

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com

PART 96 MEASUREMENT REPORT

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States Date of Testing: 10/01/2023-03/06/2024 Test Report Issue Date: 3/26/2024 Test Site/Location: Element Materials Technology Morgan Hill, CA, USA Test Report Serial No.: 1C2311270064-15-R1.BCG

FCC ID: Applicant Name:

BCGA2903

Apple Inc.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification A2903, A2904 Tablet Device Citizens Band End User Devices (CBE) 96 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 940660 D01 v03, WINNF-TS-0122 v1.0.2

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C2311270064-15-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

Prepared by: WKR0000006184 Reviewed by: WKR0000005805

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 1 of 233
	<u>.</u>	·	V2.2 09/07/2023

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	4
	1.1	Scope	4
	1.2	Element Materials Technology Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Antenna Description	6
	2.4	Test Support Equipment	6
	2.5	Test Configuration	7
	2.6	Software and Firmware	7
	2.7	EMI Suppression Device(s)/Modifications	7
3.0	DESC	RIPTION OF TESTS	8
	3.1	Measurement Procedure	8
	3.2	Radiated Spurious Emissions	8
4.0	MEAS		9
5.0	TEST	EQUIPMENT CALIBRATION DATA	10
6.0	SAMF	PLE CALCULATIONS	11
7.0	TEST	RESULTS	12
	7.1	Summary	12
	7.2	Occupied Bandwidth	14
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	44
	7.4	Band Edge Emissions at Antenna Terminal	63
	7.5	Peak-Average Ratio	174
	7.6	Radiated Power (EIRP)	196
	7.7	Radiated Spurious Emissions	210
	7.8	Frequency Stability / Temperature Variation	227
	7.9	End User Device Additional Requirement (CBSD Protocol)	230
8.0	CONC	CLUSION	233

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 2 01 233
			V2.2 09/07/2023

PART 96 MEASUREMENT REPORT

		To Faces			DAD -1 0 400	EIRP		Emission
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	OBW [MHz]	PAR at 0.1% [dB]	Max. Power [W]	Max. Power [dBm]	Emission Designator
		QPSK	3552.5 - 3697.5	4.5246	4.99	0.178	22.50	4M52G7W
		16QAM	3552.5 - 3697.5	4.5339	6.29	0.139	21.43	4M53D7W
	5 MHz	64QAM	3552.5 - 3697.5	4.5119	6.92	0.112	20.48	4M51D7W
		256QAM	3552.5 - 3697.5	4.5146	6.97	0.058	17.61	4M51D7W
		QPSK	3555.0 - 3695.0	9.0207	5.22	0.178	22.50	9M02G7W
	10.141	16QAM	3555.0 - 3695.0	9.0349	6.25	0.144	21.57	9M03D7W
	10 MHz	64QAM	3555.0 - 3695.0	9.0377	6.84	0.113	20.52	9M04D7W
LTE David 40		256QAM	3555.0 - 3695.0	9.0166	7.07	0.059	17.68	9M02D7W
LTE Band 48		QPSK	3557.5 - 3692.5	13.5247	5.40	0.178	22.50	13M5G7W
		16QAM	3557.5 - 3692.5	13.4650	6.49	0.140	21.47	13M5D7W
	15 MHz	64QAM	3557.5 - 3692.5	13.5150	6.94	0.113	20.54	13M5D7W
		256QAM	3557.5 - 3692.5	13.5040	7.09	0.058	17.60	13M5D7W
		QPSK	3560.0 - 3690.0	18.0020	5.49	0.178	22.50	18M0G7W
	20 141	16QAM	3560.0 - 3690.0	17.9530	6.37	0.141	21.50	18M0D7W
	20 MHz	64QAM	3560.0 - 3690.0	17.9640	6.78	0.111	20.46	18M0D7W
		256QAM	3560.0 - 3690.0	17.9620	7.04	0.057	17.59	18M0D7W
		QPSK	3562.5 - 3687.5	23.2750	-	0.178	22.50	23M3G7W
	20 + 5 MHz	16QAM	3562.5 - 3687.5	23.3580	-	0.115	20.61	23M4D7W
	20 + 3 10112	64QAM	3562.5 - 3687.5	23.3220	-	0.109	20.38	23M3D7W
		256QAM	3562.5 - 3687.5	23.2360	-	0.056	17.46	23M2D7W
	20 + 10 MHz	QPSK	3565.0 - 3685.0	28.0040	-	0.177	22.48	28M0G7W
		16QAM	3565.0 - 3685.0	28.0670	-	0.133	21.25	28M1D7W
		64QAM	3565.0 - 3685.0	27.9690	-	0.112	20.51	28M0D7W
LTE ULCA		256QAM	3565.0 - 3685.0	28.1010	-	0.057	17.58	28M1D7W
Band 48	20 + 15 MHz	QPSK	3567.5 - 3682.5	32.8640	-	0.178	22.50	32M9G7W
		16QAM	3567.5 - 3682.5	32.8150	-	0.141	21.49	32M8D7W
		64QAM	3567.5 - 3682.5	32.8480	-	0.107	20.28	32M8D7W
		256QAM	3567.5 - 3682.5	32.8020	-	0.056	17.50	32M8D7W
		QPSK	3570.0 - 3680.0	37.7240	-	0.178	22.50	37M7G7W
	20 + 20 MHz	16QAM	3570.0 - 3680.0	37.6970	-	0.138	21.39	37M7D7W
		64QAM	3570.0 - 3680.0	37.5960	-	0.109	20.37	37M6D7W
		256QAM	3570.0 - 3680.0	37.7670	-	0.058	17.60	37M8D7W
		TT/2 BPSK	3555.0 - 3695.0	8.6355	3.97	0.178	22.50	8M64G7W
		QPSK	3555.0 - 3695.0	8.9711	5.12	0.178	22.50	8M97G7W
	10 MHz	16QAM	3555.0 - 3695.0	8.9415	5.81	0.142	21.53	8M94D7W
		64QAM	3555.0 - 3695.0	8.9567	5.93	0.113	20.54	8M96D7W
		256QAM	3555.0 - 3695.0	8.9379	6.40	0.057	17.58	8M94D7W
		TT/2 BPSK	3557.5 - 3692.5	12.8890	3.72	0.178	22.50	12M9G7W
		QPSK	3557.5 - 3692.5	12.9630	4.92	0.178	22.50	13M0G7W
	15MHz	16QAM	3557.5 - 3692.5	12.9320	5.75	0.142	21.53	12M9D7W
		64QAM 256QAM	3557.5 - 3692.5 3557.5 - 3692.5	12.9470	5.91 5.95	0.112	20.50	12M9D7W
			3560.0 - 3690.0	12.8870 17.8900		0.058	17.60	12M9D7W
l I		T/2 BPSK QPSK	3560.0 - 3690.0	17.8900	3.77 4.87	0.178	22.50 22.50	17M9G7W 18M2G7W
NR Band n48	20 MHz	16QAM	3560.0 - 3690.0	18.2460	5.86	0.178	21.52	18M2D7W
NIX Dallu 1140		64QAM	3560.0 - 3690.0	18.2400	5.95	0.142	20.51	18M3D7W
l I		256QAM	3560.0 - 3690.0	18.2170	6.10	0.058	17.61	18M2D7W
l I		T/2 BPSK	3565.0 - 3685.0	26.8110	3.93	0.030	22.50	26M8G7W
l I		QPSK	3565.0 - 3685.0	27.9200	4.77	0.178	22.50	27M9G7W
	30 MHz	16QAM	3565.0 - 3685.0	27.8840	5.77	0.142	21.53	27M9D7W
l I		64QAM	3565.0 - 3685.0	27.8210	5.93	0.113	20.52	27M8D7W
l I		256QAM	3565.0 - 3685.0	27.8750	5.99	0.058	17.62	27M9D7W
l I		TT/2 BPSK	3570.0 - 3680.0	35.7660	3.92	0.178	22.50	35M8G7W
		QPSK	3570.0 - 3680.0	37.9660	4.69	0.178	22.50	38M0G7W
1	40 MHz	16QAM	3570.0 - 3680.0	37.9080	5.70	0.145	21.60	37M9D7W
		64QAM	3570.0 - 3680.0	37.9670	6.01	0.114	20.58	38M0D7W

EUT Overview

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 3 of 233
			V2.2 09/07/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Element Materials Technology Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology located in Morgan Hill, CA 95037, U.S.A.

- Element Materials Technology is a CBRS Alliance (OnGo) Approved Test Lab
- Element Materials Technology is a WInnForum Approved Test Lab
- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutal Recognition Agreements (MRAs).

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 4 01 235
			V2.2 09/07/2023

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Table Device FCC ID:BCGA2903**. The test data contained in this report pertains only to the emissions due to the EUT's LTE Band 48 and NR FR1 n48 operation in the CBRS band. Per FCC Part 96, this device is evaluated under Citizens Band End User Devices (CBE).

Test Device Serial No.: RH779H9653, NLX2R24160, D23WW2YJ9K, W0KJYFF9KN, DLXH09000290000EVP

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, 802.11a/ax WIFI 6E, Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8), NB UNII (1x, HDR4, HDR8), WPT, 802.15.4

This device supports BT Beamforming

Measurements for LTE-Band48 and ULCA CA_48C were performed with NS27 for LTE and NS10 for ULCA for all antennas.

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

		Wifi 2GHz	Bluetooth	Thread	Wifi 5GHz	Wifi 6GHz	NB UNII	LTE/F	R1 NR
Antenna	Simultaneous Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	802.15.4	802.11 a/n/ac/ax	802.11 a/ax	BDR, HDR4/8	MB/HB	UHB
3a	Config 1	X	√	X	√	X	X	~	X
3a	Config 2	X	√	X	X	~	X	~	X
3a	Config 3	√	X	X	X	X	√	~	Х
3a	Config 4	X	X	√	√	X	X	~	X
3a	Config 5	X	X	√	X	√	X	√	X
3a	Config 6	√	X	X	X	X	√	X	X
3a	Config 7	√	X	X	X	X	X	~	X
3a	Config 8	X	√	X	√	X	X	X	X
3a	Config 9	X	√	Х	X	~	X	Х	Х
3a	Config 10	X	√	Х	X	X	X	~	Х
3a	Config 11	X	X	√	√	X	X	Х	Х
3a	Config 13	X	X	√	X	~	X	Х	Х
3a	Config 14	X	X	√	X	X	X	√	X
3a	Config 15	X	X	X	√	X	X	√	X
3a	Config 16	X	X	Х	X	~	X	~	Х
3a	Config 17	X	Х	X	X	X	~	√	X
1a	Config 18	√	X	Х	X	X	X	X	√
1a	Config 15	X	√	X	X	X	X	X	~
1a	Config 16	X	X	√	X	X	X	X	~
1b	Config 17	X	X	X	√	X	X	~	X
1b	Config 18	X	X	X	X	√	X	~	X
1b	Config 19	X	X	X	X	X	√	√	X

Table 2-1. Simultaneous Transmission Configurations

 \checkmark = Support; * = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst case configuration was found to be Config 1 and reported in RF Bluetooth, RF UNII, and FCC Part 27b test reports.

