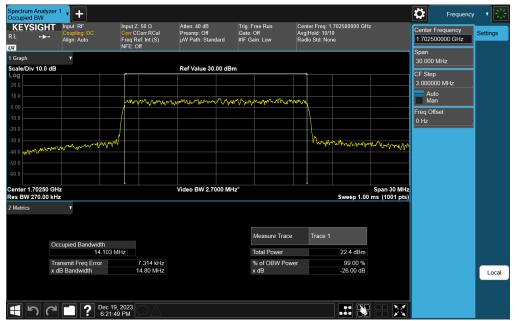


Plot 7-115. Occupied Bandwidth Plot (NR Band n70 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-116. Occupied Bandwidth Plot (NR Band n70 - 15MHz QPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 70 01 331
			V2.2 09/07/2023

đ	Align: Auto	Freq Ref: Int (S) NFE: Off	Preamp: Off µW Path: Standard	Gate: Off #IF Gain: Low	Avg Hol Radio S			Center Frequency 1.702500000 GHz Span	Settings
Graph cale/Div 10.0 d	18		Ref Value 30.00 c	18m				30.000 MHz	
.og			Rei Value 30.00 C					CF Step 3.000000 MHz	
20.0								Auto	
		mmm	www.www.wwwwww	~ym/~p~~m~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm			Man Freg Offset	
20.0								0 Hz	
		, where the second seco				A CONCIANO NO.			
10.0 MM/M/M	Mar Marken	v ·				aha hanna	namana		
50.0									
enter 1.70250 es BW 270.00			Video BW 2.7000	MHz*		Sweep 1.00	Span 30 MHz ms (1001 pts)		
Metrics	۲								
				Measure Tra	ace Tr	ace 1			
	Occupied Bandwidth 14.166	6 MHz		Total Power	_	23.0 dBm			
	Transmit Freq Error x dB Bandwidth	10.061 kHz 14.83 MHz		% of OBW F	Power	99.00 % -26.00 dB			
	X dB Bandwidth	14.83 MHz		x dB		-26.00 dB			Local

Plot 7-117. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-118. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 77 of 251
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 77 of 351
			V2 2 09/07/2023

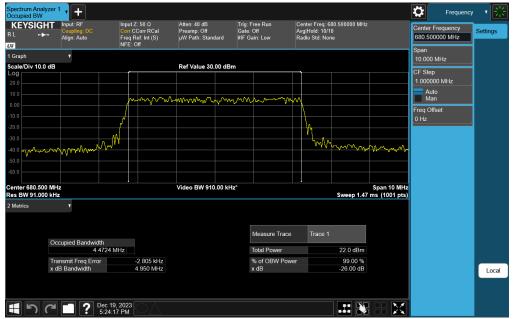
KEYSIGH RL +++ M	Coupling: DC		Corr RCal ef: Int (S)	Atten: 40 dB Preamp: Off μW Path: Stan		Trig: Free Run Gate: Off #IF Gain: Low	Avg	iter Freq: 1 Hold: 10/ lio Std: No			Center Frequency 1.702500000 GHz Span	Settings
Graph cale/Div 10.0 d	Y			Ref Value 30	00.45						Span 30.000 MHz	
Log				Ref value 30	.00 abm						CF Step 3.000000 MHz	
20.0		کک									Auto	-
		mor	you warne	mann	man	manning	low y				Man	
		\parallel									Freq Offset 0 Hz	
-20.0												
-40.0 Arean	multiment	<i>~</i> ~						and and	Ang manufactures	maddle wall		
-50.0		<u>ک</u> ک										
		+		Video BW 2.7	000 MHz*			•	Sween 1 00	Span 30 MHz		
Res BW 270.00				Video BW 2.7	000 MHz*				Sweep 1.00	Span 30 MHz ms (1001 pts)		
Res BW 270.00	kHz			Video BW 2.7	000 MHz*			•	Sweep 1.00			
Res BW 270.00 H 2 Metrics	kHz T			Video BW 2.7	000 MHz*	Measure Tra	ce	Trace 1	Sweep 1.00			
Res BW 270.00 H 2 Metrics	kHz	MHz		Video BW 2.7	000 MHz*		ce	Trace 1	Sweep 1.00			
Res BW 270.00 k	kHz V Occupied Bandwidth 14.128 Transmit Freq Error	-22	2.796 kHz	Video BW 2.7	000 MHz*	Measure Tra Total Power % of OBW P		Trace 1	19.2 dBm 99.00 %			
	kHz V Occupied Bandwidth 14.128	-22	2.796 kHz 14.82 MHz	Video BW 2.7	000 MHz*	Measure Tra		Trace 1	19.2 dBm			Local
Res BW 270.00 k	kHz V Occupied Bandwidth 14.128 Transmit Freq Error	-22		Video BW 2.7	000 MH2*	Measure Tra Total Power % of OBW P		Trace 1	19.2 dBm 99.00 %			Local

Plot 7-119. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 76 01 551
			1/2 2 00/07/2022

NR Band n71


Plot 7-120. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-121. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM QPSK - Full RB)

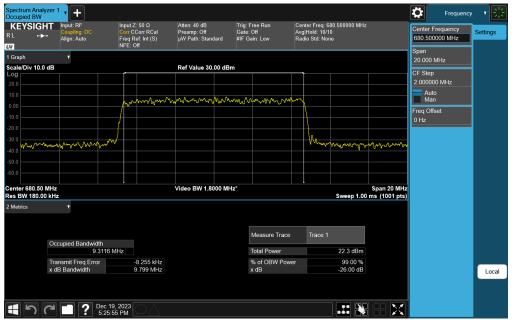
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 79 01 351
			V2 2 09/07/2023

