

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com

PART 24 MEASUREMENT REPORT

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States

Date of Testing: 10/1/2023 - 3/20/2024 Test Report Issue Date: 4/3/2024 Test Site/Location: Element Materials Technology, Morgan Hill, CA, USA Test Report Serial No.: 1C2311270070-08.BCG

FCC ID: Applicant Name:

BCGA2926

Apple Inc.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification A2926, A3007 Tablet Device PCS Licensed Transmitter (PCB) 24 ANSI C63.26-2015, TIA-603-E-2016, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

Prepared by: WKR000006193

Reviewed by: WKR0000005805

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Pogo 1 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 1 of 216
1	·		V2.2 09/07/2023

TABLE OF CONTENTS

1.1 Scope 1.2 Element Materials Technology Test Location 1.3 Test Facility / Accreditations 2.0 PRODUCT INFORMATION 2.1 Equipment Description 2.2 Device Capabilities 2.3 Antenna Description 2.4 Test Support Equipment 2.5 Test Configuration 2.6 Software and Firmware 2.7 EMI Suppression Device(s)/Modifications 3.0 DESCRIPTION OF TESTS 3.1 Evaluation Procedure 3.2 Radiated Spurious Emissions 4.0 MEASUREMENT UNCERTAINTY 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal 7.4 Band Edge Emissions at Antenna Terminal	5
1.3 Test Facility / Accreditations. 2.0 PRODUCT INFORMATION. 2.1 Equipment Description 2.2 Device Capabilities. 2.3 Antenna Description 2.4 Test Support Equipment. 2.5 Test Configuration 2.6 Software and Firmware 2.7 EMI Suppression Device(s)/Modifications 3.0 DESCRIPTION OF TESTS 3.1 Evaluation Procedure 3.2 Radiated Spurious Emissions 4.0 MEASUREMENT UNCERTAINTY 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.1 Summary. 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal	5
 2.0 PRODUCT INFORMATION	5
2.1 Equipment Description 2.2 Device Capabilities 2.3 Antenna Description 2.4 Test Support Equipment 2.5 Test Configuration 2.6 Software and Firmware 2.7 EMI Suppression Device(s)/Modifications 3.0 DESCRIPTION OF TESTS 3.1 Evaluation Procedure 3.2 Radiated Spurious Emissions 4.0 MEASUREMENT UNCERTAINTY 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal	5
 2.2 Device Capabilities	6
 2.3 Antenna Description	6
 2.4 Test Support Equipment	6
 2.5 Test Configuration	7
 2.6 Software and Firmware	7
 2.7 EMI Suppression Device(s)/Modifications 3.0 DESCRIPTION OF TESTS 3.1 Evaluation Procedure 3.2 Radiated Spurious Emissions 4.0 MEASUREMENT UNCERTAINTY 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal 	7
 3.0 DESCRIPTION OF TESTS	7
 3.1 Evaluation Procedure	7
3.2 Radiated Spurious Emissions 4.0 MEASUREMENT UNCERTAINTY 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal	8
 4.0 MEASUREMENT UNCERTAINTY	8
 5.0 TEST EQUIPMENT CALIBRATION DATA 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal 	8
 6.0 SAMPLE CALCULATIONS 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal 	9
 7.0 TEST RESULTS 7.1 Summary 7.2 Occupied Bandwidth	10
 7.1 Summary 7.2 Occupied Bandwidth 7.3 Spurious and Harmonic Emissions at Antenna Terminal 	11
7.2 Occupied Bandwidth7.3 Spurious and Harmonic Emissions at Antenna Terminal	12
7.3 Spurious and Harmonic Emissions at Antenna Terminal	12
	13
7.4 Band Edge Emissions at Antenna Terminal	47
	64
7.5 Peak-Average Ratio	116
7.6 Radiated Power (EIRP)	172
7.7 Radiated Spurious Emissions	194
7.8 Frequency Stability / Temperature Variation	212
8.0 CONCLUSION	216

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 2 01 210
			V2 2 09/07/2023

.

			Tx Frequency	OBW [MHz]	PAR at 0.1%	El	Emission	
Mode	Bandwidth	Modulation	Range [MHz]		[dB]	Max. Power	Max. Power	Designator
			• • • •			[W]	[dBm]	-
WCDMA1900	5 MHz	Spread Spectrum	1852.4 - 1907.6	4.1705	2.82	0.335	25.25	4M17F9W
		QPSK	1850.7 - 1909.3	1.1048	4.86	0.338	25.29	1M10G7W
	1.4 MHz	16QAM	1850.7 - 1909.3	1.1079	5.64	0.284	24.53	1M11D7W
		64QAM	1850.7 - 1909.3	1.1147	6.30	0.228	23.57	1M11D7W
-		256QAM	1850.7 - 1909.3	1.1152	6.72	0.112	20.48	1M12D7W
		QPSK	1851.5 - 1908.5	2.7215	4.55	0.339	25.30	2M72G7W
	3 MHz	16QAM	1851.5 - 1908.5	2.7212	5.54	0.278	24.44	2M72D7W
	0	64QAM	1851.5 - 1908.5	2.7242	6.33	0.220	23.42	2M72D7W
		256QAM	1851.5 - 1908.5	2.7183	6.81	0.112	20.50	2M72D7W
		QPSK	1852.5 - 1907.5	4.5384	4.77	0.339	25.30	4M54G7W
	5 MHz	16QAM	1852.5 - 1907.5	4.5436	5.67	0.291	24.64	4M54D7W
	0	64QAM	1852.5 - 1907.5	4.5208	6.33	0.224	23.51	4M52D7W
Band 2		256QAM	1852.5 - 1907.5	4.5514	6.87	0.115	20.59	4M55D7W
Bana E		QPSK	1855 - 1905	9.0112	4.91	0.337	25.27	9M01G7W
	10MHz	16QAM	1856 - 1905	9.0625	5.75	0.287	24.58	9M06D7W
	1011112	64QAM	1857 - 1905	9.0646	6.36	0.222	23.47	9M06D7W
-		256QAM	1858 - 1905	9.0146	7.04	0.114	20.56	9M01D7W
	15 MHz	QPSK	1857.5 - 1902.5	13.5389	4.89	0.330	25.18	13M5G7W
		16QAM	1857.5 - 1902.5	13.5805	5.70	0.287	24.58	13M6D7W
		64QAM	1857.5 - 1902.5	13.5390	6.34	0.220	23.42	13M5D7W
		256QAM	1857.5 - 1902.5	13.5216	6.61	0.113	20.54	13M5D7W
	20 MHz	QPSK	1860 - 1900	18.0592	4.80	0.326	25.13	18M1G7W
		16QAM	1860 - 1900	18.0355	5.77	0.283	24.52	18M0D7W
		64QAM	1860 - 1900	18.0538	6.32	0.229	23.60	18M1D7W
		256QAM	1860 - 1900	18.0015	7.10	0.109	20.38	18M0D7W
	1.4 MHz	QPSK	1850.7 - 1914.3	1.1048	4.90	0.339	25.30	1M10G7W
		16QAM	1850.7 - 1914.3	1.1079	5.71	0.286	24.57	1M11D7W
		64QAM	1850.7 - 1914.3	1.1147	6.38	0.223	23.49	1M11D7W
		256QAM	1850.7 - 1914.3	1.1152	6.74	0.112	20.49	1M12D7W
	3 MHz	QPSK	1851.5 - 1913.5	2.7215	4.59	0.334	25.24	2M72G7W
		16QAM	1851.5 - 1913.5	2.7212	5.59	0.288	24.59	2M72D7W
		64QAM	1851.5 - 1913.5	2.7242	6.37	0.222	23.46	2M72D7W
		256QAM	1851.5 - 1913.5	2.7183	6.83	0.111	20.46	2M72D7W
		QPSK	1852.5 - 1912.5	4.5384	4.85	0.339	25.30	4M54G7W
		16QAM	1852.5 - 1912.5	4.5436	5.75	0.299	24.75	4M54D7W
	5 MHz	64QAM	1852.5 - 1912.5	4.5208	6.39	0.224	23.50	4M52D7W
D. LOS		256QAM	1852.5 - 1912.5	4.5514	6.93	0.114	20.56	4M55D7W
Band 25		QPSK	1855 - 1910	9.0112	4.98	0.338	25.29	9M01G7W
		16QAM	1855 - 1910	9.0625	5.79	0.289	24.61	9M06D7W
	10 MHz	64QAM	1855 - 1910	9.0646	6.43	0.220	23.43	9M06D7W
		256QAM	1855 - 1910	9.0146	7.04	0.109	20.38	9M01D7W
-		QPSK	1857.5 - 1907.5	13.5389	4.94	0.331	25.20	13M5G7W
		16QAM	1857.5 - 1907.5	13.5805	5.73	0.294	24.68	13M6D7W
	15 MHz	64QAM	1857.5 - 1907.5	13.5390	6.40	0.221	23.45	13M5D7W
		256QAM	1857.5 - 1907.5	13.5216	7.24	0.110	20.40	13M5D7W
ł		QPSK	1860 - 1905	18.0592	4.87	0.333	25.22	18M1G7W
		16QAM	1860 - 1905	18.0355	5.82	0.301	24.79	18M0D7W
	20 MHz	64QAM	1860 - 1905	18.0538	6.37	0.230	23.62	18M1D7W
		256QAM	1860 - 1905	18.0015	7.14	0.112	20.50	18M0D7W

EUT Overview

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 3 01 2 10
			1/2 2 00/07/2022

						Fuelesten		
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	OBW [MHz]	PAR at 0.1% [dB]	Max. Power [W]	Max. Power [dBm]	Emission Designator
		π/2 BPSK	1852.5 - 1907.5	4.4756	3.98	0.330	25.19	4M48G7W
		QPSK	1852.5 - 1907.5	4.4738	5.30	0.338	25.29	4M47G7W
	5 MHz	16QAM	1852.5 - 1907.5	4.4626	6.18	0.310	24.92	4M46D7W
	0	64QAM	1852.5 - 1907.5	4.4657	6.70	0.224	23.50	4M47D7W
		256QAM	1852.5 - 1907.5	4.4587	6.84	0.132	21.21	4M46D7W
-		π/2 BPSK	1855 - 1905	8.8920	4.31	0.333	25.23	8M89G7W
		QPSK	1855 - 1905	9.3066	5.58	0.333	25.22	9M31G7W
	10 MHz	16QAM	1855 - 1905	9.2899	6.31	0.301	24.79	9M29D7W
		64QAM	1855 - 1905	9.3236	6.57	0.223	23.48	9M32D7W
		256QAM	1855 - 1905	9.2960	6.57	0.136	21.34	9M30D7W
NR Band n2		π/2 BPSK	1857.5 - 1902.5	13.4330	4.14	0.333	25.22	13M4G7W
		QPSK	1857.5 - 1902.5	14.1540	5.37	0.337	25.27	14M2G7W
	15 MHz	16QAM	1857.5 - 1902.5	14.1005	6.23	0.321	25.06	14M1D7W
		64QAM	1857.5 - 1902.5	14.1625	6.47	0.221	23.45	14M2D7W
		256QAM	1857.5 - 1902.5	14.1652	6.48	0.134	21.27	14M2D7W
-		π/2 BPSK	1860 - 1900	17.8967	4.25	0.336	25.26	17M9G7W
		QPSK	1860 - 1900	18.9154	5.42	0.337	25.28	18M9G7W
	20 MHz	16QAM	1860 - 1900	18.9473	6.27	0.320	25.05	18M9D7W
		64QAM	1860 - 1900	18.9175	6.37	0.220	23.42	18M9D7W
		256QAM	1860 - 1900	18.9091	6.67	0.135	21.30	18M9D7W
		π/2 BPSK	1852.5 - 1912.5	38.7382	4.06	0.326	25.13	38M7G7W
		QPSK	1852.5 - 1912.5	38.6817	5.36	0.337	25.28	38M7G7W
	5 MHz	16QAM	1852.5 - 1912.5	38.6455	6.39	0.293	24.67	38M6D7W
		64QAM	1852.5 - 1912.5	38.5487	6.42	0.211	23.24	38M5D7W
		256QAM	1852.5 - 1912.5	38.6536	6.57	0.126	21.01	38M7D7W
-	10 MHz	π/2 BPSK	1855 - 1910	8.8920	4.34	0.337	25.27	8M89G7W
		QPSK	1855 - 1910	9.3066	5.58	0.337	25.27	9M31G7W
		16QAM	1855 - 1910	9.2899	6.29	0.313	24.95	9M29D7W
		64QAM	1855 - 1910	9.3236	6.50	0.229	23.60	9M32D7W
		256QAM	1855 - 1910	9.2960	6.79	0.137	21.37	9M30D7W
-	15 MHz	π/2 BPSK	1857.5 - 1907.5	13.4330	4.25	0.337	25.27	13M4G7W
		QPSK	1857.5 - 1907.5	14.1540	5.40	0.337	25.27	14M2G7W
		16QAM	1857.5 - 1907.5	14.1005	6.34	0.306	24.86	14M1D7W
		64QAM	1857.5 - 1907.5	14.1625	6.54	0.224	23.51	14M2D7W
		256QAM	1857.5 - 1907.5	14.1652	6.69	0.137	21.37	14M2D7W
-	20 MHz	π/2 BPSK	1860 - 1905	17.8967	4.36	0.339	25.30	17M9G7W
		QPSK	1860 - 1905	18.9154	5.46	0.328	25.16	18M9G7W
		16QAM	1860 - 1905	18.9473	6.35	0.300	24.77	18M9D7W
		64QAM	1860 - 1905	18.9175	6.51	0.220	23.43	18M9D7W
NR Band n25		256QAM	1860 - 1905	18.9091	6.47	0.129	21.12	18M9D7W
NIX Danu 125		π/2 BPSK	1862.5 - 1902.5	22.8957	4.24	0.331	25.20	22M9G7W
		QPSK	1862.5 - 1902.5	23.7876	5.27	0.339	25.30	23M8G7W
	25 MHz	16QAM	1862.5 - 1902.5	23.7772	6.21	0.304	24.83	23M8D7W
		64QAM	1862.5 - 1902.5	23.7368	6.54	0.231	23.63	23M7D7W
		256QAM	1862.5 - 1902.5	23.7360	6.59	0.129	21.12	23M7D7W
Ī		π/2 BPSK	1865 - 1900	28.5655	4.39	0.337	25.28	28M6G7W
		QPSK	1865 - 1900	28.6641	5.50	0.331	25.20	28M7G7W
	30 MHz	16QAM	1865 - 1900	28.6037	6.40	0.308	24.89	28M6D7W
		64QAM	1865 - 1900	28.5864	6.67	0.207	23.16	28M6D7W
		256QAM	1865 - 1900	28.6150	6.68	0.133	21.23	28M6D7W
		π/2 BPSK	1867.5 - 1897.5	32.3923	4.45	0.334	25.24	32M4G7W
		QPSK	1867.5 - 1897.5	33.6721	5.61	0.333	25.23	33M7G7W
	35 MHz	16QAM	1867.5 - 1897.5	33.5739	6.39	0.296	24.72	33M6D7W
		64QAM	1867.5 - 1897.5	33.6514	6.69	0.222	23.46	33M7D7W
		256QAM	1867.5 - 1897.5	33.6483	6.56	0.135	21.30	33M6D7W
		π/2 BPSK	1870 - 1895	38.7382	4.42	0.332	25.21	38M7G7W
		QPSK	1870 - 1895	38.6817	5.43	0.337	25.28	38M7G7W
	40 MHz	16QAM	1870 - 1895	38.6455	6.33	0.304	24.83	38M6D7W
		64QAM	1870 - 1895	38.5487	6.61	0.220	23.43	38M5D7W

