

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 / ISED RSS-247 WLAN 802.11b/g/n/ax-SU

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States Date of Testing: 11/30/2023 - 2/23/2024 Test Report Issue Date: 4/3/2024 Test Site/Location: Element Materials Technology Test Report Serial No.: 1C2311270070-14.BCG

FCC ID:	BCGA2926	
IC:	579C-A2926	
APPLICANT:	Apple Inc.	

Application Type:	Certification
Model/HVIN:	A2926, A300
EUT Type:	Tablet Devic
Frequency Range:	2412 – 2472
FCC Classification:	Digital Trans
FCC Rule Part(s):	Part 15 Subp
ISED Specification:	RSS-247 lss
Test Procedure(s):	ANSI C63.10

A2926, A3007 Tablet Device 2412 – 2472MHz Digital Transmission System (DTS) Part 15 Subpart C (15.247) RSS-247 Issue 3 ANSI C63.10-2013, KDB 558074 D01 v05r02, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 558074 D01 v05r02. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

Prepared by: WKR0000010245

Reviewed by: WKR000005805

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 1 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 1 of 376
	·	·	V 10 6 00/14/2023

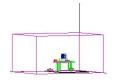


TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Materials Technology Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Antenna Description	8
	2.4	Test Support Equipment	8
	2.5	Test Configuration	9
	2.6	Software and Firmware	9
	2.7	EMI Suppression Device(s)/Modifications	9
3.0	DESC	RIPTION OF TESTS	10
	3.1	Evaluation Procedure	10
	3.2	AC Line Conducted Emissions	10
	3.3	Radiated Emissions	11
	3.4	Environmental Conditions	11
4.0	ANTE	NNA REQUIREMENTS	12
5.0	MEAS	SUREMENT UNCERTAINTY	13
6.0	TEST	EQUIPMENT CALIBRATION DATA	14
7.0	TEST	RESULTS	15
	7.1	Summary	15
	7.2	6dB BW and 99% OBW Measurement	16
	7.3	Output Power Measurement	52
	7.4	Power Spectral Density	66
	7.5	Conducted Authorized Band Edge	130
	7.6	Conducted Spurious Emissions	233
	7.7	Radiated Spurious Emissions – Above 1 GHz	241
	7.8	Radiated Spurious Emissions – Below 1GHz	365
	7.9	AC Line-Conducted Emissions Measurement	370
8.0	CONC	CLUSION	376

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 2 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 2 of 376
		-	V 10 6 09/14/2023

MEASUREMENT REPORT

Mode			Anten	ina 4a		Antenna 2a				
	Т. Г.	Avg Co	nducted	Peak Co	onducted	Avg Co	onducted	Peak Conducted		
	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)							
802.11g	2412 - 2472	104.761	20.20	415.815	26.19	104.689	20.20	409.826	26.13	
802.11n	2412 - 2472	104.400	20.19	434.810	26.38	105.439	20.23	428.154	26.32	
802.11ax (SU)	2412 - 2467	106.955	20.29	430.824	26.34	107.845	20.33	434.710	26.38	

EUT Overview SISO (Low Data Rate)

			Anten	ina 4a			Anten	na 2a		CDD			
Mode Tx Frequency (MHz)	Tu Fragueneu	Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted	
	Max. Power (mW)	Max. Power (dBm)											
802.11g	2412 - 2472	101.859	20.08	389.583	25.91	101.765	20.08	391.111	25.92	199.526	23.00	778.037	28.91
802.11n	2412 - 2472	102.920	20.13	431.519	26.35	105.148	20.22	435.612	26.39	207.014	23.16	866.962	29.38
802.11ax (SU)	2412 - 2467	108.168	20.34	439.845	26.43	110.002	20.41	430.527	26.34	216.272	23.35	868.960	29.39

EUT Overview CDD (Low Data Rate)

			Anten	na 4a		Antenna 2a				
	Т. Г.	Avg Conducted		Peak Co	nducted	Avg Co	onducted	Peak Conducted		
Mode	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)							
802.11g	2412 - 2472	106.170	20.26	474.570	26.76	109.799	20.41	473.696	26.76	
802.11n	2412 - 2472	105.828	20.25	497.508	26.97	107.349	20.31	491.587	26.92	
802.11ax (SU)	2412 - 2467	105.877	105.877 20.25		487.865 26.88		105.172 20.22		26.82	

EUT Overview SISO (Mid Data Rate)

		Anten	na 4a			Anten	ina 2a		CDD			
	Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted	
(MHz)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)	Max. Power (mW)	Max. Power (dBm)
2412 - 2472	100.392	20.02	437.019	26.41	104.064	20.17	442.894	26.46	204.644	23.11	879.023	29.44
2412 - 2472	105.755	20.24	463.447	26.66	108.268	20.35	461.318	26.64	212.324	23.27	924.698	29.66
2412 - 2467	108.418	20.35	466.767	26.69	111.481	20.47	463.447	26.66	218.273	23.39	926.830	29.67
14	2412 - 2472 2412 - 2472	X Frequency (MHz) Max. Power (mW) 2412 - 2472 100.392 2412 - 2472 105.755	Avg Conducted X Frequency (MHz) Max. Power (mW) Max. Power (dBm) 2412 - 2472 100.392 20.02 2412 - 2472 105.755 20.24	X Frequency (MHz) X Max. Power (mW) Max. Power (dBm) Max. Power (mW) 2412 - 2472 100.392 20.02 437.019 2412 - 2472 105.755 20.24 463.447	Avg Conducted Peak Conducted MHz) Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (mW) Max. Power (mW) Max. Power (dBm) 2412 - 2472 100.392 20.02 437.019 26.41 2412 - 2472 105.755 20.24 463.447 26.66	Avg Conducted Peak Conducted Avg Conducted Variable Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm)<	Avg Conducted Peak Conducted Avg Conducted MHz) Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm) <th>Avg Conducted Peak Conducted Avg Conducted Peak Co (MHz) Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm)</th> <th>Avg Conducted Peak Conducted Avg Conducted Peak Conducted Mikz Max. Power (mW) Max. Power (dBm) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm)</th> <th>Avg Conducted Peak Conducted Avg Conducted Peak Conducted</th> <th>Arg Co-lucted Peak Conducted Arg Co-lucted Arg Co-</th> <th>Avg Co-lucted Peak Co-lucted Avg Co-lucted Peak Co-lucted Peak Co-lucted Avg Co-lucted Avg Co-lucted Avg Co-lucted Peak Co-luct</th>	Avg Conducted Peak Conducted Avg Conducted Peak Co (MHz) Max. Power (mW) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm)	Avg Conducted Peak Conducted Avg Conducted Peak Conducted Mikz Max. Power (mW) Max. Power (dBm) Max. Power (dBm) Max. Power (mW) Max. Power (dBm) Max. Power (dBm)	Avg Conducted Peak Conducted Conducted	Arg Co-lucted Peak Conducted Arg Co-lucted Arg Co-	Avg Co-lucted Peak Co-lucted Avg Co-lucted Peak Co-lucted Peak Co-lucted Avg Co-lucted Avg Co-lucted Avg Co-lucted Peak Co-luct

EUT Overview CDD (Mid Data Rate)

			Anten	ina 4a		Antenna 2a				
	T	Avg Conducted		Peak Co	onducted	Avg Co	onducted	Peak Conducted		
Mode	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)							
802.11b	2412 - 2472	112.202	20.50	216.671	23.36	112.202	20.50	217.520	23.38	
802.11g	2412 - 2472	106.930	20.29	582.371	27.65	105.124	20.22	575.838	27.60	
802.11n	2412 - 2472	105.099	20.22	581.433	27.65	105.877	20.25	571.216	27.57	
802.11ax (SU)	2412 - 2467	108.243	08.243 20.34		27.53	105.706	20.24	551.950	27.42	

EUT Overview SISO (High Data Rate)

Mode Tx Frequency (MHz)			Anten	ina 4a			Anten	ina 2a		CDD			
	Ty Frequency	Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted		Avg Conducted		Peak Conducted	
	Max. Power (mW)	Max. Power (dBm)											
802.11g	2412 - 2472	101.930	20.08	462.381	26.65	100.000	20.00	466.659	26.69	199.067	22.99	928.966	29.68
802.11n	2412 - 2472	103.681	20.16	473.151	26.75	98.855	19.95	455.512	26.59	198.609	22.98	928.966	29.68
802.11ax (SU)	2412 - 2467	104.882	20.21	462.807	26.65	104.882	20.21	466.015	26.68	209.894	23.22	928.966	29.68

EUT Overview CDD (High Data Rate)

FCC ID: BCGA2926 IC: 579C-A2926	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 2 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 3 of 376
			V 10.6 09/14/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Materials Technology Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology.

- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 4 of 376
		-	V 10 6 09/14/2023

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Tablet Device FCC ID: BCGA2926, IC: 579C-A2926**. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: PD6XKGP0XX, R376G40P7L, FDQ6LM9XK2, DLXH190003T000063A

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, 802.11a/ax WIFI 6E, 802.15.4, Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8), WPT, NB UNII (1x, HDR4, HDR8)

This device supports BT Beamforming

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13*	2472
7	2442		

Table 2-1. 802.11b/g/n/ax Frequency/Channel Operations

*Channel 13 is disabled for DTS 802.11ax HE20.

Note: The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01 v05r02 and ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 270	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 5 of 376	
	•	·	V 10 6 00/14/2023	

Measured Duty Cycles							
90	2 11 Mode/Band	Duty Cycle [%]					
802.11 Mode/Band		Antenna 4a	Antenna 2a	CDD			
	b	100.0	100.0	N/A			
	g (Low Data Rate)	98.1	98.2	97.8			
	g (Mid Data Rate)	96.4	96.4	95.9			
	g (High Data Rate)	94.4	94.3	94.2			
2.4GHz	n (Low Data Rate)	95.9	96.2	94.2			
2.40112	n (Mid Data Rate)	93.5	94.2	89.7			
	n (High Data Rate)	91.0	91.2	85.3			
	11ax (SU) (Low Data Rate)	95.5	95.9	95.9			
	11ax (SU) (Mid Data Rate)	92.5	92.7	92.7			
	11ax (SU) (High Data Rate)	88.5	88.5	88.1			

Table 2-2. Measured Duty Cycles

The device employs CDD technology. Below are the possible configurations.

		SISO		SE	DM	CDD	
WiFi Configurations		Antenna 4a	Antenna 2a	Antenna 4a	Antenna 2a	Antenna 4a	Antenna 2a
	11b	✓	✓	×	×	×	×
2.4GHz	11g	✓	✓	√	√	✓	✓
2.4GH2	11n	✓	✓	✓	✓	✓	✓
	11ax	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark

Table 2-3. Wi-Fi Configurations

 \checkmark = Support ; * = NOT Support

SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – CDD function

CDD = Cyclic Delay Diversity - 2Tx Function

Data Rates Supported: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps (b) 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps (g) 6.5/7.2Mbps, 13/14.4Mbps, 19.5/21.7Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 58.5/65Mbps, 65/72.2Mbps (n) 13/14.4Mbps, 26/28.9Mbps, 39/43.3Mbps, 52/57.8Mbps, 78/86.7Mbps, 104/115.6Mbps, 117/130Mbps, 130/144.4Mbps (CDD n) 8/8.6Mbps, 16/17.2Mbps, 24/25.8Mbps, 33/34.4Mbps, 49/51.6Mbps, 65/68.8Mbps, 73/77.4Mbps, 81/86.0Mbps, 98/103.2Mbps, 108/114.7Mbps (ax – 20MHz) 16/17.2Mbps, 32/34.4Mbps, 48/51.6Mbps, 66/68.8Mbps, 98/103.2Mbps, 130/137.6Mbps, 146/154.8Mbps, 162/172Mbps, 196/206.4Mbps, 216/229.4Mbps (CDD ax – 20MHz)

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:		
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 6 of 376	
		·	V 10.6 09/14/2023	

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

		Wifi 2GHz	Bluetooth	Thread	Wifi 5GHz	Wifi 6GHz	NB UNII	LTE/F	R1 NR
Antenna	Simultaneous Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	802.15.4	802.11 a/n/ac/ax	802.11 a/ax	BDR, HDR4/8	МВ/НВ	UHB
2a	Config 1	X	\checkmark	X	\checkmark	X	X	X	X
2a	Config 2	X	\checkmark	X	X	\checkmark	X	X	X
2a	Config 3	\checkmark	X	X	X	X	\checkmark	X	X
2a	Config 4	X	X	\checkmark	\checkmark	X	X	X	X
2a	Config 5	X	X	\	X	\checkmark	X	X	X
4a	Config 6	X	\checkmark	X	\checkmark	X	X	X	X
4a	Config 7	X	\checkmark	X	X	\checkmark	X	X	X
4a	Config 8	\checkmark	X	X	X	X	\checkmark	X	X
4a	Config 9	X	Х	\checkmark	\checkmark	X	X	X	X
4a	Config 10	X	X	✓ -	X	√	X	Х	X

Table 2-4. Simultaneous Transmission Configurations

 \checkmark = Support; * = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst-case configuration was found to be Config 1 and reported in RF Bluetooth and RF UNII test reports.

Specific 2.4GHz Wi-Fi antenna that can only transmit simultaneously with 2.4GHz Bluetooth antenna is listed in the SAR test report. For BT (2.4GHz) in connected mode and Wi-Fi (2.4GHz) - Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. For BT (2.4GHz) in disconnected mode and Wi-Fi (2.4GHz) - BT will be using iPA only and Wi-Fi max power will not exceed minimum of (SAR max cap, Reg max cap) power. Bluetooth can simultaneously transmit with IEEE 802.11a/n/ac/ax 5/6 GHz on separate antenna.

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 7 of 376	
			V 10 6 09/14/2023	

2.3 Antenna Description

-		Antenna Gain (dBi)			
	Frequency [GHz]	Antenna 4a	Antenna 2a		
	2.4	3.0	2.2		

Following antenna gains provided by manufacturer were used for the testing.

Table 2-5. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model:	A2141	S/N:	C02H604EQ05D
	w/AC/DC Adapter	Model:	A2166	S/N:	C4H042705ZNPM0WA6
2	Apple USB-C Cable	Model:	Spartan	S/N:	GXK1336018XKTR024
3	USB-C Cable	Model:	A246C	S/N:	DWH80115BK826GV19
	w/ AC Adapter	Model:	A2305	S/N:	C4H95160004PF4F4V
4	Apple Pencil	Model:	A2538	S/N:	KJ26TCFXJW
5	DC Power Supply	Model:	KPS3010D	S/N:	N/A
	Tal	blo 2-6 T	est Support Fr	uinmont l	ist

 Table 2-6. Test Support Equipment List

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 8 of 376
		-	V 10 6 09/14/2023

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 558074 D01 v05r02. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, Section 3.3 for radiated emissions test setups, and, 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

There are two vendors of the WiFi/Bluetooth radio modules, variant 1 and variant 2. Both radio modules have the same mechanical outline, same on-board antenna matching circuit, identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances. The worst case configuration was found between the two variants. The EUT was also investigated with and without charger.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated and EUT powered by host PC was the worst case.

- EUT powered by AC/DC adaptor via USB-C cable with wire charger
- EUT powered by host PC via USB-C cable with wire charger

802.11n CDD mode test data provided in this report covers 802.11n SDM. 802.11ax-SU HE20 2TX CDD mode test data provided in this report covers 802.11ax-SU HE20 2TX SDM.

The data rates have been classified into three different groups; low data rate, middle data rate, and high data rate. All three groups of data rate have been investigated and only the worst case data rate per group is reported. The worst case data rate for each group per mode are as follows:

- 802.11b
 - 11Mbps
- 802.11g
 - Low Data Rate: 12Mbps
 - Mid Data Rate 24Mbps
 - High Data Rate: 54Mbps
- 802.11n
 - Low Data Rate: MCS2/MCS10 (SISO/CDD)
 - Mid Data Rate: MCS4/MCS12 (SISO/CDD)
 - High Data Rate: MCS7/MCS15 (SISO/CDD)
- 802.11ax(SU)
 - Low Data Rate: MCS2
 - Mid Data Rate: MCS4
 - High Data Rate: MCS9

For 802.11ax-RU test results, see separate WLAN (OFDMA) report, 1C2311270070-15.BCG

2.6 Software and Firmware

The test was conducted with firmware version 21E8197 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dege 0 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 9 of 376
<u></u>		·	V 10.6 09/14/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 v05r02 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz - 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that the cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.50.40.

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 10 of 376
		·	V 10.6 09/14/2023

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was rotated about its vertical axis while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 11 of 376
			V/ 10 6 00/14/2022

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are **permanently attached**.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 12 of 376
		-	V 10 6 09/14/2023

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.07
Line Conducted Disturbance	1.91
Radiated Disturbance (<30MHz)	4.12
Radiated Disturbance (30MHz - 1GHz)	4.85
Radiated Disturbance (1 - 18GHz)	5.08
Radiated Disturbance (>18GHz)	4.59

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 13 of 376
		-	V 10 6 09/14/2023

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/21/2023	Annual	6/21/2024	MY49430244
Anritsu	ML2496A	Power Meter	4/4/2023	Annual	4/4/2024	1840005
Anritsu	MA2411B	Pulse Power Sensor	8/22/2023	Annual	8/22/2024	1726262
Anritsu	MA2411B	Pulse Power Sensor	4/5/2023	Annual	4/5/2024	1726261
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	3/30/2023	Annual	3/30/2024	00218555
Keysight Technology	N9040B	UXA Signal Analyzer	3/10/2023	Annual	3/10/2024	MY57212015
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	8/31/2023	Annual	8/31/2024	100052
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	5/11/2023	Annual	5/11/2024	101619
Rohde & Schwarz	ESW44	EMI Test Receiver	6/6/2023	Annual	6/6/2024	101668
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz - 8GHz)	6/22/2023	Annual	6/22/2024	102356
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	6/2/2023	Annual	6/2/2024	100050
Rohde & Schwarz	HFH2-Z2	Loop Antenna	5/1/2023	Annual	5/1/2024	100519
Rohde & Schwarz	ENV216	Two-Line V-Network	6/8/2023	Annual	6/8/2024	192052
Schwarzbeck	VULB 9162	Bilog Antenna (30MHz - 6GHz)	4/17/2023	Annual	4/17/2024	00304

Table 6-1. Test Equipment List

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 14 of 376
		·	V 10 6 09/14/2023

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
---------------	------------

FCC ID: BCGA2926

IC: <u>579C-A2926</u>

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2]	6dB Bandwidth	> 500kHz		PASS	Section 7.2
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	N/A		N/A	Section 7.2
15.247(b)(3)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt	CONDUCTED	PASS	Sections 7.3
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density < 8dBm / 3kHz Band		PASS	Section 7.4	
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Sections 7.7, 7.8
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen[8.8])	AC LINE CONDUCTED	PASS	Section 7.9

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4. For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 5.0.
- 5. For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 3.0.0.