Specific 2.4GHz Wi-Fi antenna that can only transmit simultaneously with 2.4GHz Bluetooth antenna is listed in the SAR test report. For BT (2.4GHz) in connected mode and Wi-Fi (2.4GHz) - Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. For BT (2.4GHz) in disconnected mode and Wi-Fi (2.4GHz) - BT will be using iPA only and Wi-Fi max power will not exceed minimum of (SAR max cap, Reg max cap) power. Bluetooth can simultaneously transmit with IEEE 802.11a/n/ac/ax 5/6 GHz on separate antenna.

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 5 01 255
			V2.2 09/07/2023

Antenna Description 2.3

The following antenna gains provided by the manufacturer were used for testing.

Band	Antenna Gain [dBi]					
	Antenna 3b	Antenna 2a	Antenna 4	Antenna 1a		
LTE Band 48 NR Band n48	3.20	2.70	-0.50	0.60		

Table 2-2. Highest Antenna Gain

Test Support Equipment 2.4

1	Apple MacBook Pro	Model:	A2141	S/N:	C02H604EQ05D
	w/AC/DC Adapter	Model:	A2166	S/N:	C4H042705ZNPM0WA6
2	Apple USB-C Cable	Model:	Spartan	S/N:	GXK1336018XKTR024
3	USB-C Cable	Model:	A246C	S/N:	DWH80115BK826GV19
	w/ AC Adapter	Model:	A2305	S/N:	C4H95160004PF4F4V
4	Apple Pencil	Model:	A2538	S/N:	KJ26TCFXJW
5	DC Power Supply	Model:	KPS3010D	S/N:	N/A
7	LTE B48 Access Point	Model:	AV1500	S/N:	E2C86B00EBE0
8	NR FR1 n48 Access Point	Model:	AV1901	S/N:	F0887410B2FA
	Та	hle 2-3 Test S	upport Equipme	nt	

Table 2-3. Test Support Equipment

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 6 01 235
<u></u>	•		V2.2 09/07/2023

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.26 2015, TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.6 Software and Firmware

The test was conducted with firmware version 21E8197 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added, and no modifications were made during testing.

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 7 of 233
			V2 2 09/07/2023

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015, TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

E[dBµV/m] = Measured amplitude level[dBm] + 107 + Cable Loss[dB] + Antenna Factor[dB/m]

And

 $EIRP_{[dBm]} = E_{[dB\mu V/m]} + 20logD - 104.8$; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

Radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015 and TIA-603-E-2016.

FCC ID: BCGA2903	element		
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	01/2023-03/06/2024 Tablet Device	
			V2 2 09/07/2023

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.07
Radiated Disturbance (<30MHz)	4.12
Radiated Disturbance (30MHz-1GHz)	4.85
Radiated Disturbance (1-18GHz)	5.08
Radiated Disturbance (>18GHz)	4.59

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 233	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 9 01 233	
			\/2 2 09/07/2023	

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/21/2023	Annual	6/21/2024	MY49430244
ESPEC	SU-241	Tabletop Temperature Chamber	11/17/2023	Annual	11/17/2024	92009574
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	3/30/2023	Annual	3/30/2024	00218555
Keysight Technology	N9040B	UXA Signal Analyzer	3/10/2023	Annual	3/10/2024	MY57212015
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	8/31/2023	Annual	8/31/2024	100052
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	5/11/2023	Annual	5/11/2024	101619
Rohde & Schwarz	ESW44	EMI Test Receiver	6/6/2023	Annual	6/6/2024	101668
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz - 8GHz)	6/22/2023	Annual	6/22/2024	102356
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	11/30/2023	Annual	11/30/2024	161616
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/27/2023	Annual	12/27/2024	164715
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	6/2/2023	Annual	6/2/2024	100050
Rohde & Schwarz	HFH2-Z2	Loop Antenna	5/1/2023	Annual	5/1/2024	100519
Rohde & Schwarz	FSW43	Signal Analyzer (2Hz-43.5GHz)	7/13/2023	Annual	7/13/2024	101261
Schwarzbeck	VULB 9162	Bilog Antenna (30MHz - 6GHz)	4/17/2023	Annual	4/17/2024	00304

Notes:

1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 10 01 255
1	•		V2.2 09/07/2023

6.0 SAMPLE CALCULATIONS

Emission Designator

DFT-s-OFDM π/2 BPSK / QPSK Modulation

Emission Designator = 8M62G7W

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination of Any

QAM Modulation

Emission Designator = 8M45D7W

LTE BW = 8.45 MHz D = Amplitude/Angle Modulated 7 = Quantized/Digital Info W = Combination of Any

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 11 of 233	
			V2.2 09/07/2023	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA2903
FCC Classification:	Citizens Band End User Devices (CBE)
Mode(s):	NR/LTE/ULCA

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Occupied Bandwidth	2.1049	N/A	N/A	Section 7.2
	Conducted Band Edge / Spurious Emissions	2.1051, 96.41(e)(ii)	 -13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel) -25 dBm/MHz at frequencies greater than B MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	PASS	Sections 7.3, 7.4
	Transmitter Conducted Output Power	2.1046	N/A	N/A	See RF Exposure Report
CONDUCTED	Peak-Average Ratio	96.41(g)	< 13 dB	PASS	Section 7.5
	Frequency Stability	2.1055	Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
	End User Device Additional Requirements (CBSD Protocol)		End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS	Section 7.9
	Equivalent Isotropic Radiated Power (EIRP)	96.41(b)	23 dBm/10MHz	PASS	Section 7.6
RADIATED	Radiated Spurious Emissions	2.1053, 96.41(e)	-40 dBm/MHz	PASS	Section 7.7

Table 7-1. Su	ummary of	Test Results
---------------	-----------	---------------------

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 12 01 235
	-		V2.2 09/07/2023

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4. All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized was Element Materials Technology EMC Software Tool 1.1.

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 13 01 233
			V2.2 09/07/2023

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

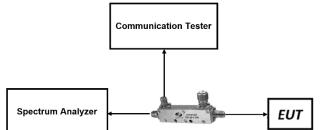


Figure 7-1. Test Instrument & Measurement Setup

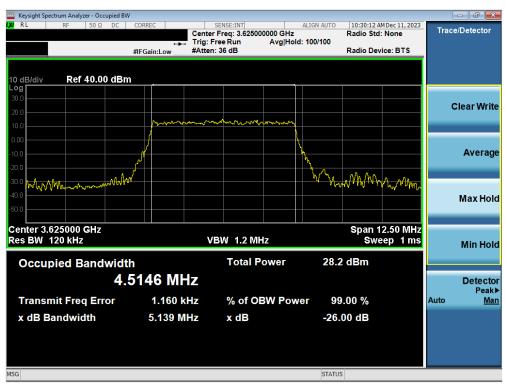

Test Notes

None.

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 233	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device		
			V2.2 09/07/2023	

LTE Band 48

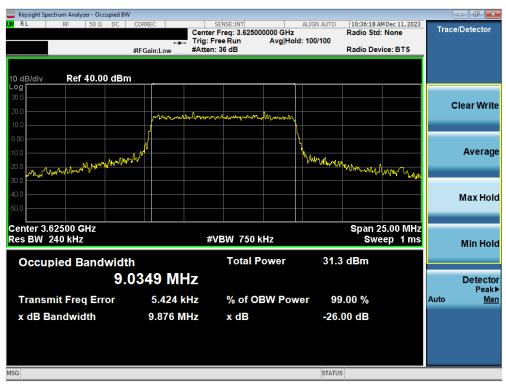
Plot 7-1. Occupied Bandwidth Plot (LTE Band 48 - 5MHz QPSK - Full RB Configuration)


Plot 7-2. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 15 01 255
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occupied BW						d X
KL RF 50Ω DC	CORREC	SENSE:INT		9:35 AM Dec 11, 2023	Trace/E	Detector
		er Freq: 3.625000000 GHz Free Run Avg Hol	Radio Id: 100/100	o Std: None		
		n: 36 dB		Device: BTS		
10 dB/div Ref 40.00 dBm						
10 dB/div Ref 40.00 dBm Log						
30.0						
20.0					Cle	ear Write
10.0	momm	Makalan mana				
0.00	/		λ			
-10.0	A		- M			Average
-20.0			M. M. M. Martin ra	N AMA IN N.		
-20.0 -30.0 44Mm mm m			V Protecter	. M. Al. Maller V		
-40.0					_	
					N	lax Hold
-50.0						
Center 3.625000 GHz			Sn	an 12.50 MHz		
Res BW 120 kHz	1	/BW 1.2 MHz		Sweep 1 ms		
					· · ·	Min Hold
Occupied Bandwidt	า	Total Power	30.0 dBr	n		
4.:	5119 MHz					Detector Peak▶
Transmit Freq Error	284 Hz	% of OBW Pov	ver 99.00 9	6	Auto	Man
x dB Bandwidth	5.133 MHz	x dB	-26.00 d	в		
MSG			STATUS			

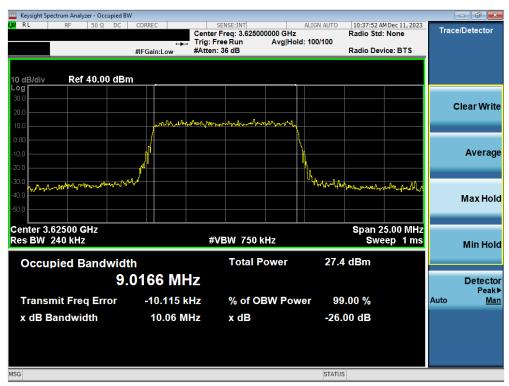
Plot 7-3. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 64-QAM - Full RB Configuration)


