

Plot 7-115. Occupied Bandwidth Plot (NR Band n70 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-116. Occupied Bandwidth Plot (NR Band n70 - 15MHz QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 75 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 75 of 344	
			1/2 2 00/07/2023	

KEYSIGH ∟ ↔ I	T Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 1 Avg Hold: 10/ Radio Std: No	I.702500000 GHz 10 ne	Center 1.702	Frequency 500000 GHz	Settings
Graph	T						30.00	0 MHz	
g			Ref Value 30.00 dB	im			CF Ste	ep	
							3.000	000 MHz	
.0		monorman	mmmmm	where where we wanted	mark		`	lan	
.0							Freq C	offset	
							0 HZ		
.0	and wathout a share	m			WWKA	MANY AND A	Cal.M.C. M.		
0	. When a contraction					R. N. M. A. MAR	e flagen av alle		
0.0									
nter 1.70250 BW 270.00	GHz		Video BW 2.7000 M	Hz*		Sweep 1 00 ms	an 30 MHz (1001 pts)		
letrics									
				Measure Tra	ce Trace 1				
	Occupied Bandwidth	MU		Total Davis	_	22 E dD=			
	Transmit Fred Error	-944 Hz		% of OBW P	ower	23.5 dBm			
	x dB Bandwidth	14.83 MHz		x dB	ontei	-26.00 dB			Loc

Plot 7-117. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-118. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 76 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 70 01 344
			1/2 2 00/07/2023

Plot 7-119. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 344	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device		
			V2.2 09/07/2023	

NR Band n71

Plot 7-120. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-121. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 79 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 78 of 344	
			\/2 2 09/07/2023	

Plot 7-122. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s--OFDM 16-QAM - Full RB)

Plot 7-123. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 344	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 79 of 344	
			\/2 2 00/07/2023	

Plot 7-124. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 256-QAM - Full RB)

Plot 7-125. Occupied Bandwidth Plot (NR Band n71 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 90 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 80 of 344	
			1/2 2 09/07/2023	

Plot 7-126. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM QPSK - Full RB)

Plot 7-127. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 01 01 344
			\/2 2 00/07/2023

Plot 7-128. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 64-QAM - Full RB)

Plot 7-129. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 82 of 344	
			1/2 2 09/07/2023	

Plot 7-130. Occupied Bandwidth Plot (NR Band n71 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-131. Occupied Bandwidth Plot (NR Band n71 - 15MHz QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 83 of 344	
			1/2 2 09/07/2023	

Plot 7-132. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-133. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 344	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device		
			V/2 2 09/07/2023	

Plot 7-134. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 256-QAM - Full RB)

Plot 7-135. Occupied Bandwidth Plot (NR Band n71 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 95 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 85 of 344	
			1/2 2 09/07/2023	

KEVCICI	Laput: PE	Input	7.60.0	Atton: 40 dB		Tria: Eroo Dun	Con	or From	680 600000 MH-		الندر		
(EYSIGH	Coupling: DC	Соп	CCorr RCal	Preamp: Off		Gate: Off	Aval	er Freq. Hold: 10/	10 (10		Center F	requency	Setting
L +	Align: Auto	Freq	Ref: Int (S)	µW Path: Stand	lard	#IF Gain: Low	Radi	o Std: No	one		680.500	000 MHz	
		NFE:	Off								Snan		
Graph	•										40.000	MHz	
ale/Div 10.0	dB			Ref Value 30.	00 dBm						05.01		
og		l l									CF Step		
0.0											4.00000		
			have without	Anna anna anna	and all made	month and a	-				Auto Mar	0 1	
			destroyed a			1 P. 10 P. 100	-14 - 14	\			Eron Off	cot	
								\				sei	
0.0											UTIZ.		
0.0	1 and and and and and	nut						1					
And the the	Andream							"HY"	and the second	wwwwwwwww			
0.0													
0.0													
enter 680 50 I	/Hz	1		Video BW 4 00	00 MH7*					Spap 40 MHz			
s BW 390.00	kHz			1000 011 4.00	00 101112				Sweep 1.00	ms (1001 pts)			
Metrics									· · · ·				
	Occupied Bandwidth												
	18.9	I44 MHz				Total Power			22.8 dBm				
			31.870 kHz			% of OBW F	ower		99.00 %				
	Transmit Freq Error		19 95 MHz			x dB			-26.00 dB				
	ransmit Freq Error x dB Bandwidth		10.00 1111 12										
	rransmit Freq Error x dB Bandwidth		10.00 11112										
	Transmit Freq Error x dB Bandwidth		10.00 11112										

