## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D3700V2-1097 Jun21 Object D3700V2 - SN:1097 Calibration procedure(s) CIA CIAL-27 V6 Calibration Procedure for SAFt Validation Sources because n 3-10 GHz Calibration date: June 09, 2021 6/9/2022 YW 8/16/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | in house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | in house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | | | | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | 11111 | | | | | 17.110585 | | | | | | | Approved by: | Katja Pokovic | Technical Manager | and the second | | | | | JECKS . | | | | A management of the final of the following the following the following the first of | | Issued: June 10, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|-----------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | *************************************** | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | , | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.9 ± 6 % | 3.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 19.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 51.0 | 3.55 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.3 ± 6 % | 3.50 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | ****** | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 62.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1097\_Jun21 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.3 Ω + 0.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.6 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.6 Ω + 1.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 4.400 | |----------------------------------|-------------| | (erro direction) | 1.132 ns | | 700 700 700 700 700 | <del></del> | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------| | | J SPEAG | # **DASY5 Validation Report for Head TSL** Date: 09.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1097 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08$ S/m; $\epsilon_r = 36.9$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.08 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 19.5 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.7% Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.2 W/kg = 11.20 dBW/kg # Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 09.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1097 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.5$ S/m; $\epsilon_r = 51.3$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-20I1) ## DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.31, 7.31, 7.31) @ 3700 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.18 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 6.2 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.7% Maximum value of SAR (measured) = 12.1 W/kg # Impedance Measurement Plot for Body TSL # Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D3700V2 – SN: 1097 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: June 09, 2022 Description: SAR Validation Dipole at 3700 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 12/17/2021 | Annual | 12/17/2022 | MY40000670 | | Agilent | E4438C | ESG Vector Signal Generator | 3/24/2022 | Annual | 3/24/2023 | MY45093678 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 0941001 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670633 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/7/2021 | Annual | 7/7/2022 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 3/19/2022 | Annual | 3/19/2023 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 10/7/2021 | Annual | 10/7/2022 | 1045 | | SPEAG | EX3DV4 | SAR Probe | 11/16/2021 | Annual | 11/16/2022 | 7639 | | SPEAG | EX3DV4 | SAR Probe | 4/22/2022 | Annual | 4/22/2023 | 7532 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 11/11/2021 | Annual | 11/11/2022 | 1646 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/13/2022 | Annual | 4/13/2023 | 501 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|--------------------|--------------| | Calibrated By: | Parker Jones | Department Manager | Parker Jones | | Approved By: | Kaitlin O'Keefe | Managing Director | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D3700V2 – SN: 1097 | 06/09/2022 | rage 1 014 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 20.0 dBm | Measured Head<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Head (10g)<br>W/kg @ 20.0 dBm | Measured Head<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Head<br>(Ohm) Real | Measured<br>Impedance Head<br>(Ohm) Real | Difference<br>(Ohm) Real | | Measured<br>Impedance Head<br>(Ohm) Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|--------------------------------------------------------|----------------------------------------------|---------------------|---------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|------------------|-----------| | 6/9/2021 | 6/9/2022 | 1.132 | 6.81 | 6.54 | -3.96% | 2.45 | 2.4 | -2.04% | 47.3 | 48.6 | 1.3 | 0.9 | 1.1 | 0.2 | -30.6 | -31 | -1.30% | PASS | | | | | | | | | | | | | | | | | | | | | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 20.0 dBm | Measured Body<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Body (10g)<br>W/kg @ 20.0 dBm | Measured Body<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Body<br>(Ohm) Real | Measured<br>Impedance Body<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Body<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation<br>(%) | PASS/FAIL | | 6/9/2021 | 6/9/2022 | 1.132 | 6.23 | 6.57 | 5.46% | 2.22 | 2.37 | 6.76% | 45.6 | 44.9 | 0.7 | 1.8 | 4 | 2.2 | -26.1 | -25.8 | 1.10% | PASS | | Object: | Date Issued: | Page 2 of 4 | | |--------------------|--------------|-------------|--| | D3700V2 – SN: 1097 | 06/09/2022 | rage 2 01 4 | | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D3700V2 - SN: 1097 | 06/09/2022 | rage 3 01 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D3700V2 - SN: 1097 | 06/09/2022 | Page 4 of 4 | # element ### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D3700V2 – SN: 1097 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: June 09, 2023 Description: SAR Validation Dipole at 3700 MHz. # Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/19/2023 | Annual | 1/19/2024 | 106563 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/11/2023 | Annual | 1/11/2024 | 106564 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 1/17/2023 | Annual | 1/17/2024 | 3837 | | SPEAG | EX3DV4 | SAR Probe | 12/9/2022 | Annual | 12/9/2023 | 7490 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 12/13/2022 | Annual | 12/13/2023 | 1644 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/17/2023 | Annual | 1/17/2024 | 793 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-----------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggedSpl | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D3700V2 – SN: 1097 | 06/09/2023 | rage 1014 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | /0/ \ | | (10a) W/ka @ | Deviation 10g<br>(%) | | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|--------|------|-----------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------| | 6/9/2021 | 6/9/2023 | 1.132 | 6.81 | 6.62 | -2.79% | 2.45 | 2.45 | 0.00% | 47.3 | 46 | 1.3 | 0.9 | 2.9 | 2 | -30.6 | -25.4 | 17.10% | PASS | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/) | | (40=) M///- (5) | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL | | 6/9/2021 | 6/9/2023 | 1.132 | 6.23 | 6.04 | -3.05% | 2.22 | 2.19 | -1.35% | 45.6 | 44 | 1.6 | 1.8 | 0.9 | 0.9 | -26.1 | -24.9 | 4.