Plot 7-122. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s--OFDM 16-QAM - Full RB)

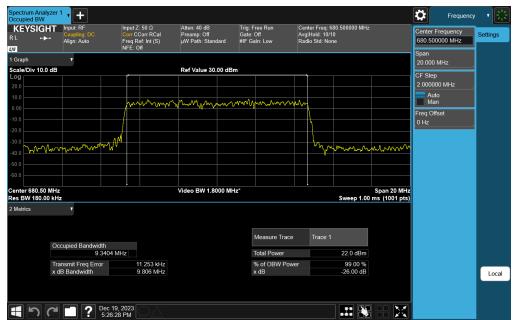

Plot 7-123. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 64-QAM - Full RB)

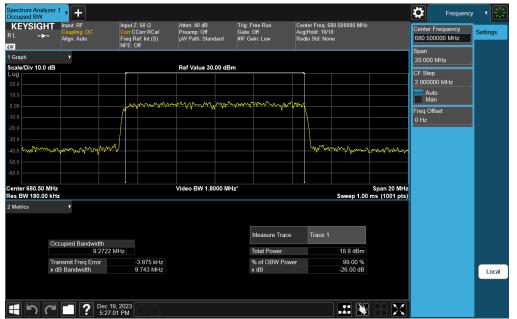
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 80 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 60 01 351
			V2 2 09/07/2023

Plot 7-124. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 256-QAM - Full RB)

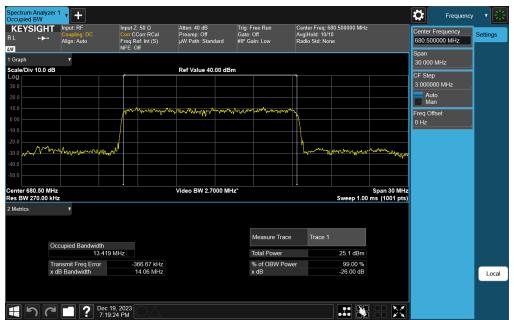

Plot 7-125. Occupied Bandwidth Plot (NR Band n71 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage of 01 351
			V2 2 09/07/2023


Plot 7-126. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-127. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 16-QAM - Full RB)

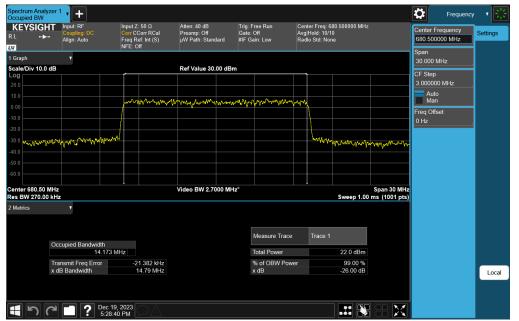
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 251	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 82 of 351	
		-	V2 2 09/07/2023	


Plot 7-128. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 64-QAM - Full RB)

Plot 7-129. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 256-QAM - Full RB)

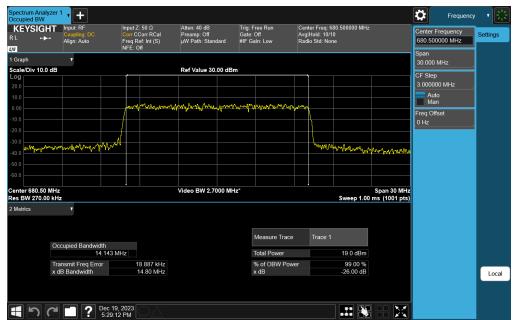
FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 83 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 65 01 551
			V2 2 09/07/2023

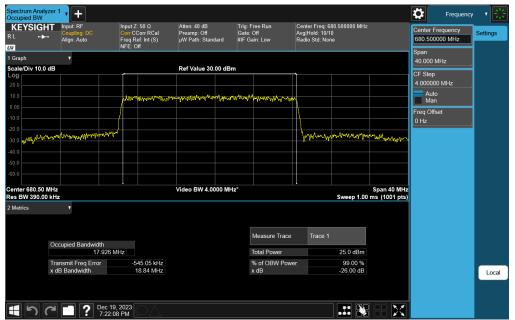
Plot 7-130. Occupied Bandwidth Plot (NR Band n71 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-131. Occupied Bandwidth Plot (NR Band n71 - 15MHz QPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 64 01 551
			V2.2 09/07/2023

