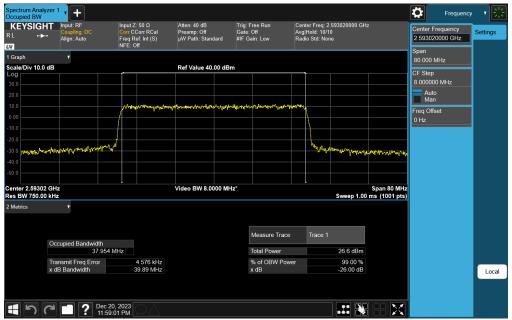

Plot 7-109. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 64-QAM - Full RB)


Plot 7-110. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 256-QAM - Full RB)

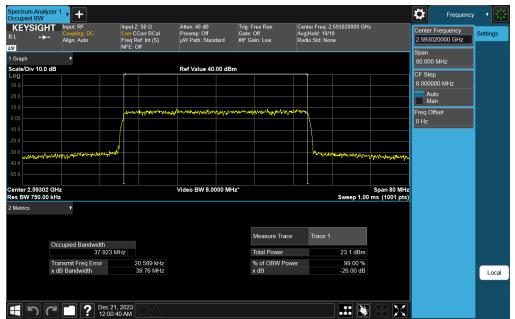
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 72 of 550	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 72 of 559	
	•		V2.2 09/07/2023	

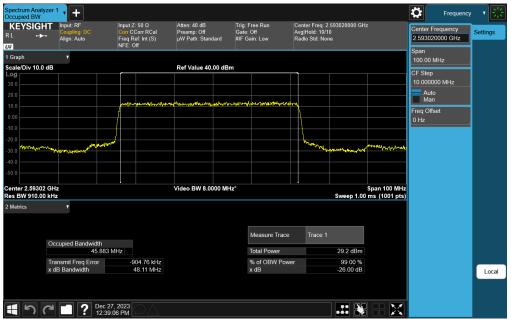
Plot 7-111. Occupied Bandwidth Plot (NR Band n41 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-112. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 73 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage / 3 01 559	
			1/2 2 09/07/2023	

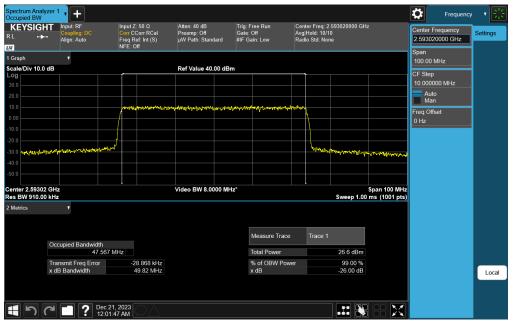
KEYSIGH ≀L •►• ⊠	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Stan	G	ig: Free Run ate: Off F Gain: Low	Avg	ter Freq: 2 Hold: 10/1 lio Std: Nor			Center Frequency 2.593020000 GHz	Settings
Graph		I								Span 80.000 MHz	
cale/Div 10.0	iB		Ref Value 40	.00 dBm						CF Step	
og 0.0										8.000000 MHz	
0.0										Auto	
		manuar	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	With Carlowberg	***	more				Man	
							\			Freq Offset 0 Hz	
							\			0112	
0.0 manufe	have purchasting and and	w/*					Nyny	all wanter	frankrawy.		
enter 2.59302	GHz		Video BW 8.0	000 MHz*					Span 80 MHz		
es BW 750.00	kHz							Sweep 1.00	ms (1001 pts)		
Metrics	•										
					Measure Tra	ce	Trace 1				
	Occupied Bandwidth 37.927	7 1411-			Total Power			26.6 dBm			
	Transmit Freq Error	-54,106 kHz			% of OBW P	ower		20.0 dBm 99.00 %			
		39.89 MHz			x dB	owei		-26.00 dB			Loca
	x dB Bandwidth	00.00 1111 12									
	x dB Bandwidth	00.00 111 12									


Plot 7-113. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 16-QAM - Full RB)


Plot 7-114. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 74 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 74 01 559	
			\/2 2 09/07/2023	

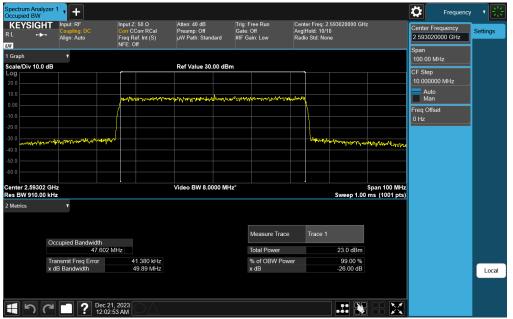
Plot 7-115. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 256-QAM - Full RB)


Plot 7-116. Occupied Bandwidth Plot (NR Band n41 - 50MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 75 01 559
			\/2 2 09/07/2023

KEYSIG⊦ ⊥ ↔ 1	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Stan	Gat	: Free Run e: Off Gain: Low	Avg	ter Freq: 2 Hold: 10/1 io Std: Nor			Center Frequency 2.593020000 GHz Span	Settings
Graph										Span 100.00 MHz	
cale/Div 10.0	dB		Ref Value 40	.00 dBm						CF Step 10.000000 MHz	1
										Auto	
		population	hyperational and the second of	and the second	A Washington Martinet Martin	And				Man Freq Offset	
00							1			0 Hz	
.0.0											
0.0 	manunan	yw ⁴					www	and the second second	hite was hered		
0.0											
enter 2.59302	2 GHz		Video BW 8.0	000 MHz*					Span 100 MHz		
es BW 910.00									ms (1001 pts)		
Metrics	Y										
					Measure Trace	5	Trace 1				
	Occupied Bandwidth 47.729	9 MHz			Total Power			26.5 dBm			
	Transmit Freq Error	4.079 kHz 49.91 MHz			% of OBW Pov x dB	ver		99.00 % -26.00 dB			
	v dB Bandwidth							-20.00 dD			Loca
	x dB Bandwidth	10.01 11112									

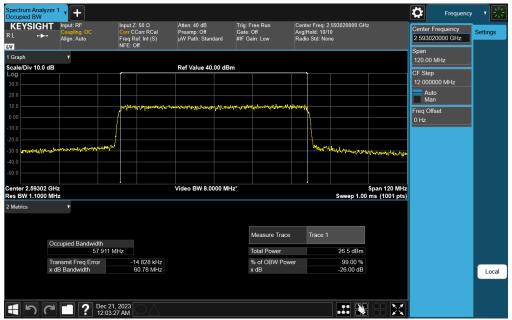
Plot 7-117. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM QPSK - Full RB)


Plot 7-118. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 70 01 559
		-	V2 2 09/07/2023