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D3700V2 - SN: 1097 | 06/09/2023 | Faye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D3700V2 - SN: 1097 | 06/09/2023 | rage 3 01 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D3700V2 – SN: 1097 | 06/09/2023 | Page 4 of 4 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No: D2450V2-921\_Nov21 # CALIBRATION CERTIFICATE Object D2450V2 - SN:921 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: November 09, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). 12/14/2022 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. YW 12/13/2023 All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check; Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | 1116 Le T | | Approved by: | Niels Kuster | Quality Manager | XXX | Issued: November 11, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-921\_Nov21 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.2 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | = 24 4 4 | # SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.98 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impeda | nce, transformed to feed point | 52.7 Ω + 6.6 jΩ | |----------|--------------------------------|-----------------| | Return l | Loss | - 23.2 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.9 Ω + 7.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.1 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.148 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| #### **DASY5 Validation Report for Head TSL** Date: 09.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$ ; $\varepsilon_r = 39.1$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 01.11.2021 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.8 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 26.7 W/kg #### SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.43 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.8% Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.49 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:921 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$ ; $\varepsilon_r = 51.2$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe; EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.3 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 23.5 W/kg #### SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.98 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg Certificate No: D2450V2-921\_Nov21 Page 7 of 8 # Impedance Measurement Plot for Body TSL # Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D2450V2 – SN: 921 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: November 09, 2022 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------|--| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 12/17/2021 | Annual | 12/17/2022 | MY40000670 | | | Agilent | E4438C | ESG Vector Signal Generator | 3/24/2022 | Annual | 3/24/2023 | MY45093678 | | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | | Anritsu | ML2495A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 0941001 | | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | | Pasternack | NC-100 | Torque Wrench | 3/19/2022 | Annual | 3/19/2023 | N/A | | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 4/11/2022 | Annual | 4/11/2023 | 1323 | | | SPEAG | EX3DV4 | SAR Probe | 3/22/2022 | Annual | 3/22/2023 | 7421 | | | SPEAG | EX3DV4 | SAR Probe | 1/19/2022 | Annual | 1/19/2023 | 3837 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/22/2022 | Annual | 3/22/2023 | 604 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2022 | Annual | 1/13/2023 | 793 | | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------------|-----------| | Calibrated By: | Arturo Oliveros | Associate Compliance<br>Engineer | 10 | | Approved By: | Kaitlin O'Keefe | Managing Director | XDK_ | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D2450V2 - SN: 921 | 11/09/2022 | rage ror4 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 20.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Head (10g)<br>W/kg @ 20.0<br>dBm | Measured Head<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Head<br>(Ohm) Real | Measured<br>Impedance Head<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Head<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|---------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|------------------|-----------| | 11/9/2021 | 11/9/2022 | 1.148 | 5.42 | 5.47 | 0.92% | 2.55 | 2.56 | 0.39% | 52.7 | 54.1 | 1.4 | 6.6 | 3.3 | 3.3 | -23.2 | -24 | -3.40% | PASS | | | | | | | | | | | | | | | | | | | | | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Body (10g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Body<br>(Ohm) Real | Measured<br>Impedance Body<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Body<br>(Ohm) Imaginary | Measured<br>Impedance Body<br>(Ohm) Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation<br>(%) | PASS/FAIL | | 11/9/2021 | 11/9/2022 | 1.148 | 4.97 | 5.03 | 1.21% | 2.36 | 2.34 | -0.85% | 49.9 | 52 | 2.1 | 7.9 | 5 | 2.9 | -22.1 | -26.3 | -19.20% | PASS | | Object: | Date Issued: | Page 2 of 4 | | |-------------------|--------------|-------------|--| | D2450V2 – SN: 921 | 11/09/2022 | raye 2 014 | | ## Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |-------------------|--------------|-------------| | D2450V2 - SN: 921 | 11/09/2022 | rage 5 014 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|-------------| | D2450V2 - SN: 921 | 11/09/2022 | rage 4 01 4 | # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D2450V2 – SN: 921 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: November 9, 2023 Description: SAR Validation Dipole at 2450 MHz. # Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/2/2023 | Annual | 6/12/2024 | MY40003841 | | Agilent | E4438C | ESG Vector Signal Generator | 4/25/2023 | Annual | 4/25/2024 | US41460739 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/19/2023 | Annual | 1/19/2024 | 106563 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/11/2023 | Annual | 1/11/2024 | 106564 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Ultra Long Stem Thermometer | 10/24/2023 | Annual | 10/24/2024 | 200645916 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/9/2023 | Annual | 5/9/2024 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 4/18/2023 | Annual | 4/18/2024 | 7532 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/14/2023 | Annual | 4/14/2024 | 501 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 40 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggellSol | | Object: | Date Issued: | Page 1 of 3 | |-------------------|--------------|-------------| | D2450V2 - SN: 921 | 11/9/2023 | rage 1015 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g (%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g (%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | | Deviation (%) | | |---------------------|----------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|-------|---------------|--| | 11/9/2021 | 11/9/2023 | 1.148 | 5.42 | 5.43 | 0.18% | 2.55 | 2.48 | -2.75% | 52.7 | 55.5 | 2.8 | 6.6 | 3.7 | 2.9 | -23.2 | -27.2 | -17.10% | | | Object: | Date Issued: | Page 2 of 3 | |-------------------|--------------|-------------| | D2450V2 - SN: 921 | 11/9/2023 | rage 2 01 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Dago 3 of 3 | |-------------------|--------------|-------------| | D2450V2 – SN: 921 | 11/9/2023 | Page 3 of 3 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D5GHzV2-1066\_Nov22 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1066 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz 12/6/22 Calibration date: November 17, 2022 ✓ YW 12/5/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|--------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 31-Aug-22 (No. DAE4-601_Aug22) | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Sìgnature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | | | | | | | | Approved by: | Sven Kühn | Technical Manager | Commission of the second | | | | | | Issued: November 17, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1066 Nov22 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | | 5 | | |------------------------------|------------------------------------------------------------------------------|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5850 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1066\_Nov22 Page 3 of 14 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 5.13 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35,2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.24 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1066\_Nov22 ## Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.3 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | · · · · · · · · · · · · · · · · · · · | |-------------------------------------------|--------------------|---------------------------------------| | SAR measured | 100 mW input power | 7.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.7 ± 6 % | 5.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | FR 44.49 M | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.90 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1066\_Nov22 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 6.17 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.1 | 6.06 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.2 ± 6 % | 6.31 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5850 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.54 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 50.5 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.9 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.8 dB | # Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 55.3 Ω + 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.5 dB | # Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | 56.1 Ω - 1.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | Certificate No: D5GHzV2-1066\_Nov22 # Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 50.1 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.4 dB | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.9 Ω + 1.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.6 dB | # Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 56.9 Ω + 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | # Antenna Parameters with Body TSL at 5850 MHz | Impedance, transformed to feed point | 57.3 Ω - 0.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ### DASY5 Validation Report for Head TSL Date: 14.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1066 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.60 \text{ S/m}$ ; $\varepsilon_r = 36.0$ ; $\rho = 1000 \text{ kg/m}^3$ , Medium parameters used: f = 5600 MHz; $\sigma = 4.97 \text{ S/m}$ ; $\varepsilon_r = 35.4$ ; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 5.13$ S/m; $\varepsilon_r = 35.2$ ; $\rho = 1000$ kg/m<sup>3</sup>. Medium parameters used: f = 5850 MHz; $\sigma = 5.24 \text{ S/m}$ ; $\varepsilon_r = 35.1$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 31.08.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.1 W/kg ### SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.64 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1066\_Nov22 Page 9 of 14 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.74 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 18.8 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.18 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.93 dBW/kg # Impedance Measurement Plot for Head TSL ### DASY5 Validation Report for Body TSL Date: 17.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1066 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.49 \text{ S/m}$ ; $\varepsilon_r = 48.3$ ; $\rho = 1000 \text{ kg/m}^3$ , Medium parameters used: f = 5600 MHz; $\sigma = 5.96 \text{ S/m}$ ; $\epsilon_r = 47.7$ ; $\rho = 1000 \text{ kg/m}^3$ , Medium parameters used: f = 5750 MHz; $\sigma = 6.17$ S/m; $\varepsilon_r = 47.4$ ; $\rho = 1000$ kg/m<sup>3</sup>, Medium parameters used: f = 5850 MHz; $\sigma = 6.31$ S/m; $\varepsilon_r = 47.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.61, 4.61, 4.61) @ 5850 MHz; Calibrated: 08.03,2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 31.08.2022 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.40 V/m: Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 17.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.97 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.90 W/kg; SAR(10 g) = 2.20 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 19.2 W/kg Certificate No: D5GHzV2-1066\_Nov22 # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.01 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.34 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.7% Maximum value of SAR (measured) = 18.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.69 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.4% Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.2 W/kg = 12.84 dBW/kg # Impedance Measurement Plot for Body TSL # element ### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D5GHzV2 – SN: 1066 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: November 17, 2023 Description: SAR Validation Dipole at 5250,5600,5750,5850 MHz. # Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/2/2023 | Annual | 6/12/2024 | MY40003841 | | Agilent | E4438C | ESG Vector Signal Generator | 4/25/2023 | Annual | 4/25/2024 | US41460739 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/19/2023 | Annual | 1/19/2024 | 106563 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/11/2023 | Annual | 1/11/2024 | 106564 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Ultra Long Stem Thermometer | 10/24/2023 | Annual | 10/24/2024 | 200645916 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/9/2023 | Annual | 5/9/2024 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 10/2/2023 | Annual | 10/2/2024 | 3949 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/12/2023 | Annual | 9/12/2024 | 1684 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 40 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggellSol | | Object: | Date Issued: | Page 1 of 6 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1066 | 11/17/2023 | rage roro | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Frequency<br>(MHz) | Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 17.