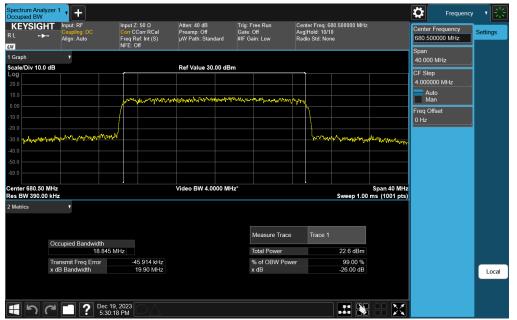
KEYSIGI ∟ → 1	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Gate	Free Run e: Off Gain: Low	Avg	ter Freq: 6 Hold: 10/1 lio Std: Nor			Center Fre 680.5000		Settings
Graph cale/Div 10.0	T D dB	- Fr	Ref Value 30.0	0 dBm						Span 30.000 M	Hz	
				o abiii						CF Step 3.000000	MHz	
		wanny	mante	worker What	Mannon	MMM				Auto Man		
00										Freq Offse 0 Hz	ət	
0.0 0.0 <mark>mp^ar^a</mark>	marker Josh and the second	\checkmark					- Norro	Marth March	mmontory			
nter 680.50			Video BW 2.700	00 MHz*					Span 30 MHz			
s BW 270.0 /letrics	10 kHz T							Sweep 1.00	ms (1001 pts)			
					Measure Tra	се	Trace 1					
	Occupied Bandwidth 14.140	MHz			Total Power			22.3 dBm				
	Transmit Freq Error x dB Bandwidth	5.635 kHz 14.93 MHz			% of OBW Pe x dB	ower		99.00 % -26.00 dB				Loca


Plot 7-132. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 16-QAM - Full RB)


Plot 7-133. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 85 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 65 01 551
			V2 2 09/07/2023

Plot 7-134. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 256-QAM - Full RB)


Plot 7-135. Occupied Bandwidth Plot (NR Band n71 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage of 01 351
			V2.2 09/07/2023

KEYSIGH RL +++ M	T Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off rd #IF Gain: Low	Avg	iter Freq: 6 Hold: 10/1 lio Std: No			Center Freq 680.50000		Settings
Graph cale/Div 10.0 d	Y		Ref Value 30.0	0 -18					40.000 MH	z	
og			Rer value 30.0						CF Step 4.000000 M	1H7	
10.0									Auto		
		Managerer	arran hoy hallow the	naan minananana	ht work and	1			Man Freq Offset		
0.0									0 Hz		
	wayangangana					have	Manakanaka	www.www.			
0.0											
	1 -										
enter 680.50 M es BW 390.00 I			Video BW 4.000	0 MHz [~]			Sweep 1.00	Span 40 MHz ms (1001 pts)			
			Video BW 4.000				Sweep 1.00				
es BW 390.00 H Metrics	v V Occupied Bandwidth		Video BW 4.000	Measur		Trace 1					
es BW 390.00 H Metrics	KHz Coccupied Bandwidth 18.969 M		Video BW 4.000	Measur Total Pc	ower	Trace 1	22.5 dBm				
es BW 390.00 H Metrics	v V Occupied Bandwidth	Hz -14.162 KHz 19.91 MHz	Video BW 4.000	Measur Total Pc		Trace 1					Local
es BW 390.00 H Metrics	KHZ V Occupied Bandwidth 18.969 M Transmit Freq Error	-14.162 kHz	Video BW 4.000	Measur Total Pc % of OE	ower	Trace 1	22.5 dBm 99.00 %				Local

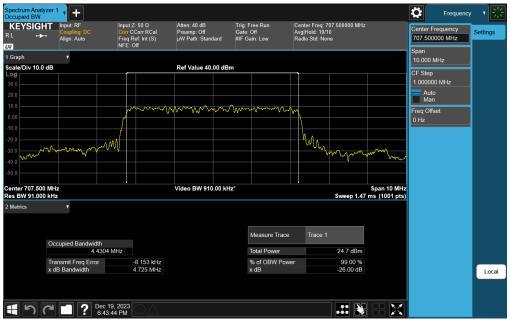
Plot 7-136. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM QPSK - Full RB)


Plot 7-137. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 87 01 351
	•		V2 2 09/07/2023

KEYSIGH	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg	ter Freq: 6 Hold: 10/1 lio Std: No			Center Frequ 680.500000 Span		Settings
Graph cale/Div 10.0	₹ HB		Ref Value 30.00 dE	in in					3pan 40.000 MHz	2	
									CF Step 4.000000 M	IHz	
		Anna la suis sensiti Anna	www.hur	Warden willing to	Anthrope				Auto Man		
				and the second s					Freq Offset 0 Hz		
0.0 0.0 <mark></mark>	wether war ward and a start and a start and a start and a start a start and a start a start and a start a start	\$				hay	h-wayah-a-geg	harananana			
D.0											
0.0 enter 680.50 M es BW 390.00			Video BW 4.0000 M	Hz*			S	Span 40 MHz ms (1001 pts)			
Metrics	¥						Sweep 1.00				
	Occupied Bandwidth			Measure Tra	ice	Trace 1					
	18.990 I	MHz		Total Power			22.0 dBm				
	Transmit Freq Error x dB Bandwidth	-56.768 kHz 19.93 MHz		% of OBW P x dB	ower		99.00 % -26.00 dB				Loca
	- Doo 10	9, 2023									

Plot 7-138. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 64-QAM - Full RB)



Plot 7-139. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 88 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage of 01 331
			V2 2 09/07/2023

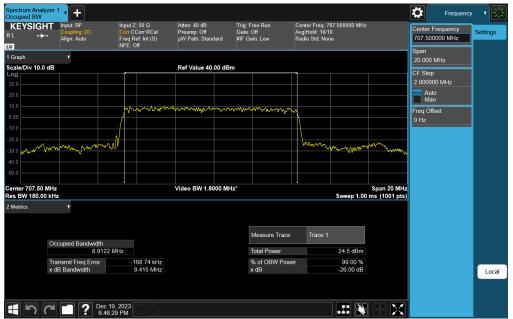
NR Band n12

Plot 7-140. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-141. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM QPSK - Full RB)

