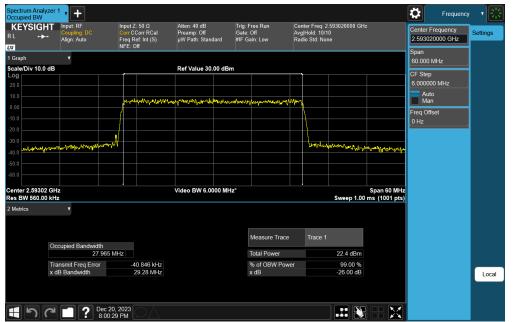
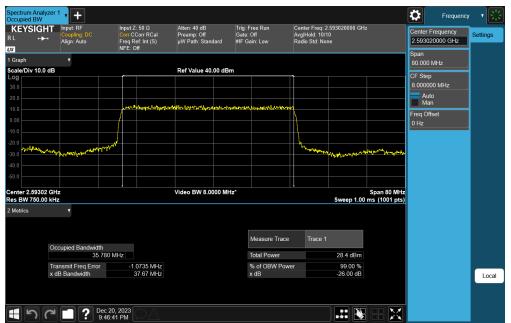
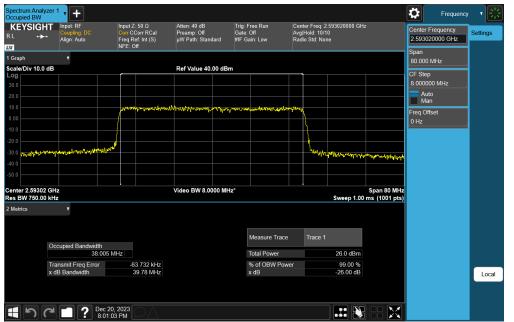

Plot 7-107. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM QPSK - Full RB)

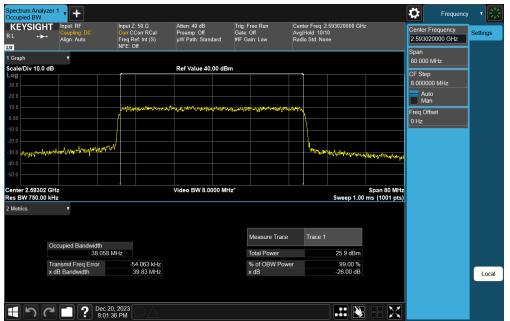

Plot 7-108. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 70 01 572	
			V2.2 09/07/2023	


Plot 7-109. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 64-QAM - Full RB)


Plot 7-110. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 71 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 71 of 572
<u>-</u>	•	·	V2.2 09/07/2023


Plot 7-111. Occupied Bandwidth Plot (NR Band n41 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-112. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 72 01 572
	•		V2.2 09/07/2023

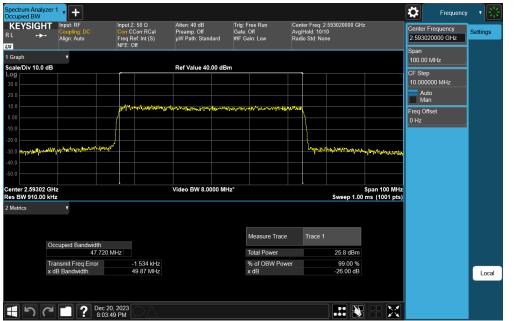
Plot 7-113. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 16-QAM - Full RB)


Plot 7-114. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 73 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	raye 13 01 572	
			V2.2 09/07/2023	

(EYSIGH"	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Stan		frig: Free Run Gate: Off ≇IF Gain: Low	Avg	er Freq: 2 Hold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz	Settings
iraph										Span 80.000 MHz	
ale/Div 10.0 d	в		Ref Value 30	.00 dBm						CF Step	
										8.000000 MHz	-
		which was marked	Managadury	-	mmmm	/4/14/h-104				Man	
.0							1			Freq Offset	
0							ξ			0 Hz	
							Į				
0 mayna	wannerver	4443					Sector And	where and the second	-producer-analytics		
nter 2.59302 (+	Video BW 8.0	000 MHz*					Span 80 MHz		
s BW 750.00 I								Sweep 1.00	ms (1001 pts)		
letrics	T										
					Measure Tra	ice	Trace 1				
	Occupied Bandwidth 38.011	MHz			Total Power			22.4 dBm			
	Transmit Freq Error	-40.824 kHz			% of OBW P	ower		99.00 %			
	k dB Bandwidth	39.91 MHz			x dB			-26.00 dB			Loca

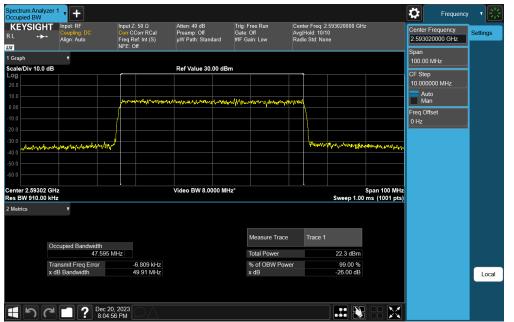
Plot 7-115. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 256-QAM - Full RB)


Plot 7-116. Occupied Bandwidth Plot (NR Band n41 - 50MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 74 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 74 of 572	
			V/2 2 09/07/2023	

Occupied Bandwidth Image: Trace Trace 1 Occupied Bandwidth Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
cale/Div 10.0 dB Ref Value 40.00 dBm CF Step 1000 mm CF Step 1	
Occupied Bandwidth Image: Trace Trace 1 Occupied Bandwidth Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
Occupied Bandwidth 47 600 MHz Video BW 8.0000 MHz* Span 100 MHz Sweep 1.00 ms (1001 pts) Occupied Bandwidth 47 600 MHz Tatal Power 25.8 dBm Video BW 8.0000 MHz* Solution solu	
Man Freq Offset 040 040 040 040 040 040 040 04	MHz
Image: Contract of the stand of the stan	
00 00<	
000 000 <td></td>	
30.0	
40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	
Occupied Bandwidth 47.600 MHz Video BW 8.0000 MHz* Span 100 MHz Sweep 1.00 ms (1001 pts) Metrics • • • Occupied Bandwidth 47.600 MHz • • • Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
enter 2.59302 GHz Span 100 MHz Set BW 910.00 kHz Span 100 MHz Metrics Metrics Measure Trace Trace 1 Coccupied Bandwidth 47.600 MHz Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
Ges BW 910.00 kHz Sweep 1.00 ms (1001 pts) Metrics •	
Metrics Measure Trace Trace 1 Occupied Bandwidth 477.600 MHz Total Power 25.8 dBm Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
Measure Trace Trace 1 Occupied Bandwidth 47 600 MHz Total Power 25 8 dBm Transmit Freq Error 18 713 kHz % of OBW Power 99.00 %	
Occupied Bandwidth 47 600 MHz Total Power 25.8 dBm Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
Occupied Bandwidth Total Power 25.8 dBm Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
47.600 MHz Total Power 25.8 dBm Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
Transmit Freq Error 18.713 kHz % of OBW Power 99.00 %	
x dB Bandwidth 49.89 MHz x dB -26.00 dB	Loca

Plot 7-117. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM QPSK - Full RB)


Plot 7-118. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 75 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 75 of 572
	· · · · · · · · · · · · · · · · · · ·	·	V2.2 09/07/2023