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 17.0 dBm | | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 17.0<br>dBm | Measured Head<br>SAR (10g) W/kg<br>@ 17.0 dBm | | | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | |--------------------|---------------------|----------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------|---------------------------------------------------------------|-----------------------------------------------|--------|------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|------------------| | 5250 | 11/17/2022 | 11/17/2023 | 1.195 | 4.02 | 3.93 | -2.12% | 1.16 | 1.12 | -3.03% | 50.5 | 46.2 | 4.3 | -4.4 | -1.9 | 2.5 | -27.1 | -26.0 | 4.20% | | 5600 | 11/17/2022 | 11/17/2023 | 1.195 | 4.20 | 4.00 | -4.65% | 1.21 | 1.13 | -6.22% | 56.9 | 52.3 | 4.6 | -0.1 | -3.1 | 3.0 | -23.8 | -24.7 | -3.70% | | 5750 | 11/17/2022 | 11/17/2023 | 1.195 | 3.98 | 3.68 | -7.42% | 1.13 | 1.04 | -7.96% | 55.3 | 51.5 | 3.8 | 1.7 | 3.1 | 1.4 | -25.5 | -21.4 | 16.20% | | 5850 | 11/17/2022 | 11/17/2023 | 1.195 | 4.11 | 3.84 | -6.57% | 1.17 | 1.08 | -7.69% | 56.1 | 52.9 | 3.2 | -1.5 | -5.6 | 4.1 | -24.6 | -22.3 | 9.20% | | Object: | Date Issued: | Page 2 of 6 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1066 | 11/17/2023 | rage 2 01 0 | ### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 6 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1066 | 11/17/2023 | rage 3 01 0 | | Object: | Date Issued: | Page 4 of 6 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1066 | 11/17/2023 | rage 4 or 0 | | Object: | Date Issued: | Page 5 of 6 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1066 | 11/17/2023 | rage 5 or 0 | | Object: | Date Issued: | Page 6 of 6 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1066 | 11/17/2023 | rage o or o | # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Morgan Hill, USA Certificate No. D6.5GHzV2-1019 Oct23 # CALIBRATION CERTIFICATE Object D6.5GHzV2 - SN:1019 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: October 11, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |----------------------------|------------------|--------------------------------|-----------------------|--| | Power sensor R&S NRP33T | SN: 100967 | 03-Apr-23 (No. 217-03806) | Apr-24 | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | | Mismatch combination | SN: 84224 / 360D | 03-Apr-23 (No. 217-03812) | Apr-24 | | | Reference Probe EX3DV4 | SN: 7405 | 12-Jun-23 (No. EX3-7405_Jun23) | Jun-24 | | | DAE4 | SN: 908 | 03-Jul-23 (No. DAE4-908_Jul23) | Jul-24 | | | | 3.34.34.3 | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |----------------------------------|---------------|-----------------------------------|------------------------| | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Dec-21) | In house check: Dec-23 | | Power sensor NRP-Z23 | SN: 100169 | 10-Jan-19 (in house check Nov-22) | In house check: Nov-23 | | Power sensor NRP-18T | SN: 100950 | 28-Sep-22 (in house check Nov-22) | In house check: Nov-23 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | Calibrated by: Name Function Jeton Kastrati Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: October 12, 2023 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D6.5GHzV2-1019\_Oct23 Page 1 of 6 # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,v,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. ### Additional Documentation: b) DASY System Handbook ## **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D6.5GHzV2-1019 Oct23 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | |------------------------------|--------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 6.19 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 12 to 10-40 | | # SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 293 W/kg ± 24.7 % (k=2) | | SAR averaged over 8 cm³ (8 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.1 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.1 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1019\_Oct23 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | <b>4</b> 9.5 Ω - 5.9 jΩ | |--------------------------------------|-------------------------| | Return Loss | - 2 <b>4</b> .5 dB | ### **APD (Absorbed Power Density)** | APD averaged over 1 cm <sup>2</sup> | Condition | | |-------------------------------------|--------------------|--------------------------| | APD measured | 100 mW input power | 293 W/m² | | APD measured | normalized to 1W | 2930 W/m² ± 29.2 % (k=2) | | APD averaged over 4 cm <sup>2</sup> | condition | | |-------------------------------------|--------------------|--------------------------| | APD measured | 100 mW input power | 132 W/m² | | APD measured | normalized to 1W | 1320 W/m² ± 28.9 % (k=2) | <sup>\*</sup>The reported APD values have been derived using the psSAR1g and psSAR8g. ### **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D6.5GHzV2-1019\_Oct23 Page 4 of 6 # **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1019, UID 0 -, Channel 6500 (6500.0MHz) | Name, Manufa | acturer Di | mensions | [mm] | IMEI | DUT Ty | pe | | |---------------|----------------|--------------|--------|-----------|------------|-----------|--------------| | D6.5GHz | 10 | 0.0 x 10.0 x | x 10.0 | SN: 1019 | <u> </u> | | | | Exposure Cond | ditions | | | | | | | | Phantom | Position, Test | Band | Group, | Frequency | Conversion | TSL Cond. | TSL | | Section, TSL | Distance | | UID | [MHz] | Factor | [S/m] | Permittivity | | | [mm] | | | | | | | | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.50 | 6.19 | 34.1 | **Hardware Setup** | Phantom | TSL | <b>Probe, Calibration Date</b> | DAE, Calibration Date | |------------------------|-----------------|--------------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2023-06-12 | DAE4 Sn908, 2023-07-03 | | Scan Setup | | <b>Measurement Results</b> | | |---------------------|-----------------------------|----------------------------|-------------------| | | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2023-10-11, 12:13 | | Grid Steps [mm] | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg] | 29.4 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 6.62 | | Graded Grid | Yes | psSAR10g [W/Kg] | 5.43 | | Grading Ratio | 1.4 | Power Drift [dB] | -0.01 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | VMS + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | No correction | | | | M2/M1 [%] | 50.2 | | | | Dist 3dB Peak [mm] | 4.8 | # Impedance Measurement Plot for Head TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D3500V2-1055\_Aug22 # **CALIBRATION CERTIFICATE** Object D3500V2 - SN:1055 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: August 17, 2022 ✓ YW 10/5/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | e Dam - | | | | 7 | THE ALLE | | Approved by: | Niels Kuster | Quality Manager | | | | | | /·/X | Issued: August 18, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** Certificate No: D3500V2-1055\_Aug22 c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.96 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.65 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 19.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|----------------------------------------| | Nominal Body TSL parameters | 22.0 °C | 51.3 | 3.31 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 3.31 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | ************************************** | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 63.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Page 3 of 8 Certificate No: D3500V2-1055\_Aug22 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5 Ω - 5.