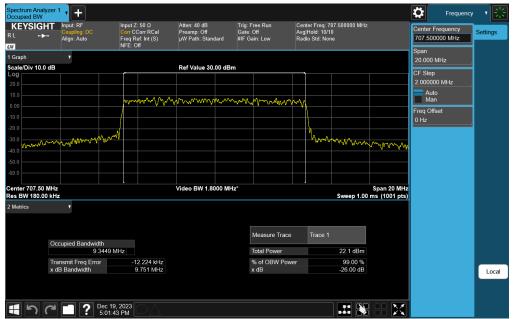
FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 09 01 331
			V2.2 09/07/2023

Plot 7-142. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 16-QAM - Full RB)


Plot 7-143. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 90 01 331
,			\/2 2 09/07/2023

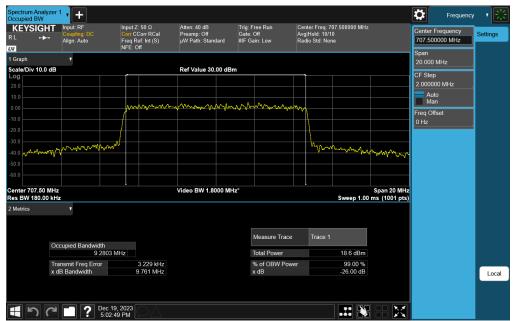
Plot 7-144. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 256-QAM - Full RB)


Plot 7-145. Occupied Bandwidth Plot (NR Band n12 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 91 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 91 01 351
	•		V2 2 09/07/2023

KEYSIGHT ⊥ +→+ ₪	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off d #IF Gain: Low	Avg	iter Freq: 70 Hold: 10/10 lio Std: Non			Center Frequency 707.500000 MHz	Settings
Graph ale/Div 10.0 dB	T		Ref Value 30.00	dBm					Span 20.000 MHz	
									CF Step 2.000000 MHz	
.0									Auto	
		monort	mmynymm	www.mr	v~~~~				Man Freq Offset	-
.0									0 Hz	
.0	,	4				Www	100			
.0							www.	manny		
.0										
nter 707.50 MHz s BW 180.00 kH			Video BW 1.8000	MHz*			Sweep 1.00	Span 20 MHz ms (1001 pts)		
letrics	T									
	. 15 1 14			Measure Tr	ace	Trace 1				
0	cupied Bandwidth 9.2605 N	MHz		Total Power			22.1 dBm			
Oc		14.275 kHz		% of OBW F x dB	Power		99.00 % -26.00 dB			Loca
Tra	ansmit Freq Error IB Bandwidth	9.723 MHz								LUCA
Tra		9.723 MHz								
Tra		9.723 MHz								

Plot 7-146. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-147. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 92 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 92 01 551
			\/2 2 09/07/2023

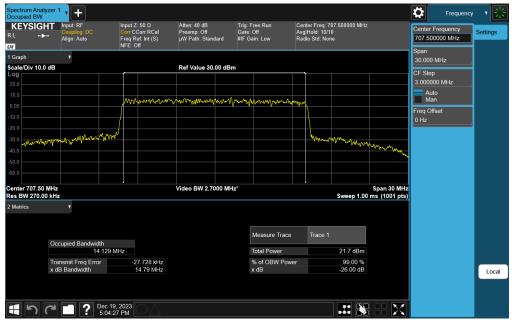
KEYSIGH	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg	iter Freq: 7 Hold: 10/1 lio Std: Nor			Center Fr 707.500 Span		Settings
Graph cale/Div 10.0	T		Ref Value 30.00 dE						20.000 N	1Hz	
			Ker value 30.00 dE						CF Step 2.00000) MH z] ,
									Auto Man		
				~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~				Freq Offs 0 Hz		
-20.0	man and a starter	\mathcal{A}				hun					
-40.0							· · · · · · · · · · · · · · · · · · ·	mm			
Center 707.50 Res BW 180.0			Video BW 1.8000 M	Hz*			Sweep 1.00	Span 20 MHz ms (1001 pts)			
2 Metrics	۲										
				Measure Tra	ice	Trace 1					
		MHz		Total Power			21.6 dBm				
	Occupied Bandwidth 9.3077			% of OBW P	ower		99.00 % -26.00 dB				
		-20.335 kHz 9.876 MHz		x dB			-26.00 dB				Local
	9.3077 Transmit Freq Error			x dB			-26.00 dB				Local

Plot 7-148. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 64-QAM - Full RB)

Plot 7-149. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 93 01 351
			\/2 2 09/07/2023

Plot 7-150. Occupied Bandwidth Plot (NR Band n12 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-151. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 94 01 351
		·	V2 2 09/07/2023

KEYSIGH	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off ard #IF Gain: Low	Avg	ter Freq: 707.50 Hold: 10/10 lio Std: None	0000 MHz	Center Frequence 707.500000 MH	
Graph cale/Div 10.0 c	Y		Ref Value 30.0					30.000 MHz	
og			Ref Value 30.0					CF Step 3.000000 MHz	
20.0								Auto	
		maynam	manyaman	www.www.	wmap			Man	
								Freq Offset 0 Hz	
	waynapage war	N							
30.0 40.0	and hand be dis a strend of						montantinant		
							••	M	
Center 707.50 N			Video BW 2.700	00 MHz*			Span 30 N		
Res BW 270.00 2 Metrics	kHz v					Sv	veep 1.00 ms (1001 p	ots)	
- MIGUIGO									
				Measure Tr	race	Trace 1			
				Total Power	r	2	2.1 dBm		
	Occupied Bandwidth 14.101 N	ИНz					99.00 %		
		MHz -35.137 kHz 14.82 MHz		% of OBW I x dB	Power		26.00 dB		Local
	14.101 M Transmit Freq Error	-35.137 kHz			Power				Local