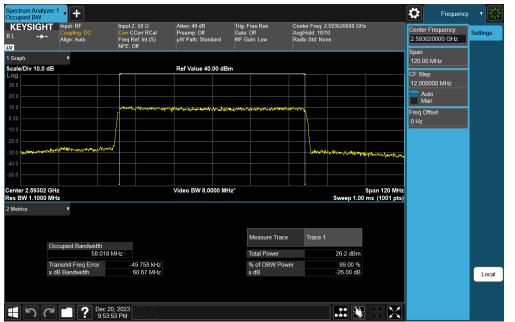
Spectrum Anal Occupied BW	lyzer 1 🔹 🕂						Fre	equency v 💥
KEYSIGI ^{RL} ↔	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2 Avg Hold: 10/ Radio Std: No		Center Frequer 2.593020000 C Span	
1 Graph	•						100.00 MHz	
Scale/Div 10.0	0 dB	_	Ref Value 30.00 dE	Bm			CF Step	
20.0							10.000000 MH	z
10.0		Jord a Walter Collector of Use	March Harry Production Martin and	1993 - 1995 - 1905 - 19	WOM.		Auto Man	
0.00							Freq Offset	
-10.0							0 Hz	
-20.0								
-30.0	mannanally	N			WDwD4	<mark>ℯ</mark> ՟ֈⅈ ^ֈ ՠ֎֎ՠ֎ՠֈ ^ՠ ՠֈՠՠֈ	M.M.M.M.	
-40.0								
-50.0								
-60.0								
Center 2.5930 Res BW 910.0		<u>↓</u>	Video BW 8.0000 M	Hz*	•	Spa Sweep 1.00 ms	n 100 MHz (1001 pts)	
2 Metrics								
				Measure Trac	e Trace 1			
	Occupied Bandwidth 47.636 M	ИНZ		Total Power		25.4 dBm		
	Transmit Freq Error	-23.235 kHz		% of OBW Por	wer	99.00 %		
	x dB Bandwidth	49.89 MHz		x dB		-26.00 dB		Local
1	C Dec 20 8:04:2	1, 2023 13 PM						

Plot 7-119. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 64-QAM - Full RB)


Plot 7-120. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 76 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 76 of 572
		·	V2.2 09/07/2023

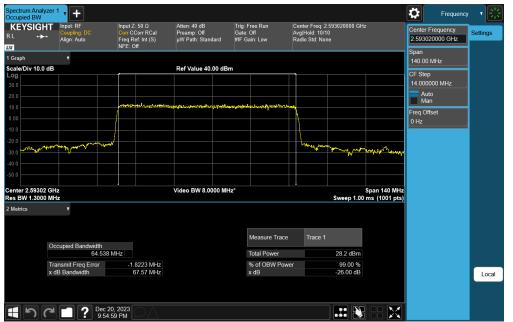
Plot 7-121. Occupied Bandwidth Plot (NR Band n41 - 60MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-122. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 11 01 572
	-	·	V2.2 09/07/2023

Spectrum Analy Occupied BW	/zer 1 T							Frequency	· · 🛞
	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center F Avg Holo Radio St		Iz	Center Frequency 2.593020000 GHz	Settings
1 Graph	v							Span 120.00 MHz	
Scale/Div 10.0	dB		Ref Value 30.00 dE	3m				CF Step	
20.0								12.000000 MHz	
10.0			ىلىلىدىدىدىدىر <mark>الىلىمى</mark> يەللىر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	howe			Auto Man	
0.00		<u> </u>			\rightarrow			Freq Offset	
-10.0		┨─────						0 Hz	
-20.0	المحمدة والمراسي فالمراجع	∮┼────							
	waygon hawyywanad					What have provided and an	# ⁸ `\$*****************		
-40.0									
-50.0									
Center 2.59302 Res BW 1.1000			Video BW 8.0000 M	Hz*		Sween 1.00	Span 120 MHz ms (1001 pts)		
2 Metrics	¥					onecp i.o.	/ IIIS (1001 pts)		
	Occupied Bandwidth			Measure Tra	ce Tra	ace 1			
	58.048	MHz		Total Power		25.8 dBm			
	Transmit Freq Error	-30.763 kHz		% of OBW Po	ower	99.00 %			
	x dB Bandwidth	60.77 MHz		x dB		-26.00 dB			Local
ま り(Cal [] 2 Dec 2 8:06:	D, 2023							

Plot 7-123. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 16-QAM - Full RB)


Plot 7-124. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 572
1C2311270064-10-R1.BCG	70064-10-R1.BCG 10/1/2023 - 03/04/2024 Tablet Device		Page 78 01 572
		·	V2.2 09/07/2023

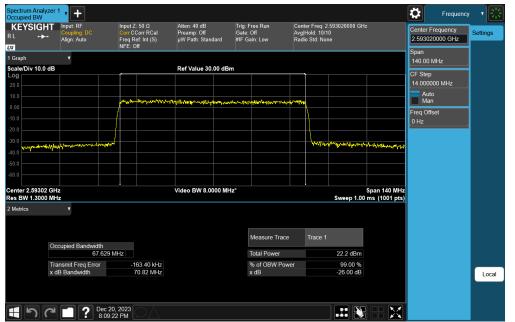
EYSIGI ↔	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg	ter Freq: 2 Hold: 10/1 io Std: Nor			Center Fr 2.593020 Span	equency 0000 GHz	Settings
raph Ile/Div 10.0	T AB		Ref Value 30.00 dE	2 m					120.00 M	Hz	
			Rei Value 30.00 dL						CF Step 12.00000	10 MHz	1
o o		Janite and a first state of the	^V ety/statestage/iferanes.tog-13	manunghaman	New Joseph Company				Auto Man		
0						\mathbb{N}			Freq Offs	et	
0						 {			0 Hz		1
0 minu	ward the and and the and the and	w				hum	and and and a second	Art Anny prove			
ter 2.5930 BW 1.100		•	Video BW 8.0000 M	Hz*		•		Span 120 MHz ms (1001 pts)			
etrics	•										
	Occupied Bandwidth			Measure Tra	ice	Trace 1					
	57.943			Total Power		_	24.1 dBm				
	Transmit Freq Error x dB Bandwidth	-8.170 kHz 60.67 MHz		% of OBW P x dB	ower		99.00 % -26.00 dB				Loca

Plot 7-125. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 256-QAM - Full RB)


Plot 7-126. Occupied Bandwidth Plot (NR Band n41 - 70MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 572
1C2311270064-10-R1.BCG 10/1/2023 - 03/04/2024 Tablet Device		Tablet Device	Fage 79 01 572
		-	V/2 2 09/07/2023

Plot 7-127. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM QPSK - Full RB)


Plot 7-128. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 90 of 572
1C2311270064-10-R1.BCG	CG 10/1/2023 - 03/04/2024 Tablet Device		Page 80 of 572
	·	·	V2.2 09/07/2023

Spectrum Analy Occupied BW	yzer 1 🕇 🕇							Frequency	· · ※
	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2 Avg Hold: 10/1 Radio Std: Nor			2.593020000 GHz	Settings
1 Graph	v							Span 140.00 MHz	
Scale/Div 10.0) dB		Ref Value 30.00 dB	m				CF Step	
20.0		<u> </u>						14.000000 MHz	
10.0		-	and and the second state of the second state o	Marthanghan Jaka maksika	re-whete			Auto Man	
0.00		A			$\vdash h$			Freq Offset	
-10.0								0 Hz	
-20.0	washer warder with his								
and the second sec	the second second second second				widylyd	What have	Monterstand		
-40.0									
-50.0									
-60.0									
Center 2.59302 Res BW 1.3000			Video BW 8.0000 MI	Ηz*		Sweep 1.00 m	oan 140 MHz		
2 Metrics	¥					3weep 1.00 II	is (1001 pts)		
				Measure Trace	e Trace 1				
	Occupied Bandwidth 67.568 M	Hz		Total Power		25.3 dBm			
	Transmit Freq Error	-107.54 kHz		% of OBW Pow	ver	99.00 %			
	x dB Bandwidth	70.80 MHz		x dB		-26.00 dB			Local
ま り	C Dec 20, 8:08:49	2023 9 PM							

Plot 7-129. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 64-QAM - Full RB)

Plot 7-130. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 256-QAM - Full RB)

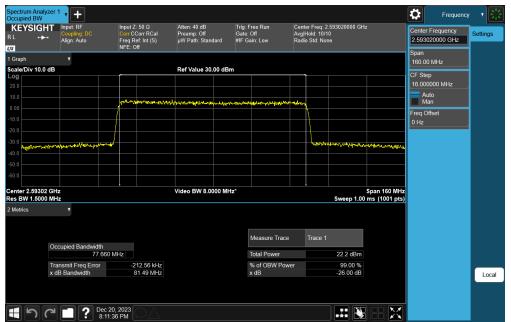
FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 91 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 81 of 572
	· · ·		V2.2 09/07/2023