KEYSIGH ≀L •►• ⊠	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Stand	G	rig: Free Run iate: Off IF Gain: Low	Avgl	ter Freq: 2 Hold: 10/1 io Std: Nor	.593020000 GH 0 ne		Center Frequency 2.593020000 GHz	Settings
Graph	•									Span 100.00 MHz	
cale/Div 10.0 o	lВ		Ref Value 40.	00 dBm						CF Step	-
0 9										10.000000 MHz	
0.0										Auto	
		when we have the second	Contratute and an at the	notettaa Maah i	hergen and states and the	and the second				Man	
			A second time building and	1			\			Freq Offset 0 Hz	
							\			0112	
0.0 where the bar	man and a sender on a the	u∀					Writes	aller have been	and the state of the		
0.0											
enter 2.59302 es BW 910.00			Video BW 8.00	000 MHz*					Span 100 MHz ms (1001 pts)		
Metrics	T T							Sweep 1.00	nis (1001 pts)		
					Measure Tra	ce	Trace 1				
	Occupied Bandwidth 47.644	MUZ			Total Power			26.0 dBm			
	Transmit Freq Error	-26.674 kHz			% of OBW P	wer		99.00 %			
	x dB Bandwidth	49.93 MHz			x dB			-26.00 dB			Loca


Plot 7-119. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 64-QAM - Full RB)

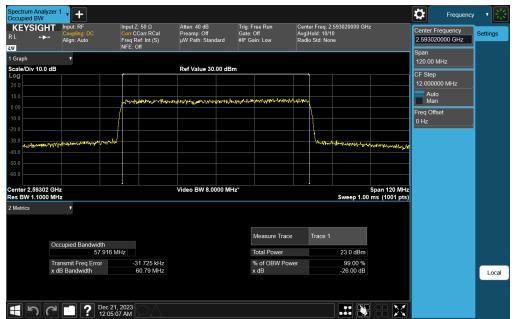

Plot 7-120. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 256-QAM - Full RB)

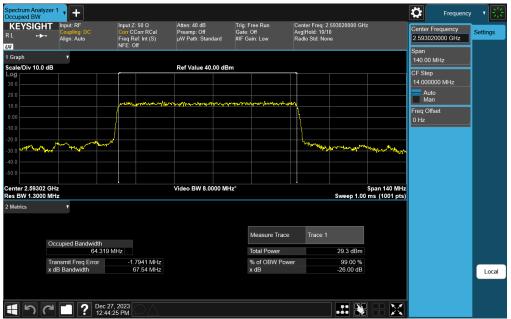
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 77 01 559
			\/2 2 09/07/2023

Plot 7-121. Occupied Bandwidth Plot (NR Band n41 - 60MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-122. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM QPSK - Full RB)

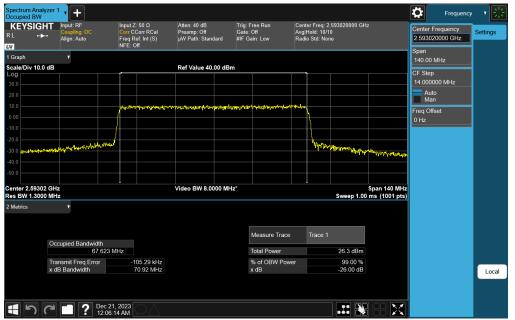
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Faye 10 01 559	
			1/2 2 09/07/2023	


Plot 7-123. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 16-QAM - Full RB)

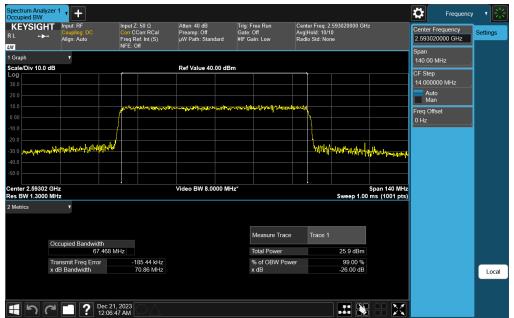

Plot 7-124. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 79 01 559
		-	V2 2 09/07/2023

Plot 7-125. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 256-QAM - Full RB)


Plot 7-126. Occupied Bandwidth Plot (NR Band n41 - 70MHz DFT-s-OFDM π/2 BPSK - Full RB)

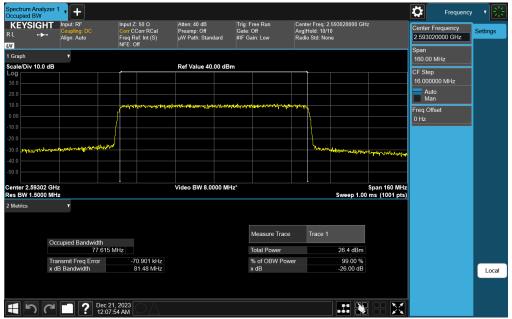
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 80 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 60 01 559
			1/2 2 09/07/2023


Plot 7-127. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM QPSK - Full RB)

Plot 7-128. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 16-QAM - Full RB)

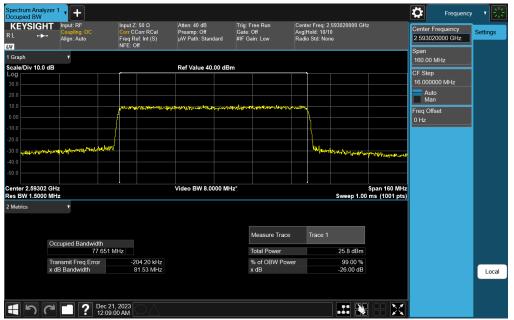
FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage of 01 559
			1/2 2 09/07/2023

Plot 7-129. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 64-QAM - Full RB)


Plot 7-130. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 256-QAM - Full RB)

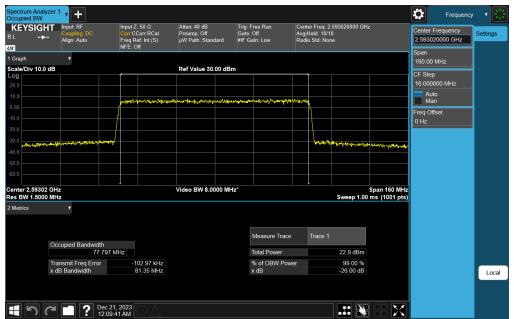
FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 62 01 559
			1/2 2 09/07/2023

Plot 7-131. Occupied Bandwidth Plot (NR Band n41 - 80MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-132. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 83 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 65 01 559
			1/2 2 09/07/2023