Plot 7-136. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM QPSK - Full RB)

Plot 7-137. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 96 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	raye 00 01 344
			\/2 2 00/07/2023

Plot 7-138. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 64-QAM - Full RB)

Plot 7-139. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 97 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 07 01 344
			1/2 2 00/07/2023

NR Band n12

Plot 7-140. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-141. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 88 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 00 01 344
			\/2 2 00/07/2023

Plot 7-142. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 16-QAM - Full RB)

Plot 7-143. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 90 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 09 01 344
			1/2 2 00/07/2022

Plot 7-144. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 256-QAM - Full RB)

Plot 7-145. Occupied Bandwidth Plot (NR Band n12 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 90 01 344
			1/2 2 09/07/2023

Plot 7-146. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM QPSK - Full RB)

Plot 7-147. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 01 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 91 01 344
			V2 2 09/07/2023

Plot 7-148. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 64-QAM - Full RB)

Plot 7-149. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 02 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 92 01 344
			1/2 2 00/07/2023

Plot 7-150. Occupied Bandwidth Plot (NR Band n12 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-151. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 02 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 95 01 544
			V2 2 09/07/2023

Plot 7-152. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 04 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 94 01 344
			1/2 2 00/07/2023

Plot 7-154. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 05 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 95 01 544
			1/2 2 00/07/2022

WCDMA AWS

Plot 7-155. Occupied Bandwidth Plot (WCDMA, Ch. 1413)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 06 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 90 01 344
			V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §27.53

Test Overview and Limit

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 18GHz (separated into at least two plots per channel)
- 2. RBW \geq 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 07 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 97 of 344	
			V2.2 09/07/2023	

Test Notes

- Per Part 27, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 08 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 90 01 344
			V2.2 09/07/2023

LTE Band 66/4

21:51:23 11.01.2024

Plot 7-156. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

21:51:40 11.01.2024

Plot 7-157. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element 🤁	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 99 01 344	
			V2.2 09/07/2023	

MultiView	Spectrum								•
Ref Level 0.0	00 dBm	• RBW :	1 MHz						
Att TDE "CABLES"	30 dB SWT 40.1	lms = VBW 3	3 MHz Mode S	Sweep					
1 Frequency S	Sweep								o1Rm View
								M1[1]	-42.61 dBm
-10 dBm									17.803360 GHz
-20 dBm									
-30 dBm									
-40 dBm-							M1		
	A STREET BOOK				and the second states and				
-50 dBm									
-60 aBm-									
-70 dBm									
ro ubili									
-80 dBm									
-90 dBm									
51									
9.9995 GHz			20003 pt	ts		1.0 GHz/			20.0005 GHz
2 Marker Pea	k List								
No	X-Value		Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	17.803360 GH	łz	-42.613	dBm					
									11.01.2024
	Ť						Measuring		21:51:57

21:51:58 11.01.2024

Plot 7-159. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 100 of 344	
			V2.2 09/07/2023	

Plot 7-160. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-161. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 101 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 101 01 344	
			1/2 2 00/07/2022	

									 Image: A start of the start of
MultiView	Spectrum								-
Ref Level 20.	.00 dBm	• RBW	1 MHz						
Att	30 dB SWT	3.37 ms 🗢 VBW	3 MHz Mode	Sweep					
TDF "CABLES"									O I Des View
1 Frequency S	weep							M1E11	-47.64 dBm
								WILI	962.470 MHz
10 dBm									502117010112
0 dBm-									
10 10 10									
-10 upm-	H1 -13.000 dB								
-20 dBm-									
-30 dBm									
-40 dBm									
					M1				
Hard a color of the state	a sila prasis ngala ngita mani kingan	had a fair and the state of the	and the second section of the sectio	university is the transition	My martinet al page of	tot all the labor of the sec	And a transfer transfer	والمتعارفة الأساسين المعالمات المعادلة الم	والمتعالية ومعارفه والمعار
							a harana a haran da haran	an a da da da la da a da	in the particular of the state of the second
-60 dBm									
-70 dBm									
51									
29.5 MHz			3363 pt	s	16	58.1 MHz/			1.7105 GHz
2 Marker Peak	< List								
No	X-Valu	e 📃	Y-Va	lue	No	X-Value	;	Y-Val	ue
1	962.470000	MHZ	-47.043	dom					
	_						54		11.01.2024
						~	Measuring		21:54:10

21:54:10 11.01.2024

Plot 7-163. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 102 of 344	
			V2.2 09/07/2023	