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 15 of 376
-		·	V 10.6 09/14/2023

7.2 6dB BW and 99% OBW Measurement

§15.247(a.2); §2.1049; RSS-247 [5.2]; RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible 6dB bandwidth is 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Subclause 11.8.2 Option 2 KDB 558074 D01 v05r02 – Section 8.2 RSS-Gen [6.7]

Test Settings

- The signal analyzer's automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 99% occupied bandwidth and the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, step 2 7 were repeated after changing the RBW such that it would be within 1 -5% of the

99% occupied bandwidth observed in Step 7

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 16 of 376
			V 10 6 09/14/2023

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

C and house the state of the		80		
Land sar we had and			-	
		100		EUT

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

The data rates have been classified into three different groups: low data rate, middle data rate, and high data rate. All three data rate groups have been investigated and only the worst case data rate per groups is reported.

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 17 of 376
	•	·	V 10.6 09/14/2023

7.2.1 Antenna 4a 6 dB BW and 99% OBW Measurements

Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	bo	12	16.58	16.41	0.50	Pass
2437	6	g	12	16.45	16.43	0.50	Pass
2462	11	g	12	16.57	16.37	0.50	Pass
2412	1	n	19.5/21.7 (MCS2)	17.71	17.62	0.50	Pass
2437	6	n	19.5/21.7 (MCS2)	17.65	17.62	0.50	Pass
2462	11	n	19.5/21.7 (MCS2)	17.70	17.29	0.50	Pass
2412	1	ax (SU)	24/25.8 (MCS2)	18.92	18.87	0.50	Pass
2437	6	ax (SU)	24/25.8 (MCS2)	18.92	19.04	0.50	Pass
2462	11	ax (SU)	24/25.8 (MCS2)	18.92	18.95	0.50	Pass

Table 7-2. Conducted Bandwidth Measurements Antenna 4a (Low Data Rate)

Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	500	24	16.46	16.52	0.50	Pass
2437	6	g	24	16.46	16.50	0.50	Pass
2462	11	b	24	16.45	16.52	0.50	Pass
2412	1	n	39/43.3 (MCS4)	17.66	17.75	0.50	Pass
2437	6	n	39/43.3 (MCS4)	17.66	17.73	0.50	Pass
2462	11	n	39/43.3 (MCS4)	17.64	17.72	0.50	Pass
2412	1	ax (SU)	49/51.6 (MCS4)	18.89	19.02	0.50	Pass
2437	6	ax (SU)	49/51.6 (MCS4)	18.93	19.08	0.50	Pass
2462	11	ax (SU)	49/51.6 (MCS4)	18.89	19.06	0.50	Pass

Table 7-3. Conducted Bandwidth Measurements Antenna 4a (Mid Data Rate)

Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	b	11	12.83	8.59	0.50	Pass
2437	6	b	11	12.76	8.84	0.50	Pass
2462	11	b	11	12.80	8.99	0.50	Pass
2412	1	g	54	16.49	16.56	0.50	Pass
2437	6	g	54	16.51	16.53	0.50	Pass
2462	11	bo	54	16.48	16.55	0.50	Pass
2412	1	n	65/72.2 (MCS7)	17.67	17.76	0.50	Pass
2437	6	n	65/72.2 (MCS7)	17.71	17.76	0.50	Pass
2462	11	n	65/72.2 (MCS7)	17.67	17.77	0.50	Pass
2412	1	ax (SU)	81/86 (MCS9)	18.94	19.12	0.50	Pass
2437	6	ax (SU)	81/86 (MCS9)	18.97	19.09	0.50	Pass
2462	11	ax (SU)	81/86 (MCS9)	18.95	19.13	0.50	Pass

Table 7-4. Conducted Bandwidth Measurements Antenna 4a (High Data Rate)

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dege 10 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 18 of 376
			V 10 6 09/14/2023

Plot 7-1. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 1) - 12Mbps

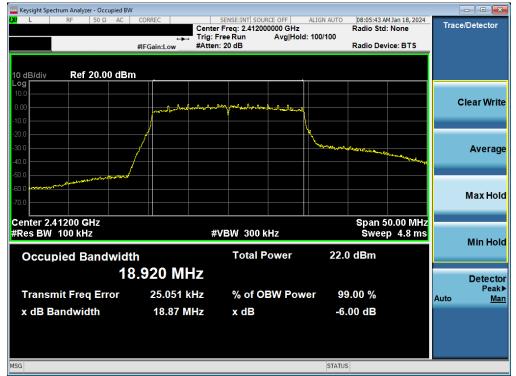
Plot 7-2. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 6) - 12Mbps

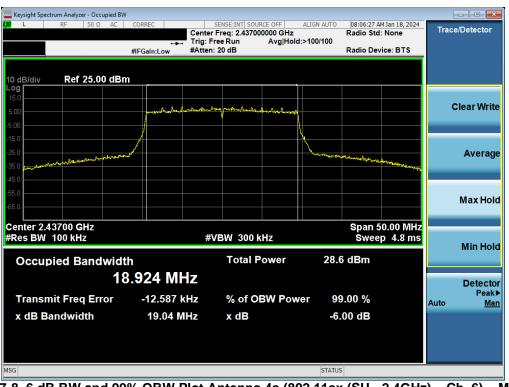
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 19 of 376
	·	·	V 10.6 09/14/2023

Plot 7-3. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 11) - 12Mbps

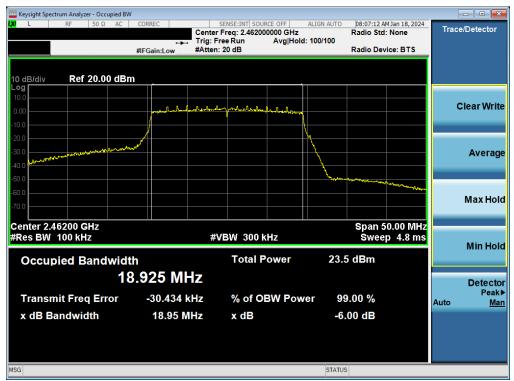
Plot 7-4. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) – Ch. 1) – MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 20 of 376
		·	V 10 6 09/14/2023


Plot 7-5. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) – Ch. 6) – MCS2


Plot 7-6. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) – Ch. 11) – MCS2

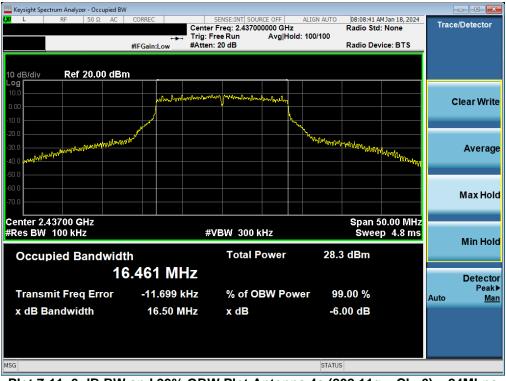
FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 01 of 076
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 21 of 376
		·	V 10 6 09/14/2023


Plot 7-7. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) – Ch. 1) – MCS2

Plot 7-8. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 22 of 376
			V 10 6 09/14/2023

Plot 7-9. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS2


FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 02 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 23 of 376
			V 10 6 09/14/2023

Mid Rate

Plot 7-10. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 1) - 24Mbps

Plot 7-11. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 6) - 24Mbps

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 04 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 24 of 376
<u></u>		·	V 10.6 09/14/2023

Plot 7-12. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 11) - 24Mbps

Plot 7-13. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) - Ch. 1) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 076
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 25 of 376
			V 10 6 09/14/2023

Plot 7-14. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) – Ch. 6) – MCS4

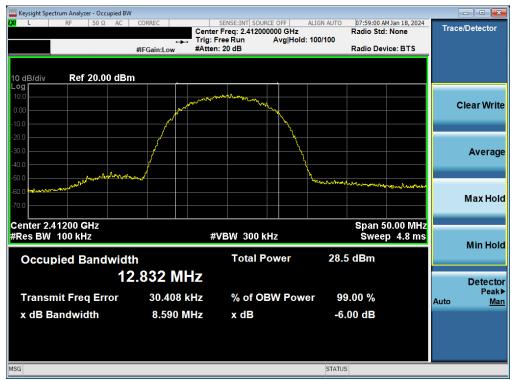

Plot 7-15. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) - Ch. 11) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 26 at 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 26 of 376
		·	V 10 6 09/14/2023

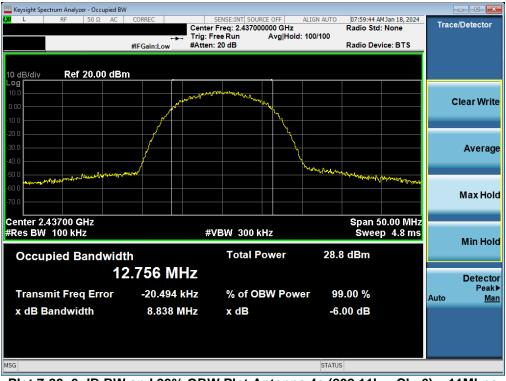

Plot 7-16. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS4

Plot 7-17. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS4

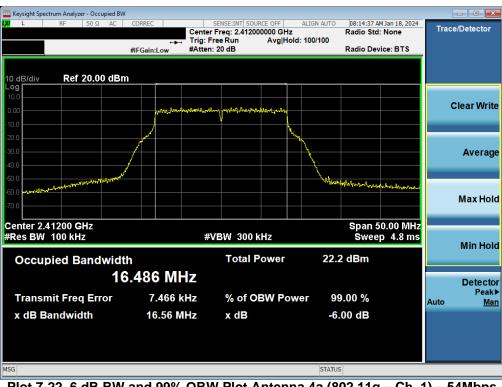
FCC ID: BCGA2926 IC: 579C-A2926	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 07 of 076
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 27 of 376
			V 10 6 09/14/2023



Plot 7-18. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS4


FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 28 of 376
			V 10 6 09/14/2023

Plot 7-19. 6 dB BW and 99% OBW Plot Antenna 4a (802.11b - Ch. 1) - 11Mbps


Plot 7-20. 6 dB BW and 99% OBW Plot Antenna 4a (802.11b - Ch. 6) - 11Mbps

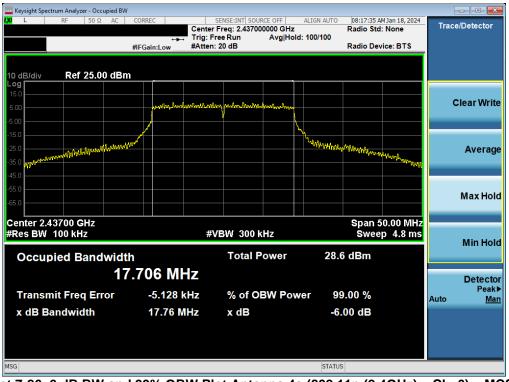
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 20 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 29 of 376
<u></u>		·	V 10.6 09/14/2023

Plot 7-21. 6 dB BW and 99% OBW Plot Antenna 4a (802.11b – Ch. 11) – 11Mbps


Plot 7-22. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 1) - 54Mbps

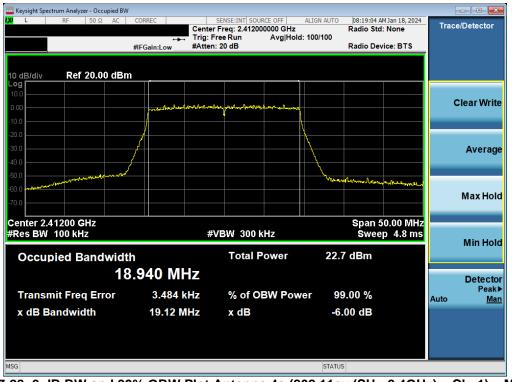
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 20 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 30 of 376
			V 10 6 09/14/2023

Plot 7-23. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g - Ch. 6) - 54Mbps


Plot 7-24. 6 dB BW and 99% OBW Plot Antenna 4a (802.11g – Ch. 11) – 54Mbps

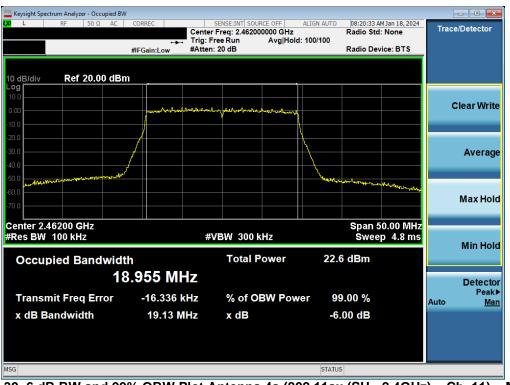
FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 31 of 376
<u></u>		·	V 10.6 09/14/2023

Plot 7-25. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) - Ch. 1) - MCS7


Plot 7-26. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) - Ch. 6) - MCS7

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 32 of 376
	•		V 10.6 09/14/2023

Plot 7-27. 6 dB BW and 99% OBW Plot Antenna 4a (802.11n (2.4GHz) – Ch. 11) – MCS7


Plot 7-28. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 33 of 376
<u></u>			V 10.6 09/14/2023

www.com analyzer - Occupied BV	V				
L RF 50 Ω AC		SENSE:INT SOURCE OFF	ALIGN AUTO 08:19:48 A Radio Std	M Jan 18, 2024 : None	Trace/Detector
	HFGain:Low #Atten:	ree Run Avg Hold: : 20 dB	: 100/100 Radio Dev	vice: BTS	
	WI Guilleow				
10 dB/div Ref 20.00 dB	n				
Log 10.0					
0.00	and and the second s	mp who have have have			Clear Write
-10.0					
-20.0	Nort		hard and a second and a second		
-30.0				Mart Martin Willing	Average
-40.0					
-50.0					
-70.0					Max Hold
Center 2.43700 GHz #Res BW 100 kHz	#\	/BW 300 kHz		0.00 MHz p 4.8 ms	
					Min Hold
Occupied Bandwid		Total Power	29.0 dBm		
18	8.975 MHz				Detector
Transmit Freq Error	-6.840 kHz	% of OBW Powe	er 99.00 %		Peak▶ Auto Man
x dB Bandwidth	19.09 MHz	x dB	-6.00 dB		Auto <u>mun</u>
MSG			STATUS		

Plot 7-29. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS9

Plot 7-30. 6 dB BW and 99% OBW Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 34 of 376
			V 10 6 09/14/2023

7.2.2 Antenna 2a 6 dB BW and 99% OBW Measurements

Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	bo	12	16.63	16.43	0.50	Pass
2437	6	g	12	16.42	16.38	0.50	Pass
2462	11	g	12	16.56	16.06	0.50	Pass
2412	1	n	19.5/21.7 (MCS2)	17.75	17.36	0.50	Pass
2437	6	n	19.5/21.7 (MCS2)	17.64	17.29	0.50	Pass
2462	11	n	19.5/21.7 (MCS2)	17.70	16.96	0.50	Pass
2412	1	ax (SU)	24/25.8 (MCS2)	18.95	19.00	0.50	Pass
2437	6	ax (SU)	24/25.8 (MCS2)	18.89	19.00	0.50	Pass
2462	11	ax (SU)	24/25.8 (MCS2)	18.91	18.82	0.50	Pass

Table 7-5. Conducted Bandwidth Measurements Antenna 2a (Low Data Rate)

Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	bo	24	16.49	16.55	0.50	Pass
2437	6	g	24	16.44	16.49	0.50	Pass
2462	11	g	24	16.44	16.51	0.50	Pass
2412	1	n	39/43.3 (MCS4)	17.69	17.76	0.50	Pass
2437	6	n	39/43.3 (MCS4)	17.63	17.69	0.50	Pass
2462	11	n	39/43.3 (MCS4)	17.64	17.73	0.50	Pass
2412	1	ax (SU)	49/51.6 (MCS4)	18.92	19.07	0.50	Pass
2437	6	ax (SU)	49/51.6 (MCS4)	18.91	19.05	0.50	Pass
2462	11	ax (SU)	49/51.6 (MCS4)	18.91	19.08	0.50	Pass

Table 7-6. Conducted Bandwidth Measurements Antenna 2a (Mid Data Rate)


Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]	Pass/Fail
2412	1	b	11	12.88	9.56	0.50	Pass
2437	6	b	11	12.72	8.59	0.50	Pass
2462	11	b	11	12.76	9.35	0.50	Pass
2412	1	g	54	16.49	16.57	0.50	Pass
2437	6	g	54	16.49	16.52	0.50	Pass
2462	11	g	54	16.45	16.51	0.50	Pass
2412	1	n	65/72.2 (MCS7)	17.70	17.78	0.50	Pass
2437	6	n	65/72.2 (MCS7)	17.69	17.75	0.50	Pass
2462	11	n	65/72.2 (MCS7)	17.66	17.75	0.50	Pass
2412	1	ax (SU)	81/86 (MCS9)	18.98	19.15	0.50	Pass
2437	6	ax (SU)	81/86 (MCS9)	18.96	19.06	0.50	Pass
2462	11	ax (SU)	81/86 (MCS9)	18.93	19.09	0.50	Pass

 Table 7-7. Conducted Bandwidth Measurements Antenna 2a (High Data Rate)

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 35 of 376
	•	·	V 10.6 09/14/2023

Plot 7-31. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 1) - 12Mbps

Plot 7-32. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 6) - 12Mbps

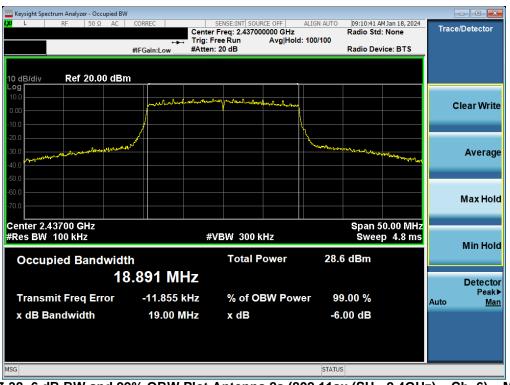
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 36 of 376	
			V 10.6 09/14/2023	

Plot 7-33. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g – Ch. 11) – 12Mbps


Plot 7-34. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 1) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Daga 07 of 070	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 37 of 376	
			V 10 6 09/14/2023	


Plot 7-35. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) – Ch. 6) – MCS2

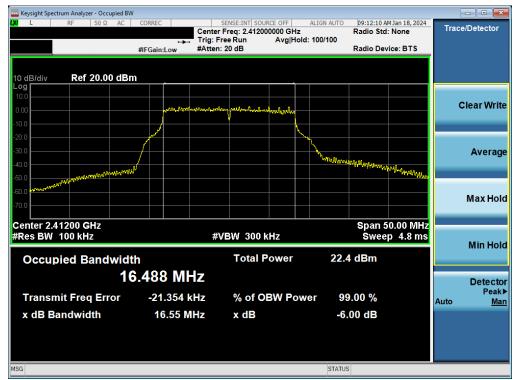

Plot 7-36. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 11) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 38 of 376
			V 10 6 09/14/2023