EUT Overview

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 4 01 2 10

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Materials Technology Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology

- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Agreements (MRAs).

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 5 01 210
			V2.2 09/07/2023

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Tablet Device FCC ID:BCGA2926**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 24.

Test Device Serial No.: HJ5C9VR4GL, K73QQTXQ6R, YP672PW96X, DLXGY40006P000063B, DLXGY400085000063B

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, 802.11a/ax WIFI 6E, 802.15.4, Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8), NB UNII (1x, HDR4, HDR8), WPT

This device supports BT Beamforming

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

		Wifi 2GHz	Bluetooth	Thread	Wifi 5GHz	Wifi 6GHz	NB UNII	LTE/F	R1 NR
Antenna	Simultaneous Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	802.15.4	802.11 a/n/ac/ax	802.11 a/ax	BDR, HDR4/8	МВ/НВ	UHB
2a	Config 1	X	\checkmark	X	\checkmark	X	X	X	X
2a	Config 2	X	\checkmark	X	X	\checkmark	X	X	X
2a	Config 3	\checkmark	X	X	X	X	\checkmark	X	X
2a	Config 4	X	X	\checkmark	\checkmark	X	X	X	X
2a	Config 5	X	X	\checkmark	X	\checkmark	X	X	X
4a	Config 6	X	\checkmark	X	\checkmark	X	X	X	X
4a	Config 7	X	\checkmark	X	X	\checkmark	X	X	X
4a	Config 8	\checkmark	X	X	X	X	\checkmark	X	X
4a	Config 9	X	X	\checkmark	\checkmark	X	X	X	X
4a	Config 10	X	X	\checkmark	X	\checkmark	X	X	X

Table 2-1. Simultaneous Transmission Configurations

 \checkmark = Support; * = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst case configuration was found to be Config 1 and reported in RF Bluetooth and RF UNII OFDM test reports.

Specific 2.4GHz Wi-Fi antenna that can only transmit simultaneously with 2.4GHz Bluetooth antenna is listed in the SAR test report. For BT (2.4GHz) in connected mode and Wi-Fi (2.4GHz) - Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. For BT (2.4GHz) in disconnected mode and Wi-Fi (2.4GHz) - BT will be using iPA only and Wi-Fi max power will not exceed minimum of (SAR max cap, Reg max cap) power. Bluetooth can simultaneously transmit with IEEE 802.11a/n/ac/ax 5/6 GHz on separate antenna.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 6 of 216
			V2.2 09/07/2023

2.3 Antenna Description

Band	Antenna Gain [dBi]						
Danu	Antenna 4b	Antenna 1	Antenna 3	Antenna 2b			
WCDMA 1900							
LTE Band 2/25	-1.3	-0.3	0.1	-1.1			
NR Band n2/n25							

The following antenna gains provided by the manufacturer were used for testing.

Table 2-2. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model:	A2141	S/N:	C02H604EQ05D
	w/AC/DC Adapter	Model:	A2166	S/N:	C4H042705ZNPM0WA6
2	Apple USB-C Cable	Model:	Spartan	S/N:	GXK1336018XKTR024
3	USB-C Cable	Model:	A246C	S/N:	DWH80115BK826GV19
	w/ AC Adapter	Model:	A2305	S/N:	C4H95160004PF4F4V
4	DC Power Supply	Model:	KPS3010D	S/N:	N/A
5	Apple Pencil	Model:	A2538	S/N:	KJ26TCFXJW
	.				

 Table 2-3. Test Support Equipment

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015, TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.6 Software and Firmware

The test was conducted with firmware version 21E8197 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 210
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 7 of 216
1	·		V2.2 09/07/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the documents titled "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015 and TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} = Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And$

 $EIRP_{[dBm]} = E_{[dB\mu V/m]} + 20logD - 104.8$; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

Radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015 and TIA-603-E-2016.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage o 01 210
			1/2 2 00/07/2023

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.07
Radiated Disturbance (<30MHz)	4.12
Radiated Disturbance (30MHz-1GHz)	4.85
Radiated Disturbance (1-18GHz)	5.08
Radiated Disturbance (>18GHz)	4.59

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 9 01 210
			V2.2 09/07/2023

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/21/2023	Annual	6/21/2024	MY49430244
ESPEC	SU-241	Tabletop Temperature Chamber	11/17/2023	Annual	11/17/2024	92009574
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	3/30/2023	Annual	3/30/2024	00218555
Keysight Technology	N9040B	UXA Signal Analyzer	11/5/2023	Annual	11/5/2024	MY57213068
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	8/31/2023	Annual	8/31/2024	100052
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	5/11/2023	Annual	5/11/2024	101619
Rohde & Schwarz	ESW44	EMI Test Receiver	6/6/2023	Annual	6/6/2024	101668
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz - 8GHz)	6/22/2023	Annual	6/22/2024	102356
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	11/30/2023	Annual	11/30/2024	161616
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/27/2023	Annual	12/27/2024	164715
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	6/2/2023	Annual	6/2/2024	100050
Rohde & Schwarz	HFH2-Z2	Loop Antenna	5/1/2023	Annual	5/1/2024	100519
Rohde & Schwarz	FSW43	Signal Analyzer (2Hz-43.5GHz)	7/13/2023	Annual	7/13/2024	101261
Schwarzbeck	VULB 9162	Bilog Antenna (30MHz - 6GHz)	4/17/2023	Annual	4/17/2024	00304

Table 5-1. Test Equipment

Notes:

1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 10 of 216
			V2.2 09/07/2023

6.0 SAMPLE CALCULATIONS

Emission Designator

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

π/2 BPSK / QPSK Modulation

Emission Designator = 8M62G7W BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination of Any

QAM Modulation

Emission Designator = 8M45D7W BW = 8.45 MHz D = Amplitude/Angle Modulated 7 = Quantized/Digital Info W = Combination of Any

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 11 01 210
			V2.2 09/07/2023

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	<u>BCGA2926</u>
FCC Classification:	PCS Licensed Transmitter (PCB)
Mode(s):	WCDMA/LTE/NR

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Occupied Bandwidth	2.1049	N/A	N/A	Section 7.2
	Conducted Band Edge / Spurious Emissions	2.1051, 24.238(a)	-13 dBm at Band Edge and for all out-of-band emissions	PASS	Sections 7.3, 7.4
	Peak-Average Ratio	24.232(d)	< 13 dB	PASS	Section 7.5
CONDUCTED	Transmitter Conducted Output Power	2.1046	N/A	N/A	See RF Exposure Report
	Frequency Stability	2.1055, 24.235	Fundamental emissions stay within authorized frequency block over the temperature and voltage range as tested	PASS	Section 7.8
	Equivalent Isotropic Radiated Power	24.232(c)	< 2 Watts max. EIRP	PASS	Section 7.6
RADIATED	Radiated Spurious Emissions	2.1053, 24.238(a)	-13 dBm for all out-of-band emissions	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is Element EMC Software Tool EMC Software Tool v1.1.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 12 01 210
	·		V2 2 09/07/2023

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

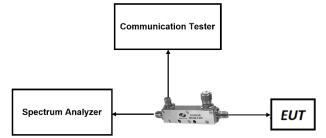


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

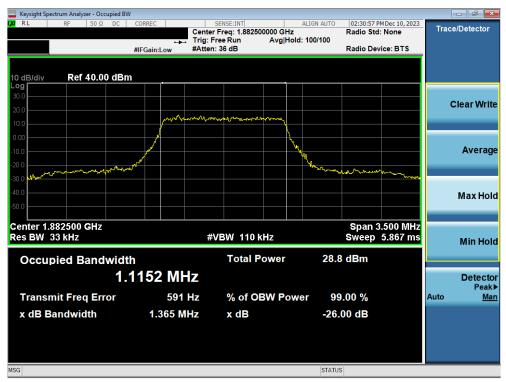
None.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 13 01 210
		-	\/2 2 09/07/2023

LTE Band 25/2

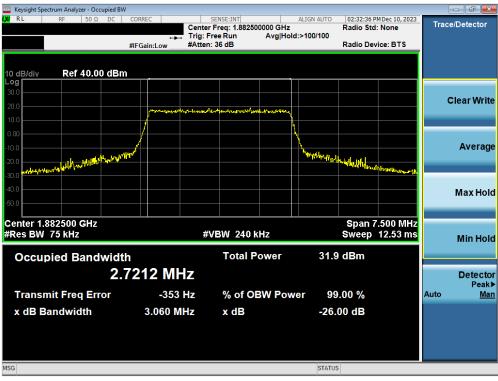
	ctrum Analyz	er - Occi	upied BW											
LXI RL	RF	50 Ω	DC	CORREC			ENSE:INT	500000 GI		ALIGN AUTO	02:30:26 P Radio Std	MDec 10, 2023	Trac	e/Detector
						The second second				>100/100	Raulo Stu	. None		
				#IFGain:	Low	#Atten:	36 dB				Radio Dev	vice: BTS		
10 dB/div	Ref	40.00	dBm											
Log														
30.0														Clear Write
20.0					man	๛๛๛๚๛๛๚		mont						
10.0									1					
0.00				لم م					Тър					
-10.0				المليم.					- 'li	h				Average
-20.0	Angle of the second states	ww	᠗ᡁᠬᢛᡘ᠕ᡩᡗ᠕	M						ب _ا الدام _{یلی} الداریر	hlow or many	to more and		
-30.0												· ~/.		
-40.0														
-50.0														Max Hold
-30.0													_	_
Center 1.	882500 (GHz									Span 3	.500 MHz		
Res BW 🔅	33 kHz					#V	BW 110	kHz			Sweep	5.867 ms		Min Hold
														minnena
Occu	oied Ba	and	width	1			Total	Power		32.8	dBm			
			1.1	048	3 MF	Z								Detector
														Peak►
Transr	nit Freq	l Erro	or	1	208 k	Hz	% of C	BW P	owe	r 99	.00 %		Auto	<u>Man</u>
x dB B	andwid	lth		1.	360 M	Hz	x dB			-26.	00 dB			
MSG										STATUS				

Plot 7-1. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz QPSK - Full RB Configuration)


Plot 7-2. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 14 01 210
			V2.2 09/07/2023

Plot 7-3. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 64-QAM - Full RB Configuration)


Plot 7-4. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	element Part 24 Measurement Report	
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 15 01 210
			V/2 2 09/07/2023