MultiView	Spectrum								•
Ref Level 0.	.00 dBm	• RBW 11	MHz						
Att TDE "CABLES"	30 dB SWT 40.1 m	s = VBW 31	MHz Mode S	Sweep					
1 Frequency	Sweep								o1Rm View
								M1[1]	-42.48 dBm
-10 dBm-									
-20 dBm									
-30 dBm									
400									
-+0 UBM-	the process in the other strend is equilated	and the second states of the	a da da bila nama a taka a sa a	an all and the second states of the second	ويعاقله واستروار والمعاملات				
-SU dBm	or other description of the local data in the lo	a alfan Litan y Katikan	Constanting of the second later of the	Description of the second division in the	an a				
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
51									
9.9995 GHz			20003 pi	ts		1.0 GHz/			20.0005 GHz
2 Marker Pea	nk List								
No 1	X-Value 17.187890 GHz		Y-Va -42.484	lue dBm	No	X-Valu	e	Y-Va	lue
	*						Measuring		11.01.2024 21:54:45
21:54:46 11	.01.2024								

Plot 7-164. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element 🤤	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 344	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 103 01 344	
			V0.0 00/07/0000	

LTE Band 71

Plot 7-165. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

MultiView	- Spectrum	1							•
Ref Level 20	0.00 dBm	• RBV	V 100 kHz						
Att TDF "CABLES"	30 dB SWT	6.05 ms 🗢 VBV	V 300 kHz Moo	le Auto Sweep					
1 Frequency	Sweep								●1Rm View
								M1[1]	-57.95 dBm
10 dBm									886.7940 MHz
0 dBm									
-10 dBm									i in the second s
20 0011									
-20 dBm									
-30 dBm									
-40 dBm-									
-50 dBm									
2						M1			
Appen prophyladial plan	haling fathering fathering historia	an in the state of	adit di kang di	and building and the state	nt Patrini mining a history	and the second second second	al al futable la faith a faith	electron all subsection	line interpretation and as printed
-70 dBm									
51									
697.95 MHz			6043 pt	is is	30).21 MHz/			1.00005 GHz
2 Marker Pea	ık List								
No	X-Valu	ie	Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	886.794000 699.275000	I MHZ I MHZ	-57.950 -58.373	dBm dBm		866.047000	MHz	-58.475	dBm
-									
	-						Measuring		18.12.2023
	10.000								21:34:03
21:54:06 18	.12.2023								

Plot 7-166. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 104 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 104 of 344	
			V2.2 09/07/2023	

21:54:24 18.12.2023

Plot 7-167. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-168. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 105 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 105 of 344	
			V2.2 09/07/2023	

MultiView	Spectrum	1							•
Ref Level 20	.00 dBm	● RB	✔ 100 kHz						
Att TDE "CABLES"	30 dB SWT	6.05 ms 🗢 VBN	N 300 kHz Moo	le Auto Sweep					
1 Frequency S	weep								o1Rm View
								M1[1]	-57.89 dBm
10 dBm									856.5490 MHz
20 0011									
0 dBm-									
-10 dBm-									
-20 dBm									
-30 dBm-									
-40 dBm									
-to ubin									
-50 dBm-									
					MI				
wife all married and and and and and and and and and an	ala da ang kana ang k		والم والمروجة والمراجع المراجع المراجع		hi na interioration di attention des		Additional to the second	in the second with the state of the	a talahan dilitan arata 🖁
The Street Labor 100.			hanna dalara dalam	a haran da karan kar Karan karan kara	and a state of the state of the state	ad them a stress and t	and a state of the second	dela su su del deteste	All the second second second
-70 dBm									
S1									
697.95 MHz		1	6043 pt	s	30	.21 MHz/			1.00005 GHz
2 Marker Peak	< List								
No	X-Valu	ie	Y-Va	ilue	No	X-Valu	e	Y-Va	ue
1	856,549000 998 225000	I MHZ I MHZ	-57.894 -58.426	dBm	4	733 019000	MHZ MHZ	-58,895	dBm dBm
3	949.183000	MHz	-58.447	dBm		,00.010000		05.000	abiii
	-						84		18.12.2023
	Ň						Measuring		21:55:47
21:55:47 18.	12.2023								

Plot 7-169. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-170. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 106 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 100 01 344
			V2.2 09/07/2023