Plot 7-152. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 95 01 351
			V2 2 09/07/2023

Plot 7-154. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 90 01 551
	•	·	V2.2 09/07/2023

WCDMA AWS

Plot 7-155. Occupied Bandwidth Plot (WCDMA, Ch. 1413)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 97 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 97 01 551
<u></u>	•	·	V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §27.53

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 18GHz (separated into at least two plots per channel)
- 2. RBW ≥ 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

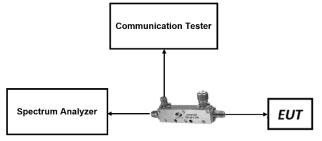
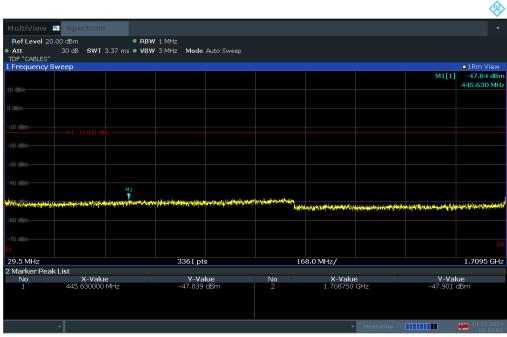


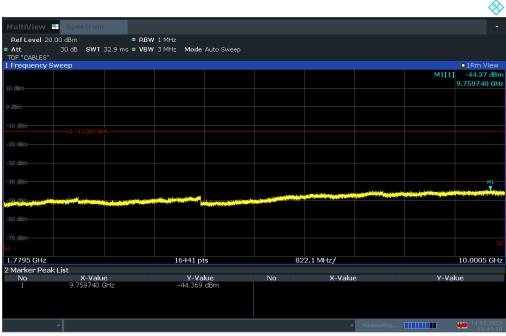
Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	123 - 3/19/2024 Tablet Device	
	·		V2.2 09/07/2023


Test Notes

- Per Part 27, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 99 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 99 01 551
			V2.2 09/07/2023

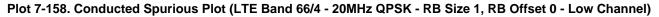


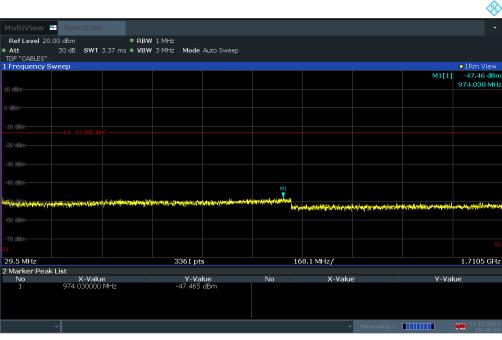
LTE Band 66/4

19:47:03 14.12.2023

Plot 7-156. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

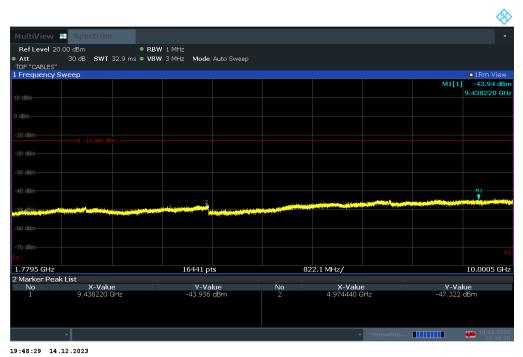
19:47:20 14.12.2023


Plot 7-157. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

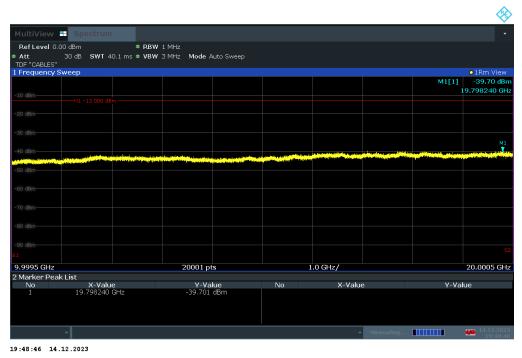

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 100 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 100 01 331
			V2.2 09/07/2023

									(*)
MultiView	- Spectrum								•
Ref Level 0.	00 dBm	RBW 1	MHz						
Att	30 dB SWT 40.1	ms • VBW 3	MHz Mode A	uto Sweep					
TDF "CABLES"									
1 Frequency	Sweep								• 1Rm View -40.02 dBm
								M1[1]	-40.02 aBm 17.735140 GHz
-10 dBm-									17.735140 GHZ
-20 dBm									
-30 dBm									
							M1		
-40 dBm	مسمعال ومسطاط للسطين	والمتحوية ويرود ومحمد الأرجاب والم	and the processing of the street	and the second	and the second state				
	and the second side of the secon	and the second se		and the second		All a			
-50 dBm									
60 JB									
-60 dBm									
-70 dBm-									
-70 ubm									
-80 dBm									
00 0011									
-90 dBm									
S 1									
9.9995 GHz			00001						
2 Marker Pea	1.1.1		20001 pt	.5		1.0 GHz/			20.0005 GHz
Z Marker Pea	X-Value		Y-Va	lue	No	X-Valu	0	Y-Va	lue
1	17.735140 GH	z	-40.024		110	7 1414		1 44	
									4112.2023
									19:47:37