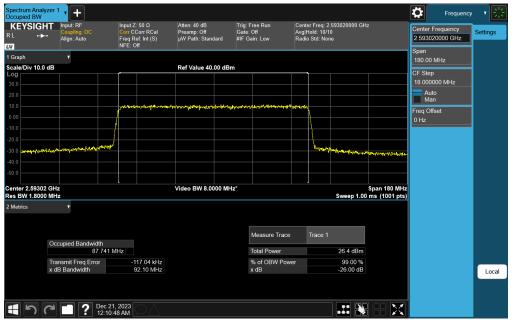
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg H	r Freq: 2. old: 10/10 Std: Non			Center Frequency 2.593020000 GHz	Settings
a	, agn. , tato	NFE: Off	pro r aut. Otaniaara	an oun con					Span	
Graph	•								Span 160.00 MHz	
cale/Div 10.0 dB	3		Ref Value 30.00 dB	m					CF Step	
og 20.0									16.000000 MHz	
0.0									Auto	
).00		and the second sec	and a state from the state of the state	er (herbandur ander det geste de de la	- And and	\			Man	
0.0									Freq Offset	
20.0									0 Hz	
30.0	and the second second	<i></i>				ant way				
10.0							aan ahadan kaka			
50.0										
60.0										
enter 2.59302 G es BW 1.5000 M			Video BW 8.0000 MH	iz*				Span 160 MHz ms (1001 pts)		
Metrics								(
				Measure Trace	e	Trace 1				
	Securical Rendwidth									
C	Occupied Bandwidth 77.547	MHz		Total Power			26.3 dBm			
Т	77.547 ransmit Freq Error	-100.17 kHz		% of OBW Pov	ver		99.00 %			
Т	77.547				ver					Loca
Т	77.547 ransmit Freq Error	-100.17 kHz		% of OBW Pov	wer		99.00 %			Loca


Plot 7-133. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 16-QAM - Full RB)

Plot 7-134. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 64 01 559
		-	V2 2 09/07/2023

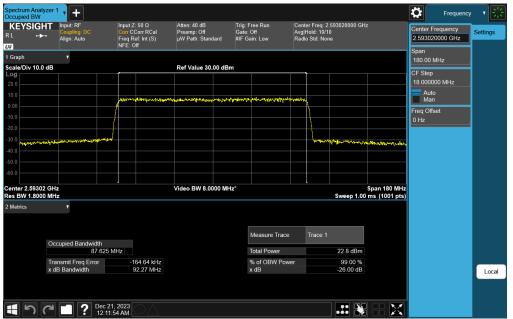
Plot 7-135. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 256-QAM - Full RB)


Plot 7-136. Occupied Bandwidth Plot (NR Band n41 - 90MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 85 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 65 01 559
			1/2 2 09/07/2023

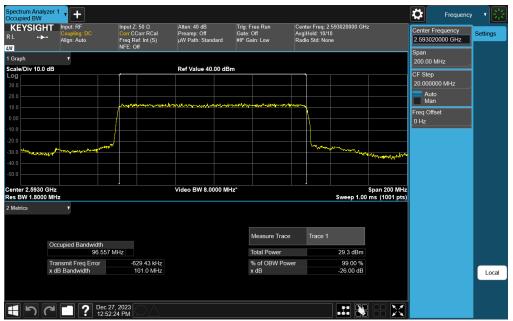
KEYSIGH1 ≯- I	Input: RF Coupling: DC Align: Auto	Input Z: 50 Corr CCorr Freq Ref: Ir NFE: Off	RCal I	Atten: 40 dB Preamp: Off uW Path: Stand		Trig: Free Run Gate: Off ≇IF Gain: Low	Avgit	er Freq: 2 Hold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz Span	Settings
Graph											180.00 MHz	
ale/Div 10.0 d	8			Ref Value 40.	00 dBm						CF Step	1
											18.000000 MHz	
											Auto Man	
		personal strang	attern the second	dy many directed day	Warner Mark	Here so white the second second	andre front				Freq Offset	1
											0 Hz	
	- A Long Annual Manual Manual	~						Manual				
.0	and the second								Wet want	with the constraint of a		
.0												
								ļ				
nter 2.59302 0 s BW 1.8000 M			v	ideo BW 8.00	000 MHz*					Span 180 MHz ms (1001 pts)		
letrics	v									,		
						Measure Trac		Trace 1				
(Occupied Bandwidth					measure frac	æ	Trace T				
		3 MHz				Total Power			26.4 dBm			
	Fransmit Freq Error dB Bandwidth		10 kHz 4 MHz			% of OBW Pc x dB	wer		99.00 % -26.00 dB			
		92.1				Xub			-20.00 UB			Loca

Plot 7-137. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM QPSK - Full RB)


Plot 7-138. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 60 01 559
			1/2 2 09/07/2023

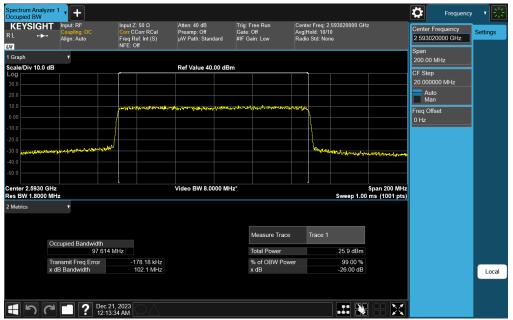
Graph	•		Ref Value 40.	00 dBm						Span	
og 0.0 0.0 0.0 0.0			Ref Value 40.	00 dBm						180.00 MHz	
										CF Step 18.000000 MHz	
										Auto	
		partererented	harden gewannen alle ander al	-angentingle grades	- Alexandre and a second second second	1.41.41-1.01				Man Freq Offset	
										0 Hz	
0.0											
0.0 olynangen generalen her	and a second and a second						horas	Harlaman Carlynon	and the second second		
0.0											
enter 2.59302 GHz			Video BW 8.00	00 MH+*					Span 180 MHz		
es BW 1.8000 MHz			11420 511 0.00						ms (1001 pts)		
Metrics	•										
					Measure Trace	:	Trace 1				
Occup	pied Bandwidth 87.634 N	1Hz			Total Power			25.9 dBm			
	mit Freq Error Bandwidth	-158.22 kHz 92.04 MHz			% of OBW Pow x dB	/er		99.00 % -26.00 dB			Loca
											LOCA


Plot 7-139. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 64-QAM - Full RB)

Plot 7-140. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 256-QAM - Full RB)

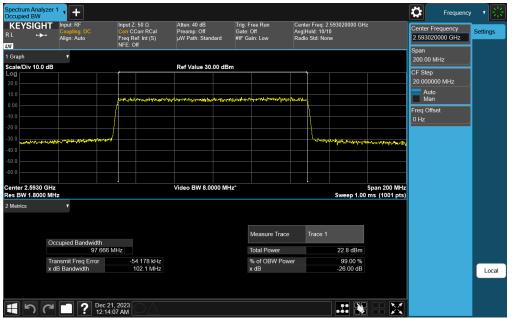
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 67 01 559
			1/2 2 09/07/2023