Plot 7-5. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 216	
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 16 of 216	
			\/2 2 09/07/2023	

Keysight Spectrum Analyzer - Occu	upied BW				
LX/ R L RF 50 Ω	DC CORREC	SENSE:INT		PM Dec 10, 2023	Trace/Detector
		ter Freq: 1.882500000 GHz		I: None	Trace/Delector
		j:FreeRun Avg∣Ho ten:36 dB	ld: 100/100 Radio De	vice: BTS	
	#IFGain:Low #At		Radio De	VICE. DTS	
10 dB/div Ref 40.00) dBm				
Log					
30.0					O I O I O I O I O I O I O I O I O I O I O O O O O O O O O O
20.0					Clear Write
10.0	and the second second second	marger line and mark water			
	/		λ.		
0.00					
-10.0	/				Average
-20.0 - Berly berry webper with	Ange and a second se		When the phares and phares	Dd. at . 11	
About conclusion of a second			te din dia ka	ALL STATE AND ALL ALL	
-30.0					
-40.0					Max Hold
-50.0					
Center 1.882500 GHz			Span 7	7.500 MHz	
#Res BW 75 kHz		#VBW 240 kHz		12.53 ms	Min Hold
Occupied Bandy	width	Total Power	31.1 dBm		
	2.7242 MHz				Detector
	0.1.0.1.1		00.00.00		Peak▶
Transmit Freq Erro	or -813 Hz	% of OBW Pov	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	3.067 MHz	x dB	-26.00 dB		
			20100 42		
MSG			STATUS		
mou			51A105		

Plot 7-7. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 64-QAM - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	element PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 17 01 210
			V2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied B	W						- 6 ×
LXI RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO		4 Dec 10, 2023	Trac	e/Detector
		nter Freq: 1.882500		Radio Std:	None	Hac	e/Delector
		g: Free Run tten: 36 dB	Avg Hold: 100/100	Radio Devi	Inc. BTS		
	#IFGaIn:Low #A			Radio Devi	ice. DT3		
10 dB/div Ref 40.00 dB	m						
Log							
30.0							
20.0						(Clear Write
	how	man	monen				
10.0			h l				
0.00							
-10.0	المر ا						Average
a a Adm	ر الار الار		My R. B.				
-10.0 -20.0 -30.0				mound	mar Mr. Mr.		
-30.0					A Manager		
-40.0							Manullala
							Max Hold
-50.0							
Contor 1 002500 CH				On on di			
Center 1.882500 GHz		49 (DW) 200 L			2.50 MHz		
Res BW 120 kHz		#VBW 390 k	ΠZ	Swe	ep 1 ms		Min Hold
		7-4-1 0	00 (
Occupied Bandwid	th	Total Po	ower 32.0	6 dBm			
Λ	5384 MHz						Detector
							Peak
Transmit Freq Error	-4.166 kHz	% of <u>OE</u>	W Power 99	9.00 %		Auto	Man
x dB Bandwidth	5.239 MHz	x dB	-26.	00 dB			
MSG			STATU:	S			

Plot 7-9. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz QPSK - Full RB Configuration)

Plot 7-10. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 216	
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 18 of 216	
			\/2 2 09/07/2023	

Keysight Spectrum Analyzer - Occupied	H BW					
LX/ RL RF 50Ω DO		SENSE:INT		03 PM Dec 10, 2023	Trace	/Detector
		er Freq: 1.882500000 GHz		Std: None	Hace	Delector
		Free Run Avg Hol n: 36 dB	d: 100/100 Radio	Device: BTS		
	#IFGain:Low #Atte	n. 30 ub	Raulo	Device. D13		
10 dB/div Ref 40.00 dl	Bm					
Log						
30.0						
20.0					С	lear Write
	manhan	maturmann				
10.0						
0.00			<u>\</u>			
-10.0			<u>}</u>			Average
	1. A		1			Average
-20.0 when why he append	"Yha" V		Jon My and My how	marman A		
-30.0						
-40.0						
						Max Hold
-50.0						
Center 1.882500 GHz				n 12.50 MHz		
Res BW 120 kHz	#	¢VBW 390 kHz	\$	weep 1 ms		Min Hold
Occupied Bandwi	dth	Total Power	31.3 dBm			
						-
	4.5208 MHz					Detector
Transmith Free or Free	6 605 LU-				Auto	Peak►
Transmit Freq Error	-6.625 kHz	% of OBW Pow	ver 99.00 %		Auto	<u>Man</u>
x dB Bandwidth	5.179 MHz	x dB	-26.00 dB			
100			OTATUO			
MSG			STATUS			

Plot 7-11. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 64-QAM - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 19 01 210
			V/2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied BW RL RF 50 Ω DC				02.05.42.040.0002	
LXX RL RF 50Ω DC	CORREC	SENSE:INT Center Freq: 1.8825		02:35:12 PM Dec 10, 2023 Radio Std: None	Trace/Detector
	↔ #IFGain:Low	 Trig: Free Run #Atten: 36 dB 	Avg Hold:>100/100	Radio Device: BTS	
10 dB/div Ref 40.00 dBn	n <u> </u>				
Log 30.0					
20.0	Alm Hoses	Jowner March March			Clear Write
10.0		dhata wa tu'i shahara tu'ili dha			
0.00			<u> </u>		
-10.0	Arcel 1				Average
-20.0 month of an and the second seco			Will Ward	marthered all a thready at the part of the	
-30.0					
-40.0					Max Hold
-50.0					
Center 1.88250 GHz				Span 25.00 MHz	
Res BW 240 kHz		#VBW 750	KHZ	Sweep 1 ms	Min Hold
Occupied Bandwidt	h	Total F	ower 33.	1 dBm	
9.	0112 MI	Hz			Detector
Transmit Freq Error	-3.462		BW Power 9	9.00 %	Peak▶ Auto Man
					Auto <u>Man</u>
x dB Bandwidth	10.08 N	/Hz x dB	-26	.00 dB	
MSG			STATU	JS	

Plot 7-13. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz QPSK - Full RB Configuration)

Plot 7-14. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	element PART 24 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 216	
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 20 01 216	
			\/2 2 09/07/2023	

Keysight Spectrum Analyzer - Occupied BV	N				
LX/ RL RF 50Ω DC	CORREC	SENSE:INT		1 PM Dec 10, 2023	Trace/Detector
		er Freq: 1.882500000 GHz Free Run Avg Hol	Radio S d: 100/100	td: None	Trace/Detector
		n: 36 dB		evice: BTS	
	In Gam. 20W				
10 dB/div Ref 40.00 dBr	n <u>.</u>				
Log 30.0					
					Clear Write
20.0	mannon	wanter a barren			elear mile
10.0					
0.00	/				
			N		Average
-10.0	A fl zer		Walnan and		Average
-20.0			- Maline Strange Contraction	molant rates	
-30.0					
-40.0					Manulati
-50.0					Max Hold
-50,0					
Center 1.88250 GHz			Snan	25.00 MHz	
Res BW 240 kHz	#	≇VBW 750 kHz		veep 1 ms	
	"			reep inte	Min Hold
Occupied Bandwidt	th	Total Power	31.3 dBm		
9.	0646 MHz				Detector
					Peak►
Transmit Freq Error	6.542 kHz	% of OBW Pow	ver 99.00 %		Auto <u>Man</u>
x dB Bandwidth	10.07 MHz	x dB	-26.00 dB		
			20100 42		
MSG			STATUS		

Plot 7-15. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-16. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 21 01 210
			V2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied B					
LX/ RL RF 50Ω DC	CORREC	SENSE:INT		02:36:16 PM Dec 10, 2023 Radio Std: None	Trace/Detector
	↔ #IFGain:Low	 Trig: Free Run #Atten: 36 dB 	Avg Hold: 100/100	Radio Device: BTS	
10 dB/div Ref 40.00 dB	m				
Log 30.0					
20.0					Clear Write
10.0	mound	monor that the substance to an a	walnut		
0.00	/		<u> </u>		
-10.0			<u>ل</u>		Average
-10.0 -20.0	J.Amile.		View My why	- martin manufacture	
-30.0					
-40.0					Max Hold
-50.0					
Center 1.88250 GHz				Span 37.50 MHz	
Res BW 360 kHz		#VBW 1.1 N	1Hz	Sweep 1 ms	Min Hold
Occupied Bandwid	4 la	Total P	ower 33	1 dBm	
			55.		
1	3.539 MI	ΠZ			Detector Peak▶
Transmit Freq Error	-12.624	kHz % of O	BW Power 99	9.00 %	Auto <u>Man</u>
x dB Bandwidth	14.94 N	lHz x dB	-26	.00 dB	
MSG			STATU	IS	

Plot 7-17. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz QPSK - Full RB Configuration)

Plot 7-18. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 22 01 210
			1/2 2 09/07/2023

🔤 Keys	sight Spectru	um Ana	lyzer - Oce	cupied E	W									
LXI RL		RF	50 Ω	DC	CORR	EC		SENSE:INT		ALIGN AUTO		MDec 10, 2023	Trees	e/Detector
								nter Freq: 1.8825			Radio Std	: None	Trac	e/Detector
						÷		: Free Run	Avg Hole	d:>100/100				
					#IFGa	in:Low	#Ati	ten: 36 dB			Radio Dev	vice: BTS		
		_												
10 dE	/div	Re	f 40.0	0 dB	m									
Log														
30.0														Clear Write
20.0														Clear write
10.0						mann	entran	mar and the second second	monormany					
10.0														
0.00										·				
-10.0					<u>l</u>					1				Average
-10.0					كعهد					h				Average
-20.0		ML IN MAR	_የ ማስቴሌ ስያትላጭ	-PAT	NTUY"					May West and	www.allow.			
-30.0	WHY ANY W	· •••										and the second second		
-40.0														Max Hold
-50.0														
00.00														
Cent	er 1.88	250	CH ₂								Snan 3	7.50 MHz		
	BW 36							#VBW 1.1 N	11-			ep 1 ms		
Res	DW JU	V NH	Z						ЯПZ		SWE	ep ims		Min Hold
								_						
	ccupi	ed I	Band	wid	th			Total F	'ower	31.1	dBm			
				4	0 60									
					3.53	39 M	ΗZ							Detector
		_	_											Peak▶
Tr	ansmi	t Fre	∍q Err	or	-1	8.543	kHz	% of O	BW Pow	/er 99	0.00 %		Auto	<u>Man</u>
						15.00				26				
X	dB Bar	1aw	latn			15.001	VIHZ	x dB		-20.	00 dB			
MSG										STATU:				
										51410				

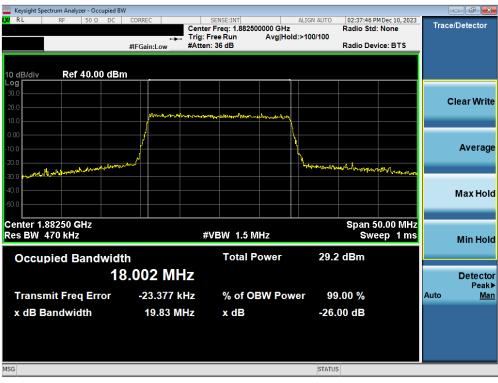
Plot 7-19. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 64-QAM - Full RB Configuration)


Plot 7-20. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 23 01 216
	·		V2.2 09/07/2023

Keysight Spectrum Analyzer - Occupied B					10 - 10 2022		
XIRL RF 50Ω DC	CORREC	Center Freq: 1.8825	00000 GHz	Radio Std	MDec 10, 2023 : None	Trace/I	Detector
	↔ #IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold:>10	00/100 Radio Dev	ice: BTS		
	in Gameon						
10 dB/div Ref 40.00 dB	m						
Log 30.0							
20.0						CI	ear Write
10.0	manufacture	Adread the second and the second second	valhermaker				
0.00	/						
-10.0			\				Average
-20.0 wy/10/10 mul down of the with	-14 ^{Marter}		, international states of the second states of the	Wmparton and and when the	. h the second		-
-30.0					Albert Constraintere		
-40.0							/ax Hold
-50.0							
Center 1.88250 GHz				Span 5	0.00 MHz		
Res BW 470 kHz		#VBW 1.5 I	∕IHz		ep 1 ms		Min Hold
Occupied Bondwid	4 b	Total I	Power	32.9 dBm			
Occupied Bandwid			OWEI	52.9 dbm			_
1	8.059 M	HZ					Detector Peak►
Transmit Freq Error	-35.110	kHz % of O	BW Power	99.00 %		Auto	Man
x dB Bandwidth	19.80 N	MHz x dB		-26.00 dB			
MSG				STATUS			

Plot 7-21. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz QPSK - Full RB Configuration)

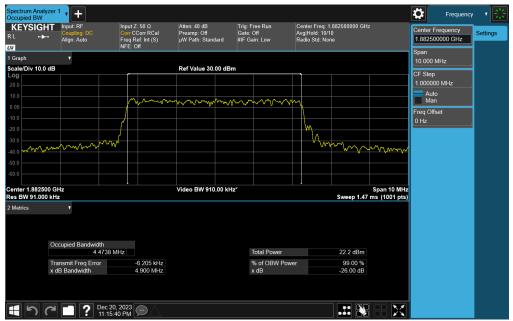

Plot 7-22. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 24 01 210
			\/2 2 09/07/2023

