

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
4960.433	35.10	54.00	-18.90	CISPR Avg	0	310	Vertical

Table 126 - 2480 MHz (CH78), DH5, iPA, Core 0 - Core 1, 1 GHz to 26 GHz

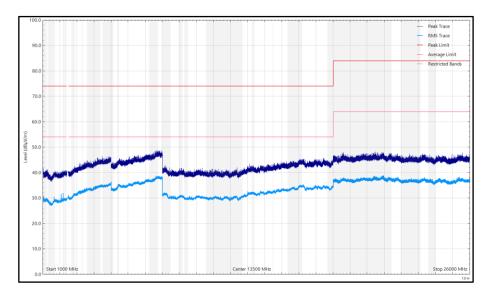


Figure 235 - 2480 MHz (CH78), DH5, iPA, Core 0 - Core 1, 1 GHz to 26 GHz, Horizontal

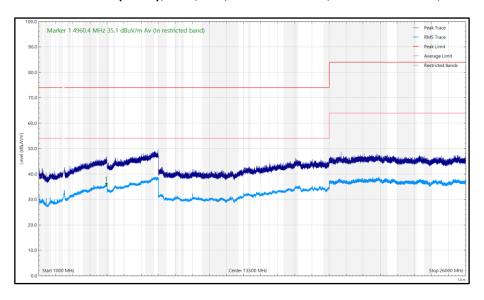


Figure 236 - 2480 MHz (CH78), DH5, iPA, Core 0 - Core 1, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
4200.845	30.24	54.00	-23.76	CISPR Avg	282	389	Vertical

Table 127 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz

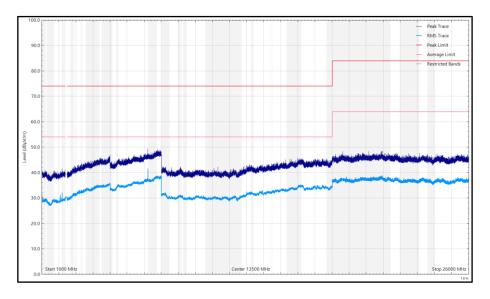


Figure 237 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

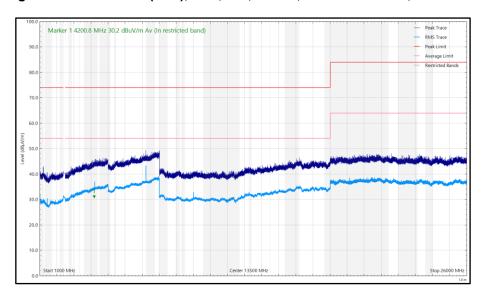


Figure 238 - 2402 MHz (CH0), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
280.008	27.25	46.00	-18.75	Q-Peak	77	106	Horizontal
4211.478	30.36	54.00	-23.64	CISPR Avg	325	111	Vertical
7322.895	39.49	54.00	-14.51	CISPR Avg	282	393	Horizontal
7323.015	40.46	54.00	-13.54	CISPR Avg	331	270	Vertical

Table 128 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 26 GHz

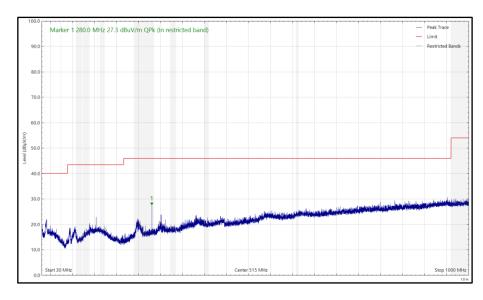


Figure 239 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 1 GHz, Horizontal (Peak)

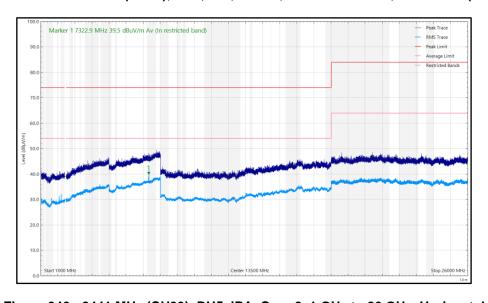


Figure 240 - 2441 MHz (CH39), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

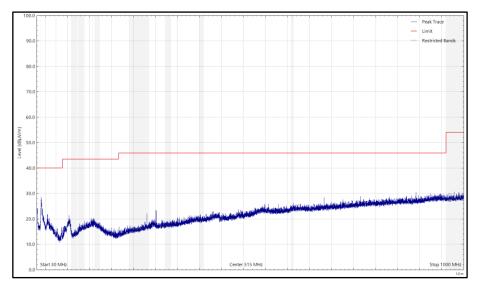


Figure 241 - 2441 MHz (CH39), DH5, iPA, Core 2, 30 MHz to 1 GHz, Vertical (Peak)