Plot 7-37. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 1) – MCS2

Plot 7-38. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dege 20 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 39 of 376	
			V 10.6.09/14/2023	



Plot 7-39. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS2

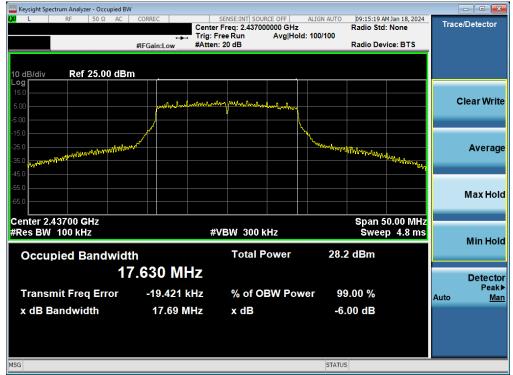
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 40 of 376
			V 10 6 09/14/2023

Mid Rate

Plot 7-40. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 1) - 24Mbps

Plot 7-41. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 6) - 24Mbps

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 41 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 41 of 376
<u></u>		·	V 10.6 09/14/2023


Plot 7-42. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 11) - 24Mbps

Plot 7-43. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 1) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dege 42 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 42 of 376	
			V 10 6 09/14/2023	

Plot 7-44. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) – Ch. 6) – MCS4

Plot 7-45. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 11) - MCS4

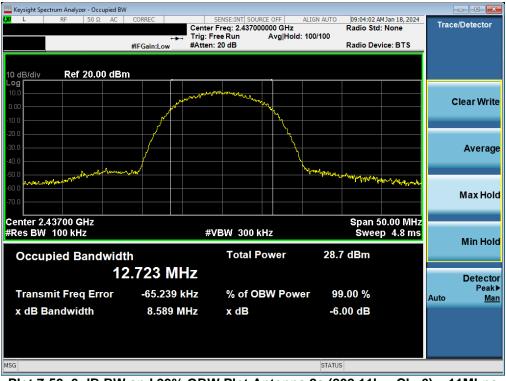
FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 43 of 376
		·	V 10 6 09/14/2023

Plot 7-46. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS4

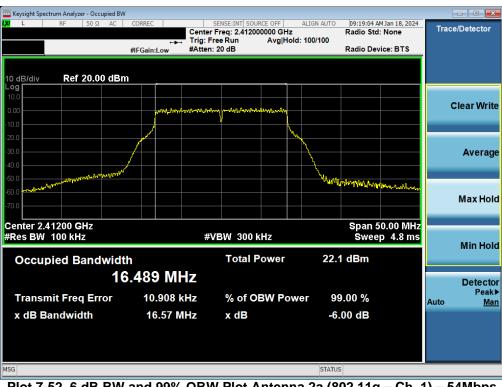
Plot 7-47. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dege 44 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 44 of 376	
			V 10 6 09/14/2023	

Plot 7-48. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS4


FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 45 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 45 of 376
			V 10 6 09/14/2023


Plot 7-49. 6 dB BW and 99% OBW Plot Antenna 2a (802.11b - Ch. 1) - 11Mbps


Plot 7-50. 6 dB BW and 99% OBW Plot Antenna 2a (802.11b - Ch. 6) - 11Mbps

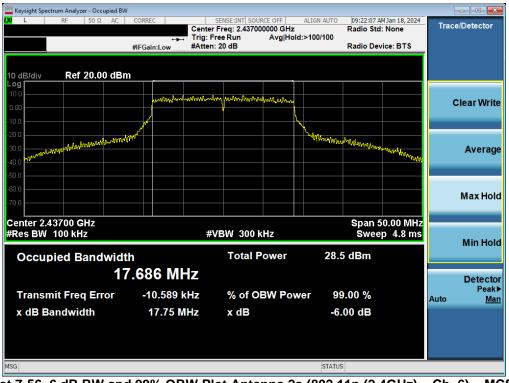
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 46 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 46 of 376
<u></u>		·	V 10.6 09/14/2023

Plot 7-51. 6 dB BW and 99% OBW Plot Antenna 2a (802.11b – Ch. 11) – 11Mbps

Plot 7-52. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 1) - 54Mbps

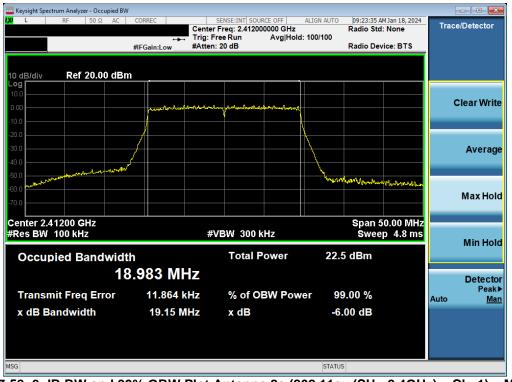
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 47 of 376
			V 10 6 09/14/2023

Plot 7-53. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 6) - 54Mbps


Plot 7-54. 6 dB BW and 99% OBW Plot Antenna 2a (802.11g - Ch. 11) - 54Mbps

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 40 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 48 of 376
<u></u>		·	V 10.6 09/14/2023

Plot 7-55. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 1) - MCS7


Plot 7-56. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 6) - MCS7

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dege 40 of 276		
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 49 of 376		
<u></u>	•	·	V 10.6 09/14/2023		

Plot 7-57. 6 dB BW and 99% OBW Plot Antenna 2a (802.11n (2.4GHz) - Ch. 11) - MCS7

Plot 7-58. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Daga E0 of 270		
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 50 of 376		
			V 10 6 09/14/2023		

www.www.com analyzer - Occupied BW					
			Radio St d:>100/100	AM Jan 18, 2024 d: None evice: BTS	Trace/Detector
10 dB/div Ref 20.00 dBm					
10.0 0.00	pageson horse how have a family and the second seco	marile and the sole of the second			Clear Write
-10.0			had a for the former of the fo		
-30.0			Land State of the contraction of the	mar and	Average
-50.0					Max Hold
-70.0 Center 2.43700 GHz			Snan	50.00 MHz	
#Res BW 100 kHz	#V	BW 300 kHz		ep 4.8 ms	Min Hold
Occupied Bandwidth	965 MHz	Total Power	28.9 dBm		
Transmit Freq Error	-15.917 kHz	% of OBW Pov	ver 99.00 %		Detector Peak▶ Auto <u>Man</u>
x dB Bandwidth	19.06 MHz	x dB	-6.00 dB		
MSG			STATUS		

Plot 7-59. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS9

Plot 7-60. 6 dB BW and 99% OBW Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dege E1 of 270		
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 51 of 376		
			V 10 6 09/14/2023		

7.3 Output Power Measurement

§15.247(b.3); RSS-247 [5.4]

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum peak conducted output power of digital modulation systems operating in the 2400-2483.5 MHz band is 1 Watt.

The conducted output power limit on paragraph above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For DTSs employing digital modulation techniques operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.

Test Procedure Used

ANSI C63.10-2013 – Subclause 11.9.1.3 PKPM1 Peak Power Method KDB 558074 D01 v05r02 – Section 8.3.1.3 PKPM1 Peak-reading Power Meter Method ANSI C63.10-2013 – Subclause 11.9.2.3.2 Method AVGPM-G KDB 558074 D01 v05r02 – Section 8.3.2.3 Measurement using a Power Meter (PM) ANSI C63.10-2013 – Subclause 14.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

- 1. For 802.11b, the worst case data rate was found to be 11Mbps.
- 2. 802.11ax does not support channel 13.

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 52 of 376
			V 10.6 09/14/2023

7.3.1 Average Output Power Measurement §15.247(b.3); RSS-247 [5.4]

Low Rate

Freq [MHz]	req [MHz] Channel		Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[abi]	Lapud		margin [ab]
2412	1	AVG	15.99	15.88	15.50	30.00	-14.01	3.00	18.99	36.02	-17.03
2417	2	AVG	18.84	19.00	18.00	30.00	-11.00	3.00	22.00	36.02	-14.02
2422	3	AVG	19.58	19.63	19.63	30.00	-10.37	3.00	22.63	36.02	-13.39
2427	4	AVG	20.17	20.18	20.26	30.00	-9.74	3.00	23.26	36.02	-12.76
2432	5	AVG	20.20	20.16	20.29	30.00	-9.71	3.00	23.29	36.02	-12.73
2437	6	AVG	20.08	20.19	20.27	30.00	-9.73	3.00	23.27	36.02	-12.75
2442	7	AVG	20.01	20.14	20.21	30.00	-9.79	3.00	23.21	36.02	-12.81
2447	8	AVG	20.17	20.01	20.23	30.00	-9.77	3.00	23.23	36.02	-12.79
2452	9	AVG	19.62	19.43	19.57	30.00	-10.38	3.00	22.62	36.02	-13.40
2457	10	AVG	19.27	19.28	18.00	30.00	-10.72	3.00	22.28	36.02	-13.74
2462	11	AVG	17.00	17.00	15.27	30.00	-13.00	3.00	20.00	36.02	-16.02
2467	12	AVG	14.00	13.95	13.35	30.00	-16.00	3.00	17.00	36.02	-19.02
2472	13	AVG	8.29	8.50	-	30.00	-21.50	3.00	11.50	36.02	-24.52

 Table 7-8. Average Conducted Output Power Measurements Antenna 4a – Low Data Rate

Freq [MHz]	[MHz] Channel Deter		Conducted Power [dBm]				Conducted Conducted Power Limit Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]			
2412	1	AVG	16.00	15.81	15.25	30.00	-14.00	2.20	18.20	36.02	-17.82
2417	2	AVG	18.92	18.97	18.00	30.00	-11.03	2.20	21.17	36.02	-14.85
2422	3	AVG	19.79	19.75	19.81	30.00	-10.19	2.20	22.01	36.02	-14.01
2427	4	AVG	20.20	20.23	20.26	30.00	-9.74	2.20	22.46	36.02	-13.56
2432	5	AVG	20.13	20.10	20.26	30.00	-9.74	2.20	22.46	36.02	-13.56
2437	6	AVG	20.01	20.03	20.22	30.00	-9.78	2.20	22.42	36.02	-13.60
2442	7	AVG	20.12	20.04	20.28	30.00	-9.72	2.20	22.48	36.02	-13.54
2447	8	AVG	20.05	20.07	20.33	30.00	-9.67	2.20	22.53	36.02	-13.49
2452	9	AVG	19.38	19.37	19.39	30.00	-10.62	2.20	21.59	36.02	-14.44
2457	10	AVG	19.47	19.20	17.94	30.00	-10.53	2.20	21.67	36.02	-14.35
2462	11	AVG	17.00	17.00	15.50	30.00	-13.00	2.20	19.20	36.02	-16.82
2467	12	AVG	13.85	13.91	13.25	30.00	-16.09	2.20	16.11	36.02	-19.91
2472	13	AVG	8.12	8.41	-	30.00	-21.59	2.20	10.61	36.02	-25.41

Table 7-9. Average Conducted Output Power Measurements Antenna 2a – Low Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	ement MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 53 of 376	
			V 10 6 09/14/2023	

Freq [MHz]	MHz] Channel De		Conducted Power [dBm]				Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	AVG	14.91	14.91	17.92	30.00	-12.08	5.62	23.54	36.02	-12.48
2417	2	AVG	18.50	18.43	21.47	30.00	-8.53	5.62	27.09	36.02	-8.93
2422	3	AVG	19.32	19.40	22.37	30.00	-7.63	5.62	27.99	36.02	-8.03
2427	4	AVG	19.88	20.08	22.99	30.00	-7.01	5.62	28.61	36.02	-7.41
2432	5	AVG	20.08	19.89	23.00	30.00	-7.00	5.62	28.62	36.02	-7.40
2437	6	AVG	19.89	19.90	22.90	30.00	-7.10	5.62	28.52	36.02	-7.50
2442	7	AVG	20.02	19.93	22.98	30.00	-7.02	5.62	28.60	36.02	-7.42
2447	8	AVG	19.91	20.06	22.99	30.00	-7.01	5.62	28.61	36.02	-7.41
2452	9	AVG	19.42	19.42	22.43	30.00	-7.57	5.62	28.05	36.02	-7.97
2457	10	AVG	18.94	19.00	21.98	30.00	-8.02	5.62	27.60	36.02	-8.42
2462	11	AVG	16.50	16.33	19.43	30.00	-10.57	5.62	25.05	36.02	-10.97
2467	12	AVG	13.71	13.95	16.84	30.00	-13.16	5.62	22.46	36.02	-13.56
2472	13	AVG	8.34	8.39	11.38	30.00	-18.62	5.62	17.00	36.02	-19.02

Table 7-10. Average Conducted Output Power Measurements CDD (802.11g) – Low Data Rate

Freq [MHz]	req [MHz] Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[and	Ennie [GBin]	margin [ab]
2412	1	AVG	14.96	15.00	17.99	30.00	-12.01	5.62	23.61	36.02	-12.41
2417	2	AVG	18.50	18.50	21.51	30.00	-8.49	5.62	27.13	36.02	-8.89
2422	3	AVG	19.60	19.50	22.56	30.00	-7.44	5.62	28.18	36.02	-7.84
2427	4	AVG	20.06	20.21	23.15	30.00	-6.85	5.62	28.77	36.02	-7.25
2432	5	AVG	20.13	20.18	23.16	30.00	-6.84	5.62	28.78	36.02	-7.24
2437	6	AVG	20.11	20.02	23.08	30.00	-6.92	5.62	28.70	36.02	-7.32
2442	7	AVG	20.07	20.22	23.15	30.00	-6.85	5.62	28.77	36.02	-7.25
2447	8	AVG	19.96	20.18	23.08	30.00	-6.92	5.62	28.70	36.02	-7.32
2452	9	AVG	19.41	19.51	22.47	30.00	-7.53	5.62	28.09	36.02	-7.93
2457	10	AVG	19.00	19.00	22.01	30.00	-7.99	5.62	27.63	36.02	-8.39
2462	11	AVG	16.50	16.37	19.45	30.00	-10.55	5.62	25.07	36.02	-10.95
2467	12	AVG	13.95	13.76	16.87	30.00	-13.13	5.62	22.49	36.02	-13.53
2472	13	AVG	8.50	8.50	11.51	30.00	-18.49	5.62	17.13	36.02	-18.89

Table 7-11. Average Conducted Output Power Measurements CDD (802.11n) – Low Data Rate

Freq [MHz]	[MHz] Channel D	Detector	Conc	Conducted Power [dBm]			Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]			
2412	1	AVG	14.86	14.80	17.84	30.00	-12.16	5.62	23.46	36.02	-12.56
2417	2	AVG	17.92	17.89	20.91	30.00	-9.09	5.62	26.53	36.02	-9.49
2422	3	AVG	19.67	19.60	22.65	30.00	-7.35	5.62	28.27	36.02	-7.75
2427	4	AVG	20.34	20.33	23.35	30.00	-6.65	5.62	28.97	36.02	-7.05
2432	5	AVG	20.27	20.30	23.30	30.00	-6.70	5.62	28.92	36.02	-7.10
2437	6	AVG	20.26	20.24	23.26	30.00	-6.74	5.62	28.88	36.02	-7.14
2442	7	AVG	20.21	20.41	23.32	30.00	-6.68	5.62	28.94	36.02	-7.08
2447	8	AVG	19.87	19.76	22.82	30.00	-7.18	5.62	28.44	36.02	-7.58
2452	9	AVG	19.52	19.60	22.57	30.00	-7.43	5.62	28.19	36.02	-7.83
2457	10	AVG	17.98	17.96	20.98	30.00	-9.02	5.62	26.60	36.02	-9.42
2462	11	AVG	15.26	15.50	18.39	30.00	-11.61	5.62	24.01	36.02	-12.01
2467	12	AVG	13.50	13.39	16.46	30.00	-13.54	5.62	22.08	36.02	-13.94

Table 7-12. Average Conducted Output Power Measurements CDD (802.11ax - SU) – Low Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 54 of 276		
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 54 of 376		
			V 10 6 09/14/2023		

Mid Rate

Freq [MHz] C	Channel	Detector	Con	ducted Power	[dBm]	Conducted Conducted Power Limit Power	Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]	[]		
2412	1	AVG	14.96	14.84	14.79	30.00	-15.04	3.00	17.96	36.02	-18.06
2417	2	AVG	18.00	18.00	17.29	30.00	-12.00	3.00	21.00	36.02	-15.02
2422	3	AVG	20.00	19.96	19.48	30.00	-10.00	3.00	23.00	36.02	-13.02
2427	4	AVG	20.26	20.21	20.00	30.00	-9.74	3.00	23.26	36.02	-12.76
2432	5	AVG	20.23	20.25	20.24	30.00	-9.75	3.00	23.25	36.02	-12.77
2437	6	AVG	20.11	20.23	20.25	30.00	-9.75	3.00	23.25	36.02	-12.77
2442	7	AVG	20.05	20.21	20.19	30.00	-9.79	3.00	23.21	36.02	-12.81
2447	8	AVG	20.19	20.09	19.96	30.00	-9.81	3.00	23.19	36.02	-12.83
2452	9	AVG	19.31	19.34	19.42	30.00	-10.58	3.00	22.42	36.02	-13.60
2457	10	AVG	18.37	18.39	17.29	30.00	-11.61	3.00	21.39	36.02	-14.63
2462	11	AVG	15.97	16.00	14.89	30.00	-14.00	3.00	19.00	36.02	-17.02
2467	12	AVG	13.80	13.86	13.44	30.00	-16.14	3.00	16.86	36.02	-19.16
2472	13	AVG	8.50	8.42	-	30.00	-21.50	3.00	11.50	36.02	-24.52

Table 7-13. Average Conducted Output Power Measurements Antenna 4a – Mid Data Rate