Plot 7-141. Occupied Bandwidth Plot (NR Band n41 - 100MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-142. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 88 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 66 01 559
			V2 2 09/07/2023

KEYSIGHT →→·	Input: RF Coupling: DC Align: Auto			Corr RCal ef: Int (S)	Atten: 40 dB Preamp: Off µW Path: Stan		Trig: Free Run Gate: Off #IF Gain: Low	Avg F	er Freq: 2 Hold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz Span	Settings
Graph ale/Div 10.0 dB	۳				D-61/-1 00	00 JD						200.00 MHz	
g					Ref Value 30	00 dBm						CF Step 20.000000 MHz	
				and a construction of the		yar-piterist	Marthdrow of the start of the s	happened				Auto Man	
0												Freq Offset 0 Hz	
	the second se	andred							und and			0 HZ	
0	and and the second s									hadren of the loss have been been been been been been been be	-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
0													
nter 2.5930 GHz					Video BW 8.0	000 MHz					Span 200 MHz		
s BW 1.8000 MH letrics	T T									Sweep 1.00	ms (1001 pts)		
_							Measure Trac	e	Trace 1				
00	cupied Bandwid 97	tn .750 MH	Ηz				Total Power			26.3 dBm			
	ansmit Freq Erro B Bandwidth	r		97.41 kHz 102.3 MHz			% of OBW Po x dB	wer		99.00 % -26.00 dB			Loca


Plot 7-143. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 16-QAM - Full RB)

Plot 7-144. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element)	element PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 69 01 559
		·	V2.2 09/07/2023

Plot 7-145. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	4/1/2024 Tablet Device	
			1/2 2 00/07/2022

ULCA - LTE Band 7

Keysight Spectrum Analyzer - Occupied B	W				
LXX RL RF 50Ω AC	Trig	SENSE:INT ter Freq: 2.545000000 GHz g: Free Run Avg Hol ten: 36 dB	Radio St d: 100/100	PM Nov 29, 2023 d: None evice: BTS	Trace/Detector
10 dB/div Ref 40.00 dB	n				
30.0 20.0 10.0	tome name durate	mut here we	we Mrle		Clear Write
0.00 -10.0 -20.0					Average
-30.0 -40.0 -50.0					Max Hold
Center 2.545 GHz #Res BW 470 kHz		VBW 5 MHz	Sw	an 75 MHz reep 1 ms	Min Hold
Occupied Bandwid	th 7.536 MHz	Total Power	32.9 dBm		Detector Peak
Transmit Freq Error	-98.704 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Mar</u>
x dB Bandwidth	39.74 MHz	x dB	-26.00 dB		
MSG			STATUS		
	1 0 1 1 1/1	Dist /I TE Dam	1 7 (00 00)		

Plot 7-146. Occupied Bandwidth Plot (LTE Band 7 – (20+20)MHz QPSK - Full RB)

Plot 7-147. Occupied Bandwidth Plot (LTE Band 7 – (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 91 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 91 01 559	
			V2.2 09/07/2023	

Plot 7-148. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 64-QAM - Full RB)

Plot 7-149. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 256-QAM - Full RB)


FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 550	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 92 of 559	
	•	·	V2.2 09/07/2023	

ULCA - LTE Band 41

Plot 7-150. Occupied Bandwidth Plot (LTE Band 41 – (20+20)MHz QPSK - Full RB)


Plot 7-151. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 35 01 553
	•	·	V2.2 09/07/2023

Plot 7-152. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 64-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (LTE Band 41 – (20+20)MHz 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 04 of 550	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 94 of 559	
	•	·	V2.2 09/07/2023	

7.3 Spurious and Harmonic Emissions at Antenna Terminal

§2.1051, §27.53(a), §27.53(m)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

For Band 30, the minimum permissible attenuation level of any spurious emission <2288MHz and >2365MHz is 70 + 10 log10(P[Watts]).

For LTE Bands 7, 41, and NR FR1 Band n41 the minimum permissible, n41 the minimum permissible attenuation level of any spurious emission is 55 + 10log₁₀(P_[Watts]).

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

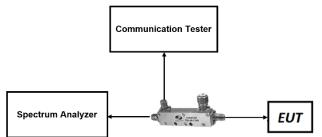


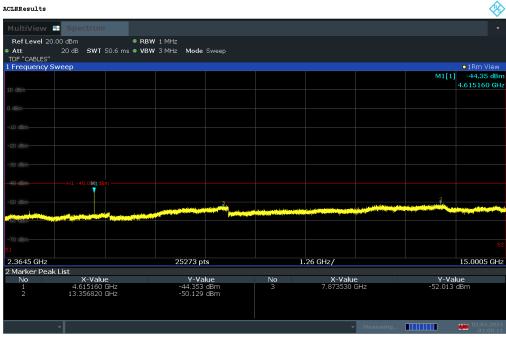
Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 35 01 553
			1/2 2 00/07/2022

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 3. Uplink carrier aggregation for LTE Band 7 is only supported in this EUT while operating in Power Class 3.
- 4. Uplink carrier aggregation for LTE Band 41 is supported in this EUT while operating in Power Class 2 and Power Class 3.
- 5. Uplink carrier aggregation intra-band conducted spurious emissions were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device. The worst case (highest) powers were found while operating with QPSK modulation, as shown in the tables below, with both carriers set to transmit using 1RB.
- 6. Uplink carrier aggregation inter-band emission was investigated and found to not be the worst case.

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 96 01 559
			V0.0.00/07/0000



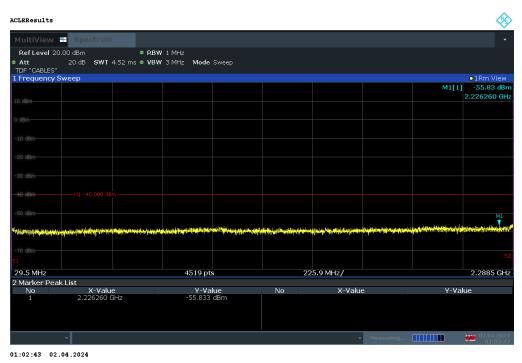
LTE Band 30

ACLRResults									
MultiView	- Spectrum								
Ref Level 20			/ 1 MHz						
 Att 			'3 MHz Mode	Sweep					
TDF "CABLES"									
1 Frequency S	Sweep			1	1				01Rm View
								M1[1]	-55.51 dBm 2.233760 GHz
									2,233700 0H2
-10 dBm									
									M1
abitu kan tala cam	***	وروبة المعارية والمعار ومعرفهم	محماسين أساميش مرجد الد	المحقق والمعادية والفاقية	فيؤم والمطابقة المتخلفات ومتعاقده وم	والمتعادية والمتعادية والمتعادية المتعاد	al an statistic and a shareh	المعادية فالمعادية الماعات المعادية	البتدرية ومقيده ويتحدي والمحاصر هريتاط
	the states in the second states with			أحداد المراجع بالراها والأكالية	and and a second second second	and the second second second			
-70 dBm									
29.5 MHz			4519 pt			25.9 MHz/			2.2885 GHz
29.5 MHZ 2 Marker Pea	ak Liet		4519 pt	5	2	23.9 МП2/			2.2003 GHZ
No No	X-Valu	e	Y-Va		No	X-Valu	e	Y-Va	lue
1	2.233760 0	GHz	-55.506	dBm					
									01.04.303.5
	*					~	Measuring		<pre>01.04.2024 23:49:55</pre>