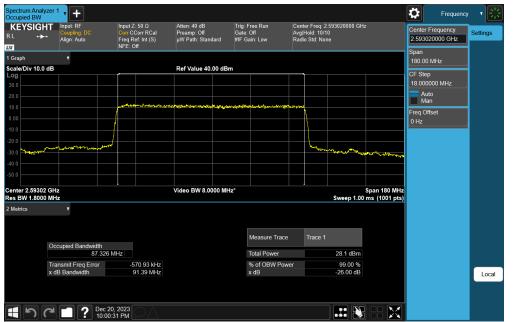
Plot 7-131. Occupied Bandwidth Plot (NR Band n41 - 80MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-132. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 62 01 572
	·		1/2 2 09/07/2023

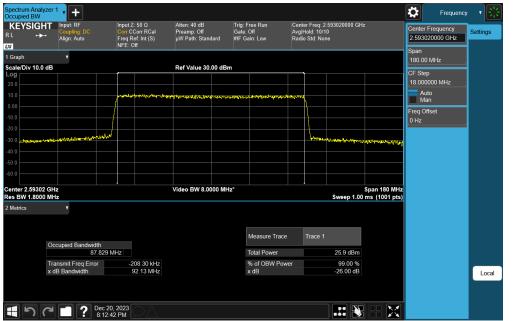
Spectrum Analyz Occupied BW	zer 1 • +							Frequency	· · 张
KEYSIGH RL ↔→	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2. Avg Hold: 10/10 Radio Std: Non			Center Frequency 2.593020000 GHz	Settings
1 Graph	•							Span 160.00 MHz	
Scale/Div 10.0 o	dB	r	Ref Value 30.00 dB	m	_			CF Step	
20.0								16.000000 MHz	
10.0		whether alternative station and the	CANADA AND A SAME A	ᡊᡶᡥᡃ᠖ᡁ᠈ᡩᠼ᠆ᡩᡟ᠆ᢡᡟ <i>ᡆᠲᡆ᠄ᢞ᠆ᠼᢤᠣ᠆ᠧ᠅</i> ᡷ	deaded at			Auto	
0.00								Man	
-10.0								Freq Offset 0 Hz	
-20.0									
-30.0 mm-managed	madeproxymponess where you				how	handrengeligelige	and the second second		
-40.0									
-50.0									
-60.0									
Center 2.59302 Res BW 1.5000		•	Video BW 8.0000 MH	iz*	i		Span 160 MHz ms (1001 pts)		
2 Metrics	T								
				Measure Trace	Trace 1				
	Occupied Bandwidth 77.845 M	Hz		Total Power		25.7 dBm			
	Transmit Freq Error	-222.23 kHz		% of OBW Powe	er	99.00 %			
	x dB Bandwidth	81.26 MHz		x dB		-26.00 dB			Local
1 50	Dec 20, 8:10:29	2023							


Plot 7-133. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 16-QAM - Full RB)


Plot 7-134. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 83 of 572
1C2311270064-10-R1.BCG	BCG 10/1/2023 - 03/04/2024 Tablet Device		Page 83 01 572
		·	V2.2 09/07/2023

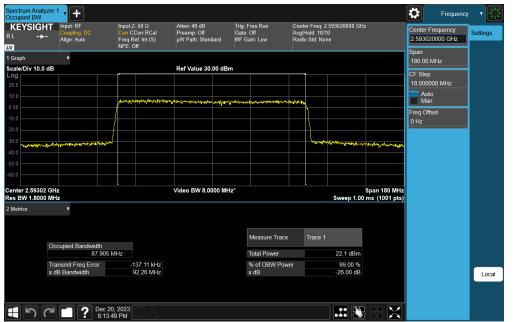
Plot 7-135. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 256-QAM - Full RB)


Plot 7-136. Occupied Bandwidth Plot (NR Band n41 - 90MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 64 01 572
			\/2 2 09/07/2023

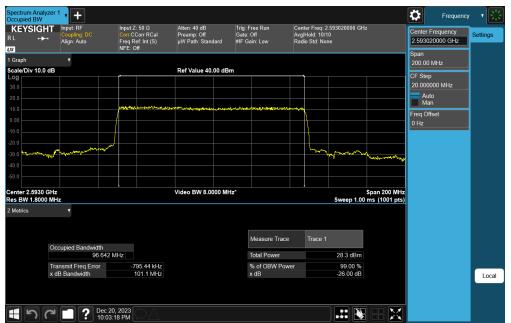
Graph cale/Div 10.0 dB og 20.0	•								
og								Span 180.00 MHz	
			Ref Value 30.00 dBn	h				CF Step	
								18.000000 MHz	
		Marchan Manager	and the second second second	an and a start of the start of the second	wyeh			Man	
10.0								Freq Offset	
								0 Hz	
30.0 majoren proventer	ware water and the state of the				- Angentigen	advadestation of the second	and the property with the state		
50.0									
enter 2.59302 GHz es BW 1.8000 MHz			Video BW 8.0000 MH	z*			Span 180 MHz ms (1001 pts)		
	v								
				Measure Trace	Trace 1				
Occup	pied Bandwidth 87.683 N	/Hz		Total Power		25.7 dBm			
Transr	mit Freq Error	-287.05 kHz		% of OBW Power	r	99.00 %			
	Bandwidth	92.21 MHz		x dB		-26.00 dB			Loca

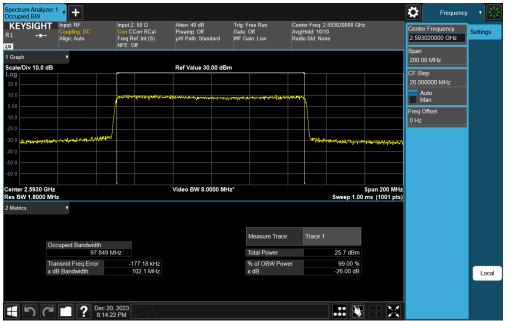
Plot 7-137. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM QPSK - Full RB)


Plot 7-138. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 95 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 85 of 572
	·	•	V2.2 09/07/2023

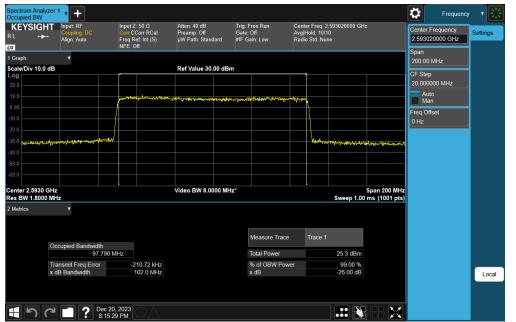
Spectrum Analys Occupied BW	zer 1 🕇 🕇							Ö FI	requency	、 崇
KEYSIGH	Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Gate: Off	Center Freq: 2. Avg Hold: 10/1 Radio Std: Nor		:	Center Freque 2.593020000 Span		Settings
1 Graph	•							180.00 MHz		
Scale/Div 10.0	dB	f	Ref Value 30.00 dBr	m		1		CF Step		
20.0								18.000000 MI	Hz	
10.0		man	Phillipper and the Water Call Company	ๅๅฦฦๅ๛๛๚๛๛๛๚๛๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๛๛๛๛๛๛๛๛๛	mun			Auto Man		
0.00		(<u>\</u>			Freq Offset		
-10.0								0 Hz		
-20.0										
	topp the spectrum days tool				han	*****	and the second states in the			
-40.0										
-50.0										
-60.0										
Center 2.59302			Video BW 8.0000 MH	lz*			Span 180 MHz			
Res BW 1.8000 2 Metrics	MHZ T					Sweep 1.00	ms (1001 pts)			
2 Metrics										
				Measure Trace	Trace 1					
	Occupied Bandwidth 87,674 MI	Hz		Total Power		25.3 dBm				
	Transmit Freq Error	-252.44 kHz		% of OBW Powe	r	99.00 %				
	x dB Bandwidth	92.08 MHz		x dB		-26.00 dB				Local
ר ד	Dec 20, 8:13:16	2023 PM								