Freq [MHz] Channel		Detector	Con	ducted Power	[dBm]	Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]	[]		
2412	1	AVG	15.00	14.95	14.96	30.00	-15.00	2.20	17.20	36.02	-18.82
2417	2	AVG	17.99	17.91	17.46	30.00	-12.01	2.20	20.19	36.02	-15.83
2422	3	AVG	19.96	20.00	19.43	30.00	-10.00	2.20	22.20	36.02	-13.82
2427	4	AVG	20.41	20.31	19.81	30.00	-9.59	2.20	22.61	36.02	-13.41
2432	5	AVG	20.14	20.15	20.22	30.00	-9.78	2.20	22.42	36.02	-13.60
2437	6	AVG	20.10	20.12	20.12	30.00	-9.88	2.20	22.32	36.02	-13.70
2442	7	AVG	20.16	20.09	20.20	30.00	-9.80	2.20	22.40	36.02	-13.62
2447	8	AVG	20.15	20.13	20.00	30.00	-9.85	2.20	22.35	36.02	-13.67
2452	9	AVG	19.50	19.50	19.30	30.00	-10.50	2.20	21.70	36.02	-14.32
2457	10	AVG	18.45	18.49	17.29	30.00	-11.51	2.20	20.69	36.02	-15.33
2462	11	AVG	16.00	16.00	14.95	30.00	-14.00	2.20	18.20	36.02	-17.82
2467	12	AVG	13.98	13.76	13.50	30.00	-16.02	2.20	16.18	36.02	-19.84
2472	13	AVG	8.50	8.27	-	30.00	-21.50	2.20	10.70	36.02	-25.32

Table 7-14. Average Conducted Output Power Measurements Antenna 2a - Mid Data Rate

Freq [MHz] Channel		Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power Margin [dB]	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	AVG	15.00	14.89	17.95	30.00	-12.05	5.62	23.57	36.02	-12.45
2417	2	AVG	17.98	17.95	20.97	30.00	-9.03	5.62	26.59	36.02	-9.43
2422	3	AVG	19.46	19.50	22.49	30.00	-7.51	5.62	28.11	36.02	-7.91
2427	4	AVG	19.88	20.08	22.99	30.00	-7.01	5.62	28.61	36.02	-7.41
2432	5	AVG	19.99	20.04	23.02	30.00	-6.98	5.62	28.64	36.02	-7.38
2437	6	AVG	20.00	19.99	23.01	30.00	-6.99	5.62	28.63	36.02	-7.39
2442	7	AVG	20.00	20.07	23.05	30.00	-6.95	5.62	28.67	36.02	-7.35
2447	8	AVG	20.02	20.17	23.11	30.00	-6.89	5.62	28.73	36.02	-7.29
2452	9	AVG	19.29	19.50	22.41	30.00	-7.59	5.62	28.03	36.02	-7.99
2457	10	AVG	17.86	17.98	20.93	30.00	-9.07	5.62	26.55	36.02	-9.47
2462	11	AVG	15.38	15.33	18.36	30.00	-11.64	5.62	23.98	36.02	-12.04
2467	12	AVG	13.41	13.32	16.38	30.00	-13.62	5.62	22.00	36.02	-14.02
2472	13	AVG	8.45	8.37	11.42	30.00	-18.58	5.62	17.04	36.02	-18.98

Table 7-15. Average Conducted Output Power Measurements CDD (802.11g) - Mid Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage FE of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 55 of 376
			V 10.6 09/14/2023

Freq [MHz] Channel		Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	AVG	14.87	14.82	17.85	30.00	-12.15	5.62	23.47	36.02	-12.55
2417	2	AVG	17.84	17.76	20.81	30.00	-9.19	5.62	26.43	36.02	-9.59
2422	3	AVG	19.39	19.47	22.44	30.00	-7.56	5.62	28.06	36.02	-7.96
2427	4	AVG	20.23	20.25	23.25	30.00	-6.75	5.62	28.87	36.02	-7.15
2432	5	AVG	20.19	20.22	23.21	30.00	-6.79	5.62	28.83	36.02	-7.19
2437	6	AVG	20.24	20.22	23.24	30.00	-6.76	5.62	28.86	36.02	-7.16
2442	7	AVG	20.20	20.33	23.27	30.00	-6.73	5.62	28.89	36.02	-7.13
2447	8	AVG	20.12	20.35	23.24	30.00	-6.76	5.62	28.86	36.02	-7.16
2452	9	AVG	19.38	19.30	22.35	30.00	-7.65	5.62	27.97	36.02	-8.05
2457	10	AVG	17.96	17.75	20.87	30.00	-9.13	5.62	26.49	36.02	-9.53
2462	11	AVG	15.50	15.49	18.50	30.00	-11.50	5.62	24.12	36.02	-11.90
2467	12	AVG	13.35	13.37	16.37	30.00	-13.63	5.62	21.99	36.02	-14.03
2472	13	AVG	8.46	8.44	11.46	30.00	-18.54	5.62	17.08	36.02	-18.94

Table 7-16. Average Conducted Output Power Measurements CDD (802.11n) - Mid Data Rate

Freq [MHz]	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit [dBm]	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[
2412	1	AVG	14.20	14.47	17.35	30.00	-12.65	5.62	22.97	36.02	-13.05
2417	2	AVG	16.90	16.94	19.93	30.00	-10.07	5.62	25.55	36.02	-10.47
2422	3	AVG	19.50	19.50	22.51	30.00	-7.49	5.62	28.13	36.02	-7.89
2427	4	AVG	19.92	19.80	22.87	30.00	-7.13	5.62	28.49	36.02	-7.53
2432	5	AVG	20.35	20.36	23.37	30.00	-6.63	5.62	28.99	36.02	-7.03
2437	6	AVG	20.34	20.32	23.34	30.00	-6.66	5.62	28.96	36.02	-7.06
2442	7	AVG	20.29	20.47	23.39	30.00	-6.61	5.62	29.01	36.02	-7.01
2447	8	AVG	20.00	19.84	22.93	30.00	-7.07	5.62	28.55	36.02	-7.47
2452	9	AVG	19.36	19.50	22.44	30.00	-7.56	5.62	28.06	36.02	-7.96
2457	10	AVG	17.47	17.27	20.38	30.00	-9.62	5.62	26.00	36.02	-10.02
2462	11	AVG	14.85	14.79	17.83	30.00	-12.17	5.62	23.45	36.02	-12.57
2467	12	AVG	13.00	12.81	15.92	30.00	-14.08	5.62	21.54	36.02	-14.48

Table 7-17. Average Conducted Output Power Measurements CDD (802.11ax - SU) – Mid Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EC of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 56 of 376
	•	•	V 10.6 09/14/2023

High Rate

Freq [MHz]	Channel	Detector		Conducted	Power [dBm]		Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11b	802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]	13		
2412	1	AVG	20.29	14.44	14.44	14.35	30.00	-9.71	3.00	23.29	36.02	-12.73
2417	2	AVG	20.32	17.38	17.35	17.00	30.00	-9.68	3.00	23.32	36.02	-12.70
2422	3	AVG	20.50	18.89	18.72	18.84	30.00	-9.50	3.00	23.50	36.02	-12.52
2427	4	AVG	20.50	20.00	20.00	19.43	30.00	-9.50	3.00	23.50	36.02	-12.52
2432	5	AVG	20.36	20.29	20.22	20.00	30.00	-9.64	3.00	23.36	36.02	-12.66
2437	6	AVG	20.33	20.18	20.22	20.34	30.00	-9.66	3.00	23.34	36.02	-12.68
2442	7	AVG	20.46	20.14	20.18	20.00	30.00	-9.55	3.00	23.46	36.02	-12.57
2447	8	AVG	20.31	19.75	19.80	19.00	30.00	-9.69	3.00	23.31	36.02	-12.71
2452	9	AVG	20.41	18.85	19.00	18.91	30.00	-9.59	3.00	23.41	36.02	-12.61
2457	10	AVG	20.42	17.39	17.42	15.90	30.00	-9.58	3.00	23.42	36.02	-12.60
2462	11	AVG	20.36	14.33	14.50	13.78	30.00	-9.64	3.00	23.36	36.02	-12.66
2467	12	AVG	18.39	12.87	12.79	12.44	30.00	-11.61	3.00	21.39	36.02	-14.63
2472	13	AVG	16.75	8.43	8.45	-	30.00	-13.25	3.00	19.75	36.02	-16.27

 Table 7-18. Average Conducted Output Power Measurements Antenna 4a – High Data Rate

Freq [MHz] Channel	Channel	Detector	Conducted Power [dBm]				Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11b	802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[abi]	Lanul	Emile [GBin]	margin [ab]
2412	1	AVG	20.17	14.50	14.50	14.28	30.00	-9.83	2.20	22.37	36.02	-13.65
2417	2	AVG	20.35	17.50	17.37	17.00	30.00	-9.65	2.20	22.55	36.02	-13.47
2422	3	AVG	20.50	19.00	18.94	19.00	30.00	-9.50	2.20	22.70	36.02	-13.32
2427	4	AVG	20.46	20.00	20.00	19.50	30.00	-9.54	2.20	22.66	36.02	-13.36
2432	5	AVG	20.33	20.22	20.25	20.00	30.00	-9.67	2.20	22.53	36.02	-13.49
2437	6	AVG	20.28	20.12	20.07	20.24	30.00	-9.72	2.20	22.48	36.02	-13.54
2442	7	AVG	20.21	20.15	20.02	19.95	30.00	-9.79	2.20	22.41	36.02	-13.61
2447	8	AVG	20.27	19.89	19.89	18.91	30.00	-9.73	2.20	22.47	36.02	-13.55
2452	9	AVG	20.36	18.95	19.00	19.00	30.00	-9.64	2.20	22.56	36.02	-13.46
2457	10	AVG	20.26	17.50	17.44	15.78	30.00	-9.74	2.20	22.46	36.02	-13.56
2462	11	AVG	20.32	14.41	14.43	13.88	30.00	-9.68	2.20	22.52	36.02	-13.50
2467	12	AVG	18.38	13.00	13.00	12.25	30.00	-11.62	2.20	20.58	36.02	-15.44
2472	13	AVG	16.56	8.35	8.29	-	30.00	-13.44	2.20	18.76	36.02	-17.26

 Table 7-19. Average Conducted Output Power Measurements Antenna 2a – High Data Rate

Freq [MHz] Channel		Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	AVG	14.50	14.41	17.47	30.00	-12.53	5.62	23.09	36.02	-12.93
2417	2	AVG	16.89	16.98	19.95	30.00	-10.05	5.62	25.57	36.02	-10.45
2422	3	AVG	19.00	19.00	22.01	30.00	-7.99	5.62	27.63	36.02	-8.39
2427	4	AVG	19.96	20.00	22.99	30.00	-7.01	5.62	28.61	36.02	-7.41
2432	5	AVG	20.08	19.80	22.95	30.00	-7.05	5.62	28.57	36.02	-7.45
2437	6	AVG	20.01	19.77	22.90	30.00	-7.10	5.62	28.52	36.02	-7.50
2442	7	AVG	19.98	19.82	22.91	30.00	-7.09	5.62	28.53	36.02	-7.49
2447	8	AVG	19.86	19.91	22.89	30.00	-7.11	5.62	28.51	36.02	-7.51
2452	9	AVG	18.97	18.77	21.88	30.00	-8.12	5.62	27.50	36.02	-8.52
2457	10	AVG	17.50	17.44	20.48	30.00	-9.52	5.62	26.10	36.02	-9.92
2462	11	AVG	13.81	13.77	16.80	30.00	-13.20	5.62	22.42	36.02	-13.60
2467	12	AVG	12.29	12.25	15.28	30.00	-14.72	5.62	20.90	36.02	-15.12
2472	13	AVG	8.46	8.35	11.41	30.00	-18.59	5.62	17.03	36.02	-18.99

Table 7-20. Average Conducted Output Power Measurements CDD (802.11g) – High Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 57 of 376
	•	·	V 10.6 09/14/2023

Freq [MHz] Ch	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	AVG	14.41	14.32	17.37	30.00	-12.63	5.62	22.99	36.02	-13.03
2417	2	AVG	16.92	16.79	19.86	30.00	-10.14	5.62	25.48	36.02	-10.54
2422	3	AVG	19.00	19.00	22.01	30.00	-7.99	5.62	27.63	36.02	-8.39
2427	4	AVG	19.89	19.95	22.93	30.00	-7.07	5.62	28.55	36.02	-7.47
2432	5	AVG	20.16	19.78	22.98	30.00	-7.02	5.62	28.60	36.02	-7.42
2437	6	AVG	20.01	19.73	22.88	30.00	-7.12	5.62	28.50	36.02	-7.52
2442	7	AVG	19.97	19.81	22.90	30.00	-7.10	5.62	28.52	36.02	-7.50
2447	8	AVG	19.76	19.84	22.81	30.00	-7.19	5.62	28.43	36.02	-7.59
2452	9	AVG	19.00	18.93	21.98	30.00	-8.02	5.62	27.60	36.02	-8.42
2457	10	AVG	17.50	17.42	20.47	30.00	-9.53	5.62	26.09	36.02	-9.93
2462	11	AVG	13.83	13.73	16.79	30.00	-13.21	5.62	22.41	36.02	-13.61
2467	12	AVG	12.50	12.50	15.51	30.00	-14.49	5.62	21.13	36.02	-14.89
2472	13	AVG	8.29	8.31	11.31	30.00	-18.69	5.62	16.93	36.02	-19.09

Table 7-21. Average Conducted Output Power Measurements CDD (802.11n) - High Data Rate

Freq [MHz] Channel		el Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]			J 1 1
2412	1	AVG	13.50	13.42	16.47	30.00	-13.53	5.62	22.09	36.02	-13.93
2417	2	AVG	16.50	16.31	19.41	30.00	-10.59	5.62	25.03	36.02	-10.99
2422	3	AVG	17.98	17.78	20.89	30.00	-9.11	5.62	26.51	36.02	-9.51
2427	4	AVG	18.83	18.98	21.92	30.00	-8.08	5.62	27.54	36.02	-8.48
2432	5	AVG	19.50	19.50	22.51	30.00	-7.49	5.62	28.13	36.02	-7.89
2437	6	AVG	20.21	20.21	23.22	30.00	-6.78	5.62	28.84	36.02	-7.18
2442	7	AVG	19.48	19.50	22.50	30.00	-7.50	5.62	28.12	36.02	-7.90
2447	8	AVG	18.34	18.38	21.37	30.00	-8.63	5.62	26.99	36.02	-9.03
2452	9	AVG	18.38	18.50	21.45	30.00	-8.55	5.62	27.07	36.02	-8.95
2457	10	AVG	15.78	15.96	18.88	30.00	-11.12	5.62	24.50	36.02	-11.52
2462	11	AVG	13.91	13.82	16.87	30.00	-13.13	5.62	22.49	36.02	-13.53
2467	12	AVG	12.34	12.38	15.37	30.00	-14.63	5.62	20.99	36.02	-15.03

Table 7-22. Average Conducted Output Power Measurements CDD (802.11ax - SU) – High Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 58 of 376
	•		V 10.6 09/14/2023

7.3.2 Peak Output Power Measurement

§15.247(b.3); RSS-247 [5.4]

Low Rate

Freq [MHz] Channel		Detector	Con	ducted Power	[dBm]	Power Limit Po	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[abi]	[ubiii]	Ennie [GB/II]	margin [ab]
2412	1	PEAK	20.70	20.52	19.89	30.00	-9.30	3.00	23.70	36.02	-12.32
2417	2	PEAK	23.31	23.47	22.38	30.00	-6.54	3.00	26.47	36.02	-9.56
2422	3	PEAK	23.88	23.92	23.89	30.00	-6.08	3.00	26.92	36.02	-9.10
2427	4	PEAK	26.19	26.38	26.34	30.00	-3.62	3.00	29.38	36.02	-6.64
2432	5	PEAK	26.19	26.33	26.33	30.00	-3.67	3.00	29.33	36.02	-6.69
2437	6	PEAK	26.03	26.29	26.25	30.00	-3.71	3.00	29.29	36.02	-6.73
2442	7	PEAK	26.02	26.30	26.28	30.00	-3.70	3.00	29.30	36.02	-6.72
2447	8	PEAK	26.15	26.26	26.32	30.00	-3.68	3.00	29.32	36.02	-6.70
2452	9	PEAK	23.85	23.72	23.76	30.00	-6.15	3.00	26.85	36.02	-9.17
2457	10	PEAK	23.62	23.66	22.55	30.00	-6.34	3.00	26.66	36.02	-9.36
2462	11	PEAK	21.67	21.67	19.72	30.00	-8.33	3.00	24.67	36.02	-11.35
2467	12	PEAK	18.78	18.70	18.07	30.00	-11.22	3.00	21.78	36.02	-14.24
2472	13	PEAK	15.54	15.79	-	30.00	-14.21	3.00	18.79	36.02	-17.23

 Table 7-23. Peak Conducted Output Power Measurements Antenna 4a – Low Data Rate

Freq [MHz] Channel I		Detector	Con	ducted Power	[dBm]	Conducted Conducted Power Limit Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]	[]		
2412	1	PEAK	20.84	20.63	19.77	30.00	-9.16	2.20	23.04	36.02	-12.98
2417	2	PEAK	23.26	23.35	22.33	30.00	-6.65	2.20	25.55	36.02	-10.47
2422	3	PEAK	23.96	23.99	23.95	30.00	-6.01	2.20	26.19	36.02	-9.83
2427	4	PEAK	26.13	26.32	26.24	30.00	-3.68	2.20	28.52	36.02	-7.50
2432	5	PEAK	26.02	26.20	26.22	30.00	-3.78	2.20	28.42	36.02	-7.60
2437	6	PEAK	25.98	26.16	26.21	30.00	-3.79	2.20	28.41	36.02	-7.61
2442	7	PEAK	26.03	26.20	26.28	30.00	-3.73	2.20	28.48	36.02	-7.55
2447	8	PEAK	26.09	26.27	26.38	30.00	-3.62	2.20	28.58	36.02	-7.44
2452	9	PEAK	23.57	23.60	23.52	30.00	-6.40	2.20	25.80	36.02	-10.22
2457	10	PEAK	23.83	23.61	22.34	30.00	-6.17	2.20	26.03	36.02	-9.99
2462	11	PEAK	21.87	21.81	20.29	30.00	-8.14	2.20	24.07	36.02	-11.96
2467	12	PEAK	18.64	18.76	18.06	30.00	-11.24	2.20	20.96	36.02	-15.06
2472	13	PEAK	15.32	15.55	-	30.00	-14.45	2.20	17.75	36.02	-18.27

Table 7-24. Peak Conducted Output Power Measurements Antenna 2a – Low Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege E0 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 59 of 376
			V 10 6 09/14/2023