23:49:56 01.04.2024

Plot 7-154. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

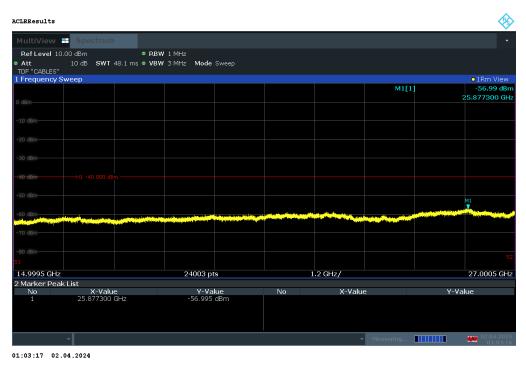
01:00:12 02.04.2024


Plot 7-155. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 97 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 97 01 559	
			V2.2 09/07/2023	

\Diamond ACLRResults MultiView 🛨 Att 10 d TDF "CABLES" I Frequency Sweep 10 dB SWT 48.1 ms • VBW 3 MHz Mode Sweep 01Rm View -56.60 dB 25.847800 GHz M1 14.9995 GHz 24003 pts 1.2 GHz/ 27.0005 GHz 2 Marker Peak List No X-Value 25.847800 GHz Y-Value -56.602 dBm No 2 X-Value 22.665930 GHz Y-Value -58.698 dBm 01:00:29 02.04.2024

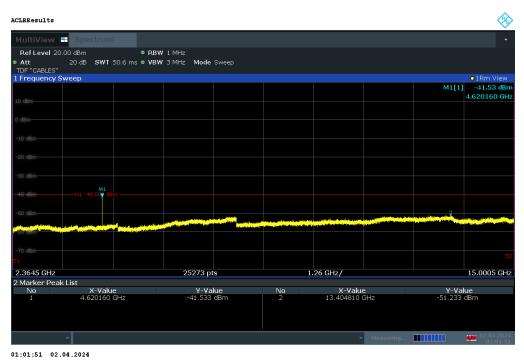
Plot 7-156. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-157. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 559	
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 90 01 559	
			\/2 2 09/07/2023	

\Diamond ACLRResults MultiView 🛨 Att 20 d TDF "CABLES" I Frequency Sweep 20 dB SWT 50.6 ms = VBW 3 MHz Mode Sweep 01Rm View -42.75 dBm 4.625160 GHz 25273 pts 2.3645 GHz 1.26 GHz/ 15.0005 GHz 2 Marker Peak List X-Value 4.625160 GHz 13.271820 GHz Y-Value -42.748 dBm -50.985 dBm No No X-Value 7.977030 GHz Y-Value -51.711 dBm 01:03:00 02.04.2024

Plot 7-158. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – High Channel)


Plot 7-159. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 99 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 99 01 559
	•	·	V2.2 09/07/2023

\Diamond ACLRResults MultiView 🛨 Att 20 dB SWT 4.52 ms • VBW 3 MHz Mode Sweep TDF "CABLES" I Frequency Sweep 01Rm View -55.79 dBm 2.281750 GHz 29.5 MHz 4519 pts 225.9 MHz/ 2.2885 GHz 2 Marker Peak List Y-Value No X-Value 2.281750 GHz Y-Value -55.791 dBm No X-Value 01:01:34 02.04.2024

Plot 7-160. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

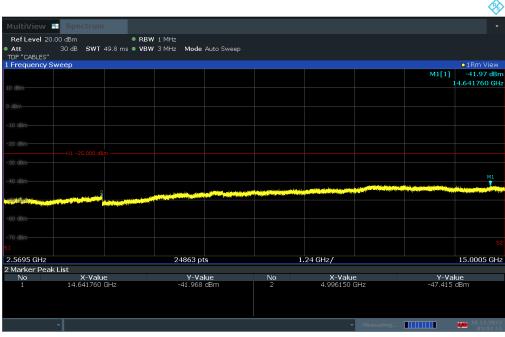
Plot 7-161. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 100 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 100 01 559
			V2.2 09/07/2023

ACLRResults MultiView 💻 00 dBm • RBW 1 MHz 10 dB SWT 48.1 ms • VBW 3 MHz Mode Sweep Att 10 df TDF "CABLES" I Frequency Sweep o1Rm View M1[1] -56.83 dBr 25.847800 GHz M1 14.9995 GHz 24003 pts 1.2 GHz/ 27.0005 GHz 2 Marker Peak List No No X-Value Y-Value X-Value 25.847800 GHz Y-Value -56.828 dBm •••• 01:02:09 02.04.2024

Plot 7-162. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 101 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 101 01 559
			1/2 2 00/07/2022



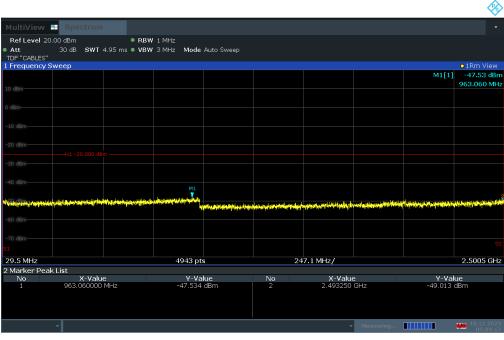
LTE Band 7

									
	Spectrum								
Ref Level 20	0.00 dBm	● RBW	1 MHz						
Att	30 dB SWT -	4.9 ms 🗢 VBW	3 MHz Mode A	Auto Sweep					
TDF "CABLES" 1 Frequency S	Sween								•1Rm View
r rrequency a	змеер							M1[1]	
									899.570 MH
0 dBm									
-40 dBm									
			M1						
60 dBm	an alar yang dina malari di sada	ويعترفوا فأفر والمترجع والمترجع	and an and still be brought in						and a second second second
in the second second second	and the second state of th	A long to a local sector of the day of the		ef filhedete tide filmeitens pie	un and the second s	and the support of the second	aller for earlier free week and all a	nen fineleseteren isteret	
29.5 MHz			4893 pt	s	24	4.6 MHz/			2.4755 GH
2 Marker Pea									
No 1	X-Value 899,570000		Y-Va -47.218		No 2	X-Value 2.469750		Y-Val -49,068	dBm
	099.070000	1911-12	-47.218	abin		2,409730	0112	49,000	aom
	•					~	Measuring		18.12.2023
									05:07:37