Plot 7-139. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 64-QAM - Full RB)


Plot 7-140. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 96 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 86 of 572
	·	·	V2.2 09/07/2023

Plot 7-141. Occupied Bandwidth Plot (NR Band n41 - 100MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-142. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM QPSK - Full RB)

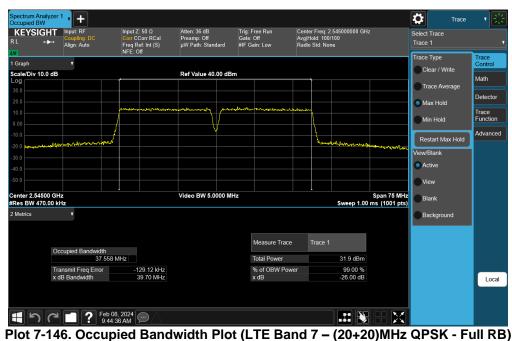
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 67 01 572
			V2.2 09/07/2023

EYSIGH	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg F	er Freq: 2.593 Hold: 10/10 5 Std: None	3020000 GH:			equency 0000 GHz	Settings
raph	v								Span 200.00 N	Hz	
le/Div 10.0 (B		Ref Value 30.00 dB	Bm					CF Step		
					_				20.0000	0 MHz	
o o		an a	and we have been a presented as	กุ-เมาะไปสู่ร้างสุ ₁ 14 ₁ /สู่ให้สำ _ร ายุค. _เ ม่					Auto Man		
0									Freq Offs	et	
0									0 Hz		
0 marine and a second	and the second	ardb ¹			_	horner	فرسطهم الكرارياسه	monume			
0											
ter 2.5930 G BW 1.8000			Video BW 8.0000 M	Hz*				Span 200 MHz ms (1001 pts)			
etrics	T						weep 1.00				
				Measure Trac		Trace 1					
	Occupied Bandwidth			measure mac	e	Trace 1					
		83 MHz		Total Power			25.7 dBm				
	Transmit Freq Error x dB Bandwidth	-267.76 kHz 102.2 MHz		% of OBW Po x dB	wer		99.00 % -26.00 dB				Loca
											Eoca

Plot 7-143. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 16-QAM - Full RB)

Plot 7-144. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 89 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 88 of 572
	-	•	V2.2 09/07/2023


Graph Span Cale/Div 10.0 dB Ref Value 30.00 dBm Object Profession Object	Settings
000000000000000000000000000000000000	
Auto Auto	
Man Freq Offset 0 0 0 0 0 0 0 0 0 0 0 0 0	
Provide and width Pransmit Freq Carlset Press Pr	
Occupied Bandwidth 97.449 MHz Measure Trace 100 Transmit Freq Error -157.26 kHz Weasure 96 of OBW Power 99.00 %	
Occupied Bandwidth 97.449 MHz Measure Trace 102 Transmit Free Error -157.26 kHz	
Occupied Bandwidth 97 449 MHz Video BW 8.0000 MHz* Span 200 MHz Sweep 1.00 ms (1001 pts) Occupied Bandwidth 97 449 MHz Measure Trace Trace 1 Transmit Freq Error -157 26 kHz % of OBW Power 99 00 %	
Iter 2 5930 GHz Span 200 MHz BW 1.8000 MHz Sweep 1.00 ms (1001 pts) etrics Occupied Bandwidth 97.449 MHz Total Power 22.1 dBm Transmit Freq Error -157.26 kHz % of OBW Power 99.00 %	
s BW 1.8000 MHz Sweep 1.00 ms (1001 pts) letrics	
s BW 1.8000 MHz Sweep 1.00 ms (1001 pts) letrics	
Occupied Bandwidth 97,449 MHz Total Power 22.1 dBm Transmit Freq Error -157.26 kHz % of OBW Power 99.00 %	
Occupied Bandwidth Total Power 22.1 dBm Transmit Freq Error -157.26 kHz % of OBW Power 99.00 %	
97.449 MHz Total Power 22.1 dBm Transmit Freq Error -157.26 kHz % of OBW Power 99.00 %	
x dB Bandwidth 102.2 MHz x dB -26.00 dB	
	Loca

Plot 7-145. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 69 01 572
			1/2 2 00/07/2022

ULCA - LTE Band 7

Plot 7-147. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 90 01 572
		•	1/2 2 09/07/2023

KEYSIGH └ →	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 36 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 2.545000000 GHz Avg Hold: 100/100 Radio Std: None	Select Trace Trace 1	
Graph	•					Trace Type	Trace Control
ale/Div 10.0	dB	_	Ref Value 40.00 dB	m		Clear / Write	Math
0.0						Trace Average	
						Max Hold	Detecto
		famintom	most-som prove	·····	mm		Trace
		/	\/			Min Hold	Functio
		1	Y			Restart Max Hold	Advanc
0 phanometry 0.	and approximates for the				many Americanstrander	View/Blank	
						 Active 	
						View	
nter 2.54500 es BW 470.0		•	Video BW 5.0000 M	Hz	Spar Sweep 1.00 ms (1	001 pts)	
letrics	v					Background	
				Measure Trace	e Trace 1		
	Occupied Bandwidth 37,566	MHZ		Total Power	31.6 dBm		
	Transmit Freq Error	-114.12 kHz		% of OBW Pow			
	x dB Bandwidth	39.60 MHz		x dB	-26.00 dB		Loc

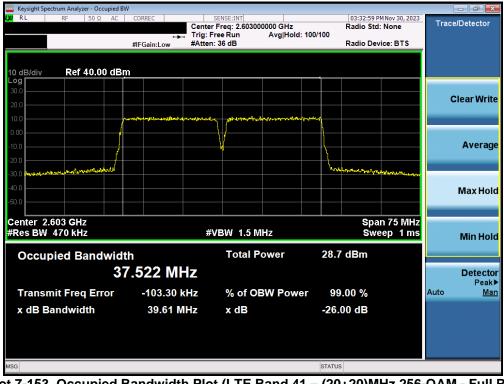
Plot 7-148. Occupied Bandwidth Plot (LTE Band 7 – (20+20)MHz 64-QAM - Full RB)

Plot 7-149. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 256-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 01 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 91 of 572
	·	•	V2.2 09/07/2023

ULCA - LTE Band 41

Plot 7-150. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz QPSK - Full RB)


Plot 7-151. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 92 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 92 01 572
			V2.2 09/07/2023

RL RF 50 Ω A	AC CORREC Center Trig:	SENSE:INT er Freq: 2.603000000 GHz Free Run Avg Hold:>		Ione Trace/Detector
	#IFGain:Low #Atte	n: 36 dB	Radio Devic	e: BTS
0 dB/div Ref 40.00 d	lBm			
og				
80.0				Clear Wri
0.0				
10.0	for the management of the	of proventient	mfu	
0.0		Y		Avera
20.0	r I I I I I I I I I I I I I I I I I I I			
and a second and the failed of			Introduce and a second	hourson
0.0				
10.0				Max Ho
0.0				
enter 2.603 GHz			0	75 841-
Res BW 470 kHz	-	≠VBW 1.5 MHz		75 MHz p 1 ms Min Ho
	<u> </u>		01100	p This Min Ho
Occupied Bandw	idth	Total Power	31.2 dBm	
	37.585 MHz			Detect
Transmit Freq Error	-161.48 kHz	% of OBW Powe	r 99.00 %	Auto M
x dB Bandwidth	39.55 MHz	x dB	-26.00 dB	
			STATUS	

Plot 7-152. Occupied Bandwidth Plot (LTE Band 41 – (20+20)MHz 64-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 256-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 95 01 572
			1/2 2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal

§2.1051, §27.53(a), §27.53(m)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

For LTE Band 30 and NR FR1 n30, the minimum permissible attenuation level of any spurious emission <2288MHz and >2365MHz is 70 + 10 log10(P[Watts]).

For LTE Bands 7, 41, and NR FR1 Band n41 the minimum permissible, n41 the minimum permissible attenuation level of any spurious emission is 55 + 10log₁₀(*P*[*Watts*]).