									(*)
MultiView	Spectrum								+
Ref Level 20	.00 dBm	• RBW	V 100 kHz						
Att TDE "CARLES"	30 dB SWT	12.7 ms 🗢 VBW	300 kHz Mo	de Auto Sweep					
1 Frequency S	weep								●1Rm View
								M1[1]	-48.52 dBm
10 dBm									628.1280 MHz
TO OBII									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
									M1
-50 dBm-									
							3		
-60 dBm-	فالمعاجرة بالقارحة وأدرجت والمعا	فلرواقتها بتأكير ويتقاده وروا	la da cina da la da	a series and a second the second	Angel and all his states had	a dia tanàna dia mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina d	ine fen far son fin proget (men son) A son i findensk, die der sinder sone	a de la company de la comp	
a shi le le man li a shi a l	a product and the product of the local sector of the local sector of the local sector of the local sector of the	in the second second as a first second s	and the statistical play has been	COLUMN AND A DESCRIPTION	and the following state	the second s	1.1.1.1.1		a state and forced to
-70 aBm									52
51									
29.95 MHz			12663 p	ts	63	3.31 MHz/			663.05 MHz
2 Marker Peal	k List								
No	X-Valu 628 128000	MH7	Y-Va -48 524	alue	No	X-Valu 236.450000	e MH 7	Y-Va -60.400	dBm
2	551 134000	MHZ	-40.024	dBm	6	324 652000	MHZ	-60.528	dBm
3	500,488000	MHz	-58,802	dBm		188,163000	MHz	-61,493	dBm
4	294.904000	MHz	-60.142	: dBm					
									18.12.2023
							measuring		21:56:37

21:56:37 18.12.2023

Plot 7-172. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 107 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 107 of 344	
			V2.2 09/07/2023	

Plot 7-173. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 109 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 108 01 344	
			1/2 2 00/07/2022	

LTE Band 12/17

Plot 7-174. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

19:17:30 18.12.2023

Plot 7-175. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 244		
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 109 of 344		
			V2.2 09/07/2023		

19:17:47 18.12.2023

Plot 7-177. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 110 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 110 01 344
			V2.2 09/07/2023

MultiView	Spectrum	1							•
Ref Level 20.	00 dBm	● RB₩	/ 100 kHz						
• Att	30 dB SWT	5.69 ms 🔍 VBW	300 kHz Mod	le Auto Sweep					
TDF "CABLES"	ween								o 1 Rm View
Threquency 5	neep							M1[1]	-58,11 dBm
									863.9990 MHz
10 dBm									
0 10 11									
U UBM									
-10 dBm									
20 0011									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm-									
			2		T .				
things an advertillage	(MANAGAYA) MANAGAYA	and the state of the	allelet and the state of the second	entre hundre bester	when the state of the second states of the second s	and a straight and an and	and the second second second second	eelewiyan in an an an an	uning interplay where the
70 100									
- ro usm									S2
21									
715.95 MHz			5683 pt	s	28	3.41 MHz/			1.00005 GHz
2 Marker Peak	List								
No	X-Valu	le	Y-Va	de	No	X-Valu	e Mu-	Y-Va	lue dRm
1	003.999000	MINZ	-36.107	GBITI		025.050000	141112	-36.613	
							Measuring		18.12.2023
						· · ·	incusting		19:19:07

19:19:08 18.12.2023

Plot 7-179. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 111 of 244		
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 111 of 344		
			V2.2 09/07/2023		

									(*)
MultiView	Spectrum								•
Ref Level 20.	00 dBm	● RBW	' 100 kHz						
Att TDF "CABLES"	30 db SWT	13.4 ms 🗢 VBW	300 kHz Moo	le Auto Sweep					
1 Frequency S	weep								o1Rm View
								M1[1]	-51.16 dBm
10 dBm									651.1290 MHz
10 UBIII									
0 dBm									
o dom									
-10 dBm									
10 0011									
-20 dBm									
Co dom									
-30 dBm									
-40 dBm-									
-50 dBm									M1
-@ dBm		6				to and south and independent of a	and the surface of the second	distinct a control of restor of it.	and an insulation of the second
tions in the second second	وأسرابتها فالمواري الموار	a bia na mit tana diata				Constant and the state of the state	Manhalan and an and the second	and the solution, interimental space	A CONTRACT OF STREET, S
-70 dBm	and the set of the set	the state of the life							
S1									
			10000-						
29.95 MHZ			13363 p	ts	60	DIVI MHZ/			698.05 MHZ
Z Marker Peak	LISU V-Valu	0	V-V-	ماليم	No	V-Valu	0	V-V-	lue.
1	651.129000	MHz	-51.159	dBm	5	289,956000	c MHz	-60,736	dBm
2	539.287000	MHz	-58.201	dBm		218.261000	MHz	-61.002	dBm
3	468.592000	MHz	-58.317	dBm	7	40.224000	MHz	-61.494	dBm
4	316.538000	MINZ	-58.867	UDITI					
							Moncuring		18.12.2023
						~	measuring		19:19:56