W RE SO.G. DC CORREC SSNERHT ALIGN AUTO 02:37:40 PMORe 10, 2023 Radio Std: None Radio Std: None Radio Std: None Radio Std: None Radio Std: None Radio Std: None Radio Std: None Radio Std: None 10 dB/div Ref 40.00 dBm Clear Write Clear Write Clear Write Average 200	🔤 Keysight Spe	ctrum Analy	zer - Occu	upied BW	/										- • •
Image: Control of the price in 100 Control of the price in the price intervalue in the pric	LXI RL	RF	50 Ω	DC	CORREC						ALIGN AUTO			Troc	o/Detector
##FGain:Low #Atten: 36 dB Radio Device: BTS 10 dB/div Ref 40.00 dBm 200 0 0 200 0 0 100												Radio Std	: None	Trac	e/Detector
10 dB/div Ref 40.00 dBm 300 300 300<									Avg Ho	old:	100/100				
Log Image: Clear Write 200 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 201 Image: Clear Write <t< td=""><td></td><td></td><td></td><td></td><td>#IFGain:L</td><td>.ow #/</td><td>Atten: 36</td><td>6 dB</td><td></td><td></td><td></td><td>Radio Dev</td><td>rice: BTS</td><td></td><td></td></t<>					#IFGain:L	.ow #/	Atten: 36	6 dB				Radio Dev	rice: BTS		
Log Image: Clear Write 200 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 201 Image: Clear Write <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Log Image: Clear Write 200 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 100 Image: Clear Write 200 Image: Clear Write 201 Image: Clear Write <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_													
300		Ref	40.00) dBm	<u> </u>										
200															
200 100	30.0														Clear Write
0.00 0.00	20.0									\vdash					Clear write
0.00 0.00	40.0				1400 C	Brankhry Jow	an when the	and the second second	Second Second						
100 Average 200 Average 201 Average 2	10.0				1					Ł					
2000 mathematical bit and	0.00				/					h					
2000 mathematical bit and	-10.0				/					Ľ					Average
400 1	-10.0		14	Maria	And						mulles.				riterage
400 1	-20.0	a fillenter	of the states							\vdash	1	Mar Hunter Strand	well have a		
60.0 Image: Content 1.88250 GHz Res BW 470 kHz Span 50.00 MHz Sweep 1 ms Min Hold Occupied Bandwidth 18.054 MHz Total Power 31.5 dBm Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	-30.0														
60.0 Image: Content 1.88250 GHz Res BW 470 kHz Span 50.00 MHz Sweep 1 ms Min Hold Occupied Bandwidth 18.054 MHz Total Power 31.5 dBm Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	10.0														
Center 1.88250 GHz Res BW 470 kHz \$\$ Span 50.00 MHz Sweep 1 ms Min Hold Occupied Bandwidth 18.054 MHz Total Power 31.5 dBm Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	-40.0														Max Hold
Res BW 470 kHz #VBW 1.5 MHz Sweep 1 ms Occupied Bandwidth Total Power 31.5 dBm 18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	-50.0									\square					
Res BW 470 kHz #VBW 1.5 MHz Sweep 1 ms Occupied Bandwidth Total Power 31.5 dBm 18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %															
Res BW 470 kHz #VBW 1.5 MHz Sweep 1 ms Occupied Bandwidth Total Power 31.5 dBm 18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	Center 1.	88250 C	Hz									Span 5	0.00 MHz		
Occupied Bandwidth Total Power 31.5 dBm 18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %							#VB	W 1.5 M	/Hz						
18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %										_					Min Hold
18.054 MHz Detector Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	0				b			Total E	Dowor		24.5	dDm			
Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %	Occu	oled E	ana					i Utai r	Ower		51.5	UDIII			
Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %				1 8	054	MHz									Detector
Transmit Freq Error -44.008 kHz % of OBW Power 99.00 %						1011 12									
x dB Bandwidth 19.83 MHz x dB -26.00 dB	Transr	nit Fre	q Erro	or	-44.	008 kHz	2	% of O	BW Pov	we	r 99	.00 %		Auto	
		a sa ali sa il			40	02 MIL					26				
	хавв	andwi	aun		19	.83 MHZ		хав			-20.	JU aB			
MSG STATUS	MSG										STATUS				

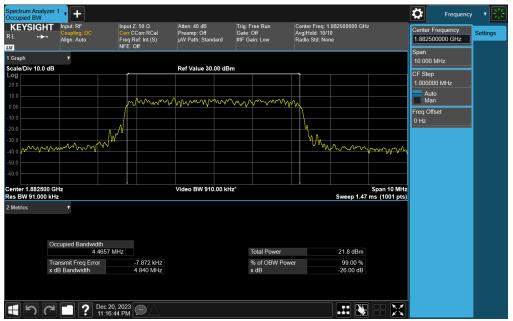
Plot 7-23. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 64-QAM - Full RB Configuration)

Plot 7-24. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 256-QAM - Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 25 of 216
			V2.2 09/07/2023

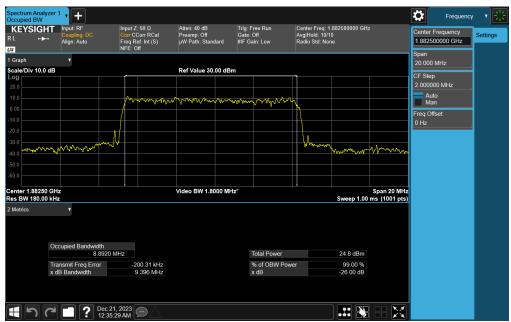
NR Band n25/n2

Plot 7-25. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)

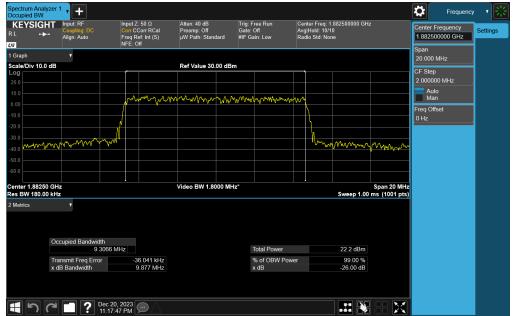

Plot 7-26. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM QPSK - Full RB)

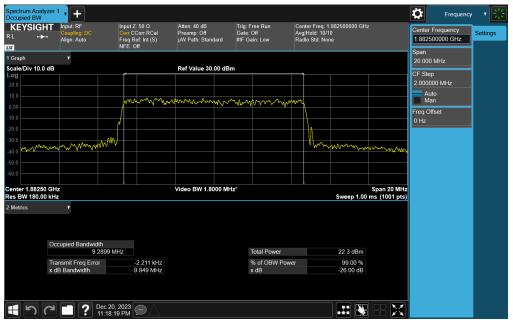
FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 20 01 210
			V2.2 09/07/2023


Plot 7-27. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 16QAM - Full RB)


Plot 7-28. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 64QAM - Full RB)

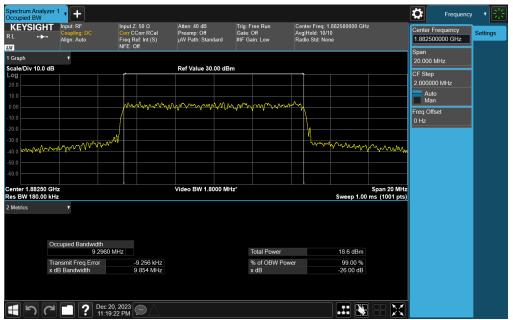
FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 27 01 210
			V2.2 09/07/2023


Plot 7-29. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 256QAM - Full RB)


Plot 7-30. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

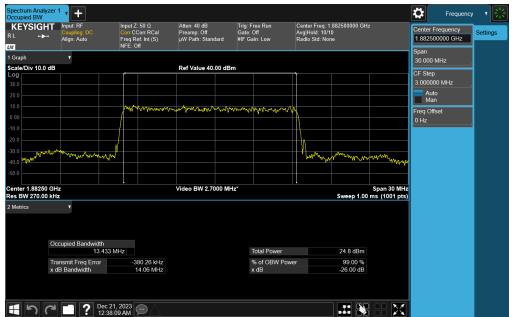
FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 20 01 210
			V2.2 09/07/2023

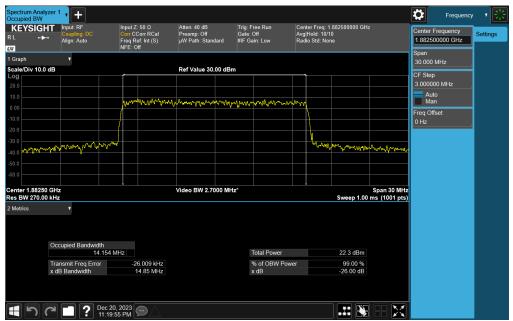
Plot 7-31. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-32. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 216
1C2311270070-08.BCG	3CG 10/1/2023 - 3/20/2024 Tablet Device		Fage 29 01 210
	· · · · · · · · · · · · · · · · · · ·		V2.2 09/07/2023

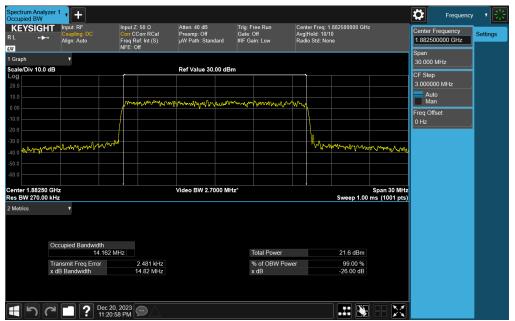
KEYSIG	HT Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: Avg Hold: 10 Radio Std: N			Center Frequency 1.882500000 GHz Span	Settings
Graph	•							20.000 MHz	
cale/Div 10.	0 dB		Ref Value 30.00 dE	lm				CF Step 2.000000 MHz	
10.0		hum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmmm	Anny			Auto Man	
10.0								Freq Offset 0 Hz	
	man man	~			Johner	Mrr	ᠰᡇᢉ᠕ᠰᡁᠬᡪ᠕		
50.0									
Center 1.8825 Res BW 180.0			Video BW 1.8000 M	Hz*		Sween 1.00	Span 20 MHz ms (1001 pts)		
? Metrics	•								
	Occupied Bandwidth 9.3236	MHz		Total Power		21.6 dBm			
	Transmit Freq Error x dB Bandwidth	-561 Hz 9.763 MHz		% of OBW Pe x dB	ower	99.00 % -26.00 dB			


Plot 7-33. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 64QAM - Full RB)


Plot 7-34. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 256QAM - Full RB)

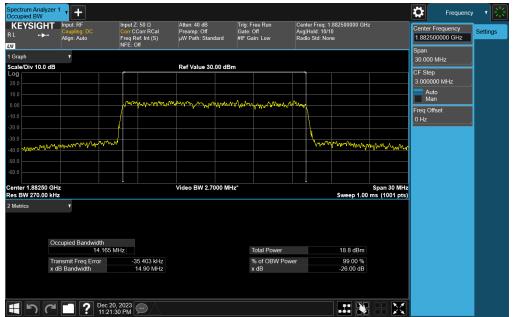
FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 216
1C2311270070-08.BCG	B.BCG 10/1/2023 - 3/20/2024 Tablet Device		Fage 50 01 210
			V2.2 09/07/2023

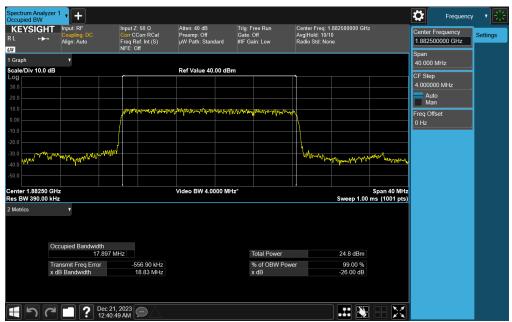
Plot 7-35. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-36. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 216	
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 31 of 216	
	·		V2.2 09/07/2023	