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

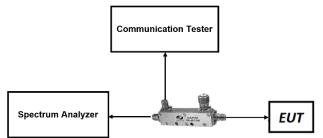


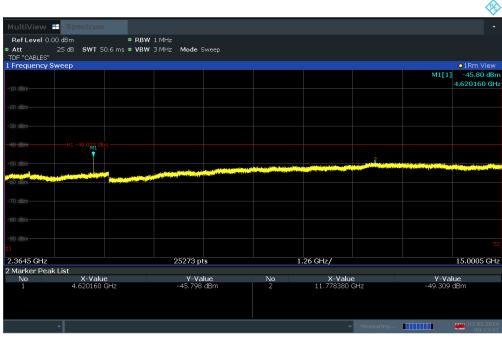
Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 94 01 572
			V2.2 09/07/2023

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 3. Uplink carrier aggregation for LTE Band 7 is only supported in this EUT while operating in Power Class 3.
- 4. Uplink carrier aggregation for LTE Band 41 is supported in this EUT while operating in Power Class 2 and Power Class 3.
- 5. Uplink carrier aggregation intra-band conducted spurious emissions were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device. The worst case (highest) powers were found while operating with QPSK modulation, as shown in the tables below, with both carriers set to transmit using 1RB.
- 6. Uplink carrier aggregation inter-band emission was investigated and found to not be the worst case.

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 95 01 572
			\/2 2 00/07/2022

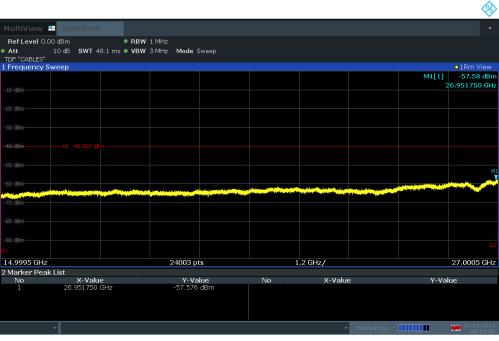


LTE Band 30

									
MultiView	Spectrum								+
Ref Level 20	.00 dBm	● RB₩	1 MHz						
• Att	20 dB SWT	4.52 ms 🗢 VBW	3 MHz Mode	Sweep					
TDF "CABLES" 1 Frequency S	ween								o1Rm View
	l cop							M1[1]	
									2.284750 GHz
10 dBm									
0 dBm									
O UBIII									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									M1
	and the state of the state	anticipation destruction to the second	معقبات سفي ماسيل س	lite and some second second	han a second a literature of selections	أستاطينا بالتصافيا بستناط	a and a later the second states	general expension of the second s	والمحمد المتحققة المحمد المحمد والم
A STATE OF STATE OF STATE OF STATE			and a local differentiation of the local difference				ويلديه بماين بلد والبالي قرري	A CALLED AND A CONTRACT OF A CALLED	A REAL PROPERTY AND A REAL
-70 dBm									
51									
29.5 MHz			4519 pt	s	22	25.9 MHz/			2.2885 GHz
2 Marker Peal									
No 1	X-Valu 2.284750 (e SHz	Y-Va -56.016	dBm	No	X-Valu	e	Y-Va	lue
	2.2017.001								
	*					~	Measuring		03.01.2024

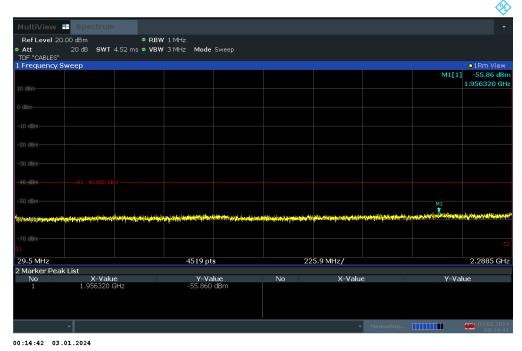
00:13:34 03.01.2024

Plot 7-154. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

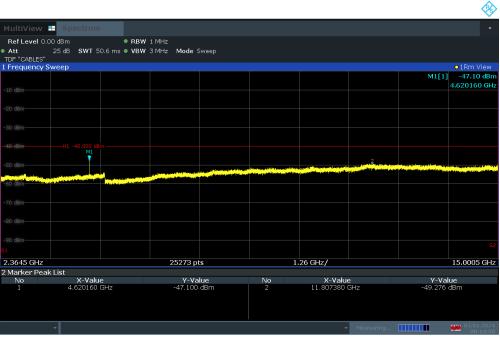


00:13:51 03.01.2024

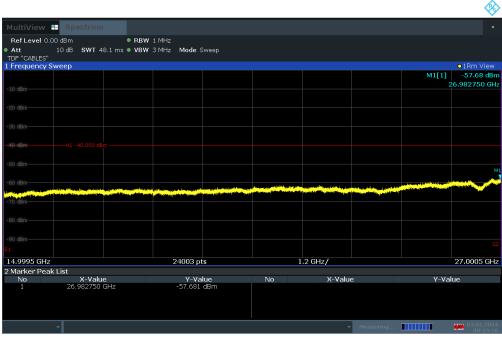
Plot 7-155. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 90 01 572
			V2.2 09/07/2023

00:14:08 03.01.2024


Plot 7-156. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-157. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 07 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 97 of 572
	-	·	V2.2 09/07/2023

00:14:59 03.01.2024

Plot 7-158. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

00:15:17 03.01.2024

Plot 7-159. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

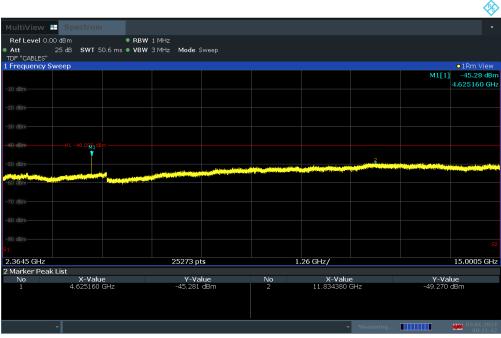
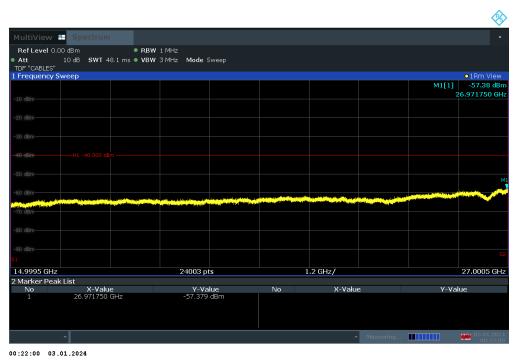

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 90 01 572
			V2.2 09/07/2023

									 Image: A start of the start of
	Spectrum								•
Ref Level 20	.00 dBm	● RBW	1 MHz						
Att	20 dB SWT -	4.52 ms 🗢 VBW	3 MHz Mode	Sweep					
TDF "CABLES" 1 Frequency S	woon								•1Rm View
T LEquency a	weep							M1[1]	
								MILLI	2.281750 GHz
10 dBm									21201730 0112
0 dBm									
-10 dBm									
-20 dBm									
100									
-30 dBm									
40-dBm									
-40 0011									
-50 dBm									
-50 UBII									M1
history and the state of the	مى بىرىيەن يەرىيەر يەرىيەر بىرىنىيەر	a de la circle de la	فالمواد والمتأوة فأخل فليهاد والمرتبة وال	والمساليعان فاستلوغ والمسأودية	and the set of the set of the second second	aladidada kalendari kada	in the second	lapapelanjaan distrigtedistikaasing vas	المتهارية فالإندارية بعليه فبالك
Contraction of the second			Test is a second second		1				
-70 dBm-									
S1									S2
00.51			1510			5.0.1.1.7			
29.5 MHz			4519 pt	s	22	5.9 MHz/			2.2885 GHz
2 Marker Peal No	K List X-Value	-	Y-Va	u o	No	X-Value		Y-Va	
1	2.281750 0	- iHz	-55.566	dBm	NO	X-¥alue	-	1-¥d	lue
	*					~	Measuring		03.01.2024
									00:21:25