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 52.5 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | # **General Antenna Parameters and Design** | | 111111111111111111111111111111111111111 | |-----------------------------------------|-----------------------------------------| | Electrical Delay (one direction) | 1.133 ns | | , , , , , , , , , , , , , , , , , , , , | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | 1 | | Certificate No: D3500V2-1055\_Aug22 ### **DASY5 Validation Report for Head TSL** Date: 15.08.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1055 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.96 \text{ S/m}$ ; $\varepsilon_r = 37.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 08.03.2022 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.78 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.65 W/kg; SAR(10 g) = 2.5 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.5% Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dBW/kg Certificate No: D3500V2-1055\_Aug22 # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 17.08.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1055 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 3.31 \text{ S/m}$ ; $\varepsilon_r = 51.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN3503; ConvF(7.46, 7.46, 7.46) @ 3500 MHz; Calibrated: 08.03.2022 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.16 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 6.38 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.9% Maximum value of SAR (measured) = 11.9 W/kg 0 dB = 11.9 W/kg = 10.77 dBW/kg # Impedance Measurement Plot for Body TSL # element ### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D3500V2 – SN: 1055 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: August 17, 2023 Description: SAR Validation Dipole at 3500 MHz. # Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 7/21/2023 | Annual | 7/21/2024 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/19/2023 | Annual | 1/19/2024 | 106563 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/11/2023 | Annual | 1/11/2024 | 106564 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/9/2023 | Annual | 5/9/2024 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 3/16/2023 | Annual | 3/16/2024 | 7638 | | SPEAG | EX3DV4 | SAR Probe | 12/9/2022 | Annual | 12/9/2023 | 7490 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/13/2023 | Annual | 3/13/2024 | 1408 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 12/13/2022 | Annual | 12/13/2023 | 1644 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-----------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 40 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggedSpl | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D3500V2 – SN: 1055 | 08/17/2023 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | /0/ \ | | (10a) W/ka @ | Deviation 10g<br>(%) | | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------|------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------| | 8/17/2022 | 8/17/2023 | 1.133 | 6.6 | 6.66 | 0.91% | 2.49 | 2.53 | 1.61% | 52.5 | 49.3 | 3.2 | -5.7 | -1.3 | 4.4 | -24.3 | -20.9 | 13.90% | PASS | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | (0/) | | Measured<br>Body SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Body (Ohm)<br>Real | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL | | 8/17/2022 | 8/17/2023 | 1.133 | 6.38 | 6.76 | 5.96% | 2.4 | 2.52 | 5.00% | 52.5 | 49.5 | 3 | 3.8 | 2.2 | 1.6 | -27.1 | -24 | 11.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D3500V2 – SN: 1055 | 08/17/2023 | Faye 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D3500V2 – SN: 1055 | 08/17/2023 | Page 3 of 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D3500V2 - SN: 1055 | 08/17/2023 | Page 4 of 4 | # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D750V3-1057\_May22 | CALIBRATION | CERTIFICATE | |--------------------------|----------------------------------------------------------------------------------| | Object | D750V3 - SN:1057 | | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | Calibration date: | May 16, 2022 YW 5/31/2024<br>. / YW 5/24/2023 | This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | | | 1 | |---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Арт-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Techniclan | $\mathcal{A}_{i}$ | | | | | May | | | The second secon | | | | Approved by: | Sven Kühn | Technical Manager | C . | | - | | | 2/_ | | | | | · · · · · · · · · · · · · · · · · · · | Issued: May 17, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0,89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 40 At 10 10 | | # SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.51 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.58 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 0.95 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|-------------------------------|--------------------------| | SAR measured | 250 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W <sup>°</sup> | 8.80 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.80 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1057\_May22 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.7 Ω - 1.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.3 Ω - 6.0 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 23.9 dB | | | | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.038 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | #### **DASY5 Validation Report for Head TSL** Date: 16.05,2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1057 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$ ; $\varepsilon_r = 40.9$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.41 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 16.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1057 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.95$ S/m; $\varepsilon_r = 54.1$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.23, 10.23, 10.23) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.35 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.38 W/kg #### SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.45 W/kg Smallest distance from peaks to all points 3 dB below = 18.4 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 2.95 W/kg 0 dB = 2.95 W/kg = 4.70 dBW/kg ## Impedance Measurement Plot for Body TSL ## Element Materials Technology Morgan Hill Morgan Hill 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D750V3 – SN: 1057 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 16, 2023 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|---------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | Sugge M. Sola | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1057 | 05/16/2023 | rage 1014 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 23.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 23.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Head (10g)<br>W/kg @ 23.0<br>dBm | Measured Head<br>SAR (10g) W/kg<br>@ 23.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Head<br>(Ohm) Real | Measured<br>Impedance Head<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Head<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|---------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------|------|----------------------------------|-----------------------------------------|--------------------------------------|------------------|-----------| | 5/16/2022 | 5/16/2023 | 1.038 | 1.702 | 1.59 | -6.58% | 1.12 | 1.05 | -5.91% | 52.7 | 51.4 | 1.3 | -1.5 | -3.6 | 2.1 | -30.4 | -28.4 | 6.70% | PASS | | | | | | | | | | | | | | | | | | | | | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 23.0<br>dBm | Measured Body<br>SAR (1g) W/kg<br>@ 23.