Freq [MHz] Channel		Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	19.62	19.68	22.66	30.00	-7.34	5.62	28.28	36.02	-7.74
2417	2	PEAK	23.01	22.79	25.91	30.00	-4.09	5.62	31.53	36.02	-4.49
2422	3	PEAK	23.57	23.68	26.64	30.00	-3.36	5.62	32.26	36.02	-3.76
2427	4	PEAK	25.90	25.91	28.91	30.00	-1.09	5.62	34.53	36.02	-1.49
2432	5	PEAK	25.91	25.74	28.83	30.00	-1.17	5.62	34.45	36.02	-1.57
2437	6	PEAK	25.76	25.74	28.76	30.00	-1.24	5.62	34.38	36.02	-1.64
2442	7	PEAK	25.84	25.73	28.80	30.00	-1.20	5.62	34.42	36.02	-1.60
2447	8	PEAK	25.81	25.92	28.88	30.00	-1.12	5.62	34.50	36.02	-1.52
2452	9	PEAK	23.67	23.65	26.67	30.00	-3.33	5.62	32.29	36.02	-3.73
2457	10	PEAK	23.33	23.51	26.43	30.00	-3.57	5.62	32.05	36.02	-3.97
2462	11	PEAK	21.20	21.18	24.20	30.00	-5.80	5.62	29.82	36.02	-6.20
2467	12	PEAK	18.40	18.85	21.64	30.00	-8.36	5.62	27.26	36.02	-8.76
2472	13	PEAK	15.61	15.66	18.65	30.00	-11.35	5.62	24.27	36.02	-11.75

Table 7-25. Peak Conducted Output Power Measurements CDD (802.11g) - Low Data Rate

Freq [MHz] Channel	Channel	Detector	Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[abiii]	Ennie [GBinj	margin [ab]
2412	1	PEAK	19.75	19.94	22.86	30.00	-7.14	5.62	28.48	36.02	-7.54
2417	2	PEAK	22.98	23.05	26.03	30.00	-3.97	5.62	31.65	36.02	-4.37
2422	3	PEAK	23.91	23.83	26.88	30.00	-3.12	5.62	32.50	36.02	-3.52
2427	4	PEAK	26.35	26.38	29.38	30.00	-0.62	5.62	35.00	36.02	-1.02
2432	5	PEAK	26.33	26.29	29.32	30.00	-0.68	5.62	34.94	36.02	-1.08
2437	6	PEAK	26.30	26.23	29.27	30.00	-0.73	5.62	34.89	36.02	-1.13
2442	7	PEAK	26.28	26.35	29.33	30.00	-0.67	5.62	34.95	36.02	-1.07
2447	8	PEAK	26.26	26.39	29.34	30.00	-0.66	5.62	34.96	36.02	-1.06
2452	9	PEAK	23.73	23.72	26.73	30.00	-3.27	5.62	32.35	36.02	-3.67
2457	10	PEAK	23.52	23.54	26.54	30.00	-3.46	5.62	32.16	36.02	-3.86
2462	11	PEAK	21.16	21.24	24.21	30.00	-5.79	5.62	29.83	36.02	-6.19
2467	12	PEAK	18.69	18.63	21.67	30.00	-8.33	5.62	27.29	36.02	-8.73
2472	13	PEAK	15.73	15.74	18.75	30.00	-11.25	5.62	24.37	36.02	-11.65

Table 7-26. Peak Conducted Output Power Measurements CDD (802.11n) - Low Data Rate

Freq [MHz] C	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	19.34	19.27	22.32	30.00	-7.68	5.62	27.94	36.02	-8.08
2417	2	PEAK	22.29	22.22	25.27	30.00	-4.73	5.62	30.89	36.02	-5.13
2422	3	PEAK	23.92	23.82	26.88	30.00	-3.12	5.62	32.50	36.02	-3.52
2427	4	PEAK	26.43	26.33	29.39	30.00	-0.61	5.62	35.01	36.02	-1.01
2432	5	PEAK	26.31	26.24	29.28	30.00	-0.72	5.62	34.90	36.02	-1.12
2437	6	PEAK	26.30	26.28	29.30	30.00	-0.70	5.62	34.92	36.02	-1.10
2442	7	PEAK	26.26	26.34	29.31	30.00	-0.69	5.62	34.93	36.02	-1.09
2447	8	PEAK	26.12	26.02	29.08	30.00	-0.92	5.62	34.70	36.02	-1.32
2452	9	PEAK	23.73	23.71	26.73	30.00	-3.27	5.62	32.35	36.02	-3.67
2457	10	PEAK	22.29	22.37	25.34	30.00	-4.66	5.62	30.96	36.02	-5.06
2462	11	PEAK	19.72	20.34	23.05	30.00	-6.95	5.62	28.67	36.02	-7.35
2467	12	PEAK	18.46	18.27	21.37	30.00	-8.63	5.62	26.99	36.02	-9.03

Table 7-27. Peak Conducted Output Power Measurements CDD (802.11ax - SU) – Low Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 60 of 376
			V 10 6 09/14/2023

Mid Rate

Freq [MHz] Channel	Channel	Detector	Con	ducted Power	[dBm]	Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]	[]		
2412	1	PEAK	22.36	21.91	21.47	30.00	-7.65	3.00	25.36	36.02	-10.67
2417	2	PEAK	24.92	24.84	24.01	30.00	-5.08	3.00	27.92	36.02	-8.10
2422	3	PEAK	26.32	26.12	25.77	30.00	-3.69	3.00	29.32	36.02	-6.71
2427	4	PEAK	26.76	26.97	26.82	30.00	-3.03	3.00	29.97	36.02	-6.05
2432	5	PEAK	26.67	26.92	26.87	30.00	-3.08	3.00	29.92	36.02	-6.10
2437	6	PEAK	26.61	26.87	26.88	30.00	-3.12	3.00	29.88	36.02	-6.14
2442	7	PEAK	26.61	26.90	26.85	30.00	-3.10	3.00	29.90	36.02	-6.12
2447	8	PEAK	26.75	26.92	26.83	30.00	-3.08	3.00	29.92	36.02	-6.10
2452	9	PEAK	25.85	25.64	25.67	30.00	-4.15	3.00	28.85	36.02	-7.17
2457	10	PEAK	25.14	25.07	23.94	30.00	-4.86	3.00	28.14	36.02	-7.88
2462	11	PEAK	23.16	22.85	21.78	30.00	-6.84	3.00	26.16	36.02	-9.86
2467	12	PEAK	21.08	21.00	20.50	30.00	-8.92	3.00	24.08	36.02	-11.94
2472	13	PEAK	17.58	17.05	-	30.00	-12.42	3.00	20.58	36.02	-15.44

 Table 7-28. Peak Conducted Output Power Measurements Antenna 4a – Mid Data Rate

Freq [MHz] Channel		Detector	Cond	ducted Power	[dBm]	Power Limit Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]	
			802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	11	[]		
2412	1	PEAK	22.39	21.94	21.66	30.00	-7.61	2.20	24.59	36.02	-11.43
2417	2	PEAK	24.86	24.52	24.12	30.00	-5.15	2.20	27.06	36.02	-8.97
2422	3	PEAK	26.13	26.10	25.67	30.00	-3.87	2.20	28.33	36.02	-7.69
2427	4	PEAK	26.76	26.92	26.67	30.00	-3.08	2.20	29.12	36.02	-6.90
2432	5	PEAK	26.59	26.81	26.80	30.00	-3.19	2.20	29.01	36.02	-7.01
2437	6	PEAK	26.55	26.77	26.77	30.00	-3.23	2.20	28.97	36.02	-7.05
2442	7	PEAK	26.60	26.77	26.80	30.00	-3.20	2.20	29.00	36.02	-7.02
2447	8	PEAK	26.70	26.86	26.82	30.00	-3.14	2.20	29.06	36.02	-6.96
2452	9	PEAK	25.86	25.78	25.53	30.00	-4.14	2.20	28.06	36.02	-7.96
2457	10	PEAK	25.25	25.14	24.04	30.00	-4.75	2.20	27.45	36.02	-8.57
2462	11	PEAK	23.35	23.10	22.05	30.00	-6.66	2.20	25.55	36.02	-10.48
2467	12	PEAK	21.32	21.00	20.78	30.00	-8.69	2.20	23.52	36.02	-12.51
2472	13	PEAK	17.59	16.77	-	30.00	-12.41	2.20	19.79	36.02	-16.23

Table 7-29. Peak Conducted Output Power Measurements Antenna 2a - Mid Data Rate

Freq [MHz]	Freq [MHz] Channel De		Conducted Power [dBm]			Power Limit Power		Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	22.51	22.21	25.37	30.00	-4.63	5.62	30.99	36.02	-5.03
2417	2	PEAK	24.76	24.67	27.73	30.00	-2.27	5.62	33.35	36.02	-2.67
2422	3	PEAK	25.76	25.86	28.82	30.00	-1.18	5.62	34.44	36.02	-1.58
2427	4	PEAK	26.32	26.44	29.39	30.00	-0.61	5.62	35.01	36.02	-1.01
2432	5	PEAK	26.32	26.34	29.34	30.00	-0.66	5.62	34.96	36.02	-1.06
2437	6	PEAK	26.28	26.29	29.30	30.00	-0.70	5.62	34.92	36.02	-1.10
2442	7	PEAK	26.31	26.37	29.35	30.00	-0.65	5.62	34.97	36.02	-1.05
2447	8	PEAK	26.41	26.46	29.44	30.00	-0.56	5.62	35.06	36.02	-0.96
2452	9	PEAK	25.65	25.79	28.73	30.00	-1.27	5.62	34.35	36.02	-1.67
2457	10	PEAK	24.71	24.76	27.75	30.00	-2.25	5.62	33.37	36.02	-2.65
2462	11	PEAK	22.44	22.71	25.59	30.00	-4.41	5.62	31.21	36.02	-4.81
2467	12	PEAK	20.68	20.72	23.71	30.00	-6.29	5.62	29.33	36.02	-6.69
2472	13	PEAK	17.53	17.49	20.52	30.00	-9.48	5.62	26.14	36.02	-9.88

Table 7-30. Peak Conducted Output Power Measurements CDD (802.11g) - Mid Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 61 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 61 of 376
			V 10.6 09/14/2023

Freq [MHz]	Hz] Channel De		Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	21.93	21.78	24.86	30.00	-5.14	5.62	30.48	36.02	-5.54
2417	2	PEAK	24.61	24.40	27.51	30.00	-2.49	5.62	33.13	36.02	-2.89
2422	3	PEAK	25.78	25.72	28.76	30.00	-1.24	5.62	34.38	36.02	-1.64
2427	4	PEAK	26.66	26.63	29.66	30.00	-0.34	5.62	35.28	36.02	-0.74
2432	5	PEAK	26.52	26.45	29.50	30.00	-0.50	5.62	35.12	36.02	-0.90
2437	6	PEAK	26.52	26.47	29.51	30.00	-0.49	5.62	35.13	36.02	-0.89
2442	7	PEAK	26.54	26.50	29.53	30.00	-0.47	5.62	35.15	36.02	-0.87
2447	8	PEAK	26.61	26.64	29.64	30.00	-0.36	5.62	35.26	36.02	-0.76
2452	9	PEAK	25.66	25.64	28.66	30.00	-1.34	5.62	34.28	36.02	-1.74
2457	10	PEAK	24.65	24.48	27.57	30.00	-2.43	5.62	33.19	36.02	-2.83
2462	11	PEAK	22.34	22.48	25.42	30.00	-4.58	5.62	31.04	36.02	-4.98
2467	12	PEAK	20.40	20.48	23.45	30.00	-6.55	5.62	29.07	36.02	-6.95
2472	13	PEAK	16.99	16.90	19.95	30.00	-10.05	5.62	25.57	36.02	-10.45

Table 7-31. Peak Conducted Output Power Measurements CDD (802.11n) - Mid Data Rate

Freq [MHz]	[MHz] Channel Detector		Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	20.85	20.99	23.93	30.00	-6.07	5.62	29.55	36.02	-6.47
2417	2	PEAK	23.43	23.53	26.49	30.00	-3.51	5.62	32.11	36.02	-3.91
2422	3	PEAK	25.79	25.72	28.76	30.00	-1.24	5.62	34.38	36.02	-1.64
2427	4	PEAK	26.58	26.42	29.51	30.00	-0.49	5.62	35.13	36.02	-0.89
2432	5	PEAK	26.69	26.62	29.66	30.00	-0.34	5.62	35.28	36.02	-0.74
2437	6	PEAK	26.65	26.57	29.62	30.00	-0.38	5.62	35.24	36.02	-0.78
2442	7	PEAK	26.65	26.66	29.67	30.00	-0.33	5.62	35.29	36.02	-0.73
2447	8	PEAK	26.63	26.45	29.55	30.00	-0.45	5.62	35.17	36.02	-0.85
2452	9	PEAK	25.64	25.69	28.68	30.00	-1.32	5.62	34.30	36.02	-1.72
2457	10	PEAK	24.02	23.94	26.99	30.00	-3.01	5.62	32.61	36.02	-3.41
2462	11	PEAK	21.57	21.82	24.71	30.00	-5.29	5.62	30.33	36.02	-5.69
2467	12	PEAK	20.13	19.83	22.99	30.00	-7.01	5.62	28.61	36.02	-7.41

Table 7-32. Peak Conducted Output Power Measurements CDD (802.11ax - SU) – Mid Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 62 of 376
	•	•	V 10.6 09/14/2023

High Rate

Freq [MHz]	req [MHz] Channel Detector			Conducted	Power [dBm]		Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11b	802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[]			
2412	1	PEAK	23.12	24.80	24.77	24.56	30.00	-5.20	3.00	27.80	36.02	-8.22
2417	2	PEAK	23.11	26.71	26.63	26.33	30.00	-3.29	3.00	29.71	36.02	-6.31
2422	3	PEAK	23.36	27.25	27.19	27.17	30.00	-2.75	3.00	30.25	36.02	-5.77
2427	4	PEAK	23.24	27.65	27.65	27.35	30.00	-2.35	3.00	30.65	36.02	-5.37
2432	5	PEAK	23.09	27.60	27.60	27.53	30.00	-2.40	3.00	30.60	36.02	-5.42
2437	6	PEAK	23.07	27.51	27.57	27.48	30.00	-2.43	3.00	30.57	36.02	-5.45
2442	7	PEAK	23.20	27.56	27.55	27.44	30.00	-2.44	3.00	30.56	36.02	-5.46
2447	8	PEAK	23.07	27.45	27.47	27.17	30.00	-2.53	3.00	30.47	36.02	-5.55
2452	9	PEAK	23.17	27.12	27.32	27.19	30.00	-2.68	3.00	30.32	36.02	-5.70
2457	10	PEAK	23.19	26.54	26.62	25.70	30.00	-3.38	3.00	29.62	36.02	-6.40
2462	11	PEAK	23.12	24.58	24.76	23.71	30.00	-5.24	3.00	27.76	36.02	-8.26
2467	12	PEAK	21.17	23.16	23.38	22.65	30.00	-6.62	3.00	26.38	36.02	-9.64
2472	13	PEAK	19.57	18.65	18.78	-	30.00	-10.43	3.00	22.57	36.02	-13.45

Table 7-33. Peak Conducted Output Power Measurements Antenna 4a – High Data Rate

Freq [MHz]	Channel	Detector		Conducted	Power [dBm]		Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11b	802.11g	802.11n	802.11ax (SU)	[dBm]	Margin [dB]	[abi]	Lapud	Ennie [GB/II]	margin [ab]
2412	1	PEAK	22.94	24.77	24.72	24.49	30.00	-5.23	2.20	26.97	36.02	-9.05
2417	2	PEAK	23.13	26.58	26.54	26.29	30.00	-3.42	2.20	28.78	36.02	-7.24
2422	3	PEAK	23.38	27.25	27.20	27.15	30.00	-2.75	2.20	29.45	36.02	-6.57
2427	4	PEAK	23.26	27.60	27.56	27.23	30.00	-2.40	2.20	29.80	36.02	-6.22
2432	5	PEAK	23.15	27.57	27.57	27.40	30.00	-2.43	2.20	29.77	36.02	-6.25
2437	6	PEAK	23.07	27.47	27.47	27.42	30.00	-2.53	2.20	29.67	36.02	-6.35
2442	7	PEAK	22.93	27.50	27.43	27.32	30.00	-2.50	2.20	29.70	36.02	-6.32
2447	8	PEAK	23.06	27.42	27.44	27.00	30.00	-2.56	2.20	29.64	36.02	-6.38
2452	9	PEAK	23.12	27.13	27.20	27.18	30.00	-2.80	2.20	29.40	36.02	-6.62
2457	10	PEAK	23.06	26.61	26.57	25.42	30.00	-3.39	2.20	28.81	36.02	-7.21
2462	11	PEAK	23.13	24.69	24.64	24.34	30.00	-5.31	2.20	26.89	36.02	-9.13
2467	12	PEAK	21.17	23.48	23.57	22.38	30.00	-6.43	2.20	25.77	36.02	-10.25
2472	13	PEAK	19.35	18.69	18.65	-	30.00	-10.65	2.20	21.55	36.02	-14.47
	Table 7-34 Peak Conducted Output Power Measurements Antenna 2a - High Data Rate											

 Table 7-34. Peak Conducted Output Power Measurements Antenna 2a – High Data Rate

Freq [MHz]	[MHz] Channel Detecto		Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	24.84	24.71	27.78	30.00	-2.22	5.62	33.40	36.02	-2.62
2417	2	PEAK	26.11	26.22	29.18	30.00	-0.82	5.62	34.80	36.02	-1.22
2422	3	PEAK	26.03	26.14	29.10	30.00	-0.90	5.62	34.72	36.02	-1.30
2427	4	PEAK	26.25	26.37	29.32	30.00	-0.68	5.62	34.94	36.02	-1.08
2432	5	PEAK	26.23	26.19	29.22	30.00	-0.78	5.62	34.84	36.02	-1.18
2437	6	PEAK	26.09	26.07	29.09	30.00	-0.91	5.62	34.71	36.02	-1.31
2442	7	PEAK	26.09	26.11	29.11	30.00	-0.89	5.62	34.73	36.02	-1.29
2447	8	PEAK	26.10	26.18	29.15	30.00	-0.85	5.62	34.77	36.02	-1.25
2452	9	PEAK	26.65	26.69	29.68	30.00	-0.32	5.62	35.30	36.02	-0.72
2457	10	PEAK	26.37	26.39	29.39	30.00	-0.61	5.62	35.01	36.02	-1.01
2462	11	PEAK	24.03	24.07	27.06	30.00	-2.94	5.62	32.68	36.02	-3.34
2467	12	PEAK	22.64	22.77	25.71	30.00	-4.29	5.62	31.33	36.02	-4.69
2472	13	PEAK	18.84	18.72	21.79	30.00	-8.21	5.62	27.41	36.02	-8.61

Table 7-35. Peak Conducted Output Power Measurements CDD (802.11g) - High Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 63 of 376
	·	·	V 10.6 09/14/2023