00:21:26 03.01.2024

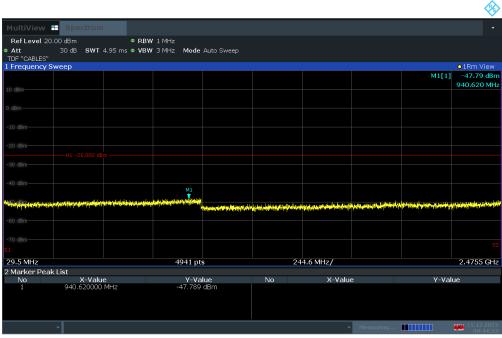
Plot 7-160. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - High Channel)



00:21:43 03.01.2024

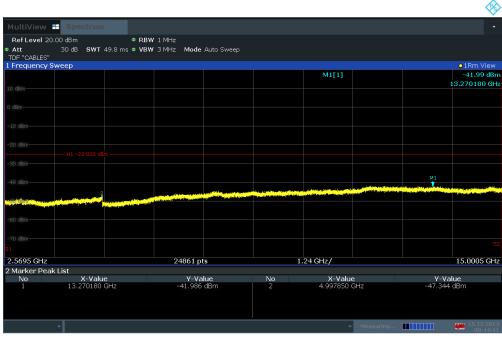
Plot 7-161. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 99 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 99 01 572
			V2.2 09/07/2023



Plot 7-162. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 100 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 100 01 572
			1/2 2 00/07/2022



LTE Band 7

00:44:23 15.12.2023

Plot 7-163. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

00:44:41 15.12.2023

Plot 7-164. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

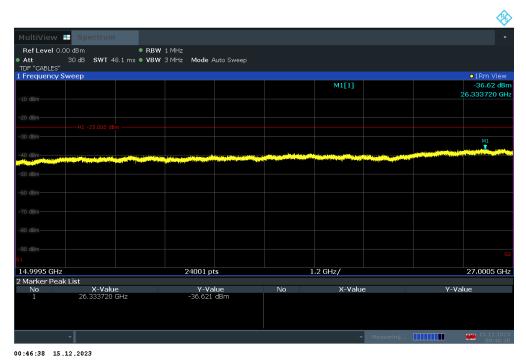
FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 101 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 101 01 572
			V2.2 09/07/2023

							I
	- Spectrum						•
Ref Level 0.	00 dBm • R	BW 1 MHz					
Att	30 dB SWT 48.1 ms 🔍 V	BW 3 MHz Mode Auto Sweep					
TDF "CABLES" 1 Frequency S	Sween						•1Rm View
Trequency	эмсер					M1[1]	-36.25 dBm
							5.895700 GHz
-10 dBm							
-20 dBm							
-30 dBm							M1
-40 dBm							
utilities and a state of the second			Windows a beautiful and a second	A State of the second		and the second difference of the second s	
-50 dBm							
SO GBIT							
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm							
51							52
14.9995 GHz		24001 pts		1.2 GHz/			27.0005 GHz
2 Marker Pea							
No	X-Value	Y-Value	No	X-Value		Y-Val	ue
	25.895700 GHz	-36.246 dBm					
							15 10 2022
	Ÿ			× 1	Measuring		15.12.2023 00:44:58

00:44:59 15.12.2023

Plot 7-165. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

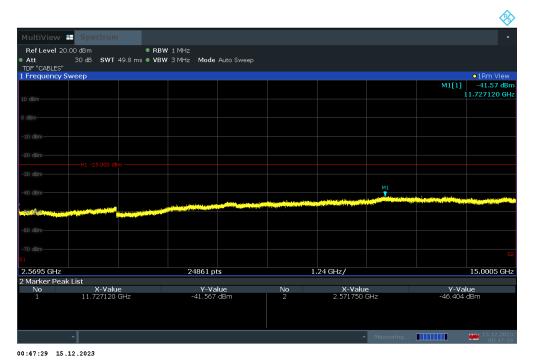
00:46:03 15.12.2023


Plot 7-166. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 102 01 572	
			V2.2 09/07/2023	

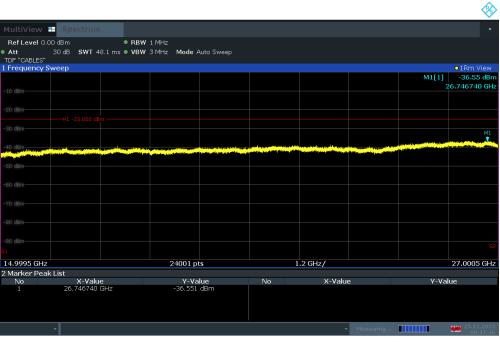
Plot 7-167. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-168. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 103 01 572	
			V2.2 09/07/2023	

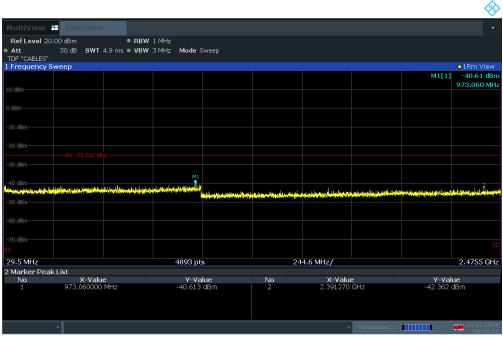
									- 📀
MultiView	Spectrum								•
Ref Level 20	.00 dBm	● RB₩	1 MHz						
Att	30 dB SWT	4.95 ms 🗢 VBW	3 MHz Mode	Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								• 1Rm View -47.91 dBm
								M1[1]	-47.91 dBm 967.440 MHz
10 dBm									967.440 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
			· · · · ·						2
A state of the second	han the second	the second s	of the second second second second second	ومعادي ورود ليرفونون والكرار فروا	A Party and the state of the second state of the second state of the second state of the second state of the se	in the dependence of the set of the	and the state of the second	terrene en	etiliyyydiae frifaetae araa a
				of the second	n de la de altra a				
-60 dBm									
-70 dBm									
-70 usm-									S2
51									
29.5 MHz			4941 pt	S	24	7.1 MHz/			2.5005 GHz
2 Marker Peal									
No 1	X-Valu 967.440000		Y-Va 47.908-		No 2	X-Value 2.453240		Y-Val -49.238	
	967.440000	MHZ	-47.906	UDIII		2.455240	GHZ	-49.230	ubiii
									15 12 2023
	×					~	Measuring		15.12.2023 00:47:11

00:47:11 15.12.2023


Plot 7-169. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

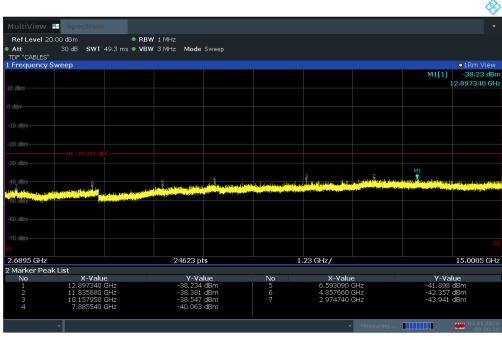
Plot 7-170. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 104 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 104 01 572	
			V2.2 09/07/2023	


00:47:46 15.12.2023

Plot 7-171. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

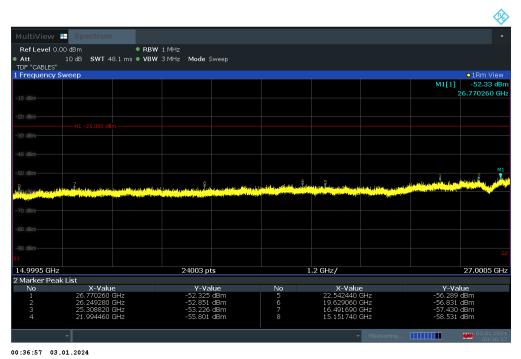
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 105 01 572	
	•	·	V2.2 09/07/2023	