19:19:57 18.12.2023

Plot 7-181. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 112 of 344	
			V2.2 09/07/2023	

Plot 7-182. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element 🤁	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 112 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 113 01 344	
			1/2 2 00/07/2022	

LTE Band 13

Plot 7-183. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

				~~
MultiView 🖬 Spectrum				
Ref Level 20.00 dBm • RBV	Y 100 kHz			
 Att 30 dB SWT 1.05 ms VBV TDF "CABLES" 	V 300 kHz Mode Auto Sweep			
1 Frequency Sweep				●1Rm View
				M1[1] -56.44 dBm
10 dBm-				770.0770 MHz
0 dBm				
-10 dBm-				
-20 dBm				
-30 dBm				
H1 -35.000 dBm				
-40 dBm-				
-50 dBm				M1
-60 d8m				
mmmmmm		\sim	mpp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-70 dBm				
	1001			
762.95 MHZ	1001 pts	1.41 MHz/		777.05 MHz
No X-Value	Y-Value	No X-Va	alue	Y-Value
1 776.677000 MHz	-56.443 dBm			
*			• Measuring	17.12.2023 23:29:59

23:29:59 17.12.2023

Plot 7-184. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 114 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 114 01 544	
			1/2 2 00/07/2023	

MultiView	Spectrum							•
Ref Level 20.0	D0 dBm	• RBW 100 k	<hz< td=""><td></td><td></td><td></td><td></td><td></td></hz<>					
 Att TDF "CABLES" 	30 dB SWT 41.83	µs (~6.9 ms) ● VBW 300 I	Hz Mode Aut	o FFT				
1 Frequency Sv	veep							o1Rm View
					M1[1]		7	-53.14 dBm 87.30650 MHz
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
no dow M1								
	-0							
-60 dBm		\sim	~~~~		·	~~~~		
-70 dBm								
S1								52
786.95 MHz		1001 pts		6	10.0 kHz/			793.05 MHz
2 Marker Peak	List							
No 1	X-Value 787.306500 MHz	-53.139 c	ie iBm	No	X-Value	:	Y-Va	ue
	*				*	Measuring		17.12.2023 23:30:16

23:30:16 17.12.2023

23:30:33 17.12.2023

Plot 7-186. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 115 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 115 01 344	
			1/2 2 00/07/2022	

									\$
MultiView	Spectrum								
Ref Level 20.	00 dBm	• RBW	100 kHz						
Att TDF "CABLES"	30 dB SWT	3.89 ms 🗢 VBW	300 kHz Mod	le Auto Sweep					
1 Frequency Sv	weep								o1Rm View
								M1[1]	-58.24 dBm
10 dBm									886.6040 MHz
0 dBm									
-10 dBm									
-20 dBm-									
00.10									
-30 aBm-									
-40 dBm-									
-50 dBm									
				M1					
NER AL RANGE BALLAND	and What to date them	en la de la cara de la	addaa barbaraa	in the second state of the second	with Work Walt	hildhaanaaaalaadhaakaa	and a stall while the first of the starting	As a loss table allow.	a minister on martine an at
second have a second second		Louis a de la comparis	the second the second second second		and some fort in that	A . Itel &	and a second store	har fi and bearing to a	anas tanà Manaza Balia
-70 dBm									52
51									
805.95 MHz			3883 pt	S	19	.41 MHz/			1.00005 GHz
2 Marker Peak	List								
No	X-Valu	e	Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	886.604000	MHZ	-58.242	dBm		867.509000	MHZ	-58.291	dBm
						_	Moncuring		17.12.2023
						v	measuring		23:30:50

23:30:50 17.12.2023

23:31:07 17.12.2023

Plot 7-188. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 116 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 116 of 344	
			V2.2 09/07/2023	