Freq [MHz]	/Hz] Channel Detecto		Conc	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	24.93	24.82	27.89	30.00	-2.11	5.62	33.51	36.02	-2.51
2417	2	PEAK	26.52	26.41	29.47	30.00	-0.53	5.62	35.09	36.02	-0.93
2422	3	PEAK	26.32	26.37	29.35	30.00	-0.65	5.62	34.97	36.02	-1.05
2427	4	PEAK	26.58	26.59	29.59	30.00	-0.41	5.62	35.21	36.02	-0.81
2432	5	PEAK	26.62	26.44	29.54	30.00	-0.46	5.62	35.16	36.02	-0.86
2437	6	PEAK	26.52	26.45	29.50	30.00	-0.50	5.62	35.12	36.02	-0.90
2442	7	PEAK	26.54	26.48	29.52	30.00	-0.48	5.62	35.14	36.02	-0.88
2447	8	PEAK	26.51	26.47	29.50	30.00	-0.50	5.62	35.12	36.02	-0.90
2452	9	PEAK	26.35	26.26	29.32	30.00	-0.68	5.62	34.94	36.02	-1.08
2457	10	PEAK	26.75	26.58	29.68	30.00	-0.32	5.62	35.30	36.02	-0.72
2462	11	PEAK	24.38	24.14	27.27	30.00	-2.73	5.62	32.89	36.02	-3.13
2467	12	PEAK	23.05	22.97	26.02	30.00	-3.98	5.62	31.64	36.02	-4.38
2472	13	PEAK	18.70	18.70	21.71	30.00	-8.29	5.62	27.33	36.02	-8.69

Table 7-36. Peak Conducted Output Power Measurements CDD (802.11n) - High Data Rate

Freq [MHz]	MHz] Channel Detector	Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Antenna 4a	Antenna 2a	Summed	[dBm]	Margin [dB]	[dBi]	[]		
2412	1	PEAK	24.07	23.92	27.01	30.00	-2.99	5.62	32.63	36.02	-3.39
2417	2	PEAK	26.12	25.89	29.02	30.00	-0.98	5.62	34.64	36.02	-1.38
2422	3	PEAK	26.65	26.39	29.53	30.00	-0.47	5.62	35.15	36.02	-0.87
2427	4	PEAK	26.15	26.18	29.18	30.00	-0.82	5.62	34.80	36.02	-1.22
2432	5	PEAK	26.40	26.38	29.40	30.00	-0.60	5.62	35.02	36.02	-1.00
2437	6	PEAK	26.53	26.49	29.52	30.00	-0.48	5.62	35.14	36.02	-0.88
2442	7	PEAK	26.36	26.27	29.33	30.00	-0.67	5.62	34.95	36.02	-1.07
2447	8	PEAK	26.61	26.61	29.62	30.00	-0.38	5.62	35.24	36.02	-0.78
2452	9	PEAK	26.65	26.68	29.68	30.00	-0.32	5.62	35.30	36.02	-0.72
2457	10	PEAK	25.58	25.79	28.70	30.00	-1.30	5.62	34.32	36.02	-1.70
2462	11	PEAK	24.26	23.96	27.12	30.00	-2.88	5.62	32.74	36.02	-3.28
2467	12	PEAK	22.86	22.76	25.82	30.00	-4.18	5.62	31.44	36.02	-4.58

Table 7-37. Peak Conducted Output Power Measurements CDD (802.11ax - SU) – High Data Rate

FCC ID: BCGA2926 IC: 579C-A2926	element	ement MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 64 of 376
		-	V 10.6.09/14/2023

Note:

Per ANSI C63.10-2013 and KDB 662911 D01 v02r01 Section E)1), the conducted powers at Antenna 4a and Antenna 2a were first measured separately during CDD transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3. the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and N_{ANT}, the total number of antennas used.

Directional gain = $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$

Sample CDD Calculation:

At 2412MHz the average conducted output power was measured to be 14.96 dBm for Antenna 4a and 15.00 dBm for Antenna 2a.

Antenna 4a + Antenna 2a = CDD

(14.96 dBm + 15.00 dBm) = (31.33 mW + 31.62 mW) = 62.95 mW = 17.99 dBm

Sample e.i.r.p. Calculation:

At 2412MHz the average conducted output power was measured to be 17.99 dBm with directional gain of 5.62 dBi.

e.i.r.p (dBm) = Conducted Power (dBm) + Ant gain (dBi)

17.99 dBm + 5.62 dBi = 23.61 dBm

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 65 of 376
			V/ 10 6 00/14/2022

7.4 Power Spectral Density

§15.247(e); RSS-247 [5.2]

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The maximum permissible power spectral density is 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Subclause 11.10.2 Method PKPSD KDB 558074 D01 v05r02 – Section 8.4 DTS Maximum Power Spectral Density level in the fundamental emission ANSI C63.10-2013 – Subclause 14.3.2.2 Measure-and-Sum Technique KDB 662911 D01 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

The data rates have been classified into three different groups: low data rate, middle data rate, and high data rate. All three data rate groups have been investigated and only the worst data rate per group is reported.

FCC ID: BCGA2926 IC: 579C-A2926	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege CC of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 66 of 376
			V 10 6 09/14/2023

7.4.1 Antenna 4a Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	12	-7.53	8.00	-15.53	Pass
2437	6	g	12	-2.06	8.00	-10.06	Pass
2462	11	g	12	-3.60	8.00	-11.60	Pass
2412	1	n	19.5/21.7 (MCS2)	-8.67	8.00	-16.67	Pass
2437	6	n	19.5/21.7 (MCS2)	-3.82	8.00	-11.82	Pass
2462	11	n	19.5/21.7 (MCS2)	-6.87	8.00	-14.87	Pass
2412	1	ax (SU)	24/25.8 (MCS2)	-9.58	8.00	-17.58	Pass
2437	6	ax (SU)	24/25.8 (MCS2)	-5.25	8.00	-13.25	Pass
2462	11	ax (SU)	24/25.8 (MCS2)	-10.70	8.00	-18.70	Pass

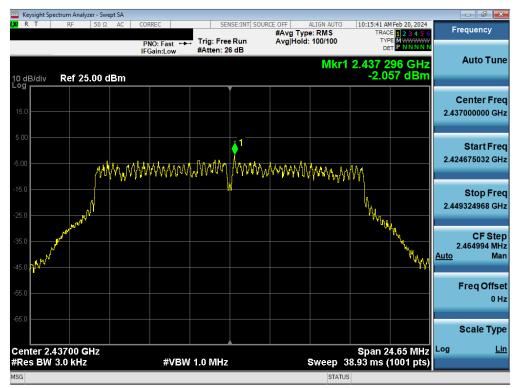
Table 7-38. Conducted Power Density Measurements Antenna 4a (Low Data Rate)

Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	24	-8.66	8.00	-16.66	Pass
2437	6	g	24	-3.33	8.00	-11.33	Pass
2462	11	g	24	-7.63	8.00	-15.63	Pass
2412	1	n	39/43.3 (MCS4)	-9.34	8.00	-17.34	Pass
2437	6	n	39/43.3 (MCS4)	-4.00	8.00	-12.00	Pass
2462	11	n	39/43.3 (MCS4)	-8.11	8.00	-16.11	Pass
2412	1	ax (SU)	49/51.6 (MCS4)	-9.52	8.00	-17.52	Pass
2437	6	ax (SU)	49/51.6 (MCS4)	-4.34	8.00	-12.34	Pass
2462	11	ax (SU)	49/51.6 (MCS4)	-9.43	8.00	-17.43	Pass

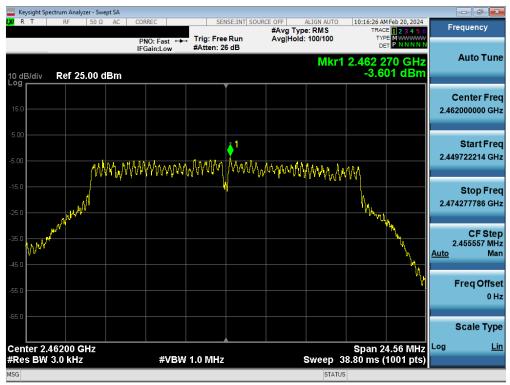
Table 7-39. Conducted Power Density Measurements Antenna 4a (Mid Data Rate)

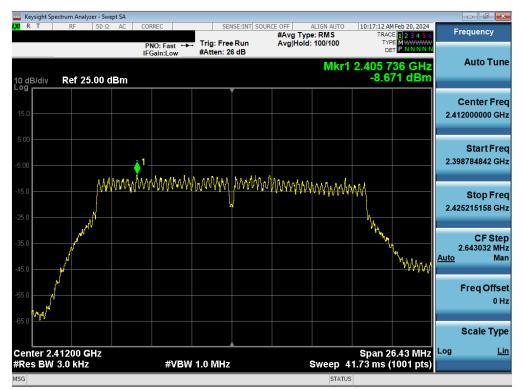

Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	b	11	-2.88	8.00	-10.88	Pass
2437	6	b	11	-3.02	8.00	-11.02	Pass
2462	11	b	11	-1.95	8.00	-9.95	Pass
2412	1	g	54	-9.82	8.00	-17.82	Pass
2437	6	g	54	-3.83	8.00	-11.83	Pass
2462	11	g	54	-10.61	8.00	-18.61	Pass
2412	1	n	65/72.2 (MCS7)	-10.11	8.00	-18.11	Pass
2437	6	n	65/72.2 (MCS7)	-3.79	8.00	-11.79	Pass
2462	11	n	65/72.2 (MCS7)	-9.88	8.00	-17.88	Pass
2412	1	ax (SU)	81/86 (MCS9)	-10.30	8.00	-18.30	Pass
2437	6	ax (SU)	81/86 (MCS9)	-4.00	8.00	-12.00	Pass
2462	11	ax (SU)	81/86 (MCS9)	-10.85	8.00	-18.85	Pass

Table 7-40. Conducted Power Density Measurements Antenna 4a (High Data Rate)

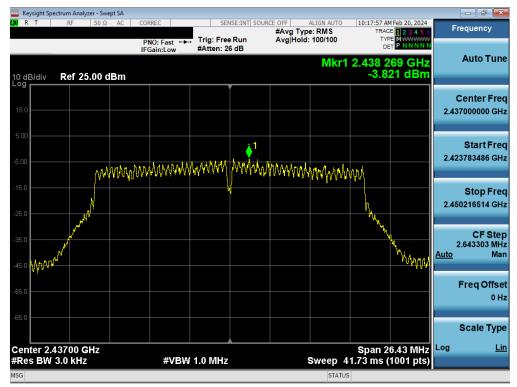

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 67 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 67 of 376
	•	·	V 10.6 09/14/2023

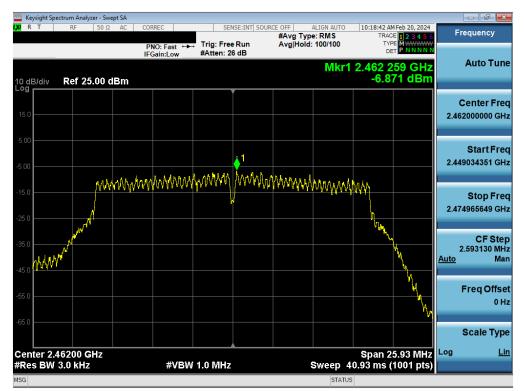
Low Rate


Plot 7-61. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 1) - 12Mbps

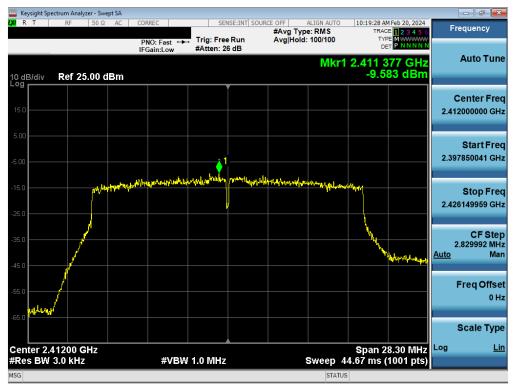

Plot 7-62. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 6) - 12Mbps

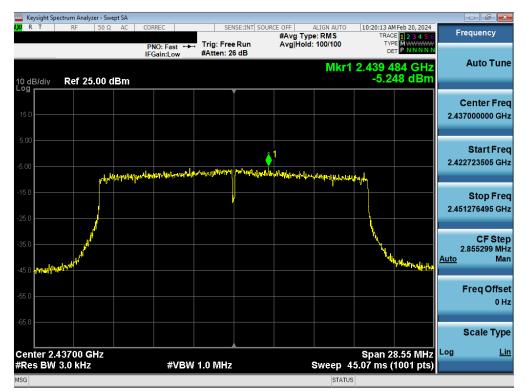
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 69 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 68 of 376
			V 10.6 09/14/2023


Plot 7-63. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 11) - 12Mbps

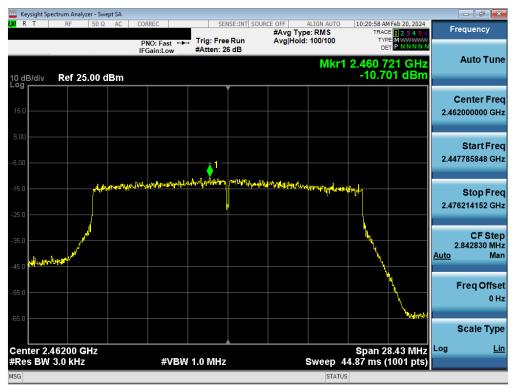

Plot 7-64. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) – Ch. 1) – MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 69 of 376
			V 10.6 09/14/2023


Plot 7-65. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) – Ch. 6) – MCS2

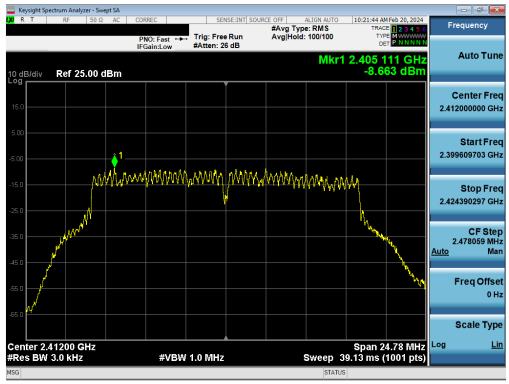

Plot 7-66. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) - Ch. 11) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 70 of 376
			V 10.6 09/14/2023

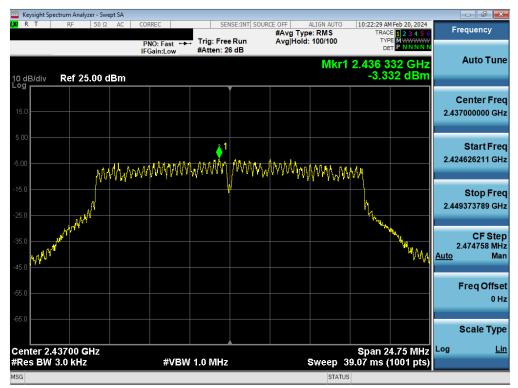

Plot 7-67. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) – Ch. 1) – MCS2

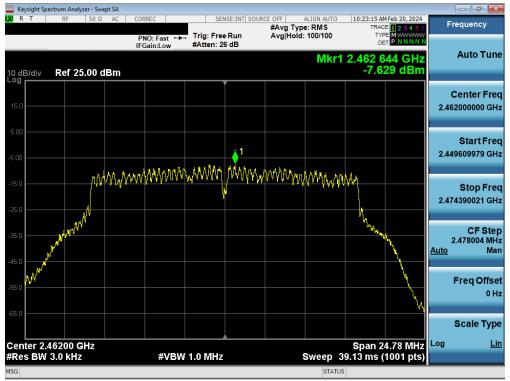
Plot 7-68. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 71 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 71 of 376
			V 10.6 09/14/2023



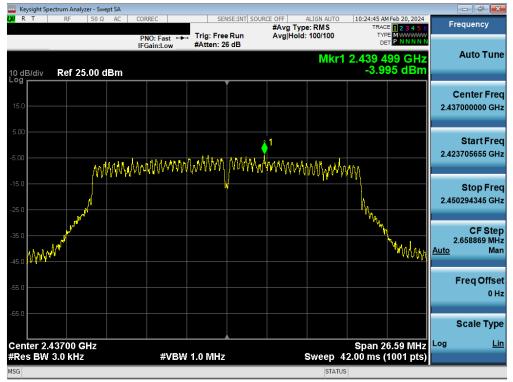
Plot 7-69. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS2

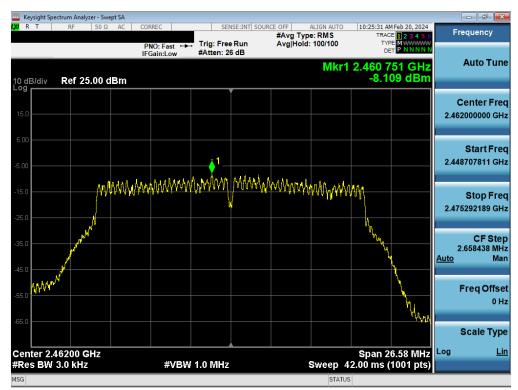

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 72 of 376
		•	V 10 6 09/14/2023


Plot 7-70. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 1) - 24Mbps

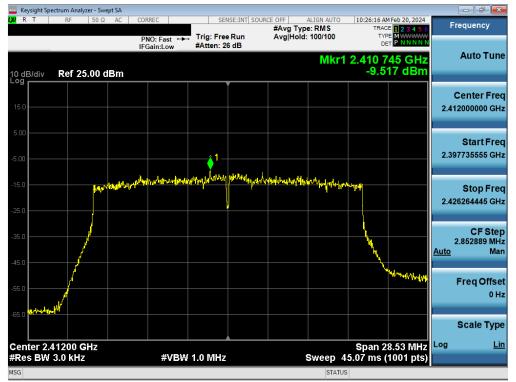
Plot 7-71. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 6) - 24Mbps

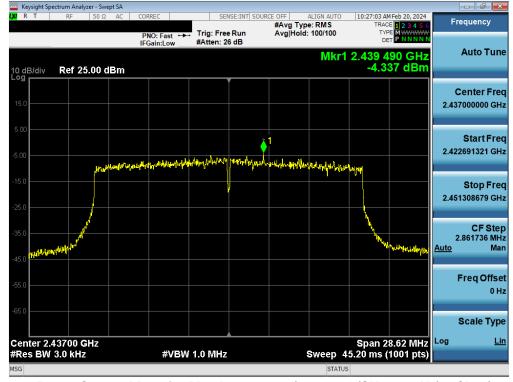
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 72 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 73 of 376
			V 10.6 09/14/2023


Plot 7-72. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 11) - 24Mbps

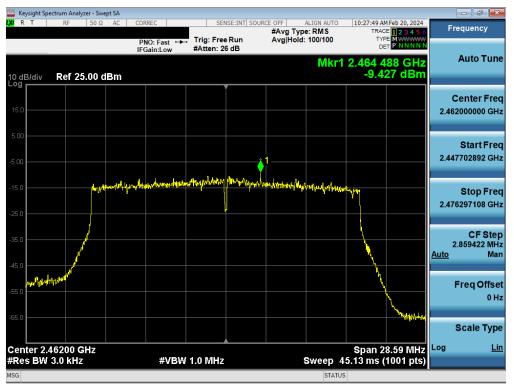

Plot 7-73. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) - Ch. 1) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 74 of 376
<u>.</u>	·	•	V 10.6 09/14/2023