19:47:38 14.12.2023

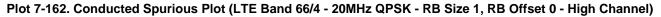


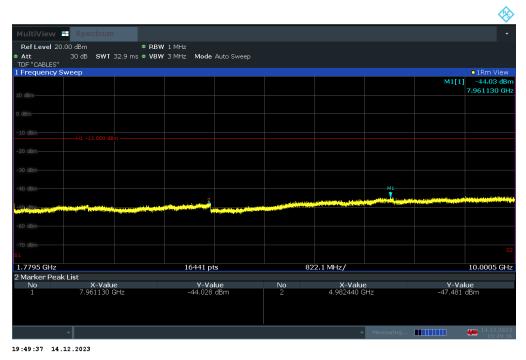
19:48:11 14.12.2023


Plot 7-159. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 101 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 101 01 351
			V2.2 09/07/2023

Plot 7-160. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-161. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 102 01 351
			V2.2 09/07/2023

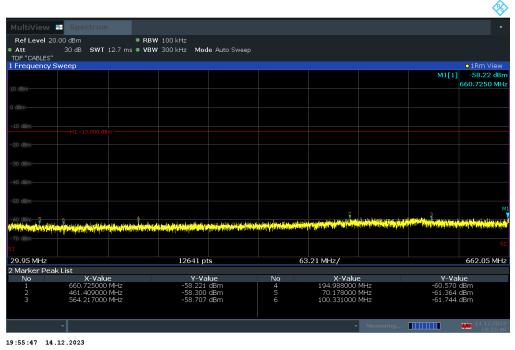
MultiView	Spectrum	1							+
Ref Level 20	0.00 dBm	RBW	1 MHz						
 Att 	30 dB SWT	3.37 ms • VBW	3 MHz Mode	Auto Sweep					
TDF "CABLES"									
1 Frequency S	Sweep								•1Rm View
								M1[1]	
10 dBm									947.520 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
					M1				
Harris Carl Manufactor	and a state and the second	light a being flathagailter Prophetic head give of her	er verstelling between verstellen	and the second states of the states of the	and the second second second	ويحفظهم والمنافية المتعاص	أحليها ورقار معرجين والاعراق	องสาราร แก่จะประเทศ เรื่องสาราร	وبالأجراد ومنار أحاجه ستا الاستاد السنا
					10.91	na shina ka shana dha	and the second second second	and the second second second	
-60 dBm-									
-70 dBm-									
51									
29.5 MHz			3361 pt	S	16	58.1 MHz/			1.7105 GHz
2 Marker Pea	k List								
No	X-Valu		Y-Va		No	X-Value	2	Y-Val	ue
1	947.520000) MHz	-47.813	dBm					
									4.12.2023 19:49:18
	-								20110120

19:49:19 14.12.2023

Plot 7-163. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 103 01 351	
			V2.2 09/07/2023	

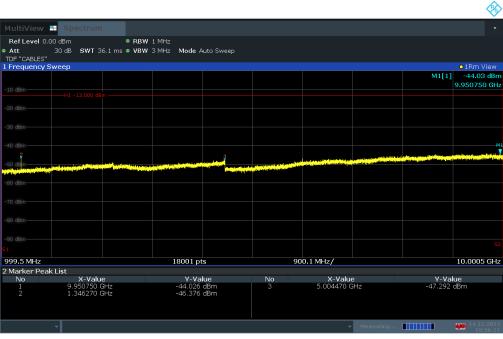
MultiView	Spectrum							•
Ref Level 0.0	00 dBm	RBW 1 MHz						
Att TDF "CABLES"	30 dB SWT 40.1 ms (● VBW 3 MHz Mode #	Auto Sweep					
1 Frequency S	weep							o1Rm View
							M1[1]	-39.90 dBm
								18.382170 GHz
-10 dBm-								
-20 dBm								
20 0011								
-30 dBm								
00 000								
-40 dBm-						a manufacture of the state of the state	*	a second design of the second distance where
					A STREET, SALES AND A STREET, SALES	A Distantion of the second second second	and the second	Marriel and a strategy of the state of the
-50 dBm								
-60 dBm								
-70 dBm-								
-80 dBm								
-90 dBm								S2
51								
9.9995 GHz		20001 pi	ts	1	.0 GHz/			20.0005 GHz
2 Marker Peak No	<list X-Value</list 	Y-Va		No	X-Value		Y-Va	
1	x-value 18.382170 GHz	-39,899	dBm	NO	X-Value		Y-Va	lue
	~					Measuring		14.12.2023 19:49:54
								25115101