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Body (10g)<br>W/kg @ 23.0<br>dBm | Measured Body<br>SAR (10g) W/kg<br>@ 23.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Body<br>(Ohm) Real | Measured<br>Impedance Body<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Body<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation<br>(%) | PASS/FAIL | | 5/16/2022 | 5/16/2023 | 1.038 | 1.76 | 1.66 | -5.68% | 1.16 | 1.13 | -2.59% | 48.3 | 46.7 | 1.6 | -6 | -3.8 | 2.2 | -23.9 | -25.5 | -6.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1057 | 05/16/2023 | Faye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |-------------------|--------------|-------------| | D750V3 – SN: 1057 | 05/16/2023 | Page 3 of 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|-------------| | D750V3 - SN: 1057 | 05/16/2023 | Page 4 of 4 | # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D750V3 – SN: 1057 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: May 16, 2024 Description: SAR Validation Dipole at 750 MHz. ## Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/2/2023 | Annual | 6/12/2024 | MY40003841 | | Agilent | E4438C | ESG Vector Signal Generator | 11/15/2023 | Annual | 11/15/2024 | MY45092078 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2496A | Power Meter | 6/15/2023 | Annual | 6/15/2024 | 1138001 | | Anritsu | MA24106A | USB Power Sensor | 4/15/2024 | Annual | 4/15/2025 | 2018527 | | Anritsu | MA24106A | USB Power Sensor | 4/15/2024 | Annual | 4/15/2025 | 1827528 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 4/15/2024 | Biennial | 4/15/2026 | 240310282 | | Control Company | 4353 | Ultra Long Stem Thermometer | 10/24/2023 | Annual | 10/24/2024 | 200645916 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2023 | Annual | 9/11/2024 | 1045 | | SPEAG | EX3DV4 | SAR Probe | 10/2/2023 | Annual | 10/2/2024 | 3949 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/12/2023 | Annual | 9/12/2024 | 1684 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 46 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggellSple | | Object: | Date Issued: | Page 1 of 3 | |-------------------|--------------|-------------| | D750V3 – SN: 1057 | 05/16/2024 | Page 1 of 3 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | | libration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | Deviation 1g (%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>23.0 dBm | Deviation 10g (%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | | | | | (Ohm) | Certificate<br>Return Loss<br>Head (dB) | | Deviation (%) | | |----|-------------------|----------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|------|-----|------|------|-------|-----------------------------------------|-------|---------------|--| | 5/ | 16/2022 | 5/16/2024 | 1.038 | 1.7 | 1.75 | 2.82% | 1.12 | 1.15 | 3.05% | 52.7 | 51.4 | 1.3 | -1.5 | -5.6 | 4.1 | -30.4 | -24.3 | 19.90% | | | Object: | Date Issued: | Page 2 of 3 | |-------------------|--------------|-------------| | D750V3 – SN: 1057 | 05/16/2024 | Page 2 of 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 3 | |-------------------|--------------|-------------| | D750V3 – SN: 1057 | 05/16/2024 | rage 3 01 3 | ## Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Morgan Hill, USA Certificate No. D750V3-1097\_Sep23 ## CALIBRATION CERTIFICATE Object D750V3 - SN:1097 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: September 13, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | | | | | | Cap to the same of | | | | | | | Approved by: | Sven Kühn | Technical Manager | | | | | | | | | | | | Issued: September 14, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.27 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.38 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.8 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 74. W 17. M | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.67 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.71 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1097\_Sep23 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.2 Ω + 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.2 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.9 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29,2 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.038 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | | |-----------------------|--| Certificate No: D750V3-1097\_Sep23 #### **DASY5 Validation Report for Head TSL** Date: 13.09.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$ ; $\varepsilon_r = 42.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: • Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.61 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.35 W/kg Smallest distance from peaks to all points 3 dB below = 16.8 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 2.78 W/kg 0 dB = 2.78 W/kg = 4.44 dBW/kg Certificate No: D750V3-1097\_Sep23 # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 05.09.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1097 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$ ; $\varepsilon_r = 55.8$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.23, 10.23, 10.23) @ 750 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.05 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.43 W/kg Smallest distance from peaks to all points 3 dB below = 20.5 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 2.88 W/kg 0 dB = 2.88 W/kg = 4.60 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D835V2-4d108 Nov22 Accreditation No.: SCS 0108 1411DDATION OPPOSITION TO CALIBRATION CERTIFICATE Object D835V2 SN:4d108 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 12/6/20 Calibration date: November 18, 2022 ✓ YW 12/13/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm$ 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Delenant Ottt- | 1.5 " | | | |---------------------------------|--------------------|-----------------------------------|------------------------| | Primary Standards | [D# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 31-Aug-22 (No. DAE4-601_Aug22) | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | | | | | | | | Approved by: | Sven Kühn | Technical Manager | | | | | [2] | | Issued: November 18, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d108\_Nov22 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d108\_Nov22 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------| | Extrapolation | Advanced Extrapolation | Mandadaharan 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41,5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | ~~~ | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.80 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.34 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | No. on M on | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.76 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.41 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d108\_Nov22 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5 Ω - 2.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 31.8 dB | | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.1 Ω - 6.7 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 22.5 dB | | | #### **General Antenna Parameters and Design** | Fleetwie-LD-L ( disti) | 4.004 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.394 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| #### DASY5 Validation Report for Head TSL Date: 18.