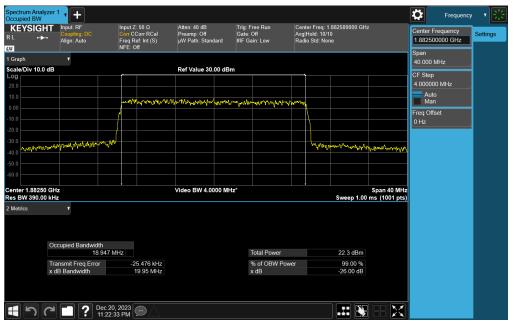
KEYSIGH RL ++-		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg Ho	r Freq: 1. old: 10/1 Std: Non			Center Frequency 1.882500000 GHz	Settings
Graph					·				Span 30.000 MHz	
cale/Div 10.0 d	iB		Ref Value 30.00 dB	m					CF Step	
									3.000000 MHz	
		maria	howhow when	man	mer w				Auto Man	
		1							Freq Offset	
0.0									0 Hz	
10.0 may may may	mymannammun					mm	www.	monda		
50.0										
60.0										
enter 1.88250 es BW 270.00			Video BW 2.7000 M	1z^			Sweep 1.00	Span 30 MHz ms (1001 pts)		
Metrics	▼ Occupied Bandwidth	Hz		Total Power			22 3 dBm			
	14 101 M			% of OBW P	ower		99.00 %			
	14.101 M Transmit Freg Error	-39 593 kHz								
	14.101 M Transmit Freq Error x dB Bandwidth	-39.593 kHz 14.80 MHz		x dB			-26.00 dB			


Plot 7-37. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 16QAM - Full RB)


Plot 7-38. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 32 01 210
			V2.2 09/07/2023

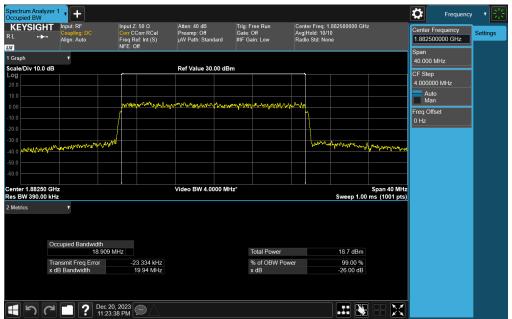
Plot 7-39. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 256QAM - Full RB)


Plot 7-40. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 33 01 210
	· · · ·		V2.2 09/07/2023

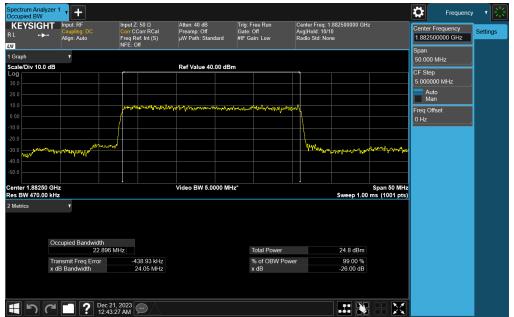
	Align: Auto	Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Preamp: Off µW Path: Standard	Gate: Off #IF Gain: Low	Avg Hold: 1 Radio Std: N			Center Frequency 1.882500000 GHz	Settings
Graph	•							Span 40.000 MHz	
cale/Div 10.0 dl	8		Ref Value 30.00 dB	Im				CF Step	
								4.000000 MHz	
		phone was	mymannhann	mmultin	bhave			Man	
0.00					· \			Freq Offset	
20.0								0 Hz	
		/							
40.0 WWW	well with the second				YUNY	manna	www.ph/ww.hc.		
enter 1.88250 G	Hz		Video BW 4.0000 M	Hz*	i		Span 40 MHz		
es BW 390.00 k						Sweep 1.00	ms (1001 pts)		
Metrics	Cccupied Bandwidth 18.915 M	11-12		Total Power		22 3 dBm			
	Transmit Freg Error	-25.942 kHz		% of OBW P	ower	99.00 %			
	dB Bandwidth	19.92 MHz		x dB		-26.00 dB			

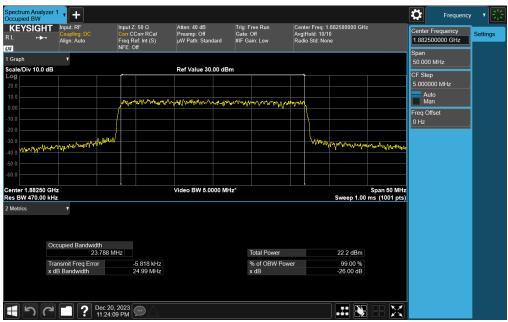
Plot 7-41. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM QPSK - Full RB)


Plot 7-42. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 216
1C2311270070-08.BCG	70070-08.BCG 10/1/2023 - 3/20/2024 Tablet Device		Fage 34 01 210
			V2.2 09/07/2023

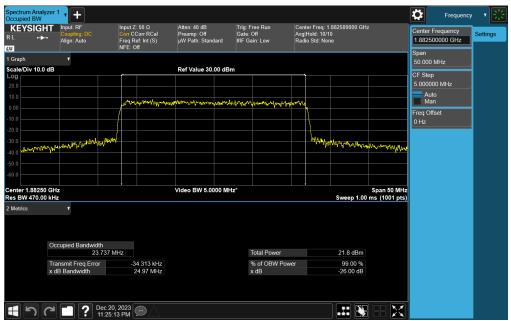
KEYSIGH ⊥ +>- 1	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Stand	G	ig: Free Run ate: Off F Gain: Low	Avg	ter Freq: 1 Hold: 10/ io Std: No			Center Frequency 1.882500000 GHz	Settings
Graph	•									Span 40.000 MHz	
cale/Div 10.0 og	B		Ref Value 30.	00 dBm						CF Step	
0.0										4.000000 MHz	
										Auto Man	
		water water and and a start of the	an and the second	man	m ly when why have	whener showing	\				
		-/					}			Freq Offset 0 Hz	
		-}									2
0.0	eren and and and and and and	/					wil	phinpanyhou	NA 1.107 1.1 1		
0.0								d admorthe erally			
nter 1.88250		•	Video BW 4.00	00 MHz*					Span 40 MHz		
s BW 390.00	kHz							Sweep 1.00	ms (1001 pts)		
Metrics	Occupied Bandwidth 18.918	MH7			Total Power			21.8 dBm			
	Transmit Freq Error	-35.419 kHz			% of OBW P	ower		99.00 %			
	x dB Bandwidth	19.95 MHz			x dB			-26.00 dB			


Plot 7-43. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 64QAM - Full RB)


Plot 7-44. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 216
1C2311270070-08.BCG	070-08.BCG 10/1/2023 - 3/20/2024 Tablet Device		Fage 35 01 210
			V2.2 09/07/2023

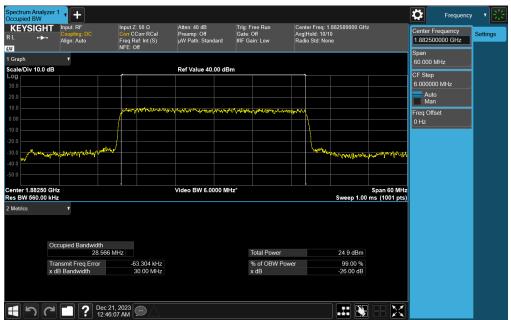
Plot 7-45. Occupied Bandwidth Plot (NR Band n25 - 25MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-46. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 30 01 210
			V2.2 09/07/2023

KEYSIGH		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg H	er Freq: 1.882500000 GH Iold: 10/10 9 Std: None	łz	Center Frequency 1.882500000 GHz	Settings
Graph	v	1		- I				Span 50.000 MHz	
cale/Div 10.0	dB		Ref Value 30.00 d	IBm					
_ og 20.0								CF Step 5.000000 MHz	
10.0								Auto	
0.00		maphanenanton	and a subsection of the second se	and wards and a stand of the st	www			Man Man	
10.0								Freq Offset	
20.0								0 Hz	
	6+Dar	d				much and an			
40.0 wagway	worker Anora And					مادي بيها مرام المراجع والمع	MAN AN MANA		
-50.0									
							0		
Center 1.88250 Res BW 470.00			Video BW 5.0000 I	viHz		Sweep 1.00	Span 50 MHz ms (1001 pts)		
2 Metrics	Occupied Bandwidth 23.777 I			Total Power		22.3 dBm			
	Transmit Freq Error x dB Bandwidth	3.050 kHz 24.93 MHz		% of OBW F × dB	rower	99.00 % -26.00 dB			

Plot 7-47. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 16QAM - Full RB)


Plot 7-48. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 37 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 37 01 210
	-		V2.2 09/07/2023

XI .	Align: Auto	Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Preamp: Off µW Path: Standard	Gate: Off #IF Gain: Low	Avg Hold: ' Radio Std:			Center Frequency 1.882500000 GHz	Settings
Graph	•							Span 50.000 MHz	
cale/Div 10.0 dl	3	_	Ref Value 30.00 d	Bm				CF Step	
20.0								5.000000 MHz	
								Auto Man	
		monterment	annogation (pression and pression and pre	and well with the second s	phalanap			Freq Offset	
		/						0 Hz	
30.0	who was and way					way you wanyo	may more		
60.0									
enter 1.88250 G es BW 470.00 k			Video BW 5.0000	MHz*		S	Span 50 MHz ms (1001 pts)		
Metrics	•								
C	Occupied Bandwidth 23.736 M	Hz		Total Power		18.9 dBm			
1	ransmit Freq Error	-9.748 kHz		% of OBW P	ower	99.00 %			
	dB Bandwidth	24.95 MHz		x dB		-26.00 dB			

Plot 7-49. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 256QAM - Full RB)

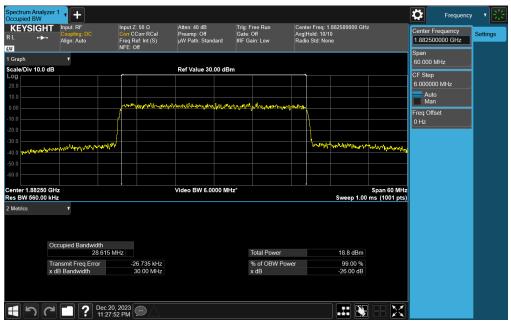
Plot 7-50. Occupied Bandwidth Plot (NR Band n25 - 30MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 38 01 216
			V2.2 09/07/2023

KEYSIGH ∟ •►• 1			Corr RCal lef: Int (S)	Atten: 40 dB Preamp: Off μW Path: Stand	G	rig: Free Run ate: Off F Gain: Low	Avgi	er Freq: 1 Hold: 10/1 o Std: Nor			Center Frequency 1.882500000 GHz	Settings
Graph	v										Span 60.000 MHz	
cale/Div 10.0 o	iB			Ref Value 30.	00 dBm						CF Step	
											6.000000 MHz	
			ويراد مسطر ورافر والع	and the block of the total state		with the for the way was a start of the star					Auto Man	
		-	a dhe nedermoorde.	the during of the	-44 40 V 101-	AND A MARKA - MINANA B	draw with d	1			Freq Offset	
								<u>}</u>			0 Hz	
0.0 0.0 0.0	n war	noul -						Jump	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	manghamagers		
enter 1.88250 s BW 560.00		•		Video BW 6.00	000 MHz*				S	Span 60 MHz ms (1001 pts)		
Metrics	▼ Occupied Bandwidth											
	28.664	MHz				Total Power			22.2 dBm			
	Transmit Freq Error x dB Bandwidth		18.301 kHz 30.04 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB			

Plot 7-51. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM QPSK - Full RB)

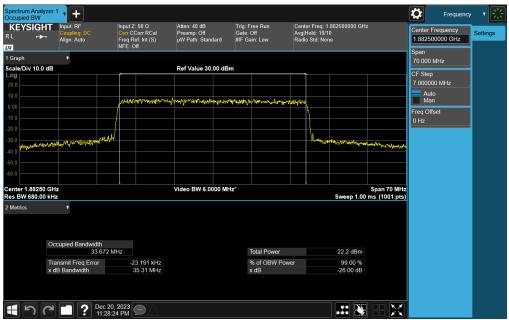
Graph		NFE: Off	µW Path: Stand	ard #IF	Gain: Low		Hold: 10/1 o Std: Nor			1.882500000 GHz Span	Settings
ale/Div 10.0 dB	T		D-616-10-00							60.000 MHz	
og			Ref Value 30.	JU dBm						CF Step 6.000000 MHz	
										Auto	1
		mushmandupar	Maria and Singer	and a start and	en aller and a state of the sea	many				Man Freq Offset	
							$\left\{ - \right\}$			0 Hz	
20.0 30.0	warman						La Marrier	understand and the second s	- Jonth Marchen		
0.0											
enter 1.88250 GHz es BW 560.00 kHz		•	Video BW 6.00	00 MHz*			,	S	Span 60 MHz ms (1001 pts)		
Metrics	vupied Bandwidth										
	28.604 M	Hz			Total Power			22.3 dBm			
	nsmit Freq Error 3 Bandwidth	-23.827 kHz 30.07 MHz			% of OBW Po x dB	wer		99.00 % -26.00 dB			


Plot 7-52. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Dogo 20 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 39 of 216
1	·		V2.2 09/07/2023