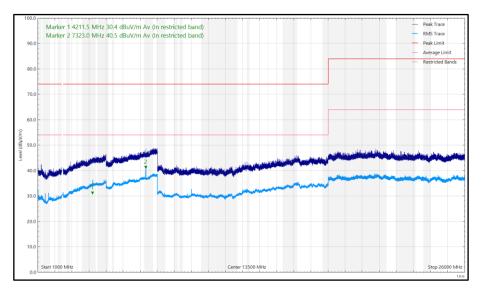


Figure 242 - 2441 MHz (CH39), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
7439.890	52.25	74.00	-21.75	Peak	297	261	Vertical
7439.890	33.25	54.00	-20.75	CISPR Avg	297	261	Vertical
7440.100	52.28	74.00	-21.72	Peak	287	369	Horizontal
7440.100	33.30	54.00	-20.70	CISPR Avg	287	369	Horizontal

Table 129 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz

Figure 243 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz, Horizontal

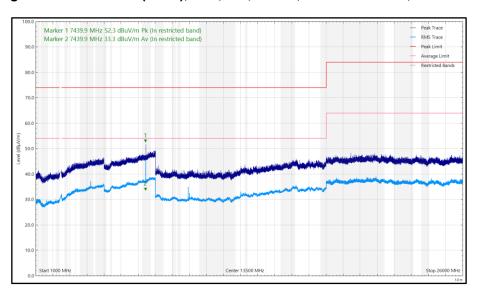


Figure 244 - 2480 MHz (CH78), DH5, iPA, Core 2, 1 GHz to 26 GHz, Vertical

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in RSS-GEN, clause 8.10, must also comply with the radiated emission limits specified in RSS-GEN clause 8.9.

2.8.8 Test Location and Test Equipment Used

This test was carried out in RF Chamber 16 and RF Chamber 17.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
Cable 2.92m	Junkosha	MWX241- 01000KMS	5413	12	23-May-2025
EMI Test Receiver	Rohde & Schwarz	ESW44	5911	12	11-Sep-2024
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5939	12	05-May-2025
DRG Horn Antenna (7.5- 18GHz)	Schwarzbeck	HWRD750	5940	12	05-May-2025
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5943	24	24-May-2026
1500W (300V 12A) AC Power Supply	iTech	IT7324	5957	-	O/P Mon
3m Semi-Anechoic Chamber, Chamber16	Albatross Projects	RF Chamber 16	5972	36	24-May-2025
Mast & Turntable Controller	Maturo Gmbh	FCU3.0	5973	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	5974	=	TU
Turntable	Maturo Gmbh	TT1.5SI	5975	-	TU
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	6018	12	10-Jun-2025
Horn Antenna (1-10 GHz)	Schwarzbeck	BBHA9120B	6142	12	05-May-2025
Digital Multimeter	Fluke	115	6145	12	06-Jun-2025
Digital Multimeter	Fluke	115	6146	12	06-Jun-2025
Double Ridge Active Horn Antenna (18-40 GHz)	Com-Power	AHA-840	6189	24	31-Aug-2024
Pre Amp 8 - 18 GHz	Wright Technologies	APS06 0061	6198	12	03-Jun-2025
Attenuator 4dB	Pasternack	PE7074-4	6201	24	24-May-2026
Cable (SMA to SMA 20cm)	TUV SUD	MH-FH 8-18	6220	12	23-Apr-2025
EMI Test Receiver	Rohde & Schwarz	ESW44	6294	12	06-Jan-2025
Cable (SMA to SMA 8m)	Junkosha	MWX221- 08000AMSAMS/B	6319	12	04-Feb-2025
Cable (K Type 2m)	Junkosha	MWX241- 02000KMSKMS/B	6324	12	04-Feb-2025
Humidity and Temperature Meter	R.S Components	1364	6346	12	06-Mar-2025
SAC Switch Unit	TUV SUD	TUV_SSU_004 PLC	6349	12	07-May-2025
8 GHz High Pass Filter	Wainwright	WHKX 7150 8000 18000 50SS	6427	12	23-Apr-2025
Humidity and Temperature Meter	R.S Components	1364	6486	12	04-Jun-2025
Coax cable sma to sma with N-Type adapter	TUV SUD	N/A	6637	12	23-Apr-2025

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Expiry Date
3m Semi-Anechoic Chamber	Albatross Projects	RF Chamber 17	6658	36	28-Jan-2026
Mast and Turntable Controller	Maturo Gmbh	FCU3.0	6659	-	TU
Tilt Antenna Mast	Maturo Gmbh	BAM4.5-P	6660	-	TU
Turntable	Maturo Gmbh	TT1.5SI	6661	-	TU
8m Cable	Junkosha	MWX221- 08000AMSAMS/B	6748	12	01-Feb-2025
Pre Amp 8 - 18 GHz	Wright Technologies	APS06-0061	6783	12	23-Apr-2025
AC Programmable Power Supply	iTech	IT7324	6812	-	O/P Mon

Table 130

TU - Traceability Unscheduled O/P Mon - Output Monitored using calibrated equipment

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Restricted Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Frequency Hopping Systems - Average Time of Occupancy	-
Frequency Hopping Systems - Channel Separation	± 42.31 kHz
Frequency Hopping Systems - Number of Hopping Channels	-
Frequency Hopping Systems - 99% & 20 dB Bandwidth	± 45.99 kHz
Maximum Conducted Output Power	± 1.38 dB
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB

Table 131

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.