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.7$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 31.08.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.17 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.75 W/kg #### SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.6 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66% Maximum value of SAR (measured) = 3.31 W/kg 0 dB = 3.31 W/kg = 5.20 dBW/kg Certificate No: D835V2-4d108 Nov22 ## Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 18.11.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d108 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 55.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(9.85, 9.85, 9.85) @ 835 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 31.08.2022 Phantom: Flat Phantom 4.9 (Back); Type: OD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.04 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.11 dBW/kg ## Impedance Measurement Plot for Body TSL # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D835V2 – SN: 4d108 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: November 18, 2023 Description: SAR Validation Dipole at 835 MHz. ## Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/2/2023 | Annual | 6/12/2024 | MY40003841 | | Agilent | E4438C | ESG Vector Signal Generator | 4/25/2023 | Annual | 4/25/2024 | US41460739 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/19/2023 | Annual | 1/19/2024 | 106563 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 1/11/2023 | Annual | 1/11/2024 | 106564 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Ultra Long Stem Thermometer | 10/24/2023 | Annual | 10/24/2024 | 200645916 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/9/2023 | Annual | 5/9/2024 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 11/9/2023 | Annual | 11/9/2024 | 7639 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 11/14/2023 | Annual | 11/14/2024 | 1403 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|---------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 40 | | Approved By: | Greg Snyder | Executive VP of Operations | Sugge M. Syla | | Object: | Date Issued: | Page 1 of 3 | |--------------------|--------------|-------------| | D835V2 - SN: 4d108 | 11/18/2023 | rage rors | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibr<br>Da | ation Extension<br>e Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | Deviation 1g (%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>23.0 dBm | Deviation 10g (%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | | |--------------|---------------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|---| | 11/18 | 2022 11/18/2023 | 1.394 | 1.96 | 1.85 | -5.61% | 1.268 | 1.22 | -3.79% | 51.5 | 53.1 | 1.6 | -2.1 | 0.3 | 2.4 | -31.8 | -30.6 | 3.80% | 1 | | Object: | Date Issued: | Page 2 of 3 | | |--------------------|--------------|-------------|--| | D835V2 - SN: 4d108 | 11/18/2023 | rage 2 01 3 | | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 3 | |--------------------|--------------|-------------| | D835V2 – SN: 4d108 | 11/18/2023 | Page 3 of 3 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Accreditation No.: SCS 0108 Certificate No: D1750V2-1083 May 22 ## CALIBRATION CERTIFICATE Object D1750V2 - SN:1083 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 10, 2022 **Y**W 5/24/2023 YW 5/31/2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check; Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | | | | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | | | | | | JH44 | | | - And Commence of the | | 13m y | | Approved by: | Sven Kühn | Technical Manager | | | | | | | | *************************************** | | | | Issued: May 11, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | .,***** | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.44 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.99 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω - 0.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 42.3 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.5 Ω - 0.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.6 dB | ## **General Antenna Parameters and Design** | Floating Dalay (and discast and | | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.220 ns | | , (, | 1.220 113 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | 10000 | | |------------------|-------| | Manufactured by | CDEAG | | Wallulactured by | SPEAG | | | | ## **DASY5 Validation Report for Head TSL** Date: 10.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$ ; $\varepsilon_r = 38.9$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05,2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.79 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 10.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1083 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.44 \text{ S/m}$ ; $\varepsilon_r = 52.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.23 W/kg; SAR(10 g) = 4.99 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 56.9% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg # Impedance Measurement Plot for Body TSL # **Element Materials Technology** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D1750V2 – SN: 1083 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: May 10, 2023 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Description Cal Date | | | | |--------------------|---------------|-------------------------------------|----------------------|----------|------------|------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/14/2022 | Annual | 6/14/2023 | US39170118 | | Agilent | E4438C | ESG Vector Signal Generator | 11/17/2022 | Annual | 11/17/2023 | MY45093852 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Rohde & Schwarz | NRX | Power Meter | 1/11/2023 | Annual | 1/11/2024 | 102583 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106562 | | Rohde & Schwarz | NRP-Z81 | Wide Band Power Sensor | 5/19/2022 | Annual | 5/19/2023 | 106559 | | Traceable | 4040 90080-06 | Therm./ Clock/ Humidity Monitor | 5/11/2022 | Biennial | 5/11/2024 | 221514974 | | Control Company | 4353 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774685 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/15/2022 | Annual | 8/15/2023 | 1041 | | SPEAG | EX3DV4 | SAR Probe | 2/13/2023 | Annual | 2/13/2024 | 7427 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/15/2023 | Annual | 2/15/2024 | 1403 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|-------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer I | 10 | | Approved By: | Greg Snyder | Executive VP of Operations | Lugg M. Syl | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2023 | rage 1014 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Head (1g)<br>W/kg @ 20.0<br>dBm | Measured Head<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Head (10g)<br>W/kg @ 20.0<br>dBm | Measured Head<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Head<br>(Ohm) Real | Measured<br>Impedance Head<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Head<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation<br>(%) | PASS/FAIL | |---------------------|-------------------|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------|---------------------|------------------------------------------------------------|-----------------------------------------------|----------------------|---------------------------------------------|------------------------------------------|--------------------------|--------------------------------------------------|------|----------------------------------|-----------------------------------------|--------------------------------------|------------------|-----------| | 5/10/2022 | 5/10/2023 | 1.22 | 3.65 | 3.71 | 1.64% | 1.92 | 1.99 | 3.65% | 50.7 | 49.5 | 1.2 | -0.2 | -4.9 | 4.7 | -42.3 | -42.1 | 0.50% | PASS | | | | | | | | | | | | | | | | | | | | | | Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical Delay<br>(ns) | Certificate SAR<br>Target Body (1g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (1g) W/kg<br>@ 20.0 dBm | Deviation<br>1g (%) | Certificate SAR<br>Target Body (10g)<br>W/kg @ 20.0<br>dBm | Measured Body<br>SAR (10g) W/kg<br>@ 20.0 dBm | Deviation<br>10g (%) | Certificate<br>Impedance Body<br>(Ohm) Real | Measured<br>Impedance Body<br>(Ohm) Real | Difference<br>(Ohm) Real | Certificate<br>Impedance Body<br>(Ohm) Imaginary | | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Ketuin Loss | Deviation<br>(%) | PASS/FAIL | | 5/10/2022 | 5/10/2023 | 1.22 | 3.76 | 3.88 | 3.19% | 2.02 | 2.05 | 1.49% | 46.5 | 45.0 | 1.5 | -0.9 | -3.0 | 2.1 | -28.6 | -23.7 | 17.10% | PASS | | Object: | Date Issued: | Page 2 of 4 | | |--------------------|--------------|-------------|--| | D1750V2 – SN: 1083 | 05/10/2023 | Faye 2 01 4 | | # Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2023 | rage 5 or 4 | # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2023 | raye 4 or 4 | # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.408.538.5600 http://www.element.com # **Certification of Calibration** Object D1750V2 – SN: 1083 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: May 10, 2024 Description: SAR Validation Dipole at 1750 MHz. # Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|-------------------------------------|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Vector Network Analyzer | 6/2/2023 | Annual | 6/12/2024 | MY40003841 | | Agilent | E4438C | ESG Vector Signal Generator | 11/15/2023 | Annual | 11/15/2024 | MY45092078 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2496A | Power Meter | 6/15/2023 | Annual | 6/15/2024 | 1138001 | | Anritsu | MA24106A | USB Power Sensor | 4/15/2024 | Annual | 4/15/2025 | 2018527 | | Anritsu | MA24106A | USB Power Sensor | 4/15/2024 | Annual | 4/15/2025 | 1827528 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 4/15/2024 | Biennial | 4/15/2026 | 240310282 | | Control Company | 4353 | Ultra Long Stem Thermometer | 10/24/2023 | Annual | 10/24/2024 | 200645916 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 7/18/2023 | Annual | 7/18/2024 | MY53402352 | | Mini-Circuits | VLF-6000+ | Low Pass Filter DC to 6000 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Mini-Circuits | ZHDC-16-63-S+ | 50-6000MHz Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 12/5/2022 | Biennial | 12/5/2024 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2023 | Annual | 9/11/2024 | 1045 | | SPEAG | EX3DV4 | SAR Probe | 3/11/2024 | Annual | 3/11/2025 | 7421 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/6/2024 | Annual | 3/6/2025 | 604 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|----------------------------|------------| | Calibrated By: | Arturo Oliveros | Compliance Engineer | 46 | | Approved By: | Greg Snyder | Executive VP of Operations | LuggellSol | | Object: | Date Issued: | Page 1 of 3 | |--------------------|--------------|-------------| | D1750V2 – SN: 1083 | 05/10/2024 | rage rors | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than $5\Omega$ from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration<br>Date | Extension Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g (%) | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g (%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | | | | Impedance | (Ohm) | Certificate<br>Return Loss<br>Head (dB) | | Deviation (%) | | |---------------------|----------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|------|---|------|-----------|-------|-----------------------------------------|-------|---------------|---| | 5/10/2022 | 5/10/2024 | 1.22 | 3.65 | 3.82 | 4.66% | 1.92 | 2.03 | 5.73% | 50.7 | 48.7 | 2 | -0.2 | -4.8 | 4.6 | -42.3 | -38.3 | 9.40% | ı | | Object: | Date Issued: | Page 2 of 3 | |--------------------|--------------|-------------| | D1750V2 - SN: 1083 | 05/10/2024 | rage 2 or 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL CENTER 1 750.000 000 MHz | Object: | Date Issued: | Page 3 of 3 | | |--------------------|--------------|-------------|--| | D1750V2 – SN: 1083 | 05/10/2024 | rage 3 01 3 | | SPAN 400.000 000 MHz # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Morgan Hill, USA Certificate No. D1750V2-1104\_Sep23 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1104 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 9/28/2023 Calibration date: September 06, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature ( $22 \pm 3$ )°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Jan-24<br>Dec-23 | | · | ' | 10 Dec 22 (110. B)(24 001_Bec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | 1 = 1 = 2 1 1 2 2 1 1 1 | or war-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | 0' | | Calibrated by: | Jeffrey Katzman | and the analysis of the control t | Signature | | , | | Laboratory Technician | | | | | international experimental files and the control of | | | Approved by: | Sveл Kühn | With the control of t | | | 1,1, | G. C. L. | Technical Manager | | Issued: September 8, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1104\_Sep23 Page 1 of 8 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1104\_Sep23 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.77 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 35.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.65 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.8 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.0 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1104\_Sep23 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 35.5 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.4 Ω - 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 4.040 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | The distriction of districti | 1.216 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | ufactured by | | |--------------|---------------------------------------| | ufactured by | SPEAG | | | J J J J J J J J J J J J J J J J J J J | Certificate No: D1750V2-1104\_Sep23 #### **DASY5 Validation Report for Head TSL** Date: 01.09.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$ ; $\varepsilon_r = 40.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 8.77 W/kg; SAR(10 g) = 4.65 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.9% Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 06.09.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1104 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$ ; $\varepsilon_r = 54$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.8 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.3 W/kg SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.91 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 57.4% Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg # Impedance Measurement Plot for Body TSL