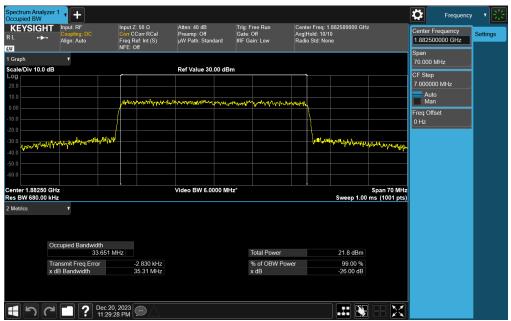
KEYSIGH ∷L +→- ₪	Coupling: DC	Co Fr	put Z: 50 Ω prr CCorr RCal eq Ref: Int (S) ⁼E: Off	Atten: 40 dB Preamp: Off µW Path: Stan		irig: Free Run Sate: Off IF Gain: Low	Avgi	er Freq: 1 Hold: 10/1 o Std: Noi			Center Frequency 1.882500000 GHz	Settings
Graph	•										Span 60.000 MHz	
cale/Div 10.0				Ref Value 30	00 dBm						CF Step	
											6.000000 MHz	-
0.0		,	1 maria maria	www.	(the second	manyahan	www.				Man	
0.0		/						1			Freq Offset	
0.0											0 Hz	
	ALL AND AND AND AND A	WWW						WAYAM	Mansonarow			
0.0 And Maler	Ung and specific and a specific and								1	aller Marale aller		
		\rightarrow										
enter 1.88250				Video BW 6.0	000 MHz*					Span 60 MHz		
es BW 560.00 Metrics	kHz v								Sweep 1.00	ms (1001 pts)		
	Occupied Bandwidt	h										
		586 MHz				Total Power			21.9 dBm			
	Transmit Freq Error x dB Bandwidth		2.838 kHz 30.04 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB			

Plot 7-53. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 64QAM - Full RB)


Plot 7-54. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 40 01 210
			V2.2 09/07/2023

Plot 7-55. Occupied Bandwidth Plot (NR Band n25 - 35MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-56. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 41 01 210
			V2.2 09/07/2023

KEYSIGH		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:	q: 1.882500000 GH 10/10 None		Center Frequency 1.882500000 GHz	Settings
Graph								Span 70.000 MHz	
cale/Div 10.0	dB	_f	Ref Value 30.00 dE	İm				CF Step	
20.0								7.000000 MHz	
		- 480 4 M 4974 1- 471 5	Nummahaham					Auto Man	
		periodent of the first of the	tan Madaco Karlod ana kaina na	an number	academ (1979)			Freq Offset	
		<u> </u>			}			0 Hz	
-30.0	mary provinged a the					all and a second second	Month Martinet		
-40.0									
-50.0									
Center 1.88250 Res BW 680.00			Video BW 6.0000 M	Hz*		Sweep 1 00	Span 70 MHz ms (1001 pts)		
2 Metrics	Occupied Bandwidth								
	33.574 M	MHz		Total Power		22.3 dBm			
		-16.363 kHz		% of OBW F x dB	Power	99.00 % -26.00 dB			
	Transmit Freq Error x dB Bandwidth	35.33 MHz		× 30					
		35.33 MHz		× 40					

Plot 7-57. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 16QAM - Full RB)

Plot 7-58. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 42 01 210
	-		V2.2 09/07/2023

KEYSIG⊦ ∷ -► ₪		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg Hold Radio Sto	eq: 1.882500000 GHz 10/10 I: None		Center Frequency 1.882500000 GHz	Settings
Graph	•							Span 70.000 MHz	
cale/Div 10.0	dB	· · · · · · · · · · · · · · · · · · ·	Ref Value 30.00 dB	Im				CF Step	
20.0								7.000000 MHz	
								Auto Man	
		mander	hand the second of the second s	www.www.www.www.	manne			Freq Offset	
					N			0 Hz	
30.0	mmound					and for the second	T. dillon ad		
							ALC: VINIO		
50.0									
enter 1.88250			Video BW 6.0000 M	Hz*			Span 70 MHz		
es BW 680.00 Metrics	KHZ V					Sweep 1.00	ms (1001 pts)		
	Occupied Bandwidth 33.648 M	1Hz		Total Power		18.8 dBm			
	Transmit Freg Error	-88.470 kHz		% of OBW P	ower	99.00 %			
	x dB Bandwidth	35.33 MHz		x dB		-26.00 dB			

Plot 7-59. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 256QAM - Full RB)

Plot 7-60. Occupied Bandwidth Plot (NR Band n25 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 43 01 210
			V2.2 09/07/2023

KEYSIGH ∟ •►• 1		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg He	: Freq: 1.882500000 GHz old: 10/10 Std: None	1.8	ter Frequency 82500000 GHz	Settings
Graph	•						Spa 80.	n 000 MHz	
cale/Div 10.0 c	dB		Ref Value 30.00 dE	3m				Step	
							8.0	00000 MHz	
		walsh mar mannes why	Matter Materia	<i>แกรงสา</i> นเสร้างสำราชการการการการการการ	or the section			Auto Man	
		1			1. 4.1 6.1		Frei	a Offset	
							0 H		
0.0 0.0	wert that the war water and proved					manuscripter provide What	Mut and all related		
).0									
nter 1.88250 s BW 750.00			Video BW 8.0000 M	Hz*		S Sweep 1.00 m	pan 80 MHz		
Metrics	v Occupied Bandwidth								
	38.682 N	IHz		Total Power		22.2 dBm			
	Transmit Freq Error x dB Bandwidth	-38.793 kHz 40.44 MHz		% of OBW P x dB	ower	99.00 % -26.00 dB			
		40.44 MHz		XUB		-20.00 dB			

Plot 7-61. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM QPSK - Full RB)

KEYSIGI ∟ +→ 1	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Gate:	ree Run Off ain: Low	Avgił	er Freq: 1 Hold: 10/1 Std: Nor			Center Frequency 1.882500000 GHz Span	Settings
Graph cale/Div 10.0	7 81		Ref Value 30.0	0 -IB						80.000 MHz	_
og 0.0			Rer value 30.0							CF Step 8.000000 MHz	
		montponutan	and the second second	un Réference at a ball						Auto Man	
			a a bu o offension fo		an officer of the second s	ive of the state				Freq Offset 0 Hz	
0.0 0.0 0.0	and the second states and a second						-	wiget the first of the second s	Mr. warden the artist way		
enter 1.88250 es BW 750.00		L	Video BW 8.000	00 MHz*				Sweep 1.00	Span 80 MHz ms (1001 pts)		
Metrics	Y										
	Occupied Bandwidth 38,645 M	ALI 7			Total Power			22.3 dBm			
	Transmit Freq Error	-38.608 kHz			% of OBW Pc	wer		99.00 %			
	x dB Bandwidth	40.51 MHz			x dB			-26.00 dB			

Plot 7-62. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 216
1C2311270070-08.BCG	08.BCG 10/1/2023 - 3/20/2024 Tablet Device		Page 44 of 216
	·		V2.2 09/07/2023

KEYSIGI at → ਯ		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg Hold: Radio Sto	req: 1.882500000 GHz : 10/10 d: None		Center Frequency 1.882500000 GHz	Settings
Graph	*							Span 80.000 MHz	
cale/Div 10.0) dB		Ref Value 30.00 dB	im				CF Step	
								8.000000 MHz	
		milenne de manuel	ana and the second and second	wether and mound	4.14. Juli A.4			Auto Man	
0.00								Freq Offset	
20.0		1						0 Hz	
						al			
40.0 חיייייי	when we want the strategy and					and and a second second	monorm		
enter 1.8825		•	Video BW 8.0000 Mi	Hz*			Span 80 MHz		
les BW 750.0	0 kHz					Sweep 1.00	ms (1001 pts)		
? Metrics	Occupied Bandwidth 38.549 N	MHz		Total Power		21.8 dBm			
	Transmit Freq Error	-2.479 kHz		% of OBW F	ower	99.00 %			
	x dB Bandwidth	40.39 MHz		x dB		-26.00 dB			

Plot 7-63. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 64QAM - Full RB)

KEYSIG ⊥ +ı I	HT Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avgit	er Freq: 1 Hold: 10/1 Std: Nor			Center Frequency 1.882500000 GHz Span	Settings
Graph ale/Div 10.	T AB		Ref Value 30.00 d	Bm					80.000 MHz	1
			Rei Value 30.00 u						CF Step 8.000000 MHz	1
									Auto Man	
			www.whenhaw	Mynangenel Lyndrykerymen	n later for the				Freq Offset 0 Hz	
	- Manutan Manual Manuar					www	moundan			2
.0 ******** .0								a sala na sa		
nter 1.8825 BW 750.0			Video BW 8.0000 N	//Hz*			Super 1 00	Span 80 MHz ms (1001 pts)		
letrics	۲							<u></u>		
	Occupied Bandwidth 38,654	MHZ		Total Power			18.6 dBm			
	Transmit Freq Error x dB Bandwidth	-98.380 kHz 40.55 MHz		% of OBW Po x dB	ower		99.00 % -26.00 dB			

Plot 7-64. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 216
1C2311270070-08.BCG	8.BCG 10/1/2023 - 3/20/2024 Tablet Device		Fage 45 01 210
			V2.2 09/07/2023

WCDMA PCS

Plot 7-65. Occupied Bandwidth Plot (WCDMA, Ch. 9400)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 40 01 210
			V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §24.238(a)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 20GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

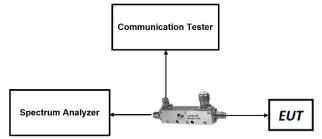
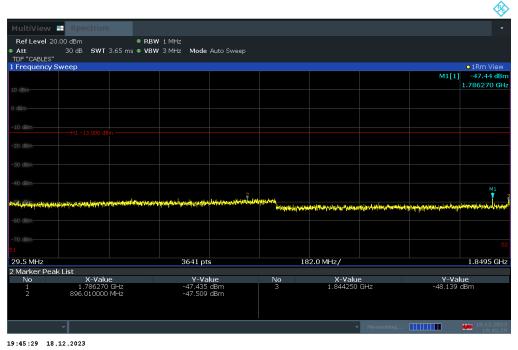
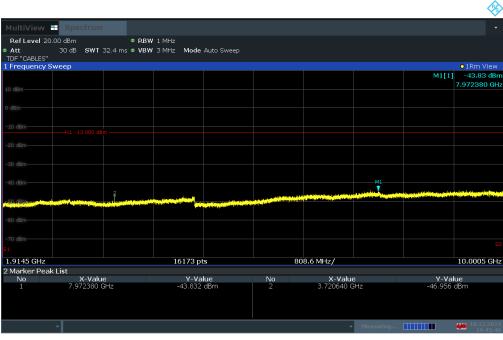


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024 Tablet Device		Fage 47 01 210
			V2 2 09/07/2023


Test Notes

- Per Part 24, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 3. NR band n25 overlaps the entire frequency range of NR band 2. Therefore, the conducted emissions data of NR band n25 provided in this report covers NR band n2.

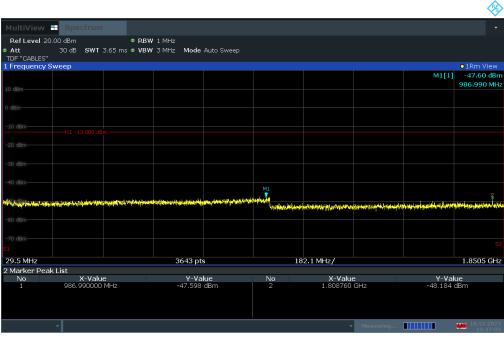

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 48 of 216
			\/2 2 09/07/2023

LTE Band 25/2

Plot 7-66. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

19:45:47 18.12.2023

Plot 7-67. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 49 of 216
			V2.2 09/07/2023

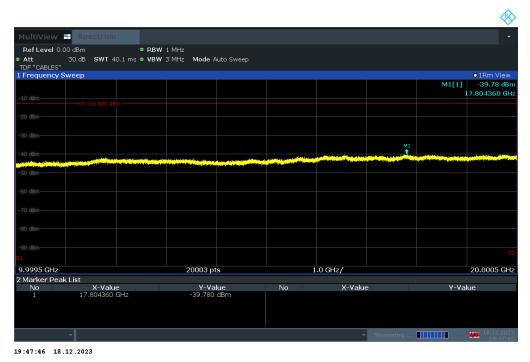
									\$
MultiView	Spectrum								
Ref Level 0.0	00 dBm	● RBW	1 MHz						
 Att 	30 dB SWT 40.	.1 m s 🗢 VBW 🗄	3 MHz Mode A	Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								●1Rm View
								M1[1]	-39.79 dBm
-10 dBm									18.247340 GHz
-20 dBm									
-30 dBm									
-40 dBm					an an an Arabitan Int			A DISCOUNT OF THE OWNER OF THE	
					distant of the local distance of the	and the second	Contraction of the second second	and the second second second	Construction of the second second second
-50 dBm-									
-60 dBm-									
-70 dBm-									
-80 dBm									
-90 dBm									52
S1									
9.9995 GHz			20003 pi	ts		1.0 GHz/			20.0005 GHz
2 Marker Peal									
No	X-Value		Y-Va	lue	No	X-Valu	8	Y-Va	lue
1	18.247340 G	HZ	-39.785	abm					
									10 10 2022
	*					~	Measuring		18.12.2023 19:46:04