Plot 7-4. Occupied Bandwidth Plot (LTE Band 48 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 16 of 233
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occu	pied BW				
LX RL RF 50 Ω	DC CORREC		ALIGN AUTO 10:34:54 A Radio Std	M Dec 11, 2023	Trace/Detector
		er Freq: 3.625000000 GHz Free Run Avg Hold:		: None	
		n: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 40.00	dBm				
Log					
30.0					
20.0	- Post from the office to post	and the the the state of the st			Clear Write
10.0					
0.00		\			
-10.0	N	\ \ \ \			Average
	a markala				/ Workigo
-20.0 Warmon marked with my			Lune many and a start and a	Www. my	
-30.0					
-40.0					Max Hold
-50.0					
				5 00 MU	
Center 3.62500 GHz Res BW 240 kHz		≇VBW 750 kHz		5.00 MHz	
Res DW 240 KHZ	1		Swe	eep 1 ms	Min Hold
Occupied Bandy	vidth	Total Power	32.2 dBm		
Bessepted Dallav					
	9.0207 MHz				Detector
Transmit Freq Erro	or 10.533 kHz	% of OBW Powe	r 99.00 %		Peak▶ Auto <u>Man</u>
x dB Bandwidth	10.13 MHz	x dB	-26.00 dB		
	10.15 1012		E0.00 uB		
MSG			STATUS		

Plot 7-5. Occupied Bandwidth Plot (LTE Band 48 - 10MHz QPSK - Full RB Configuration)


Plot 7-6. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 17 01 255
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occ	upied BW				
LX RL RF 50 Ω	DC CORREC	SENSE:INT nter Freg: 3.625000000 GHz	ALIGN AUTO 10:37:25 A Radio Std	M Dec 11, 2023	Trace/Detector
		g: Free Run Avg Hold		: None	
	#IFGain:Low #At	tten: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 40.00	0 dBm				
Log 30.0					
					Clear Write
20.0	milleration	had my fill have my fill and			
10.0					
0.00					
-10.0	<u>^</u> *		h		Average
-20.0	white Mar		Laholan In .		
-20.0 -30.0 JAMANA MANA	al a characteristic and a char		WWWWWWWWWW	Mr Marman	
-40.0					
					Max Hold
-50.0					
Center 3.62500 GHz			Span 2	25.00 MHz	
Res BW 240 kHz		#VBW 750 kHz		eep 1 ms	Min Hold
		Tatal Damas	00.0 JB		
Occupied Band	width	Total Power	30.2 dBm		
	9.0377 MHz				Detector
Transmit Freq Err	or 5.452 kHz	% of OBW Powe	er 99.00 %		Peak▶ Auto <u>Man</u>
x dB Bandwidth	10.12 MHz	x dB	-26.00 dB		
		A UD	-20.00 uB		
MSG			STATUS		

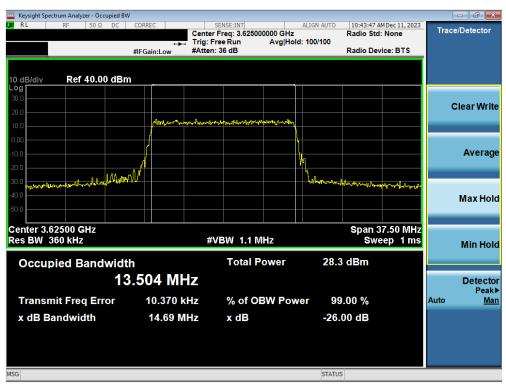
Plot 7-7. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 48 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 18 of 233
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occup	pied BW				
LX RL RF 50 Ω	DC CORREC		ALIGN AUTO 10:41:08 AI Radio Std:	MDec 11, 2023	Trace/Detector
		r Freq: 3.625000000 GHz Free Run Avg Hold:		None	
		n: 36 dB	Radio Dev	ice: BTS	
10 dB/div Ref 40.00	dBm				
Log					
30.0					
20.0		mantherman			Clear Write
10.0					
0.00		\			
-10.0	<u>/</u>		n		Average
	la man man		working the party		Average
			What the bill the water	harmon	
-30.0					
-40.0					Max Hold
-50.0					
Center 3.62500 GHz				7.50 MHz	
Res BW 360 kHz	#	VBW 1.1 MHz	SWe	ep 1 ms	Min Hold
Occupied Bandw	vidth	Total Power	32.8 dBm		
			52.0 dBm		
	13.525 MHz				Detector
Transmit Frag Erro	or 5.424 kHz	% of OBW Powe	r 99.00 %		Peak▶ Auto Man
Transmit Freq Erro	0 3.424 KHZ	% OF OBW POWE	99.00 %		Auto <u>IMan</u>
x dB Bandwidth	14.99 MHz	x dB	-26.00 dB		
MSG			STATUS		
MSG			STATUS		

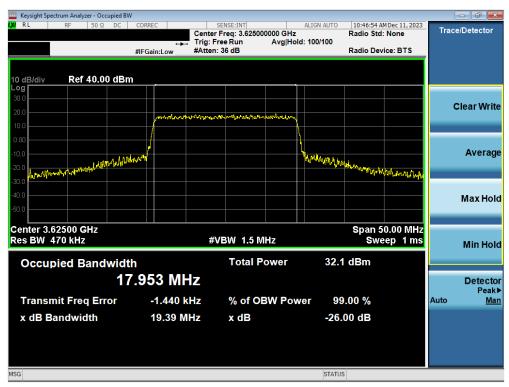
Plot 7-9. Occupied Bandwidth Plot (LTE Band 48 - 15MHz QPSK - Full RB Configuration)


Plot 7-10. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 19 01 233
	-		V2.2 09/07/2023

Keysight Spectrum Analyzer - Occup	pied BW				
LX RL RF 50 Ω	DC CORREC	SENSE:INT		:59 AM Dec 11, 2023	Trace/Detector
		ter Freq: 3.625000000 GHz : Free Run Avg Hol	Radio Id: 100/100	Std: None	
		en: 36 dB		Device: BTS	
	dBm				
10 dB/div Ref 40.00					
30.0					
20.0					Clear Write
10.0	romanan	mady horas about May at more as a light			
0.00			\ <u></u>		
-10.0			\		Average
-20.0	hnwwind		him wind have		
-20.0 -30.0 marin marine Martin	1		natra hispersetteteteventetete	for the for th	
-40.0					
					Max Hold
-50.0					
Center 3.62500 GHz			Sna	n 37.50 MHz	
Res BW 360 kHz		#VBW 1.1 MHz		Sweep 1 ms	Min Hald
					Min Hold
Occupied Bandy	vidth	Total Power	30.8 dBm	1	
	13.515 MHz				Detector Peak▶
Transmit Freq Erro	or -25.788 kHz	% of OBW Pov	ver 99.00 %	5	Auto <u>Man</u>
x dB Bandwidth	14.79 MHz	x dB	-26.00 dE		
			E olo o de		
MSG			STATUS		

Plot 7-11. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 64-QAM - Full RB Configuration)


Plot 7-12. Occupied Bandwidth Plot (LTE Band 48 - 15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 20 01 255
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occupied E	BW				
XX RL RF 50Ω DC	CORREC	SENSE:INT r Freq: 3.625000000 GHz		9 AM Dec 11, 2023	Trace/Detector
		FreeRun Avg Hold		ta: None	
	#IFGain:Low #Atten	n: 36 dB	Radio D	evice: BTS	
10 dB/div Ref 40.00 dB	m				
Log					
30.0					Clear Write
20.0	munanterry	monthesperanter			Cicul Wille
10.0					
0.00					
-10.0			1		Average
-20.0 - 11. a talastala	N-MN ⁻¹		Mr. Multon wanter		
-10.0 -20.0 -30.0			hand and the second states and the second	++++++++++++++++++++++++++++++++++++++	
-40.0					
					Max Hold
-50.0					
Center 3.62500 GHz			Span	50.00 MHz	
Res BW 470 kHz	#	VBW 1.5 MHz		weep 1 ms	Min Hold
Occupied Bandwid	lth	Total Power	32.9 dBm		
1	8.002 MHz				Detector
					Peak▶
Transmit Freq Error	-18.920 kHz	% of OBW Pow	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	19.61 MHz	x dB	-26.00 dB		
	10.01 11112	A GB	20.00 48		
MSG			STATUS		

Plot 7-13. Occupied Bandwidth Plot (LTE Band 48 - 20MHz QPSK - Full RB Configuration)

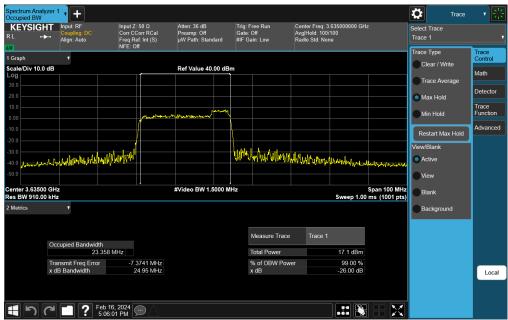

Plot 7-14. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 21 01 255
			V2.2 09/07/2023

Keysight Spectrum Analyzer - Occupied B	W							
💢 RL RF 50Ω DC	CORREC	SENSE:INT		ALIGN AUTO		MDec 11, 2023	Trac	e/Detector
		enter Freq: 3.625000 ig: Free Run	Avg Hold:	100/100	Radio Std	None		
		tten: 36 dB			Radio Dev	ice: BTS		
,								
10 dB/div Ref 40.00 dB	m							
Log								
30.0								Clear Write
20.0	مرابع بر بر المرابع	hannen	แญ่ประวัตระ .					Clear write
10.0								
0.00								
-10.0								Average
-20.0	#1fty/			MI MIAN				-
-20.0 -30.0 pervalpen Later Later Provider Provider Providence				L MAIN, 1.	(WWW/Many	und franktere		
-40.0								Max Hold
-50.0							_	
Center 3.62500 GHz					Snan 5	0.00 MHz		
Res BW 470 kHz		#VBW 1.5 MI	Hz			ep 1 ms		Min Hold
								MIII HOIG
Occupied Bandwid	th	Total Po	ower	31.1	dBm			
1	7.964 MHz							Detector
	1.00-1 11112							Peak▶
Transmit Freq Error	-19.531 kHz	% of OB	W Powe	er 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth	19.52 MHz	x dB		-26.	00 dB			
MSG				STATUS	5			

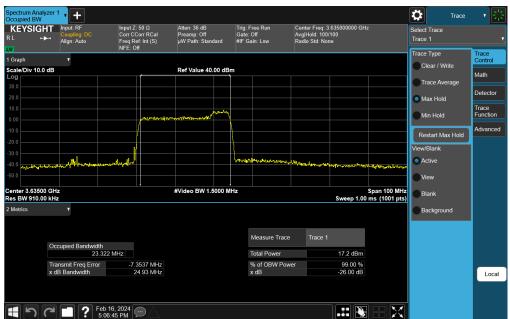
Plot 7-15. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 64-QAM - Full RB Configuration)