									\$
MultiView	Spectrum								•
Ref Level 20.	00 dBm	• RB	W 100 kHz						
 Att TDF "CABLES" 	30 dB SWT	1.1 m s 🗢 VB	W 300 kHz M	ode Auto Sweep					
1 Frequency Sv	weep								o1Rm View
						M1[1]			-54.85 dBm
10 dBm									.5641700 GHz
0 dBm-									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm	1								
	1								
mmmm	Maryan	warment	mont	www.mm	mm. Moring	www.	MMMM	marchan	month
70 100							1		v
- ru ubm									S2
1.55895 GHz			1023	3 pts		5.11 MHz/			1.61005 GHz
2 Marker Peak	List	-		Male -	N -	V 11-1-1	-		
1	1.5641 <u>70 (</u>	e GHz	-54.8	-value 351 dBm	NO	x-valu	e	Y-Va	ue
	•					-	Measuring		17.12.2023
									23:31:24

23:31:24 17.12.2023

Plot 7-190. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 117 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Faye 117 01 344
			1/2 2 00/07/2023

NR Band n66

Plot 7-191. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-192. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 119 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 110 01 344
			V2.2 09/07/2023

Plot 7-193. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectrum Analyzer Swept SA	¹ • +						Frequency	- *
KEYSIGHT RL ↔→→	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off µW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Powe Trig: Free Run	1 2 3 4 5 6 A W W W W A N N N N N	Center Frequency 870.000000 MHz	Settings
1 Spectrum	•				М	kr1 1.695 0 GHz	Span 1.67900000 GHz	
Scale/Div 10 dB			Ref Level 20.00	dBm		-51.211 dBm	Swept Span Zero Span	
10.0							Full Span	
0.00							Start Freq 30.500000 MHz	
-10.0						DL1-13.00 dBm	Stop Freq 1.709500000 GHz	
-20.0							AUTO TUNE	
-30.0							CF Step 167.900000 MHz	
-40.0							Auto Man	
						1	Freq Offset 0 Hz	
-50.0				***************************************		ang tipun ang mang mang mang mang mang mang mang	X Axis Scale Log Lin	
							Signal Track (Span Zoom)	
-70.0							On Off	Local
Start 0.0305 GHz #Res BW 1.0 MHz			#Video BW 3.0	MHz	Sw	Stop 1.7095 GHz eep 2.24 ms (3361 pts)		
500	Jan 22	, 2024 18 AM 💬 🛆						

Plot 7-194. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Faye 113 01 344
			1/2 2 00/07/2022

Plot 7-195. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-196. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 120 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 120 01 344
			V2.2 09/07/2023

Plot 7-197. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-198. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 121 of 244
1C2311270070-09.BCG	G 10/1/2023 - 3/19/2024 Tablet Device		Fage 121 01 344
			\/2 2 00/07/2023

Spect Swept	rum Analyzer ' t SA	1 • +									Ç -	requency	• 🗦	2
RL RL	YSIGHT .≁·	Input: RF Coupling: DC Align: Auto	Input 2 Corr C Freq F NFE: 0	::50Ω CorrRCal tef:Int(S) Off	#Atten: 10 dB Preamp: Off µW Path: Stand	PNC Gate Jard IFG Sig ⁻¹): Fast e: Off ain: Low frack: Off	Avg Type: Log Trig: Free Run	-Power	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Freque 15.00000000	ency 0 GHz	Settings	
1 Spec	ctrum /Div 10 dB	v			Ref Level 10	00 dBm			Mkr1	19.754 5 GHz -64.123 dBm	Span 9.99900000 (GHz		
Log											Zero Spa	an n		
0.00											Full Spa Start Freq	an		
-10.0										DL1 -13.00 dBm	10.00050000 Stop Freg	0 GHz		
-20.0											19.99950000	0 GHz		
-30.0											AUTO TU CF Step	JNE		
-40.0											999.900000 M	ЛНz		
-50.0											Man Freq Offset			
-60.0										1	0 Hz X Axis Scale			
-70.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim		~~~~~					and the second second		Log Lin			
-80.0											Signal Track (Span Zoom) On		_	
											Off		Loca	ll I
Start #Res	10.001 GHz BW 1.0 MHz				#Video BW 3	.0 MHz			Sweep ~1	Stop 20.000 GHz 8.9 ms (20001 pts)				
	ッつ	2	Jan 22, 2024 11:39:59 AM	$\square \triangle$										

Plot 7-199. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 122 01 344
			1/2 2 00/07/2022

NR Band n70

Plot 7-200. Conducted Spurious Plot (NR Band n70 -10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-201. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 123 01 344
			V2.2 09/07/2023