19:46:05 18.12.2023

Plot 7-68. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

19:47:10 18.12.2023

Plot 7-69. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

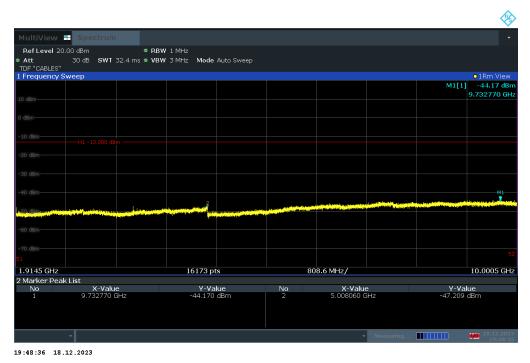

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 50 01 210
			V2.2 09/07/2023

									*
MultiView	Spectrum								
Ref Level 20.0	00 dBm	• RB	W 1 MHz						
 Att TDF "CABLES" 	30 dB SWT	32.4 ms 🗢 VB	₩ 3 MHz Mode	Auto Sweep					
1 Frequency Sv	weep								o1Rm View
10 dBm								M1[1]	-44.13 dBm 9.779260 GHz
0 dBm-									
-10 dBm									
-20 dBm-									
-30 dBm									
-40 dBm									M1
					and the second		a deservation of the second second		
-50 dBro					Contradiction of the second second				
-60 dBm									
-70 dBm-									
S1									
1.9145 GHz			16173 p	ts	80	8.6 MHz/			10.0005 GHz
2 Marker Peak									
No 1	X-Valu 9.779260 (Y-Va -44.130		No 2	X-Value 5.001560 G		Y-Va -46.998	
	•						Measurinq		18.12.2023
						¥	neosanny		19:47:27

19:47:28 18.12.2023

Plot 7-70. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-71. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 51 01 210
	·		V2.2 09/07/2023

									\$
MultiView	Spectrum								
Ref Level 20.	00 dBm	• RBW	1 MHz						
Att		3.65 ms • VBW		Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								O1Rm View
								M1[1]	-48.39 dBm
10 dBm									34.250 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
M1									
Malla Call Anna Long Long Long	And an analysist to	an history and the in-	makankanmantana	energy of the second	Ranaph			and the second states	lati se celore è din
M1 Mili (Annual	a de la construction de la constru				Maharana	an a	and a fill of the second should	following the state of the stat	Sector Sector and Labor Labor
-60 dBm									
-70 dBm									
S1									52
29.5 MHz			3643 pt	e	18	2.1 MHz/			1.8505 GHz
2 Marker Peak	liet		5045 pt	3	10	2.1 ((12)			1.0000 0112
No	X-Valu	e	Y-Va	lue	No	X-Value	e	Y-Val	ue
1	34.250000		-48.389	dBm	2	1.831260 (-48.787	dBm
	-						Measurinq		18.12.2023
									19:48:17

19:48:18 18.12.2023

Plot 7-72. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-73. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 52 01 210
	·		V2.2 09/07/2023

MultiView	Spectrum							•
Ref Level 0.0	0 dBm	• RBW 1 MHz						
 Att TDF "CABLES" 	30 dB SWT 40.1 m	s ● VBW 3 MHz Mode /	Auto Sweep					
1 Frequency S	weep							o1Rm View
							M1[1]	-39.97 dBm
-10 dBm								19.252290 GHz
20 0011								
-20 dBm								
-30 dBm								
								M1
-40 dBm					and the second second second second second			
and the second second second second					and the state of the	And I had been a search for the ballions of	AND DESCRIPTION OF A DE	No. of Contemporary and Printers of
-50 dBm								
-60 dBm-								
-70 dBm-								
-80 dBm								
-90 dBm								
-90 UBIII-								S2
21								
9.9995 GHz		20003 p	ts	i	.0 GHz/			20.0005 GHz
2 Marker Peak No	List X-Value	Y-Va	h en	No	X-Value		Y-Va	h i e
1	x-value 19.252290 GHz	۲-۷ <i>۵</i> 39.972-	dBm	110				
	*				~	Measuring		18.12.2023
								19:48:53

19:48:54 18.12.2023

Plot 7-74. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 55 01 210
			V2 2 09/07/2023

NR Band n25/n2

Plot 7-75. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-76. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 54 01 210
			V2 2 09/07/2023

Plot 7-77. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-78. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 55 01 210
			V2.2 09/07/2023

Plot 7-79. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-80. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

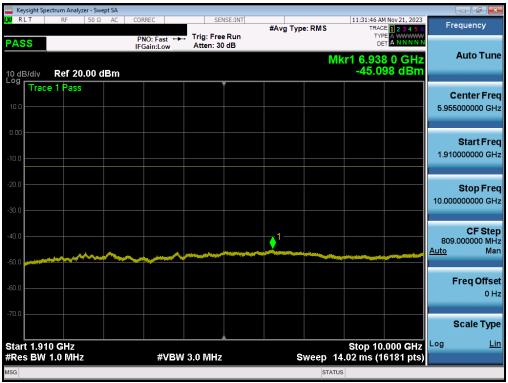
FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 50 01 210
			V2.2 09/07/2023

Plot 7-81. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)

Plot 7-82. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 57 01 210
			V2.2 09/07/2023

Plot 7-83. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 56 01 210
			V2.2 09/07/2023

WCDMA PCS

		rum Analy											_	
lxi RL	T	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Typ	e: RMS	TRAC	M Nov 21, 2023	Fr	equency
PAS	S				PNO: IFGain	Fast ↔ :Low	Trig: Fre Atten: 3				TY D			
10 dB Log r	/div	Ref 20).00 d	Bm						M	kr1 1.84 -31.	4 5 GHz 22 dBm		Auto Tune
	Trace	1 Pass						Ĭ					(Center Freq
10.0													937	.500000 MHz
0.00														
													30	Start Freq
-10.0													50	
-20.0														Stop Freq
-30.0												1	1.84	5000000 GHz
-30.0												*		
-40.0														CF Step .500000 MHz
-50.0								unda halfonoo hakka uu maaraa a			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>Auto</u>	Man
ŀ	بدانغ مبرومون				re tyrical age of a real f									Freq Offset
-60.0														0 Hz
-70.0														
														Scale Type
		0 GHz				#\/D\M	2.0.041			Duraan	Stop 1.		Log	<u>Lin</u>
#Res	БW 1	.0 MHz				#VBW	3.0 MHz			Sweep		(3641 pts)		
			_											

Plot 7-84. Conducted Spurious Plot (WCDMA Ch. 9262)

Plot 7-85. Conducted Spurious Plot (WCDMA Ch. 9262)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 59 01 210
	<u>.</u>	•	V2.2 09/07/2023

🔤 Keysight Spectrum Analyzer - Swept SA 👘				
LXX RLT RF 50Ω AC	CORREC SENSE:IN PNO: Fast ↔ Trig: Free Run	#Avg Type: RMS	11:32:04 AM Nov 21, 2023 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
PASS 10 dB/div Ref 0.00 dBm	IFGain:Low Atten: 10 dB	M	DET A NNNNN Ikr1 18.271 5 GHz -57.515 dBm	Auto Tune
-10.0				Center Freq 15.000000000 GHz
-20.0				Start Freq 10.000000000 GHz
-40.0				Stop Freq 20.000000000 GHz
-60.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CF Step 1.000000000 GHz <u>Auto</u> Mar
-80.0				Freq Offset 0 Hz
30.0 Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Susan	Stop 20.000 GHz	Scale Type
#Res BW 1.0 MHZ	#VBW 3.0 WHZ		25.33 ms (20001 pts)	

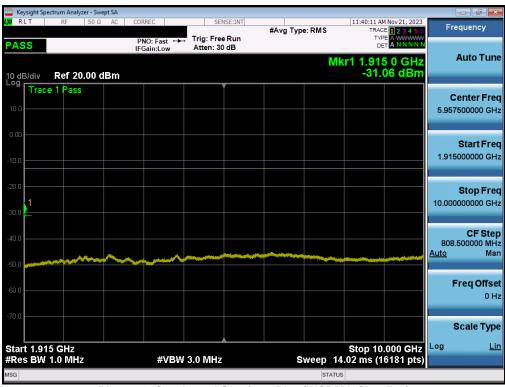
Plot 7-86. Conducted Spurious Plot (WCDMA Ch. 9262)

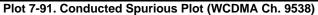

Plot 7-87. Conducted Spurious Plot (WCDMA Ch. 9400)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 60 01 216
			V2.2 09/07/2023

	ctrum Analyz												
(XI) RLT	RF	50 Ω	AC	CORREC		SE	NSE:INT	#Avg Typ	e: RMS	TRA	AM Nov 21, 2023 CE 1 2 3 4 5 6	Fre	equency
PASS				PNO: I IFGain:	ast ↔ Low	Trig: Fre Atten: 3		• ,,					
10 dB/div Log	Ref 20.	.00 dl	Bm						N	lkr1 6.91 -45.0	8 5 GHz)48 dBm		Auto Tune
10.0	e 1 Pass												enter Freq 000000 GHz
-10.0												1.910	Start Freq 0000000 GHz
-20.0												10.000	Stop Freq 000000 GHz
-40.0		~~~~	~	_				1				809. <u>Auto</u>	CF Step 000000 MHz Man
-60.0												F	F req Offset 0 Hz
-70.0													Scale Type
Start 1.91 #Res BW					#VBW	3.0 MHz		s	weep_1	Stop 10 4.02 ms (1	0.000 GHz 16181 pts)	Log	Lin
MSG									STAT				

Plot 7-88. Conducted Spurious Plot (WCDMA Ch. 9400)


Plot 7-89. Conducted Spurious Plot (WCDMA Ch. 9400)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 01 01 210
			V/2 2 09/07/2023

	ctrum Analyz											
LXI RLT	RF	50Ω A		ORREC			ENSE:INT	#Avg Typ	e: RMS	TR	AM Nov 21, 2023 ACE 1 2 3 4 5 6	Frequency
PASS				PNO: Fa FGain:Lo		Trig: Fr Atten:						
10 dB/div Log	Ref 20	.00 dBr	m						Μ	kr1 1.6 -48	92 5 GHz 8.76 dBm	Auto Tur
Trace	e 1 Pass						Ĭ					Center Fre
10.0												940.000000 MH
0.00												Start Fre
-10.0												30.000000 MH
-20.0												Stop Fre
-30.0												1.850000000 GH
												CF Ste
-40.0											∮ ¹	182.000000 MH <u>Auto</u> Ma
-50.0		an the state of th	e,aseathattaigh				ىرى مەرەپ مەرەپ مەرەپ يەرەپ يەرە يەرەپ يەرەپ يەر	and the first of the state of the		*****	a na an	
-60.0												Freq Offs 0 F
-70.0												Coole Tra
												Scale Typ
Start 0.03 #Res BW				#	VBW	3.0 MH	z		Sweep	Stop 1 2.427 ms	.8500 GHz (3641 pts)	Log <u>L</u>
MSG									STAT			

Plot 7-90. Conducted Spurious Plot (WCDMA Ch. 9538)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 62 01 210
	·	÷	V2 2 09/07/2023

	ectrum Analyz		t SA										
RLT	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		D AM Nov 21, 2023	Freque	ency
ASS				PNO: Fa		Trig: Free Atten: 10							_
0 dB/div	Ref 0.0	0 dBi	n						M	kr1 18.3 -57.	29 0 GHz 611 dBm	Aut	o Tun
.og Trace	e 1 Pass											Cent 15.000000	er Fre 000 GH
10.0												Sta 10.000000	art Fre 000 G⊦
40.0 50.0												Sto 20.000000	o p Fre 000 G⊦
io.o												(1.000000 <u>Auto</u>	CF Ste 000 G⊦ Ma
0.0												Fred	Offs ו 0 H
90.0													le Typ
tart 10.0 Res BW				4	VBW	3.0 MHz			weep	Stop 2 25.33 ms	20.000 GHz (20001 pts)	Log	L
G									STA				

Plot 7-92. Conducted Spurious Plot (WCDMA Ch. 9538)

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 03 01 210
	·	-	V2 2 09/07/2023

7.4 Band Edge Emissions at Antenna Terminal

<u>§2.1051, §24.238(a)</u>

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data was reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

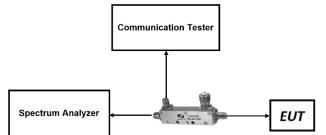


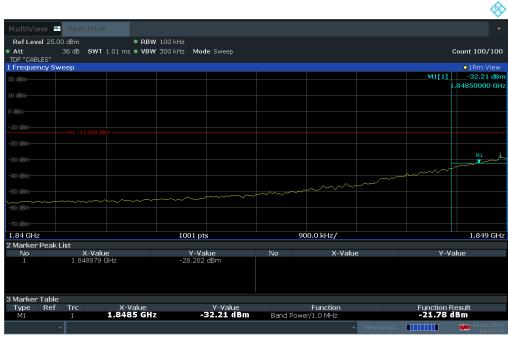
Figure 7-3. Test Instrument & Measurement Setup