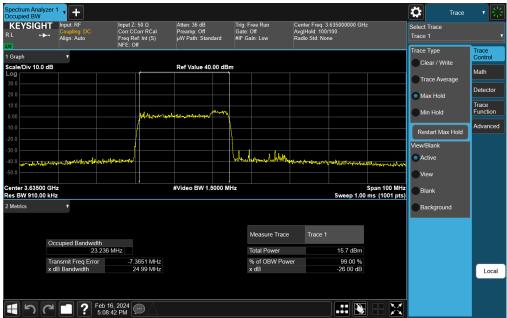
Plot 7-16. Occupied Bandwidth Plot (LTE Band 48 - 20MHz 256-QAM - Full RB Configuration)


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 22 01 233
			V2.2 09/07/2023

ULCA LTE Band 48

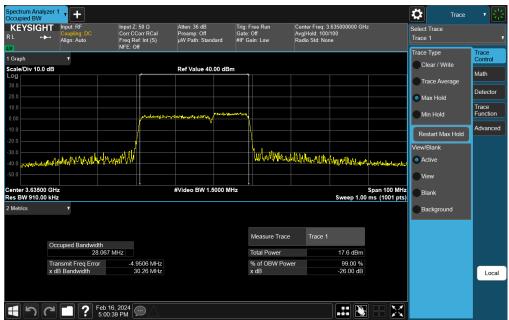
Spectrum Analyze Occupied BW	r 1 🔻 🕇						Trace	· 米
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 36 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 3.635000000 GHz Avg Hold: 100/100 Radio Std: None		Select Trace Trace 1	
1 Graph	v						Trace Type Clear / Write	Trace Control
Scale/Div 10.0 dB	3		Ref Value 40.00 dBn	n				Math
30.0							Trace Average	Detector
20.0							Max Hold	Trace
0.00		monomon	and and a start of the start of				Min Hold	Function
-10.0							Restart Max Hold	Advanced
-20.0				h . J			View/Blank	
-30.0	and the state of the	r whith		Try hyper the light of the second	Allen My server and any show way	Vessela authorita	 Active 	
-50.0							View	
Center 3.63500 G Res BW 910.00 k			l #Video BW 1.5000 MH	Hz	Sweep 1.00 n	pan 100 MHz ns (1001 pts)	Blank	
2 Metrics	•						Background	
	Occupied Bandwidth			Measure Trace	Trace 1			
	23.275 N	1Hz		Total Power	17.6 dBm			
	ransmit Freq Error dB Bandwidth	-7.3296 MHz 24.93 MHz		% of OBW Powe x dB	r 99.00 % -26.00 dB			
		2 1100 11112			Lotor db			Local
ר ב	Feb 16	2024 5 PM						


Plot 7-17. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+5MHz QPSK - Full RB Configuration)

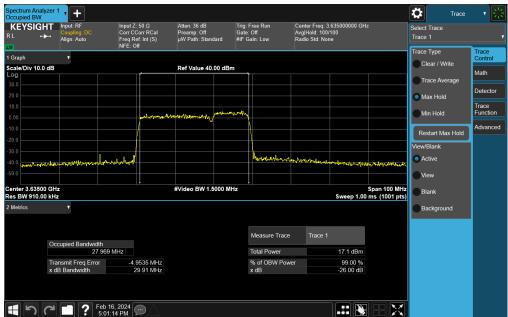

Plot 7-18. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 23 01 233
	·		V2.2 09/07/2023


Plot 7-19. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+5MHz 64-QAM - Full RB Configuration)


Plot 7-20. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Faye 24 01 233
	·		V2.2 09/07/2023


Plot 7-21. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+10MHz QPSK - Full RB Configuration)

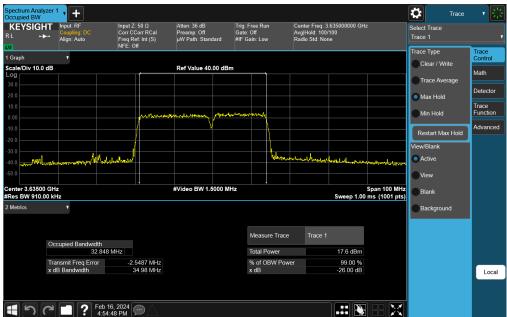

Plot 7-22. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+10MHz 16-QAM - Full RB Configuration)

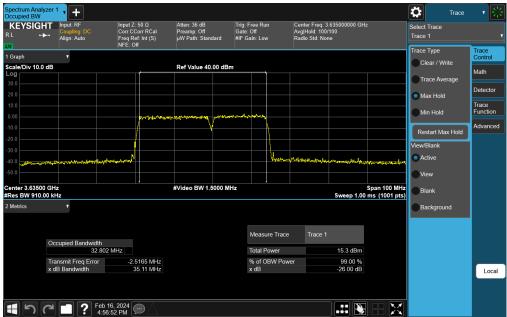
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 25 01 233
<u></u>	-		V2.2 09/07/2023


Plot 7-23. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+10MHz 64-QAM - Full RB Configuration)


Plot 7-24. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+10MHz 256-QAM - Full RB Configuration)

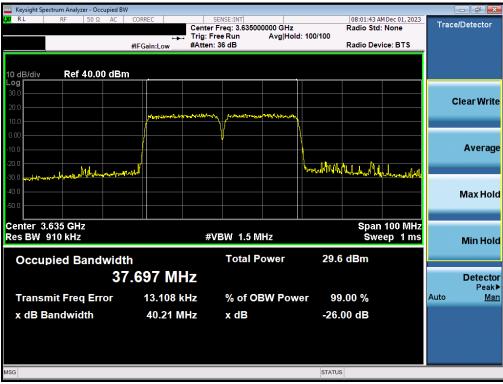
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 20 01 233
	-		V2.2 09/07/2023


Plot 7-25. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+15MHz QPSK - Full RB Configuration)


Plot 7-26. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 27 01 233
			V2.2 09/07/2023

Plot 7-27. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+15MHz 64-QAM - Full RB Configuration)


Plot 7-28. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 28 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 28 of 233
			V2.2 09/07/2023

🔤 Keysight Spectrum Analyzer - Occu	upied BW				
<mark>(X)</mark> RL RF 50 Ω	AC CORREC Center	SENSE:INT er Freg: 3.635000000 GHz	08:01:13 AM Radio Std:	1Dec 01, 2023	Trace/Detector
	+++ Trig:	Free Run Avg Hold:	100/100		
	#IFGain:Low #Atte	en: 36 dB	Radio Devi	ice: BTS	
10 dB/div Ref 40.00	dBm				
Log 30.0					
20.0					Clear Write
	and show the state	my monthemanichean			
10.0		V			
0.00					
-10.0					Average
-20.0	100 may mark		monoraleman		
-30.0 month-mathematichelikethered	Wernethern		a second a second s	March (West & West	
-40.0					Max Hold
-50.0					
Center 3.635 GHz			On an	400 8411-	
Res BW 910 kHz	-	VBW 1.5 MHz		100 MHz ep 1 ms	
	· · · · · · · · · · · · · · · · · · ·		0110	op 1 mo	Min Hold
Occupied Bandy	width	Total Power	30.1 dBm		
	37.724 MHz				Detector
	57.724 WINZ				Peak►
Transmit Freq Erro	or 16.443 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	40.26 MHz	x dB	-26.00 dB		
X db Build Hatil	40.20 MILE		20.00 48		
MSG			STATUS		

Plot 7-29. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Full RB Configuration)

Plot 7-30. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 29 01 233
	·		V2.2 09/07/2023

Keysight Spectrum Analyzer - Occupied BW						
LX0 RL RF 50 Ω AC CORF		ENSE:INT Freq: 3.635000000 GHz		4:43 AM Dec 01, 2023	Trace	/Detector
	Trig: Fre	ee Run Avg Hold	d: 100/100			
#IFG	ain:Low #Atten:	36 dB	Radio	Device: BTS		
10 dB/div Ref 40.00 dBm						
20.0						
20.0					С	lear Write
10.0	mond when and help of the	mounderson				
		V				
0.00						Average
-10.0						Average
-20.0			monument	la Anathala e an e all a Arm		
91				a fan fan fan fan fan fan fan fan fan fa		
-40.0						Max Hold
-50.0						
Center 3.635 GHz				pan 100 MHz		
Res BW 910 kHz	#V	BW 1.5 MHz		Sweep 1 ms		Min Hold
						MITHOL
Occupied Bandwidth		Total Power	29.2 dBn	n		
37.59	96 MHz					Detector
						Peak►
Transmit Freq Error	69.160 kHz	% of OBW Pow	er 99.00 %	6	Auto	<u>Man</u>
x dB Bandwidth	39.86 MHz	x dB	-26.00 dl	В		
MSG			STATUS			

Plot 7-31. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+20MHz 64-QAM - Full RB Configuration)

Plot 7-32. Occupied Bandwidth Plot (ULCA LTE Band 48 - 20+20MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 50 01 255
			V2.2 09/07/2023

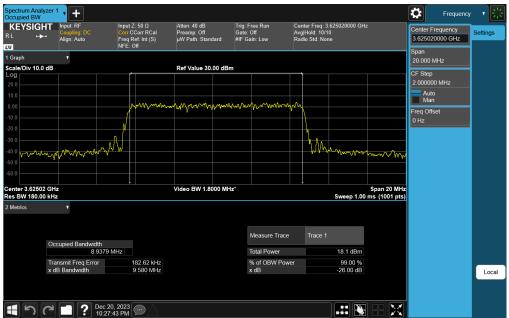
NR Band n48

Spectrum Analyze Occupied BW	¹ • +						Frequency	- 7 ╬
KEYSIGHT RL +►+	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Gate: Off	Center Freq: 3.625020000 GF Avg Hold: 10/10 Radio Std: None		Center Frequency 3.625020000 GHz Span	Settings
1 Graph	•						20.000 MHz	
Scale/Div 10.0 dE			Ref Value 40.00 dBm	1	•		CF Step	
30.0							2.000000 MHz	
20.0							- Auto	
10.0			MM. A & all was	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Man	
0.00		1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2010-0001000000	\		Freq Offset 0 Hz	
-10.0								
-20.0	+,	.N.			0.04			
-30.0	mann	N			mon	mm		
-40.0	- when the				ww			
-50.0								
Center 3.62502 G	Hz	,	Video BW 1.8000 MHz	*	↓	Span 20 MHz		
Res BW 180.00 k					Sweep 1.00	ms (1001 pts)		
2 Metrics	*							
				Measure Trace	Trace 1			
	ccupied Bandwidth 8.6355 M	Hz		Total Power	24.3 dBm			
Т	ransmit Freq Error	-12.051 kHz		% of OBW Powe	r 99.00 %			
×	dB Bandwidth	9.341 MHz		x dB	-26.00 dB			Local
ר ד	Dec 20, 10:38:4	2023 8 PM			.# 🕅			