Plot 7-74. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) - Ch. 6) - MCS4

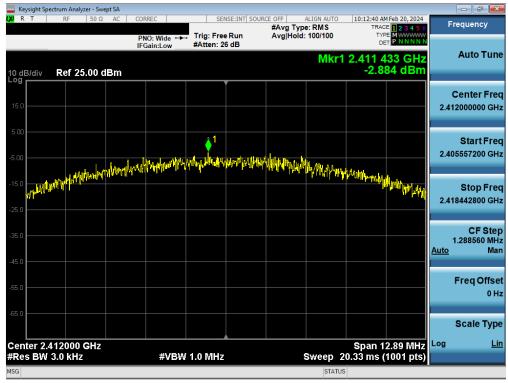

Plot 7-75. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) - Ch. 11) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 75 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 75 of 376
			V 10.6 09/14/2023


Plot 7-76. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS4

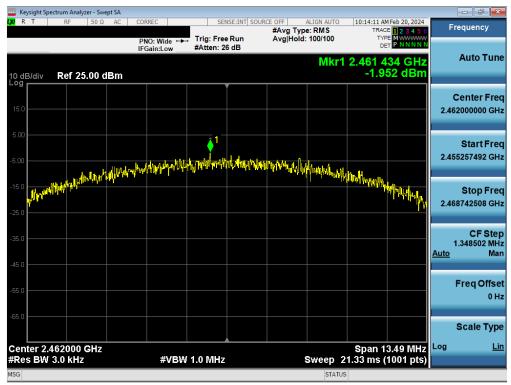
Plot 7-77. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS4

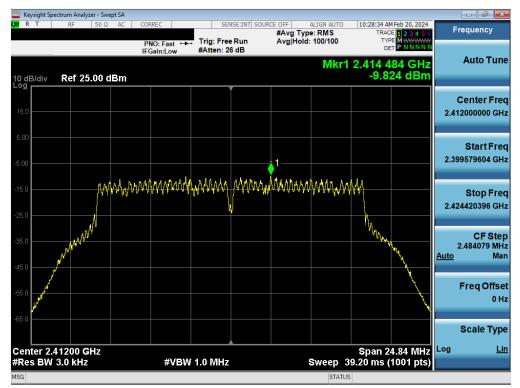
FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dega 76 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 76 of 376
<u></u>	•		V 10.6 09/14/2023



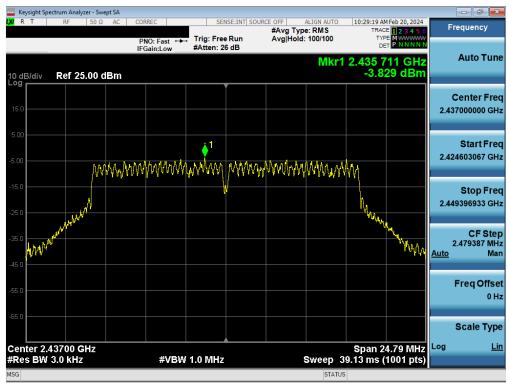
Plot 7-78. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS4

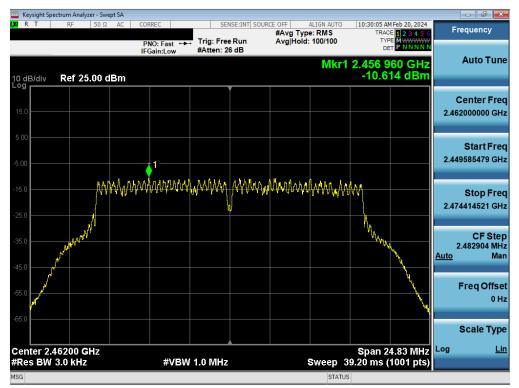
FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 77 of 376
		•	V 10 6 09/14/2023


Plot 7-79. Power Spectral Density Plot Antenna 4a (802.11b - Ch. 1) - 11Mbps

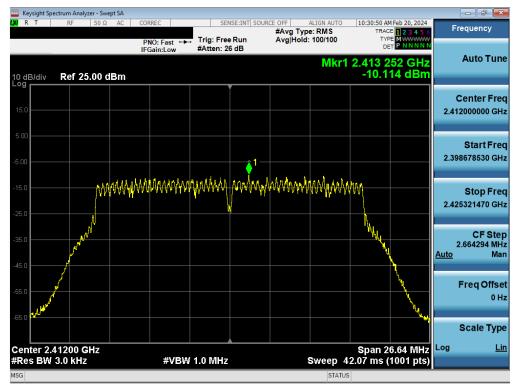

Plot 7-80. Power Spectral Density Plot Antenna 4a (802.11b - Ch. 6) - 11Mbps

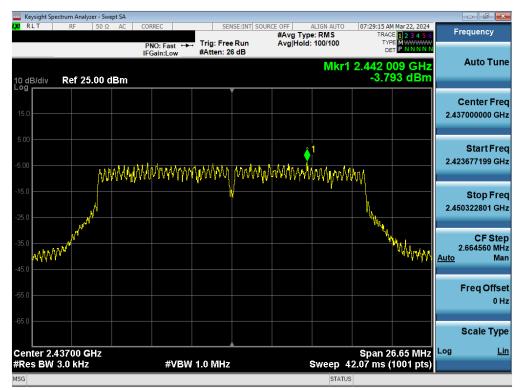
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 78 of 376
			V 10.6 09/14/2023


Plot 7-81. Power Spectral Density Plot Antenna 4a (802.11b - Ch. 11) - 11Mbps

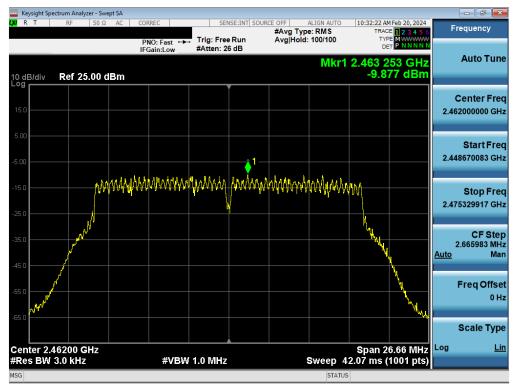

Plot 7-82. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 1) - 54Mbps

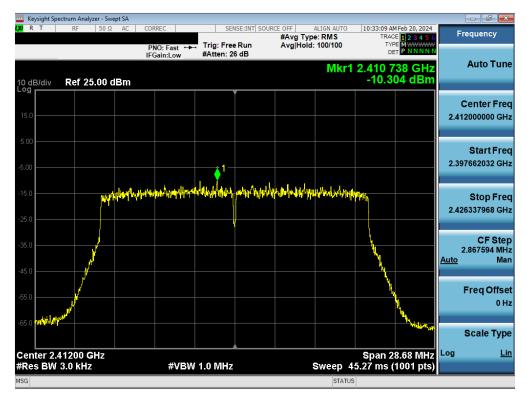
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 70 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 79 of 376
			V 10.6 09/14/2023


Plot 7-83. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 6) - 54Mbps

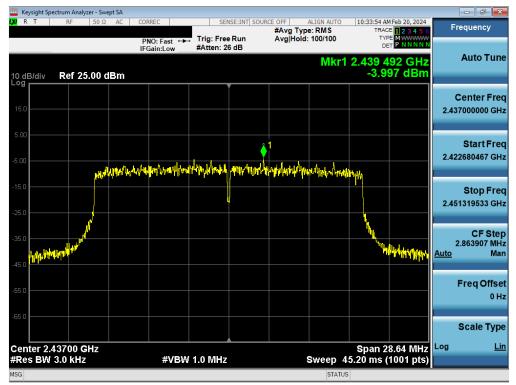

Plot 7-84. Power Spectral Density Plot Antenna 4a (802.11g - Ch. 11) - 54Mbps

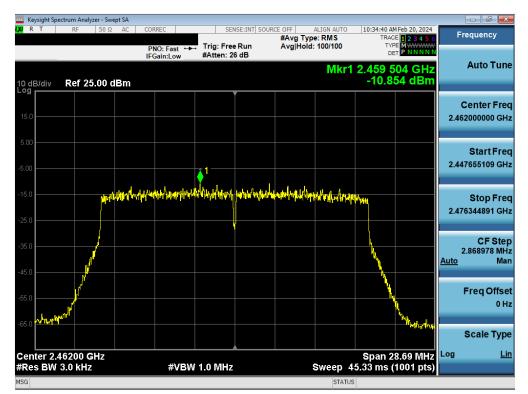
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 80 of 376
			V 10.6 09/14/2023


Plot 7-85. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) – Ch. 1) – MCS7


Plot 7-86. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) - Ch. 6) - MCS7

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 91 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 81 of 376
			V 10.6 09/14/2023


Plot 7-87. Power Spectral Density Plot Antenna 4a (802.11n (2.4GHz) – Ch. 11) – MCS7


Plot 7-88. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 82 of 376
			V 10.6 09/14/2023

Plot 7-89. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS9

Plot 7-90. Power Spectral Density Plot Antenna 4a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 83 of 376
			V 10.6 09/14/2023

7.4.2 Antenna 2a Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	12	-6.79	8.00	-14.79	Pass
2437	6	g	12	-2.07	8.00	-10.07	Pass
2462	11	g	12	-5.01	8.00	-13.01	Pass
2412	1	n	19.5/21.7 (MCS2)	-8.94	8.00	-16.94	Pass
2437	6	n	19.5/21.7 (MCS2)	-3.64	8.00	-11.64	Pass
2462	11	n	19.5/21.7 (MCS2)	-6.71	8.00	-14.71	Pass
2412	1	ax (SU)	24/25.8 (MCS2)	-10.80	8.00	-18.80	Pass
2437	6	ax (SU)	24/25.8 (MCS2)	-5.04	8.00	-13.04	Pass
2462	11	ax (SU)	24/25.8 (MCS2)	-10.30	8.00	-18.30	Pass

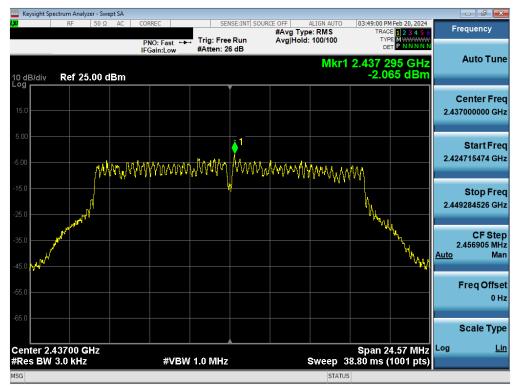
Table 7-41. Conducted Power Density Measurements Antenna 2a (Low Data Rate)

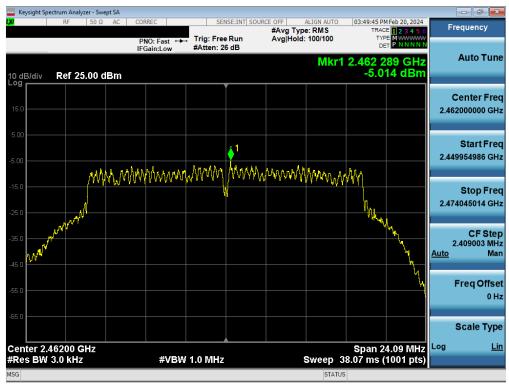
Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	24	-8.27	8.00	-16.27	Pass
2437	6	g	24	-3.14	8.00	-11.14	Pass
2462	11	g	24	-7.67	8.00	-15.67	Pass
2412	1	n	39/43.3 (MCS4)	-9.17	8.00	-17.17	Pass
2437	6	n	39/43.3 (MCS4)	-3.85	8.00	-11.85	Pass
2462	11	n	39/43.3 (MCS4)	-7.81	8.00	-15.81	Pass
2412	1	ax (SU)	49/51.6 (MCS4)	-9.86	8.00	-17.86	Pass
2437	6	ax (SU)	49/51.6 (MCS4)	-4.49	8.00	-12.49	Pass
2462	11	ax (SU)	49/51.6 (MCS4)	-9.58	8.00	-17.58	Pass

Table 7-42. Conducted Power Density Measurements Antenna 2a (Mid Data Rate)


Frequency [MHz]	Channel No.	802.11 MODE	Data Rate [Mbps]	Measured Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	b	11	-2.62	8.00	-10.62	Pass
2437	6	b	11	-2.71	8.00	-10.71	Pass
2462	11	b	11	-2.06	8.00	-10.06	Pass
2412	1	bo	54	-9.93	8.00	-17.93	Pass
2437	6	g	54	-3.70	8.00	-11.70	Pass
2462	11	g	54	-10.15	8.00	-18.15	Pass
2412	1	n	65/72.2 (MCS7)	-9.87	8.00	-17.87	Pass
2437	6	n	65/72.2 (MCS7)	-4.09	8.00	-12.09	Pass
2462	11	n	65/72.2 (MCS7)	-9.59	8.00	-17.59	Pass
2412	1	ax (SU)	81/86 (MCS9)	-10.64	8.00	-18.64	Pass
2437	6	ax (SU)	81/86 (MCS9)	-4.16	8.00	-12.16	Pass
2462	11	ax (SU)	81/86 (MCS9)	-10.50	8.00	-18.50	Pass

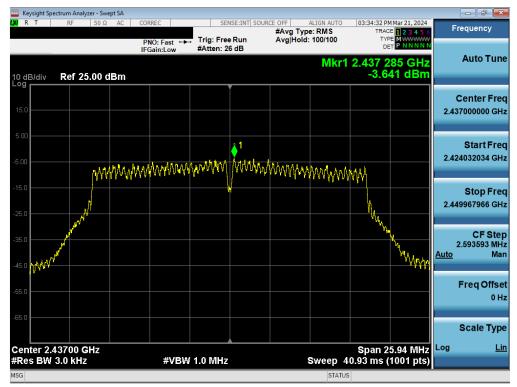
Table 7-43. Conducted Power Density Measurements Antenna 2a (High Data Rate)


FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 94 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 84 of 376
	•	·	V 10.6 09/14/2023


Plot 7-91. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 1) - 6Mbps

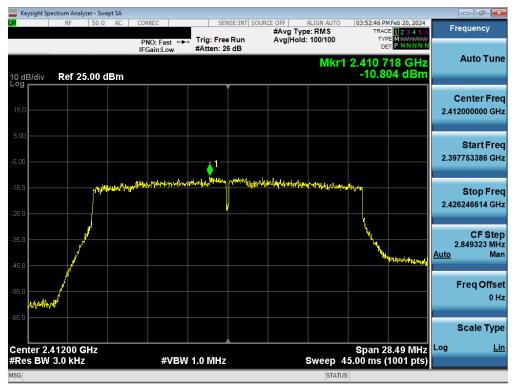
Plot 7-92. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 6) - 6Mbps

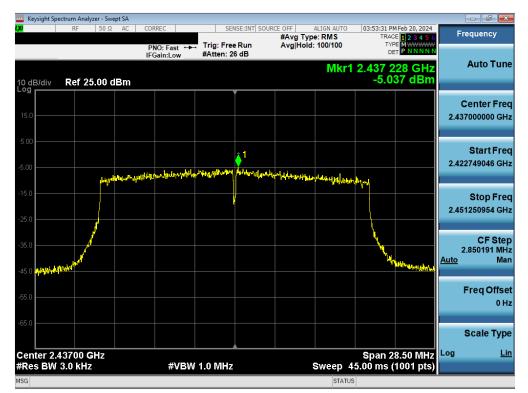
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 070
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 85 of 376
			V 10.6 09/14/2023


Plot 7-93. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 11) - 6Mbps

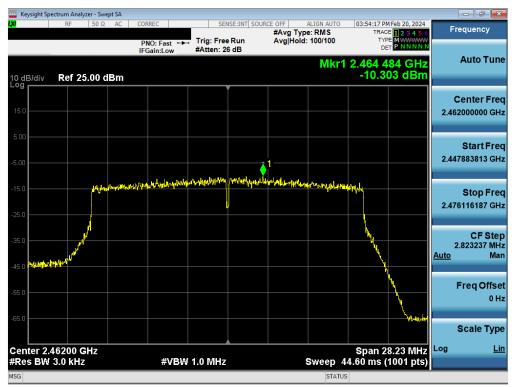

Plot 7-94. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 1) – MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 86 of 376
			V 10.6 09/14/2023


Plot 7-95. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 6) – MCS2

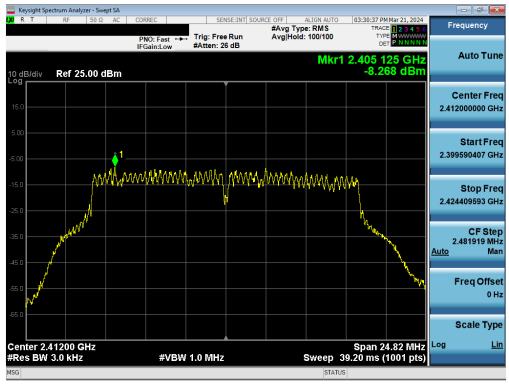

Plot 7-96. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) - Ch. 11) - MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 076
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 87 of 376
			V 10.6 09/14/2023

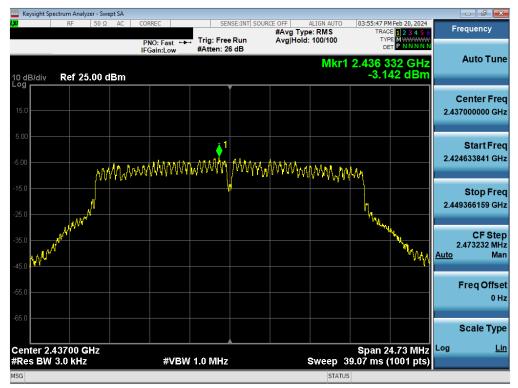

Plot 7-97. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 1) – MCS2

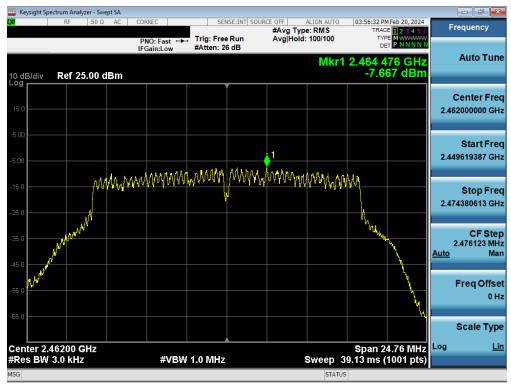
Plot 7-98. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS2