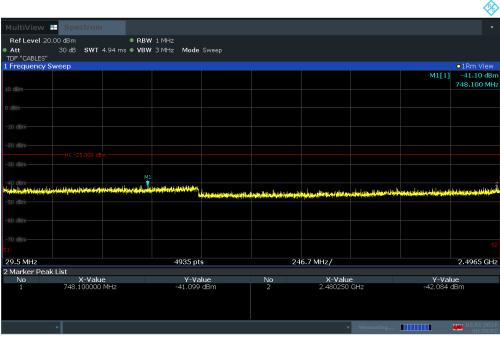
LTE Band 41

00:36:21 03.01.2024

Plot 7-172. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

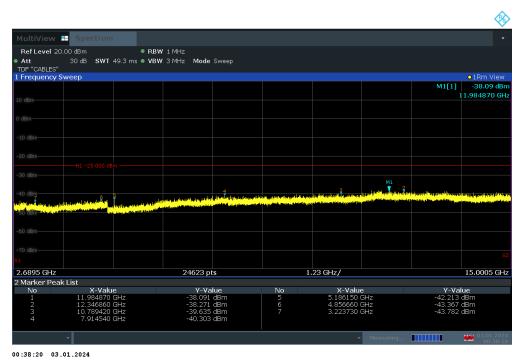


00:36:39 03.01.2024

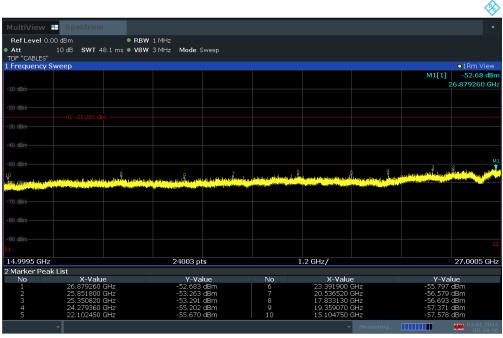

Plot 7-173. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 100 01 572	
			V2.2 09/07/2023	

Plot 7-174. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

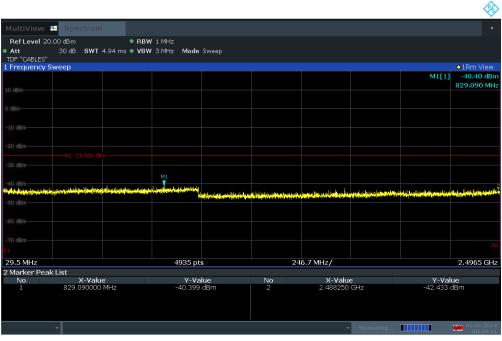


00:38:02 03.01.2024


Plot 7-175. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

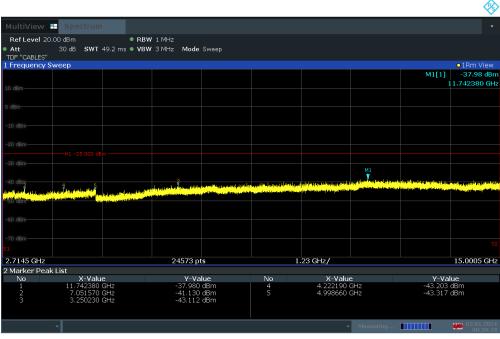
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 107 01 572
			V2.2 09/07/2023

Plot 7-176. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)



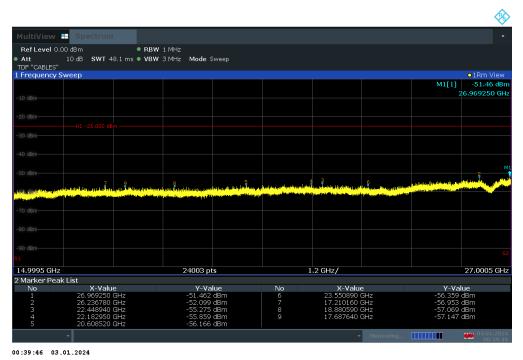
00:38:38 03.01.2024

Plot 7-177. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 108 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 100 01 372	
			V2.2 09/07/2023	

00:39:11 03.01.2024

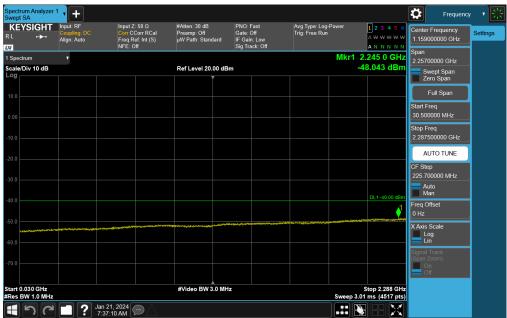
Plot 7-178. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)



00:39:29 03.01.2024

Plot 7-179. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 109 01 572	
			V2.2 09/07/2023	

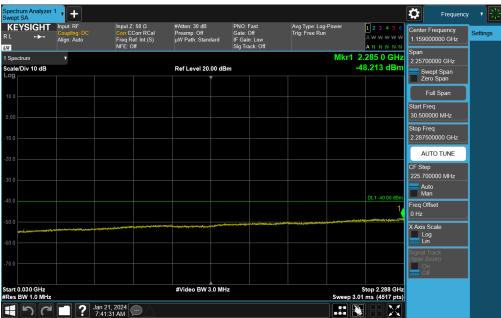


Plot 7-180. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 110 01 572
			1/2 2 00/07/2022

NR Band n30

Plot 7-181. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-182. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

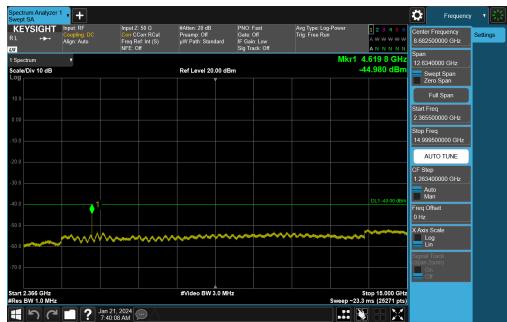
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 111 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 111 of 572
	•	·	V2.2 09/07/2023

Plot 7-183. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

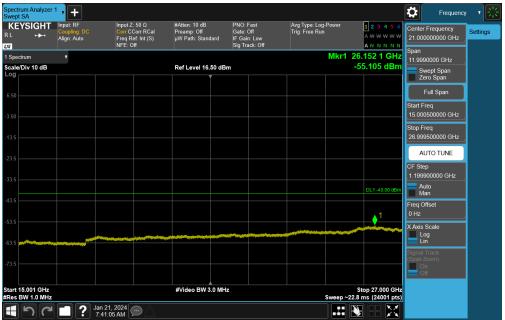
Plot 7-184. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 112 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 112 01 572
		•	V2.2 09/07/2023

Plot 7-185. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

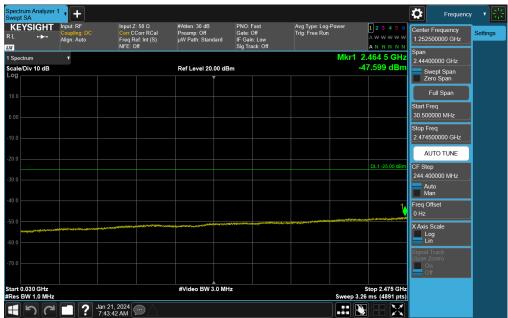

Plot 7-186. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 113 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 113 01 572
			V2.2 09/07/2023

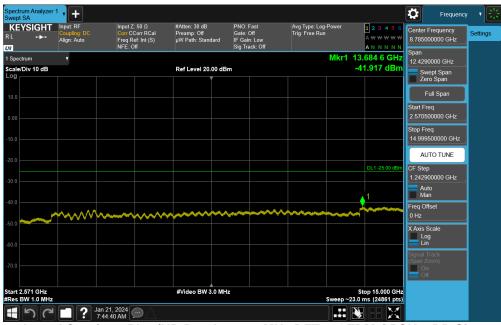

Plot 7-187. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-188. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

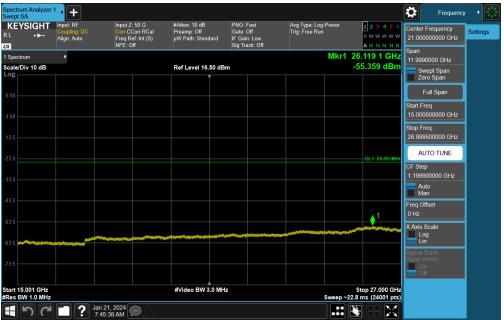
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 114 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 114 of 572
	·	·	V2.2 09/07/2023