Plot 7-33. Occupied Bandwidth Plot (NR Band n48 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB Configuration)

Plot 7-34. Occupied Bandwidth Plot (NR Band n48 - 10MHz CP-OFDM QPSK - Full RB Configuration)

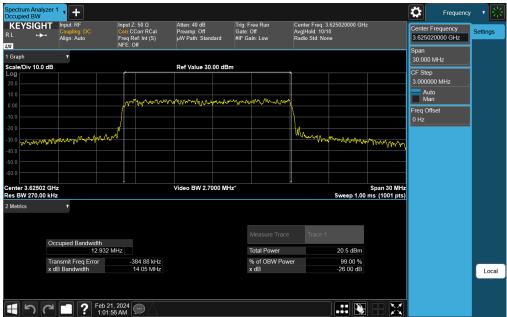
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage ST 01 255
	·		V2.2 09/07/2023


Plot 7-35. Occupied Bandwidth Plot (NR Band n48 - 10MHz CP-OFDM 16-QAM - Full RB Configuration)

Plot 7-36. Occupied Bandwidth Plot (NR Band n48 - 10MHz CP-OFDM 64-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 32 of 233	
			V2.2 09/07/2023	

Plot 7-37. Occupied Bandwidth Plot (NR Band n48 - 10MHz CP-OFDM 256-QAM - Full RB Configuration)


Plot 7-38. Occupied Bandwidth Plot (NR Band n48 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB Configuration)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 33 01 233
			V2.2 09/07/2023

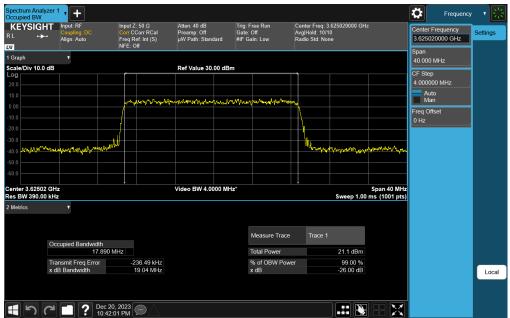
Spectrum Analyz Occupied BW	er 1 🔹 🕂						Frequency	- 1 😤
KEYSIGH RL ++-	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 3.625020000 GH Avg Hold: 10/10 Radio Std: None	z	Center Frequency 3.625020000 GHz	Settings
1 Graph	•						Span 30.000 MHz	
Scale/Div 10.0 d	B		Ref Value 30.00 dBn	n			CF Step	
20.0							3.000000 MHz	
10.0		h halan the second	word Mar Annum	www.www.			Auto Man	
0.00			Y				Freq Offset	
-10.0		1			١.		0 Hz	
-30.0	mannon	<u>۲</u>			Mummumm	Marthan A.		
-40.0	1710. I.					- and the state of the		
-50.0								
-60.0								
Center 3.62502 Res BW 270.00		_ i	Video BW 2.7000 MH	z*	Sweep 1.00	Span 30 MHz ms (1001 pts)		
2 Metrics	•							
	Occupied Bandwidth			Measure Trace	Trace 1			
	12.963 M	Hz		Total Power	20.6 dBm			
	Transmit Freq Error k dB Bandwidth	-375.22 kHz 14.16 MHz		% of OBW Powe x dB	er 99.00 % -26.00 dB			
	C CD Dandwidth	H4.10 MINZ		X 0B	-20.00 dB			Local
4 50	Feb 21, 1:01:20	2024						

Plot 7-39. Occupied Bandwidth Plot (NR Band n48 - 15MHz CP-OFDM QPSK - Full RB Configuration)

Plot 7-40. Occupied Bandwidth Plot (NR Band n48 - 15MHz CP-OFDM 16-QAM - Full RB Configuration)

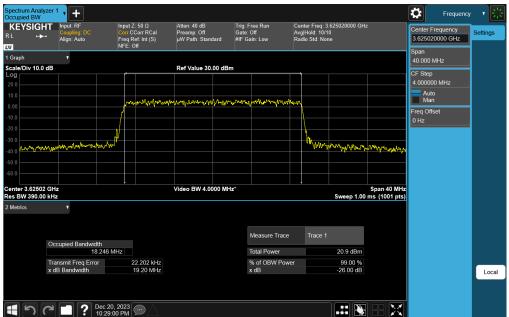
FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 34 01 233
	·		V2.2 09/07/2023

Spectrum Analyzer	1 • +						Frequency	- ·]
	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 3.625020000 GH; Avg Hold: 10/10 Radio Std: None	:	Center Frequency 3.625020000 GHz	Settings
1 Graph	v						Span 30.000 MHz	
Scale/Div 10.0 dB			Ref Value 30.00 dBm	h			CF Step	
20.0							3.000000 MHz	
10.0							Auto	
0.00		monther	normany	manulyman			Man	
-10.0							Freq Offset 0 Hz	
-20.0							0112	
-30.0	Marthankow	W			Mundamandan	Maha ma A		
-40.0	V .					and we will		
-50.0								
-60.0								
Center 3.62502 GH			Video BW 2.7000 MHz			Span 30 MHz		
Res BW 270.00 kHz			VIGEO BVV 2.7000 WI12	i <u> </u>	Sweep 1.00	ms (1001 pts)		
2 Metrics	•							
00	cupied Bandwidth			Measure Trace	Trace 1			
	12.947 M	Hz		Total Power	19.9 dBm			
	insmit Freq Error	-373.73 kHz		% of OBW Powe				
x d	B Bandwidth	13.58 MHz		x dB	-26.00 dB			Local
470	Feb 21, 1:02:33	2024 3 AM						


Plot 7-41. Occupied Bandwidth Plot (NR Band n48 - 15MHz CP-OFDM 64-QAM - Full RB Configuration)

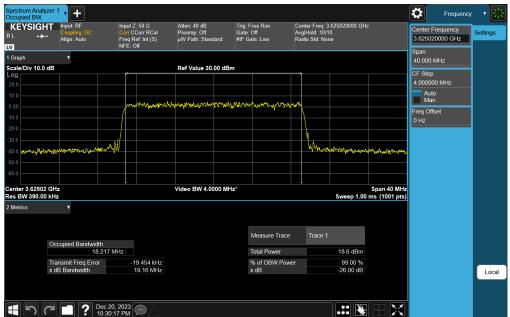
Plot 7-42. Occupied Bandwidth Plot (NR Band n48 - 15MHz CP-OFDM 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 55 01 233
	·		V2.2 09/07/2023


Plot 7-43. Occupied Bandwidth Plot (NR Band n48 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB Configuration)

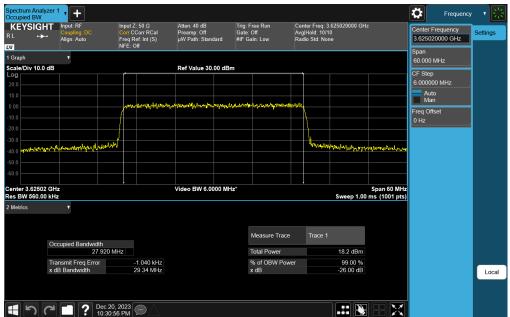
Plot 7-44. Occupied Bandwidth Plot (NR Band n48 - 20MHz CP-OFDM QPSK - Full RB Configuration)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 36 of 233	
			V2.2 09/07/2023	


Plot 7-45. Occupied Bandwidth Plot (NR Band n48 - 20MHz CP-OFDM 16-QAM - Full RB Configuration)

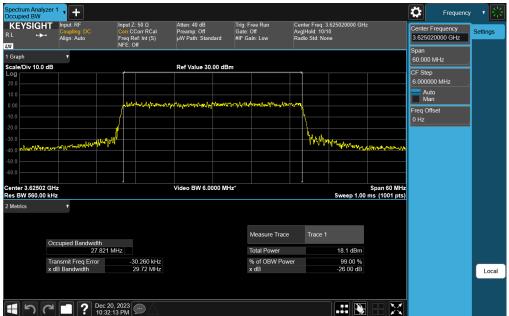
Plot 7-46. Occupied Bandwidth Plot (NR Band n48 - 20MHz CP-OFDM 64-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 37 01 233
<u></u>			V2.2 09/07/2023


Plot 7-47. Occupied Bandwidth Plot (NR Band n48 - 20MHz CP-OFDM 256-QAM - Full RB Configuration)

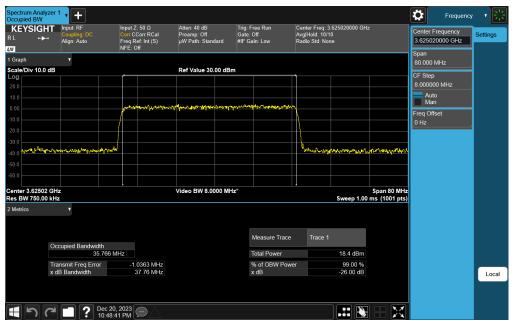
Plot 7-48. Occupied Bandwidth Plot (NR Band n48 - 30MHz DFT-s-OFDM π/2 BPSK - Full RB Configuration)

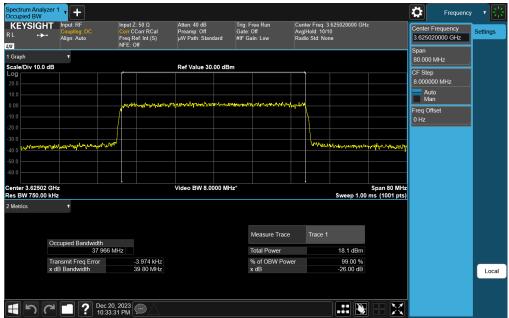
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 30 01 233
<u></u>			V2.2 09/07/2023


Plot 7-49. Occupied Bandwidth Plot (NR Band n48 - 30MHz CP-OFDM QPSK - Full RB Configuration)