19:49:54 14.12.2023

Plot 7-164. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

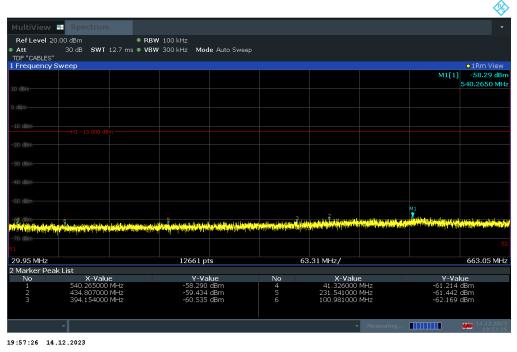
FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 104 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 104 01 351
			1/2 2 00/07/2022

LTE Band 71


Plot 7-165. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

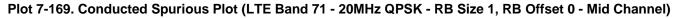
MultiView	- Spectrum	1							•
Ref Level 20).00 dBm	● RBW	/ 100 kHz						
Att TDF "CABLES"	30 dB SWT	6.05 ms 🗢 VBW	300 kHz Mod	e Auto Sweep					
1 Frequency S	Sweep								●1Rm View
								M1[1]	-58.41 dBm 840.7990 MHz
10 dBm									i i i i i i i i i i i i i i i i i i i
0 dBm-									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
na hini ka hini	www.	n vagi hiki ku	and the second second second	had been and the second	eideitei herriteid hide fahr	antre agentiques agentiques agentiques agentiques agentiques agentiques agentiques agentiques agentiques agent	eritari teritori findira ^t agina	un de la company de la comp	h <i>ush</i> an punan s <mark>h</mark> akata iyi
-70 dBm									
S1									
697.95 MHz			6041 pt	S	30	.21 MHz/			1.00005 GHz
2 Marker Peal									
No 1	X-Valu 840.799000		Y-Va -58.413		No 2	X-Valu 987.723000		Y-Va -58.447	lue dBm
	v					~	Measuring		14.12.2023 19:56:03
19:56:04 14.	12.2023								

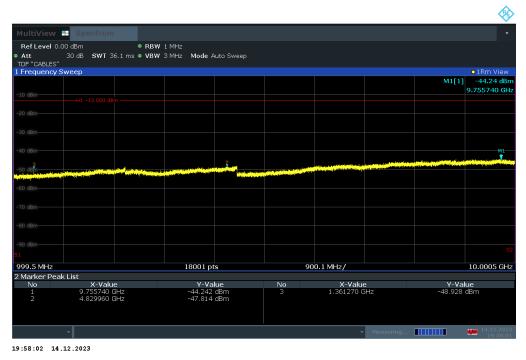
Plot 7-166. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 105 01 551	
			V2.2 09/07/2023	

19:56:22 14.12.2023

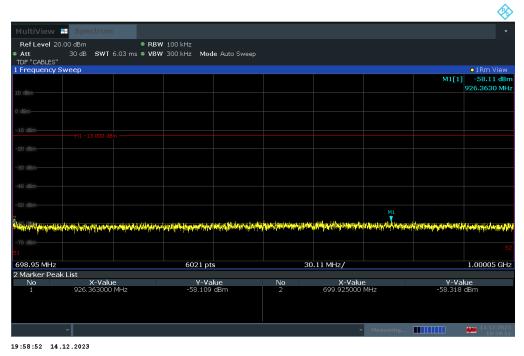
Plot 7-167. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 7-168. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 100 01 351	
			V2.2 09/07/2023	

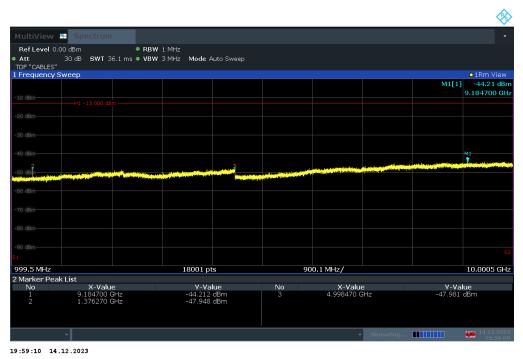
									(*)
MultiView	Spectrum								
Ref Level 20 Att TDF "CABLES"		● RBW 6.05 ms ● VBW	100 kHz 300 kHz Moc	le Auto Sweep					
1 Frequency S	weep								o1Rm View
10 dBm								M1[1]	-58.25 dBm 897.1580 MHz
0 dBm									
-10 dBm	H1 -13.000 dB								
-20 dBm									
-30 dBm									
-50 dBm									
สตินสียมเนื้อ	ergentisterpterforf	dapilorransprachter appl	niyar dala ngayar dagan dagayat	ushprandfiligadayahaha	kalang kalèng dina dia	na da anti-	(Nhahydy:Harlanda)	hite a finite polario	alayulasyatin yalayay
-70 dBm S1									
697.95 MHz			6041 pt	s	30	.21 MHz/			1.00005 GHz
2 Marker Peak									
No 1 2	X-Valu 897.158000 754.584000	MHz	Y-Va -58.253 -58.318	dBm	No 3 4	X-Valu 950.767000 723.979000	MHz	Y-Va -58.381 -58.991	dBm
	*					~	Measuring		14.12.2023 19:57:43

19:57:44 14.12.2023


Plot 7-170. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 107 01 551
			V2.2 09/07/2023