Plot 7-189. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 115 of 572	
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 115 01 572	
			V2.2 09/07/2023	

NR Band n7


Plot 7-190. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-191. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 116 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 116 of 572
	•	·	V2.2 09/07/2023


Plot 7-192. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

ectrum Analyzer wept SA							Frequency	y T
KEYSIGHT └ +►+	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off µW Path: Standard	PNO:Fast Gate:Off IF Gain:Low Sig Track:Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 1.252500000 GHz	Setting
7 Spectrum	•	NI L. OII		Sig Hack. Off	Mk	1 2.473 5 GHz	Span	1
cale/Div 10 dB			Ref Level 20.00 dB	m		-47.236 dBm	2.44400000 GHz	1
og			Ť				Swept Span Zero Span	
							Full Span	
							Start Freq 30.500000 MHz	
							Stop Freq 2.474500000 GHz	
).0							AUTO TUNE	
).0						DL1-25.00 dBm	CF Step 244.400000 MHz	
).0							Auto Man	
						1	Freq Offset 0 Hz	
.0 							X Axis Scale Log Lin	
							Signal Track (Span Zoom) On	
							Off	
es BW 1.0 MHz			#Video BW 3.0 MH	z	Swee	Stop 2.475 GHz p 3.26 ms (4891 pts)		
1 67	Jan ? Jan 7:4	21, 2024						

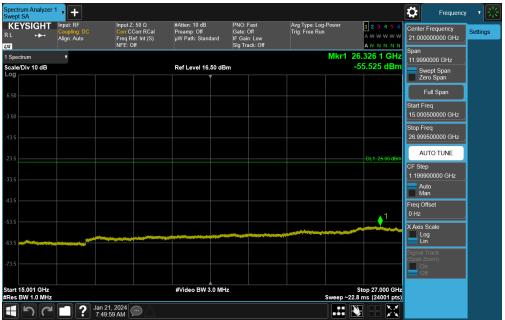
Plot 7-193. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 117 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 117 of 572
	· · · · ·	·	V2.2 09/07/2023


Plot 7-194. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

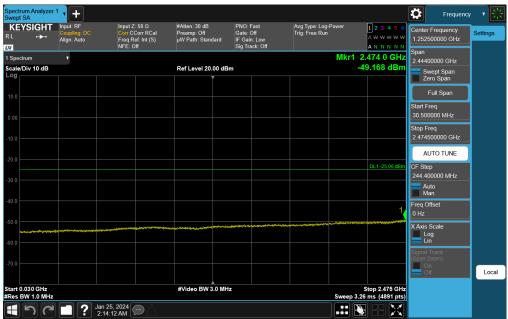
Plot 7-195. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 118 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 110 01 572
	-		V2.2 09/07/2023


Plot 7-196. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-197. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 110 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 119 of 572
	•	·	V2.2 09/07/2023



Plot 7-198. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

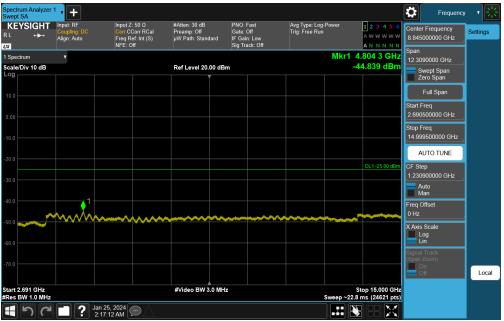
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 120 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 120 01 572
			V2.2 09/07/2023

NR Band n41

Plot 7-199. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

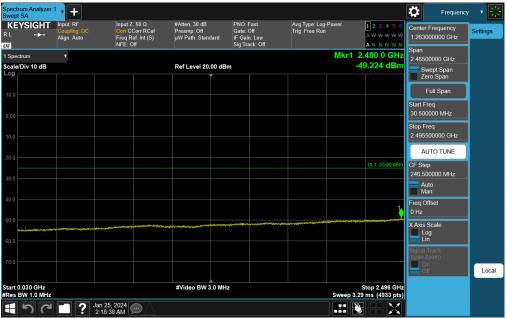
Plot 7-200. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 121 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 121 01 572
L			V2.2 09/07/2023


Plot 7-201. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

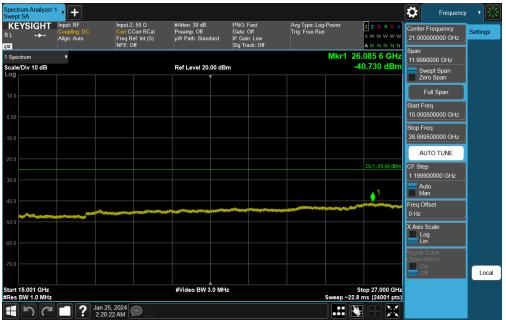
Plot 7-202. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 122 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 122 01 572
		·	V2.2 09/07/2023


Plot 7-203. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-204. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 123 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 123 01 572
L			V2.2 09/07/2023


Plot 7-205. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-206. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 104 of 570
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Page 124 of 572
	-		V2.2 09/07/2023

Plot 7-207. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)


FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 125 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 125 01 572
			V2.2 09/07/2023

ULCA - LTE Band 7

	ectrum Analyz	er - Swept S	SA										
DA CO	RF	50 Ω)		ORREC PNO: Fa	st ++-	Trig: Fre		#Avg Typ	e: RMS	TRAC	M Dec 01, 2023 CE 1 2 3 4 5 6 DE A WWWWW	Fr	equency
PASS	Ref 20	.00 dB		FGain:Lo	DW	Atten: 3	0 dB		Mk	(r1 2.42	5 0 GHz 20 dBm		Auto Tune
10.0 Trac	e 1 Pass												Center Freq 2500000 GHz
-10.0												30	Start Freq .000000 MHz
-20.0												2.47	Stop Freq
-40.0												244 <u>Auto</u>	CF Step 500000 MHz. Mar
-60.0	and a state of the second s											1	Freq Offset 0 Hz
-70.0												Log	Scale Type Lin
Start 0.03 #Res BW				#	VBW	3.0 MH;	z		Sweep 3	Stop 2 .260 ms (.475 GHz (4891 pts)	LUg	
MSG									STATUS	3			

Plot 7-208. Conducted Spurious Plot (ULCA LTE 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-209. Conducted Spurious Plot (ULCA LTE 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 126 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 120 01 572
			V2.2 09/07/2023

Plot 7-210. Conducted Spurious Plot (ULCA LTE 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

	pectrum Analyzer - Swept					- 6 -
RL	RF 50 Ω	AC CORREC	SENSE:INT	#Avg Type: RMS	07:47:41 AM Dec 01, 2023	Frequency
PASS		PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	witg type. this	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
0 dB/div	Ref 20.00 dE	3m		М	kr1 2.418 5 GHz -47.16 dBm	Auto Tur
og Trac	e 1 Pass					Center Fre
10.0						1.265000000 GH
0.00						
						Start Fre 30.000000 Mi
10.0						30.000000 Mi
20.0						Stop Fre
30.0						2.500000000 GH
40.0						CF Ste 247.000000 MI
					👌 👌	Auto Ma
50.0				حدوا المرجوعين فالمحمدة برت تتراجي سنة الملحان والمعتمدين وسيرد ومعيان		
						Freq Offs
60.0						. 01
70.0						
						Scale Typ
itart 0.03	30 GHz / 1.0 MHz	#\/E	W 3.0 MHz	Sween	Stop 2.500 GHz 3.293 ms (4941 pts)	Log <u>L</u>
SG		#VE	W 5.0 WI12	SWEEP	· · · ·	

Plot 7-211. Conducted Spurious Plot (ULCA LTE 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 572
1C2311270064-10-R1.BCG	10/1/2023 - 03/04/2024	Tablet Device	Fage 127 of 572
			V2.2 09/07/2023