05:07:38 18.12.2023

Plot 7-163. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

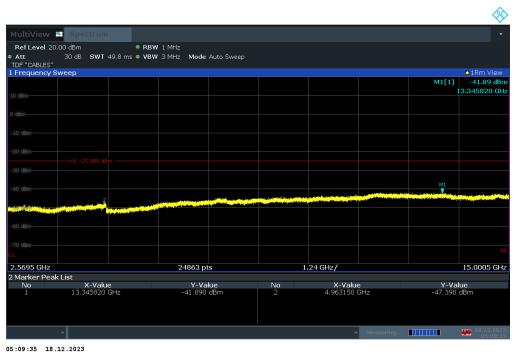
05:07:56 18.12.2023


Plot 7-164. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

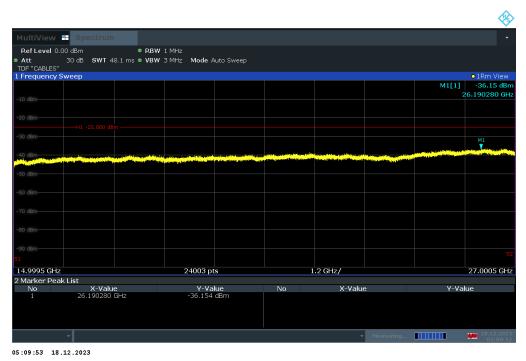
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 102 01 559
			V2.2 09/07/2023

MultiView	Spectrum							•
RefLevel	0.00 dBm	• RBW 1 MHz						
Att		• VBW 3 MHz Mode	Auto Sweep					
TDF "CABLES								
1 Frequency	/ Sweep					1		• 1Rm View -35.99 dBm
							M1[1]	-35.99 dBm 26.785760 GHz
-10 dBm								20.783700 0H2
-20 dBm								
-30 dBm								M1
							والمراجعة المارجين والمراجع والمراجع	
-40 dBm							and the second state of th	
-50 dBm								
-50 upm-								
-60 dBm								
oo abiii								
-70 dBm-								
-80 dBm								
-90 dBm								
S1								
14.9995 GF	7	24003	hte		1.2 GHz/			27.0005 GHz
2 Marker Pe		21000						
No	X-Value	Y-V	alue	No	X-Valu	e	Y-Va	lue
1	26.785760 GHz	-35.98	7 dBm					
								18.12.2023 05:08:13
05:08:13 1	8.12.2023							

Plot 7-165. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)



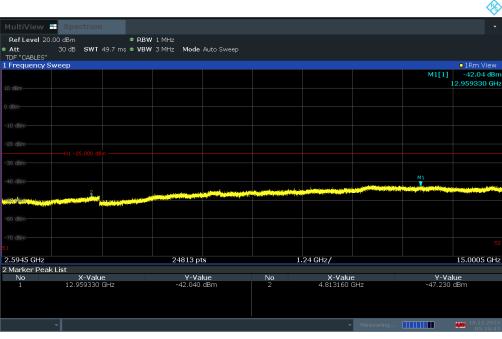
05:09:18 18.12.2023


Plot 7-166. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 103 01 339
			1/2 2 00/07/2022

Plot 7-167. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-168. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 104 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 104 01 559
			V2.2 09/07/2023

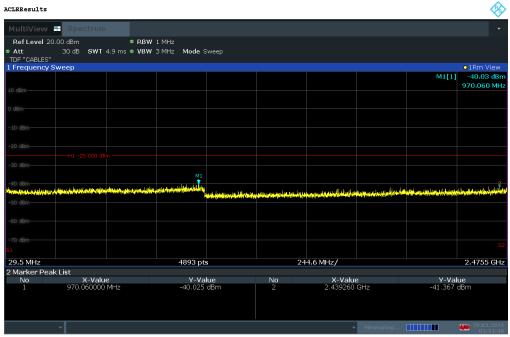
MultiView 🖶 Spectrum				•
Ref Level 20.00 dBm • RBW	1 MHz			
● Att 30 dB SWT 4.95 ms ● VBW	3 MHz Mode Auto Sweep			
TDF "CABLES"				
1 Frequency Sweep				• 1Rm View M1[1] -47.67 dBm
				M1[1] -47.67 dBm 962.060 MHz
10 dBm				902.000 MH2
0 dBm				
-10 dBm-				
-20 dBm				
-20 0Bm				
-30 dBm-				
-40 dBm-				
	M1			
ter fillet af fille andere andere angever op beter de	and an a state of the second sec	It is stered attack to a	to a to a first state and some and some state that the state of the	in a first state of the second se
			and a set of the local set of the	the same state of the
-60 dBm-				
-70 dBm-				
51				
29.5 MHz	4943 pts	24	7.1 MHz/	2.5005 GHz
2 Marker Peak List				
No X-Value 1 962.060000 MHz	Y-Value -47.667 dBm	No 2	X-Value 2.486750 GHz	Y-Value -48.488 dBm
1 902.000000 MH2	-47.007 dBill		2.400730 GH2	-40.466 UBIII
				₩ 18.12.2023
			meusungn	05:10:25

05:10:26 18.12.2023

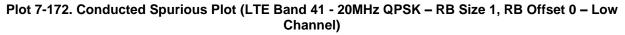
05:10:43 18.12.2023

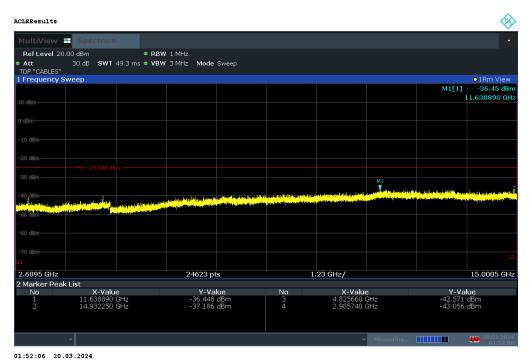
Plot 7-170. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 105 01 559
			V2.2 09/07/2023


							~
Ref Level 0.00		W 1 MHz					•
		W 3 MHz Mode Auto Sweep					
TDF "CABLES"	50 GD - 500 - 40.1 m3 - 40	in Shine Mode Add Sweep					
l Frequency Sw	/eep						O1Rm View
						M1[1]	
							26.257780 GH
						to an a state of the line of t	
-40 dBm		h final a salahan kaling binang mang san likin karang salih karang bini k			No. of Concession, Name	A STREET OF ALL STREET OF ALL STREET	A REAL OF STREET, AND A REAL PROPERTY OF STREET, AND A REAL PROPERTY OF STREET, AND A REAL PROPERTY OF STREET,
Manager and and a state of a stat							
-60 dBm							
-70 dBm							
14.9995 GHz		24003 pts		1.2 GHz/			27.0005 GH
2 Marker Peak I							
No	X-Value	Y-Value	No	X-Value		Y-Va	alue
	26.257780 GHz	-36.367 dBm					
					Measuring		18.12.202
				*	measuring		05:11:0
5:11:01 18.1	2 2023						

