POWER BLE (1Mbps)


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.6930	0.5
Middle	2440	0.7560	0.5
High	2480	0.7470	0.5





Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7320	0.5
Middle	2440	0.7080	0.5
High	2480	0.6630	0.5

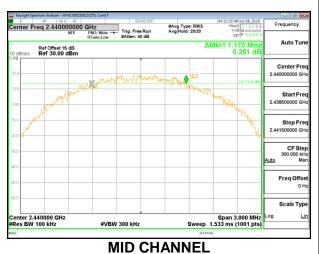


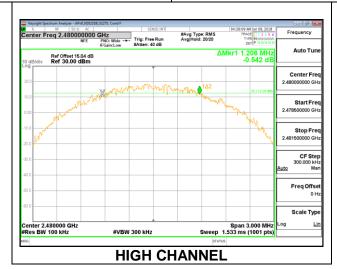
8.3.2. HIGH POWER BLE (2Mbps)

Antenna 2

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.1820	0.5
Middle	2440	1.2360	0.5
High	2480	1.2180	0.5

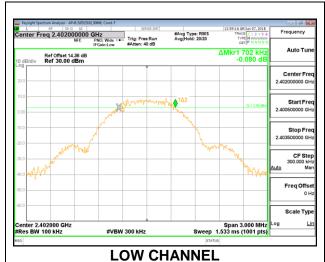
Auto Tu


Center Free


Start Fre

Scale Type

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.1550	0.5
Middle	2440	1.1700	0.5
High	2480	1.2060	0.5



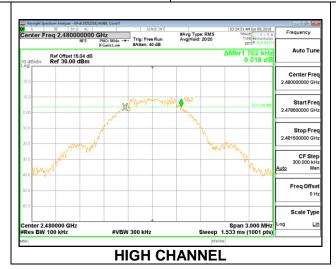




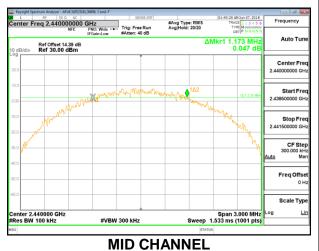
8.3.3. LOW POWER BLE (1Mbps)

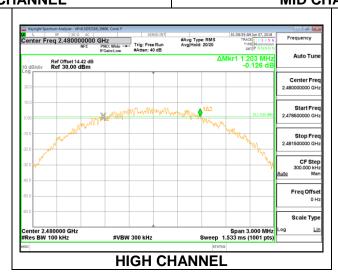

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7020	0.5
Middle	2440	0.7440	0.5
High	2480	0.7020	0.5



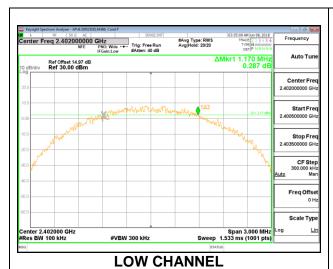


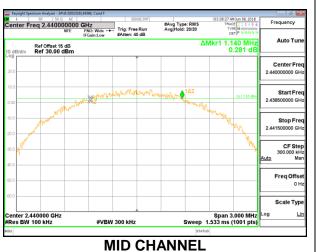
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7620	0.5
Middle	2440	0.7140	0.5
High	2480	0.7020	0.5

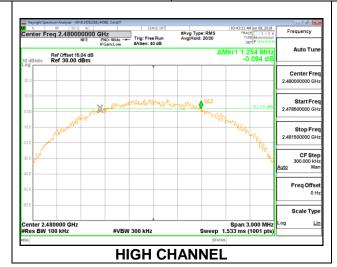




8.3.4. LOW POWER BLE (2Mbps)


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.1970	0.5
Middle	2440	1.1730	0.5
High	2480	1.2030	0.5





Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	1.1700	0.5
Middle	2440	1.1400	0.5
High	2480	1.2540	0.5

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

8.4.1. HIGH POWER BLE (1Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.29	30	-9.712
Middle	2440	20.32	30	-9.679
High	2480	20.24	30	-9.757

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.23	30	-9.768
Middle	2440	20.35	30	-9.647
High	2480	20.22	30	-9.782

8.4.2. HIGH POWER BLE (2Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.19	30	-9.811
Middle	2440	20.29	30	-9.713
High	2480	20.16	30	-9.840

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	20.21	30	-9.789
Middle	2440	20.29	30	-9.707
High	2480	20.19	30	-9.813

8.4.3. LOW POWER BLE (1Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.32	30	-19.678
Middle	2440	10.38	30	-19.616
High	2480	10.28	30	-19.717

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.32	30	-19.683
Middle	2440	10.38	30	-19.625
High	2480	10.30	30	-19.700

8.4.4. LOW POWER BLE (2Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.22	30	-19.783
Middle	2440	10.29	30	-19.713
High	2480	10.25	30	-19.750

Tested By:	30554
Date:	7/27/2018

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.22	30	-19.782
Middle	2440	10.32	30	-19.679
High	2480	10.27	30	-19.730

8.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for a gated average reading of power.

RESULTS

8.5.1. HIGH POWER BLE (1Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	19.78
Middle	2440	19.87
High	2480	19.73

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	19.75
Middle	2440	19.89
High	2480	19.73

8.5.2. HIGH POWER BLE (2Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	19.76
Middle	2440	19.83
High	2480	19.73

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	19.69
Middle	2440	19.78
High	2480	19.67

8.5.3. LOW POWER BLE (1Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.88
Middle	2440	9.93
High	2480	9.87

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.76
Middle	2440	9.86
High	2480	9.72

8.5.4. LOW POWER BLE (2Mbps)

Antenna 2

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.64
Middle	2440	9.79
High	2480	9.74

Tested By:	30554
Date:	7/27/2018

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.69
Middle	2440	9.82
High	2480	9.78