Plot 7-202. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectru Swept S	ım Analyzer SA	1 • +									₽	Frequency		*
KEY RL	′SIGHT ·≁·	Input: RF Coupling: DC Align: Auto	Input 2 Corr C Freq F NFE: 0	2:50Ω Corr RCal Ref: Int (S) Off	#Atten: 30 dB Preamp: Off μW Path: Stand	lard	PNO:Fast Gate:Off IF Gain:Low Sig Track:Off	Avg Type: Li Trig: Free R	og-Power un	1 2 3 4 5 6 A ₩ ₩ ₩ ₩ ₩ A N N N N N	Center Fr 862.5000	equency)00 MHz	Sett	ings
1 Spect	rum	T							Mkr1	1.693 0 GHz	Span 1.664000	000 GHz		
Log	Div 10 dB				Ref Level 20.	00 dBm				-49.390 dBm	Swej Zero	ot Span Span		
10.0											Ful	l Span		
0.00 -											Start Free 30.50000	1 00 MHz		
-10.0 —										DL1 -13.00 dBm	Stop Fred 1.694500	l 0000 GHz		
20.0											AUT	O TUNE		
-30.0											CF Step 166.4000	000 MHz		
-40.0											Auto Man			
										1	Freq Offs 0 Hz	et		
-50.0		an a	Yanayung alayahana	مىلەتتىرى ، يېروندو كەستام بىرەورىنى بىل		**********	ternen an		مە ^{سەر} ەرەرە بەلەرمۇلەرىلەر يەسلى،	way - many man	X Axis Sc Log Lin	ale		
-00.0											Signal Tra	ack		
-70.0											On Off			Local
Start 0. #Res B	0305 GHz W 1.0 MHz				#Video BW 3	.0 MHz			Sweep 2	Stop 1.6945 GHz 2.24 ms (3361 pts)				
	5 3	2	Jan 22, 2024 11:42:32 AM	$\bigcirc \triangle$										

Plot 7-203. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 124 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 124 01 544
			V2.2 09/07/2023

Plot 7-204. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-205. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 125 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 125 01 544
			V2.2 09/07/2023

Plot 7-206. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-207. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 126 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 120 01 344
			V2.2 09/07/2023

Spectrum Analyzer Swept SA	¹ • +						Frequency	- * 宗
KEYSIGHT RL ↔→	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 10 dB Preamp: Off µW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Powe Trig: Free Run	f 1 2 3 4 5 6 △₩₩₩₩₩ A N N N N N	Center Frequency 15.000000000 GHz	Settings
1 Spectrum	•	ł		_	Mk	r1 19.760 0 GHz	Span 9.99900000 GHz	
Scale/Div 10 dB			Ref Level 10.00 d	dBm		-64.058 dBm	Swept Span Zero Span	
0.00							Full Span	
-10.0							Start Freq 10.000500000 GHz	
-20.0						DL1 -13.00 dBm	Stop Freq 19.999500000 GHz	
-30.0							AUTO TUNE	
-40.0							CF Step 999.900000 MHz	
50.0							Auto Man	
-50.0							Freq Offset 0 Hz	
-60.0						1	X Axis Scale Log	
-70.0							Signal Track	
-80.0							(Span Zoom) On Off	Local
Start 10.001 GHz #Res BW 1.0 MHz			#Video BW 3.0 M	MHz	Swee	Stop 20.000 GHz p ~18.9 ms (20001 pts)		
4 7 7	Jan 22, 11:46:1	2024						

Plot 7-208. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 344
1C2311270070-09.BCG	10/1/2023 - 3/19/2024 Tablet Device		Fage 127 01 344
			100 0 00/07/0000

NR Band n71

Plot 7-209. Conducted Spurious Plot (NR Band n71 -20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-210. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 129 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	023 - 3/19/2024 Tablet Device	
			V2.2 09/07/2023

Plot 7-211. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spec Swep	trum Analyzer 1 it SA	¹ • +									C Freque	ncy	· 米
RL RL	YSIGHT .≁·	Input: RF Coupling: DC Align: Auto	Input Z Corr Ci Freq R NFE: C	:50Ω Corr RCal ef:Int (S) 0ff	#Atten: 30 dB Preamp: Off µW Path: Stand	PN Ga Jard IF Sig	NO:Fast ate:Off Gain:Low g Track:Off	Avg Type: Log- Trig: Free Run	Power	1 2 3 4 5 6 A \vee vee vee vee vee vee vee vee vee ve	Center Frequency 346.500000 MHz		Settings
1 Spe	ctrum	•							Mkr1	660.15 MHz	Span 632.900000 MHz		
Scale Log	e/Div 10 dB				Ref Level 20.	00 dBm				62.845 dBm	Swept Span		
10.0											Full Span		
0.00											Start Freq 30.050000 MHz		
-10.0										DL1 -13.00 dBm	Stop Freq 662.950000 MHz		
-20.0											AUTO TUNE		
-30.0											CF Step 63.290000 MHz		
-40.0											Auto Man		
											0 Hz		
-50.0										1	X Axis Scale Log Lin		
	prings ind _a is a subsected by					anitan surpe r	hter green and green and the		internationalise interfacionets		Signal Track		
-70.0											On Off		Local
Start #Res	30.1 MHz BW 100 kHz				#Video BW 3	00 kHz			Sweep 30.4	Stop 663.0 MHz 4 ms (12661 pts)			
	5 3	2	Jan 22, 2024 1:35:14 PM										