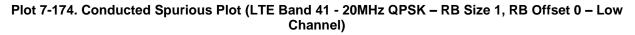
Plot 7-171. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

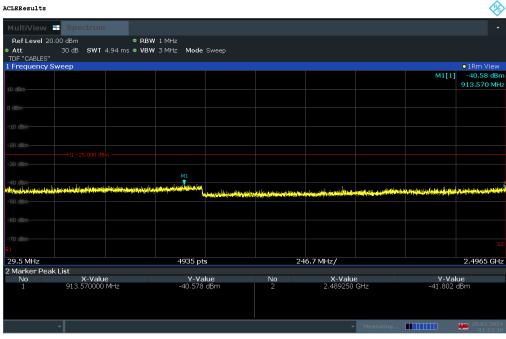

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 100 01 559
			1/2 2 00/07/2023



LTE Band 41

01:51:48 20.03.2024

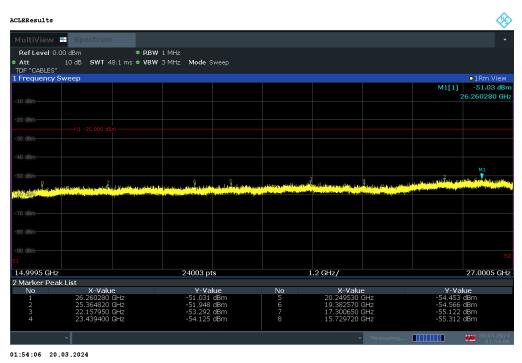



Plot 7-173. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2926	element 🤤	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 107 01 559
			V2.2 09/07/2023

\Diamond ACLRResults MultiView 🛨 ReTLEvel 0.00 dBm RBW 1 MHz Att 10 dB SWT 43.1 ms VBW 3 MHz Mode Sweep TDF "CABLES" I Frequency Sweep -51.50 dB 26.050290 GH M1 . 8 24003 pts 14.9995 GHz 1.2 GHz/ 27.0005 GHz 2 Marker Peak List X-Value 17.345150 GHz 18.358610 GHz 17.900630 GHz No X-Value Y-Value No Y-Value -51.498 dBm -53.531 dBm -53.934 dBm 4506 22.627930 GHz 20.467020 GHz 801 dBm 979 dBm 01:52:24 20.03.2024

01:53:31 20.03.2024


Plot 7-175. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 108 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
			V2.2 09/07/2023

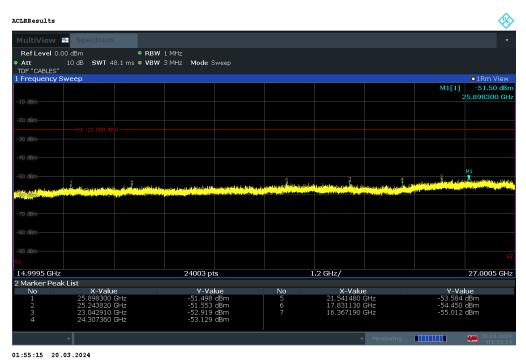
\Diamond ACLRResults MultiView 🛨 Att 30 d TDF "CABLES" I Frequency Sweep 30 dB SWT 49.3 ms • VBW 3 MHz Mode Sweep -36.07 dB 11.693880 GH M1 يالد أن 2.6895 GHz 24623 pts 1.23 GHz/ 15.0005 GHz 2 Marker Peak List No X-Value 693880 GHz Y-Value No X-Value Y-Value -36.069 dBm -37.549 dBm -37.685 dBm 5.186650 GHz 4.710670 GHz 3.058740 GHz 4506 10.286440 GHz 9.717460 GHz 41 717 dBm 405 dBm 01:53:48 20.03.2024

Plot 7-176. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-177. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

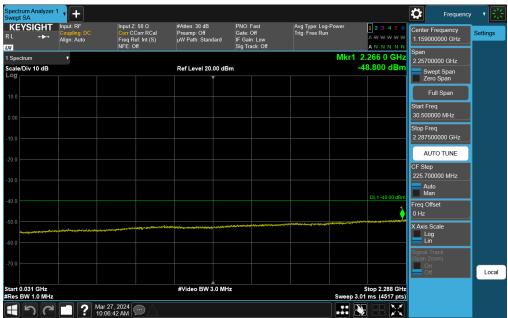
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 109 01 559
			1/2 2 09/07/2023

\Diamond ACLRResults MultiView 🛨 Att 30 d TDF "CABLES" I Frequency Sweep 30 dB SWT 4.94 ms • VBW 3 MHz Mode Sweep 01Rm View M1[1] -40.00 dBm 817.590 MHz 29.5 MHz 4935 pts 246.7 MHz/ 2.4965 GHz 2 Marker Peak List No X-Value 817.590000 MHz Y-Value -40.001 dBm No X-Value 2.494250 GHz Y-Value -40.465 dBm 01:54:39 20.03.2024


Plot 7-178. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-179. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

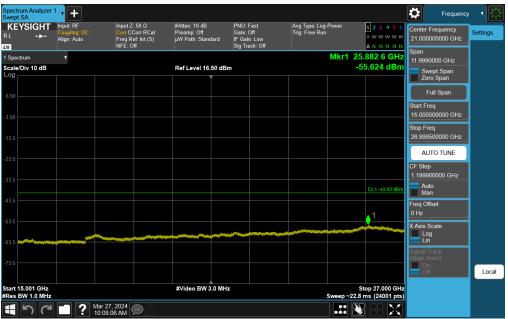
FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
			V2.2 09/07/2023



Plot 7-180. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 111 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
	•	·	V2.2 09/07/2023

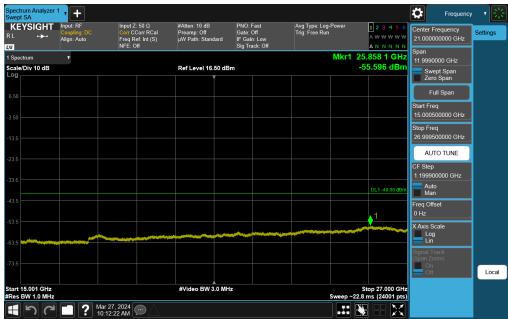
NR Band n30


Plot 7-181. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

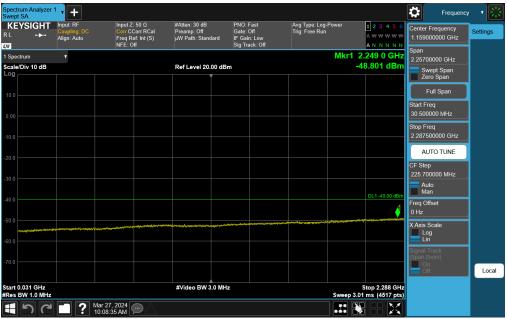
Plot 7-182. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 112 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
	<u>.</u>		V2.2 09/07/2023