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 88 of 376
			V 10.6 09/14/2023



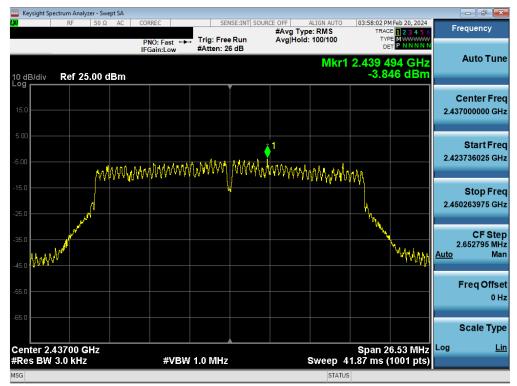
Plot 7-99. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS2

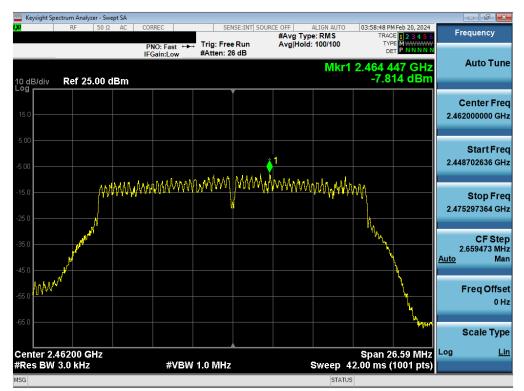

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 90 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 89 of 376
			V 10 6 09/14/2023


Plot 7-100. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 1) - 24Mbps

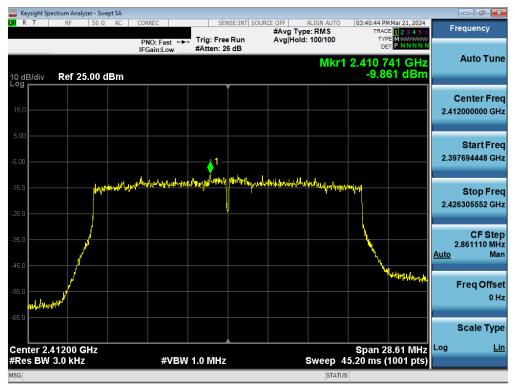
Plot 7-101. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 6) - 24Mbps

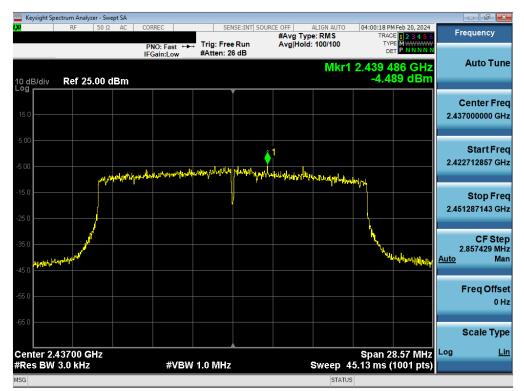
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 90 of 376
			V 10.6 09/14/2023


Plot 7-102. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 11) - 24Mbps

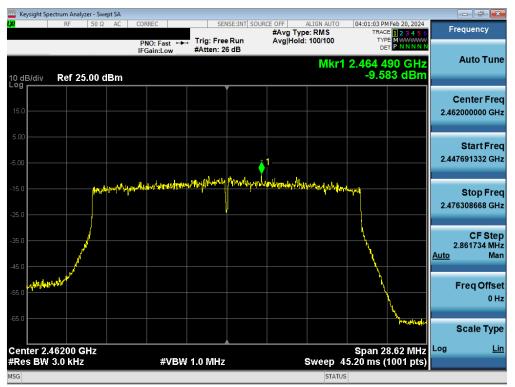

Plot 7-103. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 1) – MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 91 of 376
			V 10.6 09/14/2023


Plot 7-104. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 6) – MCS4

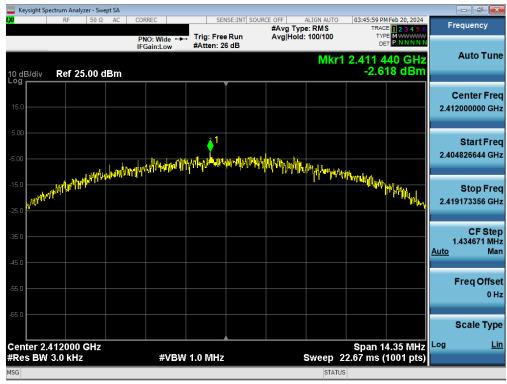

Plot 7-105. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) - Ch. 11) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 92 of 376
			V 10.6 09/14/2023

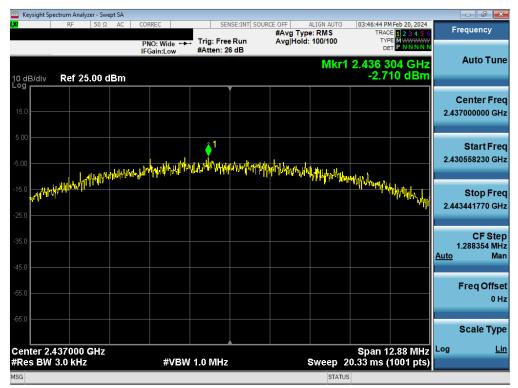

Plot 7-106. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 1) – MCS4

Plot 7-107. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 6) - MCS4

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 02 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 93 of 376
			V 10.6 09/14/2023

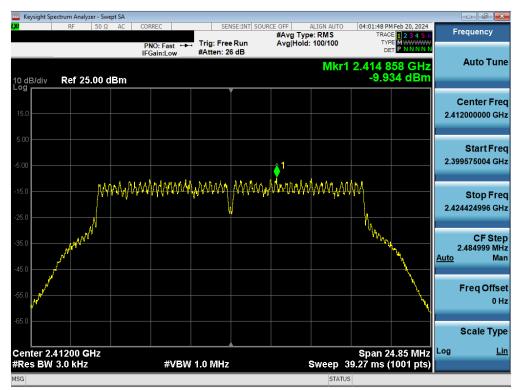


Plot 7-108. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS4


FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dege 04 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 94 of 376
		-	V 10 6 09/14/2023

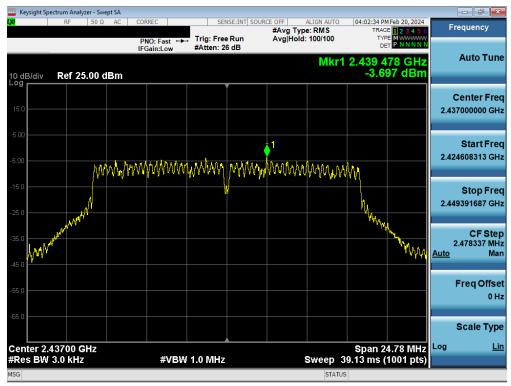
High Rate

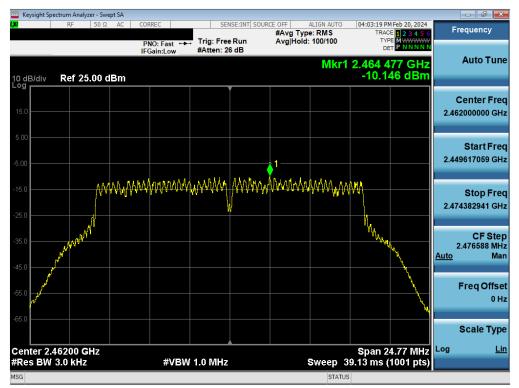
Plot 7-109. Power Spectral Density Plot Antenna 2a (802.11b - Ch. 1) - 11Mbps


Plot 7-110. Power Spectral Density Plot Antenna 2a (802.11b - Ch. 6) - 11Mbps

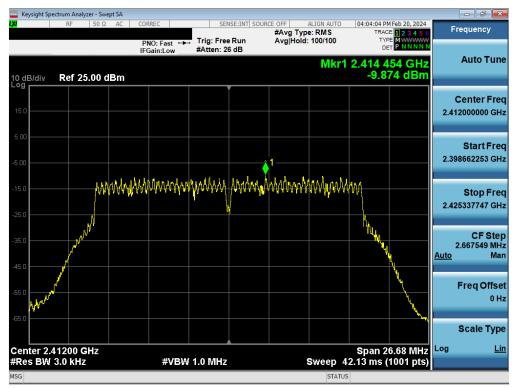
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage OF of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 95 of 376
			V 10.6 09/14/2023

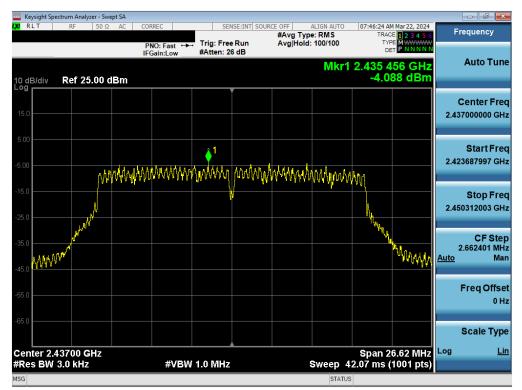
🔤 Keysight Sp	ectrum Analyzer - Sw	ept SA									
LXI	RF 50 Ω		RREC		ISE:INT SO	#Avg Ty		TRAC	MFeb 20, 2024 E 1 2 3 4 5 6 E M WWWWW	Fi	requency
			NO: Wide 🔸 Gain:Low	#Atten: 2		Avgihoid	d: 100/100	DE			Auto Tune
10 dB/div Log	Ref 25.00	dBm					Mkr	1 2.461 4 -2.0	39 GHz 63 dBm		AutoTune
											Center Fred
15.0										2.46	2000000 GHz
5.00											Start Free
-5.00		1. Junkmah	Marcharly	all land and a second	ul/hiynu	nhunhun din		.k. fl		2.45	4990657 GHz
-15.0	antitikenter terreter	A MULLIN & L					Lina Latik	VI.	WWW.		Stop Free
-25.0									· · · · · · · · · · · · · · · · · · ·	2.46	9009343 GH
-35.0											CF Step
										Auto ¹	1.401869 MH Mar
-45.0											F
-55.0											Freq Offse 0 Ha
-65.0											
											Scale Type
Center 2.4 #Res BW	462000 GHz 3.0 kHz		#VBW	1.0 MHz			Sweep	Span 1- 22.13 ms (4.02 MHz 1001 pts)	Log	Lin
MSG							STATU	JS			


Plot 7-111. Power Spectral Density Plot Antenna 2a (802.11b - Ch. 11) - 11Mbps

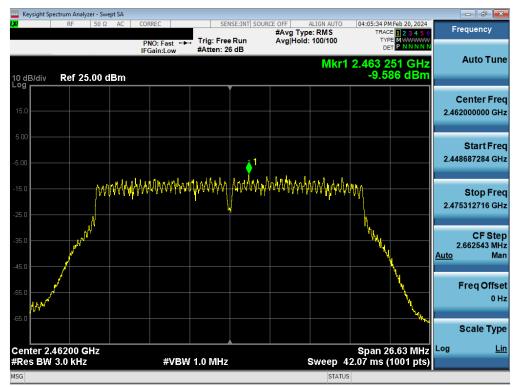

Plot 7-112. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 1) - 54Mbps

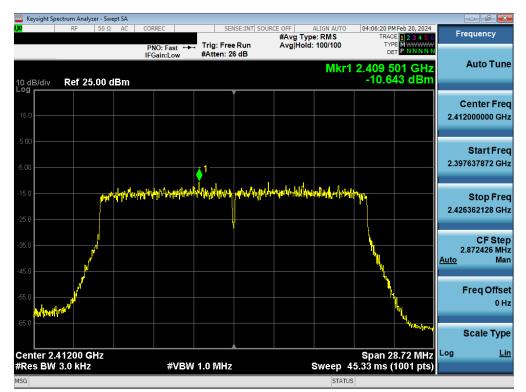
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 96 of 376
			V 10.6 09/14/2023


Plot 7-113. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 6) - 54Mbps

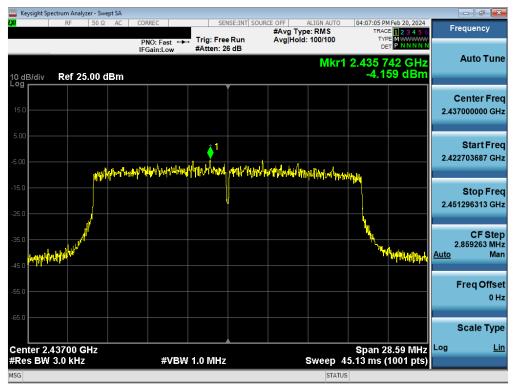

Plot 7-114. Power Spectral Density Plot Antenna 2a (802.11g - Ch. 11) - 54Mbps

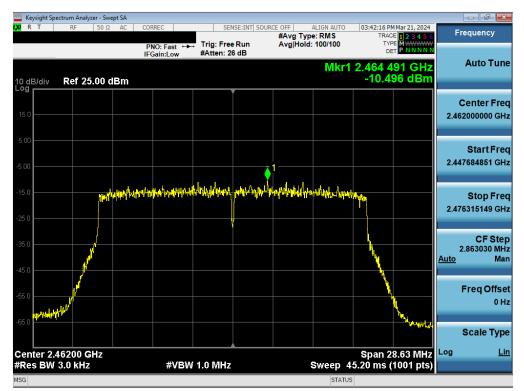
FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 97 of 376
			V 10.6 09/14/2023


Plot 7-115. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 1) – MCS7


Plot 7-116. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) - Ch. 6) - MCS7

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 270	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 98 of 376	
			V 10.6 09/14/2023	


Plot 7-117. Power Spectral Density Plot Antenna 2a (802.11n (2.4GHz) – Ch. 11) – MCS7


Plot 7-118. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 1) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 276	
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 99 of 376	
			V 10.6 09/14/2023	

Plot 7-119. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) – Ch. 6) – MCS9

Plot 7-120. Power Spectral Density Plot Antenna 2a (802.11ax (SU - 2.4GHz) - Ch. 11) - MCS9

FCC ID: BCGA2926 IC: 579C-A2926	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 270
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 100 of 376
		•	V 10.6 09/14/2023

7.4.3 CDD Power Spectral Density Measurements

Frequency [MHz]	Channel No.	802.11 MODE	Mode	Data Rate [Mbps]	Ant 4a Power Density [dBm/3kHz]	Ant 2a Power Density [dBm/3kHz]	Summed Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	CDD	12	-8.34	-8.49	-5.40	8.00	-13.40	Pass
2437	6	gg	CDD	12	-2.86	-2.80	0.18	8.00	-7.82	Pass
2462	11	g	CDD	12	-6.26	-6.57	-3.40	8.00	-11.40	Pass
2412	1	n	CDD	39/43.3 (MCS10)	-9.56	-9.72	-6.63	8.00	-14.63	Pass
2437	6	n	CDD	39/43.3 (MCS10)	-3.14	-3.03	-0.08	8.00	-8.08	Pass
2462	11	n	CDD	39/43.3 (MCS10)	-7.92	-7.85	-4.87	8.00	-12.87	Pass
2412	1	ax (SU)	CDD	48/51.6 (MCS2)	-10.67	-10.65	-7.65	8.00	-15.65	Pass
2437	6	ax (SU)	CDD	48/51.6 (MCS2)	-5.56	-4.70	-2.10	8.00	-10.10	Pass
2462	11	ax (SU)	CDD	48/51.6 (MCS2)	-10.30	-10.24	-7.26	8.00	-15.26	Pass

Table 7-44.CDD Conducted Power Density Measurements (Low Data Rate)

Frequency [MHz]	Channel No.	802.11 MODE	Mode	Data Rate [Mbps]	Ant 4a Power Density [dBm/3kHz]	Ant 2a Power Density [dBm/3kHz]	Summed Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	g	CDD	24	-8.10	-8.69	-5.38	8.00	-13.38	Pass
2437	6	g	CDD	24	-3.34	-2.69	0.01	8.00	-7.99	Pass
2462	11	g	CDD	24	-7.90	-7.40	-4.63	8.00	-12.63	Pass
2412	1	n	CDD	78/86.7 (MCS12)	-8.81	-9.43	-6.10	8.00	-14.10	Pass
2437	6	n	CDD	78/86.7 (MCS12)	-3.30	-3.70	-0.48	8.00	-8.48	Pass
2462	11	n	CDD	78/86.7 (MCS12)	-8.37	-8.24	-5.29	8.00	-13.29	Pass
2412	1	ax (SU)	CDD	98/103.2 (MCS4)	-10.49	-10.32	-7.39	8.00	-15.39	Pass
2437	6	ax (SU)	CDD	98/103.2 (MCS4)	-4.23	-5.00	-1.59	8.00	-9.59	Pass
2462	11	ax (SU)	CDD	98/103.2 (MCS4)	-9.76	-9.96	-6.85	8.00	-14.85	Pass

Table 7-45.CDD Conducted Power Density Measurements (Mid Data Rate)

Frequency [MHz]	Channel No.	802.11 MODE	Mode	Data Rate [Mbps]	Ant 4a Power Density [dBm/3kHz]	Ant 2a Power Density [dBm/3kHz]	Summed Power Density [dBm/3kHz]	Max Power Density [dBm/3kHz]	Margin [dB]	Pass/Fail
2412	1	gg	CDD	54	-9.68	-9.63	-6.64	8.00	-14.64	Pass
2437	6	g	CDD	54	-4.05	-3.96	-0.99	8.00	-8.99	Pass
2462	11	g	CDD	54	-9.99	-10.58	-7.26	8.00	-15.26	Pass
2412	1	n	CDD	130/144.4 (MCS15)	-9.69	-9.33	-6.50	8.00	-14.50	Pass
2437	6	n	CDD	130/144.4 (MCS15)	-3.56	-3.32	-0.43	8.00	-8.43	Pass
2462	11	n	CDD	130/144.4 (MCS15)	-10.18	-9.69	-6.92	8.00	-14.92	Pass
2412	1	ax (SU)	CDD	216/229.4 (MCS9)	-10.99	-10.95	-7.96	8.00	-15.96	Pass
2437	6	ax (SU)	CDD	216/229.4 (MCS9)	-4.53	-3.98	-1.23	8.00	-9.23	Pass
2462	11	ax (SU)	CDD	216/229.4 (MCS9)	-10.23	-10.64	-7.42	8.00	-15.42	Pass

Table 7-46.CDD Conducted Power Density Measurements (High Data Rate)

FCC ID: BCGA2926 IC: 579C-A2926	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dege 101 of 276
1C2311270070-14.BCG	11/30/2023 - 2/23/2024	Tablet Device	Page 101 of 376
			V 10 6 09/14/2023