Plot 7-212. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Dogo 120 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 129 01 344	
			V2.2 09/07/2023	

Plot 7-213. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-214. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Dogo 120 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 150 01 544	
			V2.2 09/07/2023	

Spectrum Analyzer Swept SA	¹ • +						Frequency	- * 景
KEYSIGHT RL ↔→→	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 346.500000 MHz	Settings
1 Spectrum	v				Mkr	1 655.40 MHz	Span 632.900000 MHz	
Scale/Div 10 dB			Ref Level 20.00 dB	lm		-63.065 dBm	Swept Span	
10.0							Full Span	
0.00							Start Freq 30.050000 MHz	
-10.0						DL1 -13.00 dBm	Stop Freq 662.950000 MHz	
-20.0							AUTO TUNE	
-30.0							CF Step 63.290000 MHz	
							Auto Man	
-40.0							Freq Offset 0 Hz	
-50.0							X Axis Scale Log	
-60.0								
-70.0				ale a le anné de la company			(Span Zoom)	
							Off	Local
Start 30.1 MHz #Res BW 100 kHz			#Video BW 300 kH	lz	Sweep 3	Stop 663.0 MHz 0.4 ms (12661 pts)		_
500	Jan ? Jan 1:3	22, 2024 💭 🛆						

Plot 7-215. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Spec Swej	trum Analyzer 1 pt SA	¹ • +									‡	requency	v 🗦	22
KI RL Ø	EYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z Corr Ci Freq R NFE: C	:50Ω Corr RCal ef:Int (S) iff	#Atten: 30 dB Preamp: Off µW Path: Stand	P G Jard If S	PNO:Fast Gate:Off FGain:Low Sig Track:Off	Avg Type: Log- Trig: Free Run	Power	1 2 3 4 5 6 A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Center Frequ 849.000000	iency MHz	Settings	
1 Sp	ectrum	•							Mkr1	698.15 MHz	Span 301.900000	MHz		
Scal Log	e/Div 10 dB				Ref Level 20.	00 dBm			-t	1.564 dBm	Swept S Zero Sp	pan an		
10.0											Full Sp	oan		
0.00											Start Freq 698.050000	MHz		
-10.0										DL1 -13.00 dBm	Stop Freq 999.950000	MHz ,		
-20.0											AUTO T	UNE		
-30.0											CF Step 30.190000 M	1Hz		
10.0											Auto Man			
-40.0											Freq Offset 0 Hz			
-50.0	1										X Axis Scale Log			
-60.0	and a paper in the state of some of the			والمعادية والموار ومرد والمعادية	aine the sector of the sector	ant and a star		****	Marin Marine		Signal Track			
-70.0											(Span Zoom) On Off		Loca	
Start #Res	698.1 MHz BW 100 kHz				#Video BW 3	00 kHz			Sweep 14.	Stop 1.000 GHz 5 ms (6041 pts)				
	50	2?	Jan 22, 2024 1:37:24 PM	$\mathbb{D} \triangle$										

Plot 7-216. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 121 of 244	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 131 01 344	
			1/2 2 00/07/2022	

Plot 7-217. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 122 of 244
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 152 01 544
			V2.2 09/07/2023

NR Band n12

Plot 7-218. Conducted Spurious Plot (NR Band n12 -15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-219. Conducted Spurious Plot (NR Band n12 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Dogo 122 of 244
1C2311270070-09.BCG	0-09.BCG 10/1/2023 - 3/19/2024 Tablet Device		Fage 155 01 544
			V2.2 09/07/2023

Plot 7-220. Conducted Spurious Plot (NR Band n12 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-221. Conducted Spurious Plot (NR Band n12 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 134 of 344	
1C2311270070-09.BCG	10/1/2023 - 3/19/2024	Tablet Device		
			1/2 2 00/07/2022	