Plot 7-183. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

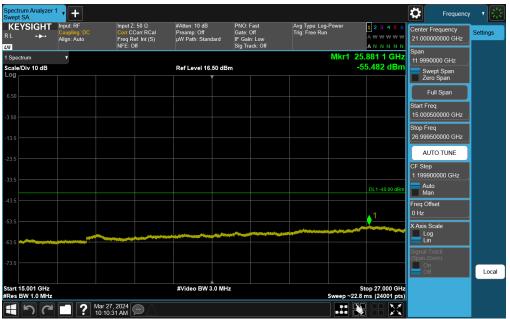

Plot 7-184. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 550
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 113 of 559
			1/2 2 09/07/2023


Plot 7-185. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

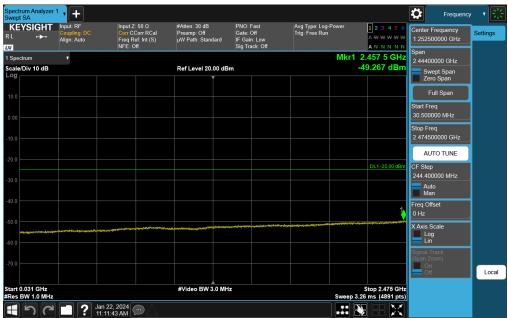
Plot 7-186. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element 🤤	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	De 22 444 24 550
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Page 114 of 559
			V2 2 09/07/2023


Plot 7-187. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-188. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 115 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 115 01 559
			V/2 2 09/07/2023

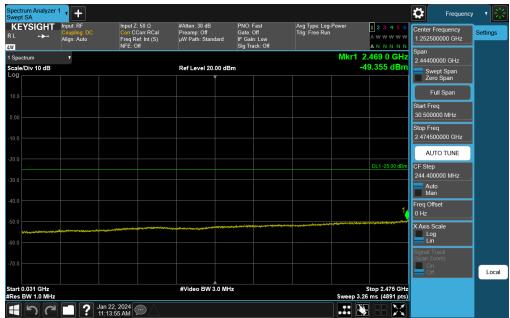


Plot 7-189. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 116 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 110 01 559
			V2.2 09/07/2023

NR Band n7

Plot 7-190. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

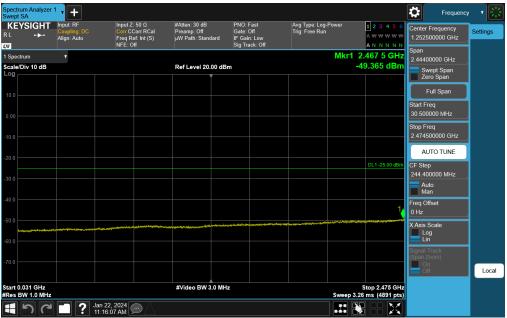

Plot 7-191. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 117 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 117 01 559
	·	·	V2.2 09/07/2023

Plot 7-192. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-193. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 118 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
	·		V2.2 09/07/2023


Plot 7-194. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

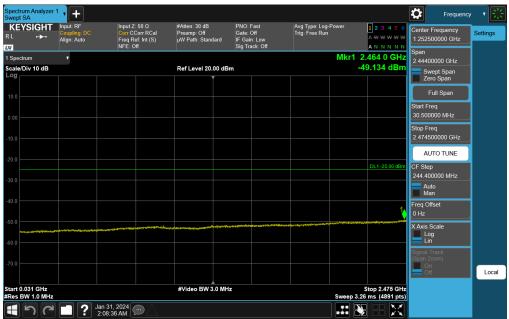

Plot 7-195. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 119 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	
			1/2 2 09/07/2023

Plot 7-196. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-197. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 120 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 120 01 559
			1/2 2 09/07/2023



Plot 7-198. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 121 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 121 01 559
			V2.2 09/07/2023

NR Band n41

Plot 7-199. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-200. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 122 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 122 01 559
	•		V2.2 09/07/2023

Plot 7-201. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-202. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 123 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 125 01 559
	<u>.</u>		V2.2 09/07/2023

Plot 7-203. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-204. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 124 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 124 01 559
			1/2 2 09/07/2023


Plot 7-205. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-206. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 125 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 125 01 559
	<u>.</u>		V2.2 09/07/2023

Plot 7-207. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2926	element 🤁	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 126 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 120 01 559
			V2.2 09/07/2023

ULCA - LTE Band 7

Plot 7-208. Conducted Spurious Plot (ULCA LTE Band 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-209. Conducted Spurious Plot (ULCA LTE Band 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element 🤤	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 127 01 559
		•	V2.2 09/07/2023

Plot 7-210. Conducted Spurious Plot (ULCA LTE Band 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-211. Conducted Spurious Plot (ULCA LTE Band 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 128 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 126 01 559
			V2.2 09/07/2023

	ectrum Analyz											
LX/RL	RF	50 Ω /	AC C	ORREC		SE	NSE:INT	#Avg Typ	e: RMS		M Nov 29, 2023	Frequency
PASS				PNO: Fa IFGain:L	st ↔ ow	Trig: Fre Atten: 3				TY		
10 dB/div Log	Ref 20	.00 dB	m						Mk	r1 14.75 -41.1	0 5 GHz 55 dBm	Auto Tune
10.0	e 1 Pass											Center Freq 8.785000000 GHz
-10.0												Start Freq 2.570000000 GHz
-20.0												Stop Freq 15.000000000 GHz
-40.0	~~~~	سر ا			~~~~~							CF Step 1.243000000 GHz <u>Auto</u> Man
-60.0												Freq Offset 0 Hz
-70.0												Scale Type
Start 2.57 #Res BW						3.0 MHz	,		woon 2	Stop 15	.000 GHz 4861 pts)	Log <u>Lin</u>
#Res DW	no ivinz			#	VEW -	3.0 WIN2			statu		4601 pts)	

Plot 7-212. Conducted Spurious Plot (ULCA LTE Band 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-213. Conducted Spurious Plot (ULCA LTE Band 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 129 of 559
1C2311270070-10.BCG	10/1/2023 - 4/1/2024	Tablet Device	Fage 129 01 559
	•	•	V2.2 09/07/2023