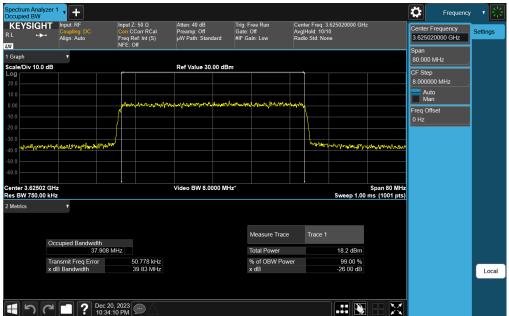

Plot 7-50. Occupied Bandwidth Plot (NR Band n48 - 30MHz CP-OFDM 16-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 39 01 233
	·		V2.2 09/07/2023


Plot 7-51. Occupied Bandwidth Plot (NR Band n48 - 30MHz CP-OFDM 64-QAM - Full RB Configuration)


Plot 7-52. Occupied Bandwidth Plot (NR Band n48 - 30MHz CP-OFDM 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 40 01 233
			V2.2 09/07/2023


Plot 7-53. Occupied Bandwidth Plot (NR Band n48 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB Configuration)

Plot 7-54. Occupied Bandwidth Plot (NR Band n48 - 40MHz CP-OFDM QPSK - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 41 01 233
	· · · ·		V2.2 09/07/2023

Plot 7-55. Occupied Bandwidth Plot (NR Band n48 - 40MHz CP-OFDM 16-QAM - Full RB Configuration)

Plot 7-56. Occupied Bandwidth Plot (NR Band n48 - 40MHz CP-OFDM 64-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Faye 42 01 233
<u></u>			V2.2 09/07/2023

Plot 7-57. Occupied Bandwidth Plot (NR Band n48 - 40MHz CP-OFDM 256-QAM - Full RB Configuration)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 43 01 233
			V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §96.41(e)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = Average
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

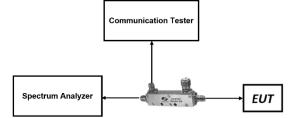
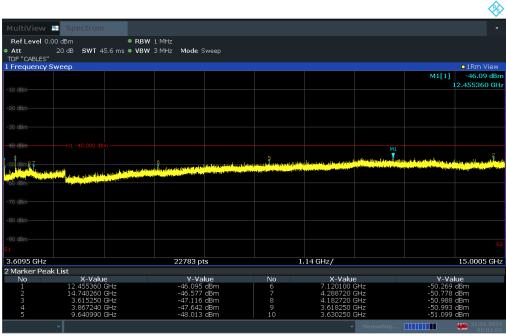


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 44 01 235
			V2.2 09/07/2023

Test Notes

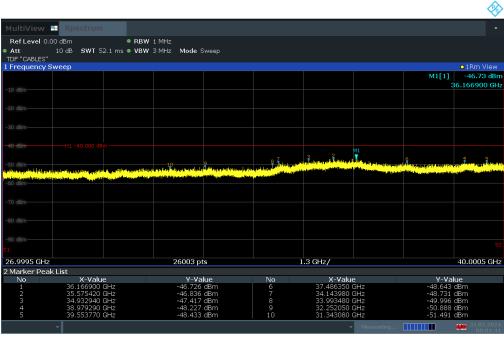
- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- Uplink carrier aggregation conducted spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. The worst case (highest) powers were found while operating with QPSK modulation with both carriers set to transmit using 1RB.
- 3. Uplink carrier aggregation inter-band emission was investigated and found to not be the worst case.
- 4. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 45 01 255
			V2.2 09/07/2023

LTE Band 48

Ref Level 0.00	Spectrum						
	20 dB SWT 6.97 ms	 RBW 1 MHz VBW 3 MHz 	Mode Sween				
DF "CABLES"							
Frequency Sv	veep						o1Rm Vi∈
							M1[1] -46.91 d 3.503750 d
							3.503750 0
) dBm							
) dBm							
		in a la del					
ennin fysie lieben of	in the second	han in the sector of the secto	أصباعا ومربع ورباله ورزائل والمراج	and the second second second	lift gaal a gaalaga in al daara	a de la calegia de la caleg	elen egelekter berekelen er elen er el
		and the formation of the sector	CALLED BE AND A DESCRIPTION OF THE REAL PROPERTY OF	And the second second second second	and the second		
) dBm							
) dBm		6	062 ptc		249.1 MHz/		2 5105 0
0 dBm 9.5 MHz	liet	61	963 pts		348.1 MHz/		3.5105 0
	X-Value		Y-Value	No	X-Value		Y-Value
) dBm D.5 MHz Marker Peak No 1	X-Value 3.503750 GHz	-4	Y-Value 46.915 dBm				3.5105 C Y-Value -50.608 dBm
) d8m 0.5 MHz Marker Peak No	X-Value	-4	Y-Value	No	X-Value	łz	Y-Value
1 dBm 1.5 MHz Marker Peak No 1	X-Value 3.503750 GHz	-4	Y-Value 46.915 dBm	No	X-Value	+z	Y-Value

00:01:06 31.01.2024


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 40 01 235
			V2.2 09/07/2023

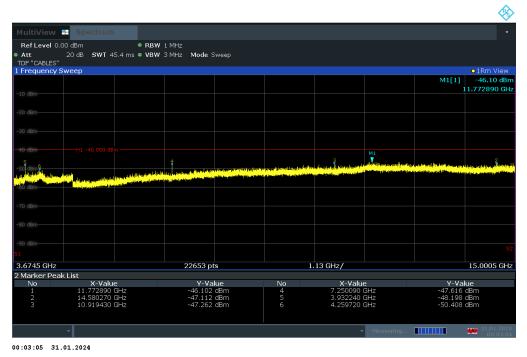
65 SWT 48.1 ms = VBW	V 1 MHz V 3 MHz Mode S	Sweep				M1[1]	• 1Rm View -50.80 dB 26.269780 GI
65 SWT 48.1 ms = VBW		Sweep					-50.80 dB
p	V 3 MHz Mode 9	5weep					-50.80 dB
p							-50.80 dB
							-50.80 dB
1 -40.000 den							
							26.269780 G
							20120570000
		l an i li la la ci la di dan in		ويرور الألفا والاصطوريون	ومطفيت فيتعادد بسمار	and the state of the state of the	in and in the constraints
and the second	an seall division in the second s	an and a standard and the standard and a standard a	a substances an analysis and a substances of the	Name and Address of the Owner of States, Street	فأحتر المقدم ويربيه والكافر وجرور ويستعه	in a second s	Contraction of the local division of the
	24003 pt	IS		2 GHz/			27.0005 G
				,			
	Y-Va	lue	No	X-Valu	e –	Y-Va	lue
26.269780 GHz	-50.801	dBm	5	21.173990	GHz	-53.499	dBm
26.909250 GHz	-51.206	dBm		20.514020	GHz	-53.776	dBm
				17.846630	GHz	-54.896	dBm
23.001420 GHz	-53.286	dBm					
					_		
							31.01.20 00:01:
		24003 p X-Value Y-Va 26.269780 GHz -55.206	X-Value Y-Value 26.269780 GHz -53.206 dBm 26.299780 GHz -51.206 dBm	Z4003 pts J X-Value V-Value No 26.269780 GHz -51.206 dBm 6 22.038400 GHz -51.206 dBm 7	Z4003 pts 1.2 GHz/ X-Value V-Value No X-Value 26.269780 GHz -51.206 dBm 5 21.73990 26.290780 GHz -51.206 dBm 5 21.73940	Z4003 pts 1.2 GHz/ X-Value Y-Value 26.29790 GHz -50.601 dBm 56.90925 0GHz -51.026 dBm 22.038460 GHz -53.126 dBm	Z4003 pts 1-2 GHz/ X-Value Y-Value Y-Value 24003 pts 1-2 GHz/ Z-2000 GHz -50.801 dBm 5 22.038460 GHz -53.126 dBm 7 23.001420 GHz -53.286 dBm 7

00:01:24 31.01.2024



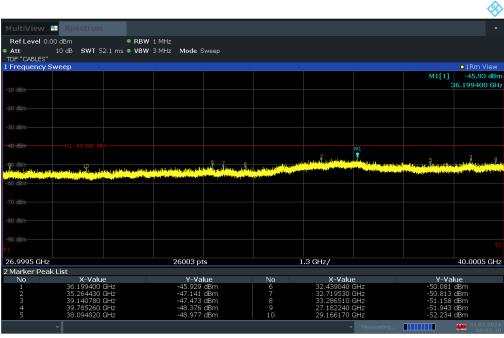
00:01:42 31.01.2024

Plot 7-61. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Low Channel)


FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 4/ 01 233
	·		V2.2 09/07/2023

00:02:48 31.01.2024

Plot 7-63. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

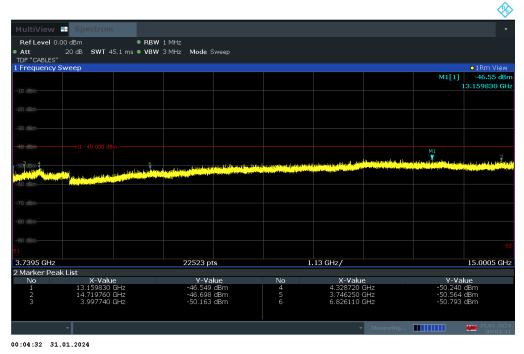

FCC ID: BCGA2903	element	element part 96 measurement report	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 48 of 233
<u></u>	-		V2.2 09/07/2023

MultiView	Spectrum							•
Ref Level 0.	00 dBm	• RBW 1 MHz						
Att		• VBW 3 MHz Mode 8	Sweep					
TDF "CABLES"								
1 Frequency S	Sweep							O1Rm View
							M1[1]	-51.21 dBi
-10 dBm								24.769840 GH
-20 dBm								
-30 dBm								
-40-dBm								
50 dBm							M1	
		فقفاء والأخلية بالاحتيار وعنيه والاختلاف الالتعادين	م وقد العلم بعال المحد	an an 🗿 🕯 shareda a shareda	مى ئىرى بەر ئەلەر مەلەك مەربە	فاستنبت المؤسرا سيته	and burns to phone the	literation in the
60 dBm	a de la companya de La companya de la comp	a ser a segura de la construction d	and the second	Name of Column Street, or other	المردر والقاري وروافقا أناوها	فعالك مرزح ينظرون معلقا	and an a second s	
70 dBm								
80 dBm								
-90 dBm								
14.9995 GHz		24003 pi	IS	1	.2 GHz/			27.0005 GH
2 Marker Pea No	k List X-Value	Y-Va		No	X-Value		Y-Va	
1	x-value 24.769840 GHz	-51.213		4	21.475480 0		۲-Va 53,472-	
2	26.723260 GHz	-51.391	dBm	5	21.360480 (GHz	-54.446	dBm
	22.654430 GHz	-52.978	dBm		16.506190 (GHz	-55.283	dBm
	·							31.01.202 00:03:2
	-							00.03.2