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 04 01 210
	· · · · · · · · · · · · · · · · · · ·		V2.2 09/07/2023

Test Notes

- 1. Per 24.238(a), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 05 01 210
			V2 2 09/07/2023



LTE Band 25

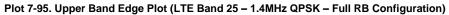
MultiView 📑	Spectrum				•
Ref Level 25.0		• RBW 20 kHz			
Att	36 dB SWT 1.01 ms	VBW 100 kHz Mode Sweep			Count 100/100
TDF "CABLES" Frequency Sv	veep				•1Rm View
20 dBm				M1[1]	
					1.84998930 G
0 dBm					
20 dBm					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
50 dBm					
60 dBm					
1.849 GHz		1001 pts	170.0 kHz/		1.8507 G
Marker Peak					
No 1	X-Value 1.849989 GHz	Y-Value -24.271 dBm	No X-Valu	ie Y-	Value
	1.049909 012	24.271 dbin			
				• Measuring	<b># 16.01.20</b> 2

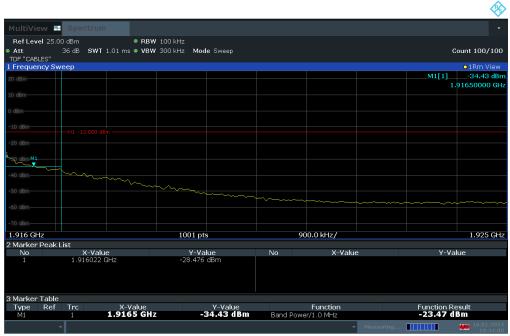
10:33:11 16.01.2024

#### Plot 7-93. Lower Band Edge Plot (LTE Band 25 – 1.4MHz QPSK – Full RB Configuration)



10:32:54 16.01.2024





FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 00 01 210
			V2.2 09/07/2023



MultiView 📑	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Ref Level 25.0	⊡dBm 36dB <b>SWT</b> 1.01ms∣	RBW 20 kHz	Anda Swaan			Count 100/100
TDF "CABLES"	50 dD 501 1.01 ms	<b>100 KHZ 1</b>	node Sweep			
Frequency Sw	/еер					●1Rm View
						M1[1] -23.55 dB
						1.91501070 Gł
20 dBm			M1			
70 dBm						
1.9143 GHz Marker Peak I		1001	pts		170.0 kHz/	1.916 GH
No	X-Value	Y-	Value	No	X-Value	Y-Value
1	1.915011 GHz	-23.5	546 dBm			- Faido

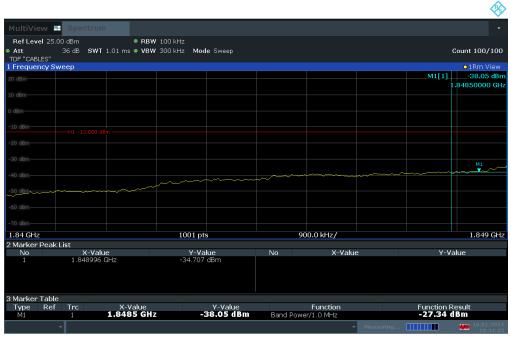
10:33:43 16.01.2024





10:34:01 16.01.2024

Plot 7-96. Extended Upper Band Edge Plot (LTE Band 25 – 1.4MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 07 01 210
			V2.2 09/07/2023



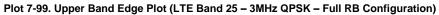
MultiView	Spectrum					•
Ref Level 25.0	00 dBm •	RBW 30 kHz				
Att TDF "CABLES"	36 dB <b>SWT</b> 1.06 ms 🗢	VBW 100 kHz Mode Swe	ep			Count 100/100
1 Frequency Sv	weep					•1Rm View
20 dBm					M1[1]	-23.81 dBn
20 dBm						1.84998530 GH
10 dBm						
			~~~~			
		~~~				
40 dBm						
1.849 GHz		1001 pts		250.0 kHz/		1.8515 GH
2 Marker Peak						
No 1	X-Value 1.849985 GHz	Y-Value -23.814 dBm	No	X-Value	Υ-1	Value
	1.049900 0112	-23.014 QB/II				
				- Meas	suring	<b>16.01.202</b>
				interio,		10:34:5

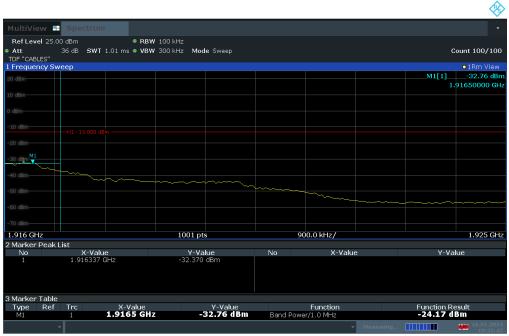
10:34:52 16.01.2024





10:34:35 16.01.2024


Plot 7-98. Extended Lower Band Edge Plot (LTE Band 25 – 3MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 66 01 210
<u></u>	·	·	V2.2 09/07/2023



MultiView	Spectrum				×
Ref Level 25.0	100 C	• RBW 30 kHz			
Att		• VBW 100 kHz Mode Sweep			Count 100/100
TDF "CABLES" Frequency Sw	leen				o1Rm View
					M1[1] -25.87 dB
					1.91501470 G
0 dBm					
o ubili					
dBm					
			M1		
40 dBm					
50 dBm					
1.9135 GHz		1001 pts	250.0 kHz/		1.916 GF
Marker Peak					
No 1	X-Value	Y-Value	No X-	-Value	Y-Value
	1.915015 GHz	-25.872 dBm			
	_				16.01.202

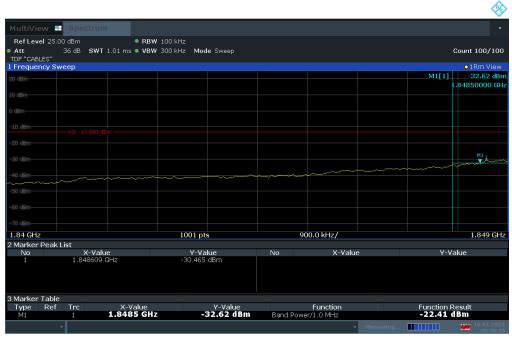
10:35:25 16.01.2024





10:35:42 16.01.2024

Plot 7-100. Extended Upper Band Edge Plot (LTE Band 25 – 3MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Page 69 of 216
		·	V2.2 09/07/2023



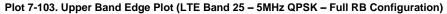
MultiView <b>Ref Level</b> 25.0		• RBW 50 kHz					
Att TDF "CABLES"	36 dB SWT 1.04	ms 🗢 VBW 200 kHz	Mode Sweep				Count 100/10
Frequency Sv	veep						•1Rm View
20 dBm						M1[	
							1.84995630 G
0 dBm							
		M1 ~					
		<b>1</b>					
30 dBm		~					
60 dBm							
70 dBm							
1.849 GHz		10	01 pts		350.0 kHz/		1.8525 G
Marker Peak No	List X-Value		Y-Value	No	X-Value		Y-Value
1	1.849956 GHz	-29	5.715 dBm	INU	x-value		r-value

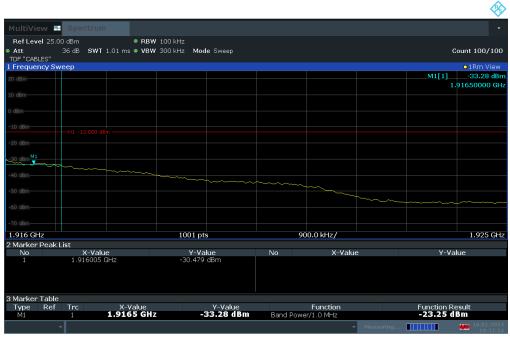
10:36:34 16.01.2024





10:36:17 16.01.2024


Plot 7-102. Extended Lower Band Edge Plot (LTE Band 25 – 5MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 70 01 210
			V2.2 09/07/2023



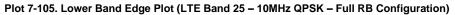
MultiView	Spectrum								•
Ref Level 25.0	00 dBm	• RBW	50 kHz						
• Att	36 dB <b>SWT</b> 1	.04 ms 🗢 VBW	200 kHz 🛛 🛚	lode Sweep					Count 100/100
TDF "CABLES" 1 Frequency Sv	VOOD								●1Rm View
	меер					M1[1]			-25.22 dBm
20 dBm-									1.91505070 GHz
10 dBm									
		~				_			
0 dBm						$\sim$			
-10 dBm									
-20 dBm							M1		
-30 dBm-									
50 abiii									·
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									s2
1.9125 GHz						350.0 kHz/			1.916 GHz
2 Marker Peak	List		1001	pts		350.0 KHZ/			1.916 GHZ
No	X-Value		Y-	Value	No	X-Value	;	Y-V	'alue
1	1.915051 GH	Hz	-25.2	21 dBm					
									16.01.2024
	ř.					~	Measuring		10:37:06

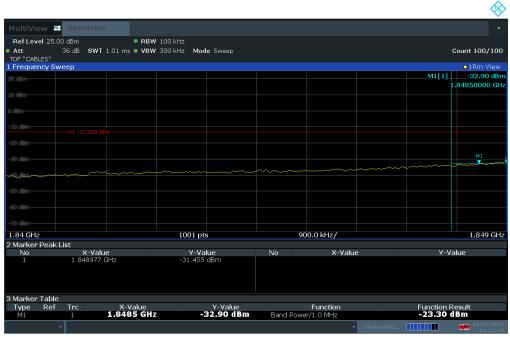
10:37:07 16.01.2024





10:37:24 16.01.2024


Plot 7-104. Extended Upper Band Edge Plot (LTE Band 25 – 5MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage / 1 01 210
	·	·	V2.2 09/07/2023



MultiView	Spectrum				•
Ref Level 25.	00 dBm • R	BW 100 kHz			
• Att	36 dB SWT 1.01 ms 🗢 V	3W 300 kHz Mode Sweep			Count 100/100
TDF "CABLES" 1 Frequency Sy					•1Rm View
	weep				M1[1] -27.96 dBm
20 dBm					1.84995000 GHz
10 dBm					
0 dBm	/~~				
o ubiii					
-10 dBm					
-20 dBm					
	M1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-30 dBm	~~~~~				
-40 dBm					
-50 dBm					
-50 dBm-					
-60 dBm					
<b>5 [</b> 70 dBm					
1.849 GHz		1001 pts		600.0 kHz/	1.855 GHz
2 Marker Peak	List	1001 pt5		ooolo kiizy	
No	X-Value	Y-Value	No	X-Value	Y-Value
	1.849950 GHz	-27.960 dBm			
					suring
	Ň.			✓ Mea	suring 16.01.2024 10:38:16

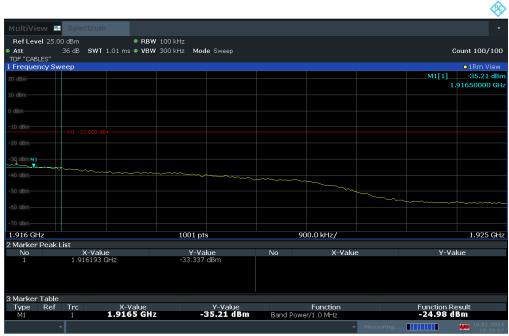
10:38:17 16.01.2024





10:37:59 16.01.2024


Plot 7-106. Extended Lower Band Edge Plot (LTE Band 25 – 10MHz QPSK – Full RB Configuration)


FCC ID: BCGA2926	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 216	
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage / 2 01 210	
			V2.2 09/07/2023	



MultiView	Spectrum							
Ref Level 25.	00 dBm	<ul> <li>RBW 100 kHz</li> </ul>						
• Att	36 dB <b>SWT</b> 1.01 m	is 🗢 VBW 300 kHz 🛛 N	1ode Sweep				c	Count 100/100
TDF "CABLES" 1 Frequency St	weep							●1Rm View
20 dBm							M1[1]	-29.52 dBm
20 dBm							1	.91505000 GHz
10 dBm								
				+				
0 dBm								
-10 dBm								
-10 000								
-20 dBm						<u>\</u>		
						5	M 1	
-30 dBm							- m	
-40 dBm								Ť
-50 dBm-								
-60 dBm								
-70 dBm-								52
1.91 GHz		1001	nte		600.0 kHz/			1.916 GHz
1.91 GHz         1001 pts         600.0 kHz/         1.916 GHz           2 Marker Peak List         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""></td<>								
No	X-Value	Y-	Value	No	X-Value	;	Y-Va	lue
1	1.915050 GHz	-29.5	20 dBm					
								16.01.2024 10:38:49
								20.30.47

10:38:49 16.01.2024





10:39:07 16.01.2024

Plot 7-108. Extended Upper Band Edge Plot (LTE Band 25 – 10MHz QPSK – Full RB Configuration)

FCC ID: BCGA2926	element	element PART 24 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 73 of 216
1C2311270070-08.BCG	10/1/2023 - 3/20/2024	Tablet Device	Fage 73 01 210
			V2.2 09/07/2023