00:03:23 31.01.2024

00:03:41 31.01.2024

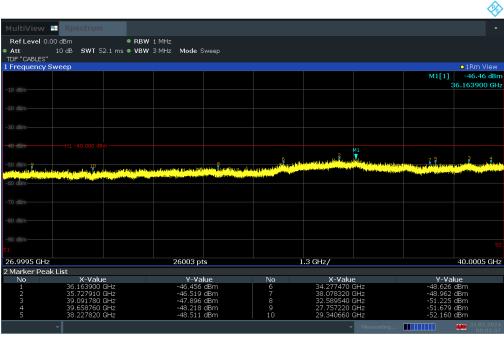
Plot 7-65. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)


FCC ID: BCGA2903	elemen	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 49 01 233
			V2.2 09/07/2023

MultiView					
Ref Level 0.0 Att	00 dBm	₩ 1 MHz ₩ 3 MHz Mode Sweep			
ALL TDF "CABLES"	20 ab Swi 7.25 ms = VB	w sminiz imiode sweep			
Frequency S	Sweep				●1Rm View
					M1[1] -48.60 dB
					3.383290 G
10 dBm					
50 dBm					Y
deally is not a title list	, in the set of the participation of the set	n fersen selver for the selver of the selver of	and a state of the second	فينقل وتله ومتلافيهما تنهر والمتار منته والمامين والمتع	والمعادية والمعاد والمستعدية والمتعادية والمراجع والمعار والمعالمة والمعادية والمعادية والمعادية
		al an Indean dia jarik di matrik di matrix na na mahai jakad di ka			
30 dBm					
00 dBm					
9.5 MHz		7223 pts		361.1 MHz/	3.6405 G
Marker Peal	k List				
No	X-Value	Y-Value	No	X-Value	Y-Value
1 2	3.383290 GHz 876.630000 MHz	-48.601 dBm -50.143 dBm		3.625250 GHz	-50.726 dBm
		the local h			

00:04:14 31.01.2024

Plot 7-67. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 50 01 233
	<u>.</u>	•	V2.2 09/07/2023

A DO Corre	Spectrum				
					•
Ref Level 0.0		BW 1 MHz			
Att TDF "CABLES"	10 dB SWT 48.1 ms • VI	3W 3 MHz Mode Sweep			
Frequency S	Sweep				●1Rm View
					M1[1] -51.14 dB
					25.898800 G
					M1
		4	· · · · · · · · · · · · · · · · · · ·		. I second description of a state of a second state of the second state of the second state of the second state
ومعادرة فروانه ومأدرة وراباه					And the second distance of the second distanc
70 dBm					
80 dBm					
14.9995 GHz		24003 pts		1.2 GHz/	27.0005 Gł
Marker Pea					
No	X-Value	Y-Value	No	X-Value	Y-Value
1 2	25.898800 GHz 21.739970 GHz	-51.137 dBm -53.456 dBm	5	17.276660 GHz 17.753640 GHz	-54.784 dBm -54.875 dBm
	23.069910 GHz	-53.621 dBm		16.468690 GHz	-54.925 dBm
	19.384070 GHz	-54.507 dBm			
					21.01.20
					ng ••••••••••••••••••••••••••••••••••

00:04:50 31.01.2024

00:05:08 31.01.2024

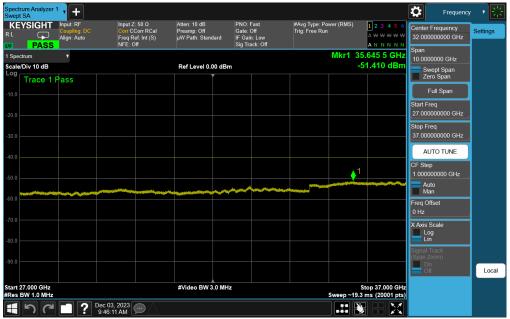
Plot 7-69. Conducted Spurious Plot (LTE Band 48 - 20MHz QPSK - High Channel)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 51 01 255
			V2.2 09/07/2023

ULCA LTE Band 48

	um Analyzer - Swe									
ARL G	RF 50 Ω ate: LO	PNO:	Fast 😱 1	SENSE:IN	#Avg T	ype: RMS	TRAC	M Dec 01, 2023 DE 1 2 3 4 5 6 PE A WWWWW T A N N N N N	Frequ	ency
	Ref 0.00 dE	IFGair Sm	n:Low #	Atten: 26 dB		M	kr1 3.26		Au	to Tun
-10.0	Pass								Cen 1.770000	ter Fre 0000 GH
-20.0										art Fre 0000 M⊦
-40.0					and and a second se			1	St 3.510000	op Fre 0000 G⊦
70.0									348.000 <u>Auto</u>	CF Ste 0000 MH Ma
80.0									Fre	q Offs 0 I
90.0										ale Typ
Start 30 MH #Res BW 1.0			#VBW 3.	0 MHz		Sweep (Stop 3 35.00 ms (.510 9112	Log	Li
MSG						STATU	s			

Plot 7-70. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)


Plot 7-71. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 52 01 255
			V2.2 09/07/2023

Plot 7-72. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

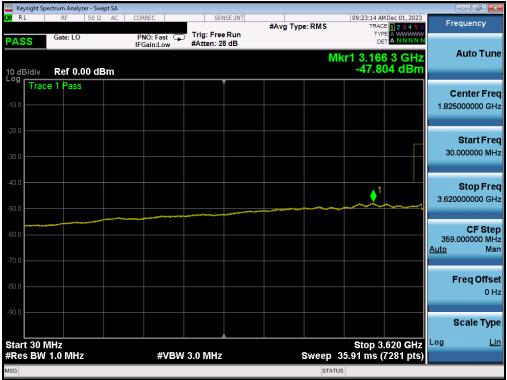
Plot 7-73. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 55 01 255
	·	-	V2.2 09/07/2023

Plot 7-74. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

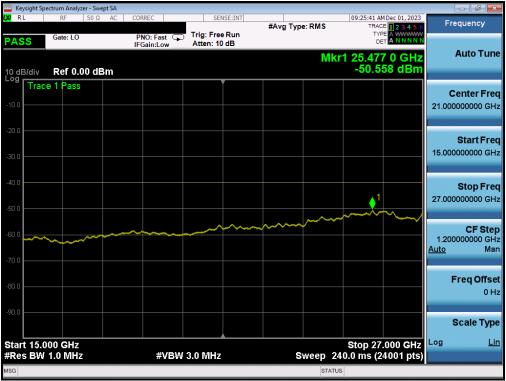
Plot 7-75. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

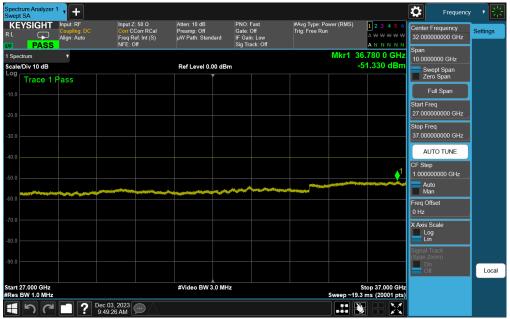
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 54 01 255
		•	V2.2 09/07/2023


Plot 7-76. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

Plot 7-77. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

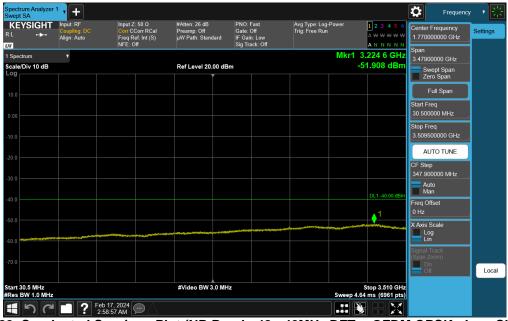
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 55 01 255
			1/2 2 09/07/2023


Plot 7-78. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)


Plot 7-79. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 50 01 255
			V2.2 09/07/2023

Plot 7-80. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)



Plot 7-81. Conducted Spurious Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 57 01 233
	•	-	V2.2 09/07/2023

NR Band n48


Plot 7-82. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Low Channel)

Plot 7-83. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Low Channel)

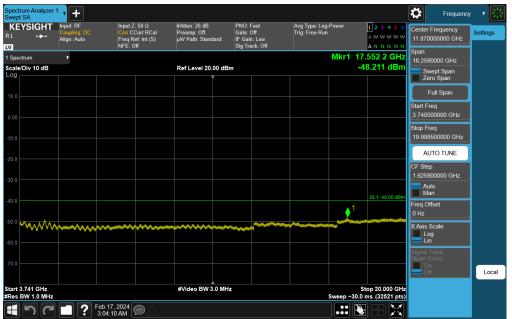
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 56 01 255
	·		V2.2 09/07/2023

Plot 7-84. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Low Channel)

Plot 7-85. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Mid Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 59 01 233
	· · · ·		V2.2 09/07/2023

Plot 7-86. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Mid Channel)


Plot 7-87. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - Mid Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 00 01 233
			V2.2 09/07/2023

KEYSIGHT	Input: RF Coupling: DC	Input Z: 50 Ω Corr CCorr RCal	#Atten: 26 dB Preamp: Off	PNO: Fast Gate: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6	Frequenc Center Frequency	Settings
∟ • → • 1	Align: Auto	Freq Ref: Int (S) NFE: Off	µW Path: Standard	IF Gain: Low Sig Track: Off	Thy. The Run	A ₩ ₩ ₩ ₩ ₩ A N N N N N	1.835000000 GHz	Settings
Spectrum	•				Mkr'	3.629 0 GHz	Span 3.60900000 GHz	
ale/Div 10 dB			Ref Level 20.00 dE	3m		-51.227 dBm	Swept Span	
-9			Ť.				Zero Span	
							Full Span	
00							Start Freq 30.500000 MHz	
							Stop Freq	
							3.639500000 GHz	
0.0							AUTO TUNE	
							CF Step 360.900000 MHz	
							Auto	1
0.0						DL1 -40.00 dBm	Man	
						1	Freq Offset 0 Hz	
						and the second s	X Axis Scale	1
0.0		in the second					Log Lin	
							Signal Track (Span Zoom)	1
							On Off	Local
art 30.5 MHz			#Video BW 3.0 MH	lz l		Stop 3.640 GHz		
es BW 1.0 MHz		0 17, 2024 💬 🛆			Sweep -	6.94 ms (7221 pts)		

Plot 7-88. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - High Channel)

Plot 7-89. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - High Channel)

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 61 of 222
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 61 of 233
			V2.2 09/07/2023

Plot 7-90. Conducted Spurious Plot (NR Band n48 - 40MHz DFT-s-OFDM QPSK - High Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 62 01 255
			V2.2 09/07/2023

7.4 Band Edge Emissions at Antenna Terminal §2.1051 §96.41(e)(ii)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation and all ports were investigated and the worst case configuration results are reported in this section.

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

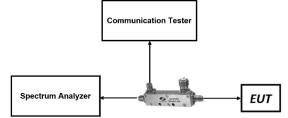
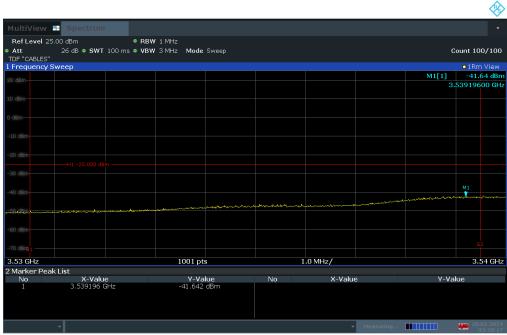


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

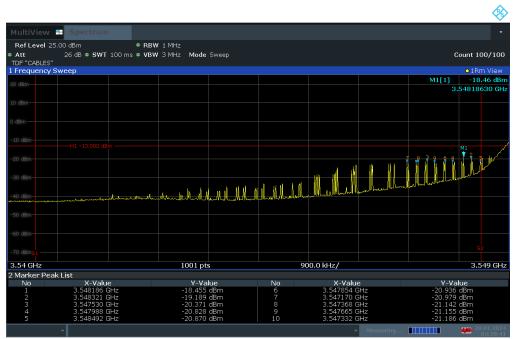
FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 03 01 233
			V2.2 09/07/2023



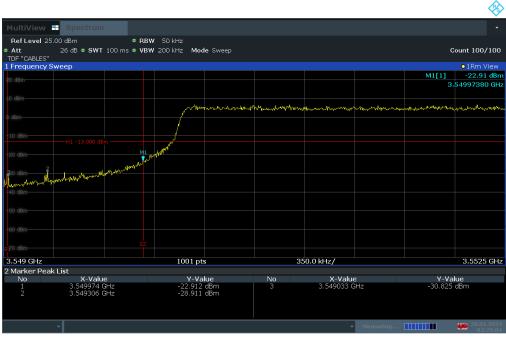
LTE Band 48

MultiViou	= Spectrum				*
Ref Level 2		• RBW 1 MHz			
Att TDF "CABLES"	26 dB • SWT 100 ms	• VBW 3 MHz Mode Sweep			Count 100/100
Frequency					●1Rm View
20 dBm					M1[1] -50.25 dBr
					3.5293810 GF
0 dBm					
10 dBm-					
10 dBm					
					M
0 dBm					
3.49 GHz		1001 pts		4.0 MHz/	3.53 GH
Marker Pea	ak List				
No 1	X-Value 3.529381 GHz	Y-Value -50.253 dBm	No	X-Value	Y-Value
	3.329301 GHZ	-50.235 dBm			
	*			Measurin	ig 🚺 🦛 20.01.202

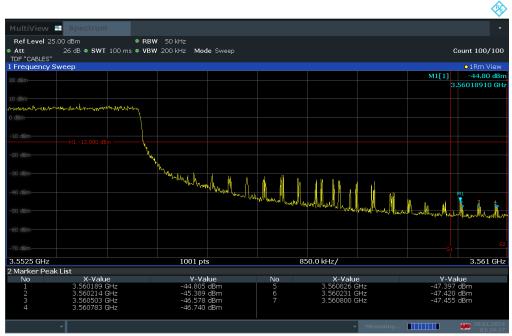
03:27:55 20.01.2024



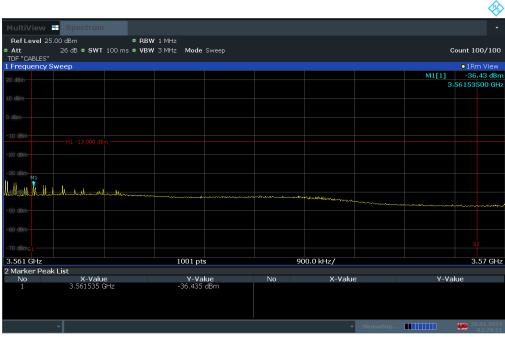
03:28:18 20.01.2024


FCC ID: BCGA2903	element		
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 04 01 255
			V2.2 09/07/2023

03:28:41 20.01.2024

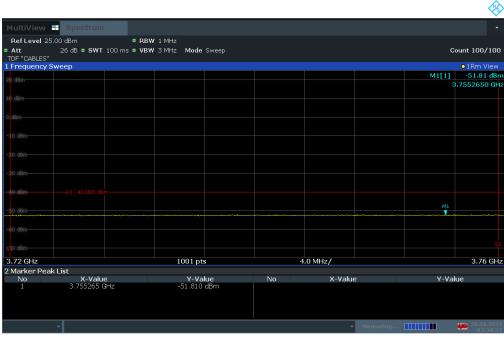


03:29:04 20.01.2024


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 65 of 233	
	-		V2.2 09/07/2023	

03:29:28 20.01.2024

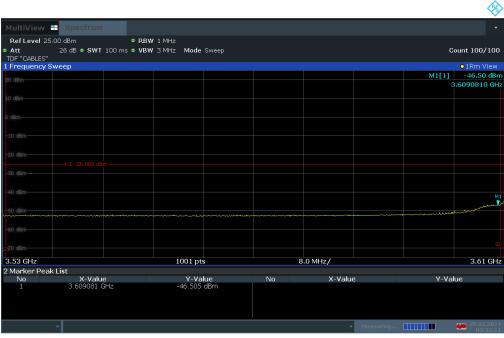
03:29:51 20.01.2024


FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 66 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 66 of 233	
	-		V2.2 09/07/2023	

MultiView	Spectrum				•
Ref Level 25.		RBW 1 MHz			
Att		VBW 3 MHz Mode Sweep			Count 100/100
TDF "CABLES" 1 Frequency S	ween				o1Rm View
					M1[1] -47.77 dBm
					3.570520 GHz
10 dBm					
40 dBm					
1					
50. dRm					
and the second s					
3.57 GHz		1001 pts		15.0 MHz/	3.72 GHz
2 Marker Peak					
No	X-Value	Y-Value	No	X-Value	Y-Value
1	3.570520 GHz	-47.774 dBm			
				✓ Measurin	ig 20.01.2024
				• Measurin	03:30:14

03:30:14 20.01.2024

03:30:38 20.01.2024

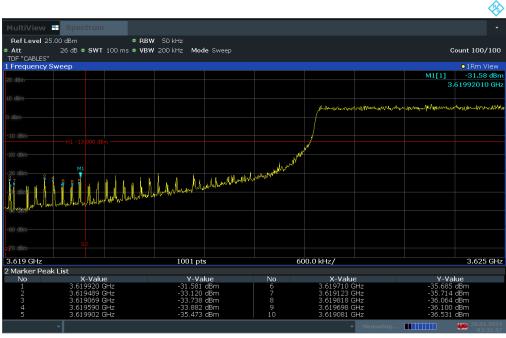

FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Fage 07 01 233
			V2.2 09/07/2023

MultiView Spectrum Ref Level 25.00 dBm • RBW 1 MHz • Att 26 dB • SWT 100 ms • VBW 3 MHz Mode Sweep TDF "CABLES" I I 8 dBm I I I 10 dBm I I I I 10 dBm I I I I I	Count 100/100 •1Rm View M1[1] -52.09 dBm 3.4978120 GHz
Att 26 dB • SWT 100 ms • VBW 3 MHz Mode Sweep TDF "CABLES" I Frequency Sweep d8m d8m d8m	•1Rm View M1[1] -52.09 dBm
Att 26 dB • SWT 100 ms • VBW 3 MHz Mode Sweep TDF "CABLES" Frequency Sweep dem dem dem	•1Rm View M1[1] -52.09 dBm
1 Frequency Sweep	M1[1] -52.09 dBm
	3.4978120 GHz
10 dBm-	
20 dBm-	
50 dBm	
3.49 GHz 1001 pts 4.0 MHz/	3.53 GHz
2 Marker Peak List	
No X-Value Y-Value No X-Value 1 3.497812 GHz -52.094 dBm -52.094 dBm </td <td>Y-Value</td>	Y-Value
👻 🗸 Measuring 🚺	20.01.2024 03:31:48

03:31:49 20.01.2024

03:32:12 20.01.2024

Plot 7-100. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)


FCC ID: BCGA2903	element	element PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 69 of 222	
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 68 of 233	
			V2.2 09/07/2023	

MultiView	Spectrum					Ţ
Ref Level 25	.00 dBm 🔹 R	BW 1 MHz				
Att IDF "CABLES"	26 dB • SWT 100 ms • V	BW 3 MHz Mode Sweep				ount 100/10
Frequency S	weep					o1Rm Viev
0 dBm					M1[1]	-27.32 dB
					3.	61829420 G
D dBm						
LO dBm-						
20 dBm-						
						M1
30 dBm						
				. 11 41		
+0 dBm-		and the second sec		salah haraka h	بالسالية	allalla alla and
mananam	and the stand and a stand at stand at st					
50 dBm						
3.61 GHz		1001 pts		900.0 kHz/		3.619 G
Marker Peak	< List	1001 pts		900.0 KHZ/		3.019 G
No	X-Value	Y-Value	No	X-Value	Y-Va	lue
1	3.618294 GHz	-27.316 dBm	6	3.617890 GHz	-30.354	dBm
2 3	3.618195 GHz	-28.109 dBm		3.617970 GHz	-30.369	
3 4	3.618330 GHz 3.617997 GHz	-28.464 dBm -29.200 dBm	8 9	3.617854 GHz 3.617638 GHz	-31.421 -32.191	dBm
	3.618222 GHz	-29.519 dBm	10	3.617674 GHz	-32.627	dBm

03:32:35 20.01.2024

03:32:58 20.01.2024

Plot 7-102. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)

FCC ID: BCGA2903	element	PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 233
1C2311270064-15-R1.BCG	10/01/2023-03/06/2024	Tablet Device	Page 69 01 233
L			V2.2 09/07/2023