MultiView	Spectrum	1							•
Ref Level 20	.00 dBm	● RBW	/ 100 kHz						
Att TDF "CABLES"		12.7 ms • VBW		le Auto Sweep					
1 Frequency S	weep								•1Rm View
								M1[1]	-58.49 dBm
10 dBm-									542.2650 MHz
TO UBIII									
0 dBm-									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm								M1	
-60 dBm	and the participation in the state	diant participation	ar diala di anti yaka wa sila da ta	a santa ini ka data a shika ka ka i	Incidentia and it is				
-70 dBm-		فتعنه الأفقال وإعتادا		a bring a start of the start of the					
- ru ubm									
21									
29.95 MHz			12661 p	ts	6	3.31 MHz/			663.05 MHz
2 Marker Peal No	< List X-Valu		Y-Va	lu e	No	X-Valu	-	Y-Va	h i m
1	542.26500C		-58,492		4	45.076000		4-Va -61.152	
2	593.31900C) MHz	-59.123	dBm		142.184000		-61.276	
3	311.047000) MHz	-60.100	dBm					
	•						• Measuring		14.12.2023
									19:58:33
19:58:34 14.	12.2023								

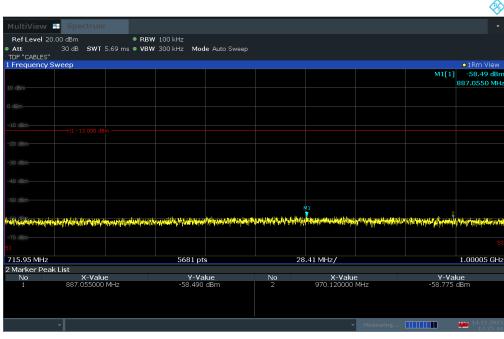

Plot 7-171. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-172. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dago 109 of 251	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 108 of 351	
	•		V2.2 09/07/2023	

Plot 7-173. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 109 01 351	
,			1/2 2 09/07/2023	

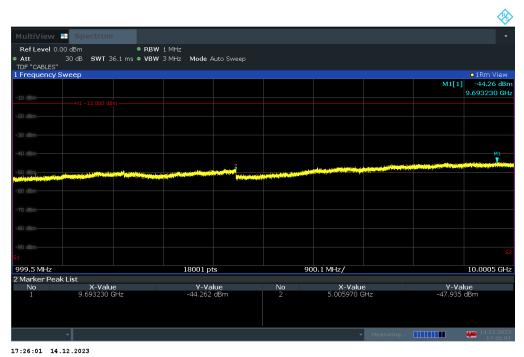

LTE Band 12/17

MultiView	- Spectrum								•
Ref Level 20) 00 dBm	● RRW	100 kHz						
 Att 		13.4 ms • VBW		Auto Swoon					
TDF "CABLES"	3000 301	13.4 ms • 060	300 KHZ MO	le Auto Sweep					
1 Frequency S	Sween								●1Rm View
1 i requeriej e	Sheep							M1[1]	
									551.9860 MHz
									55119600 Militz
-10 dBm-									
10 0011									
-40 dBm									
							M1		
-602 dBm-	11	1		the second s	a	Constitute of the state of the state of the state	and the street field in the	and a state of the state of the	distances in the part of the
distant of the burnshare		and the last of the state of the	aller and a second state of	والتارية تحويطا تعريب الملحج	والمقارر أمدان والمقدمين ومديم	ومسفل المقاضل المطاطر والم	and the state of the second second	A REAL PROPERTY AND A REAL	المعينا بقاركم وتتعملهم ويتأرك ستأري
-70 dBm-									
51									
29.95 MHz			13361 p	ts	60	6.8 MHz/			697.95 MHz
2 Marker Pea	k List								
No	X-Valu		Y-Va		No	X-Valu		Y-Va	
	551.986000		-58.604			295.455000		-60.576	
	469.892000		-59.263			246.859000		-60.720	dBm
3 4	659.128000 417.696000		-59.467 -59.938		8 9	327.853000 45.024000		-60.944 -61.192	dBm
4 5	152.966000		-59.938		10	225.910000		-61.264	
	132.900000		-00.309	dom	10	223.910000			
									14.12.2023 17:25:27
							_		

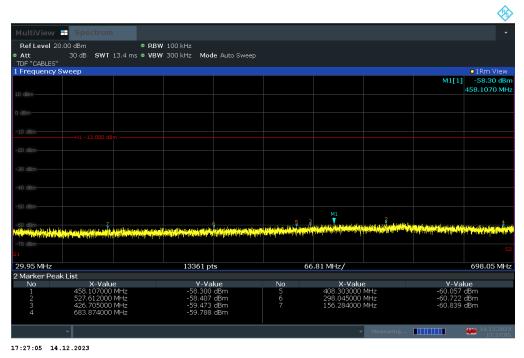
~

17:25:27 14.12.2023

Plot 7-174. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

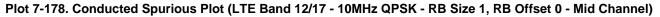


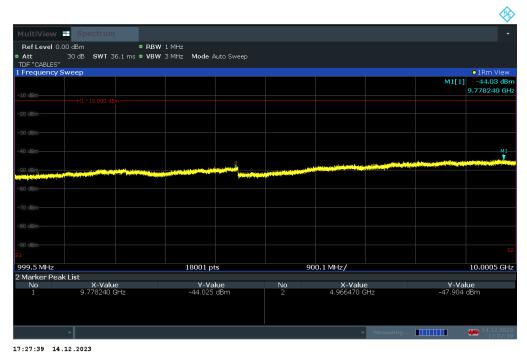
17:25:44 14.12.2023


Plot 7-175. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 110 01 351
			V2.2 09/07/2023

Plot 7-176. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

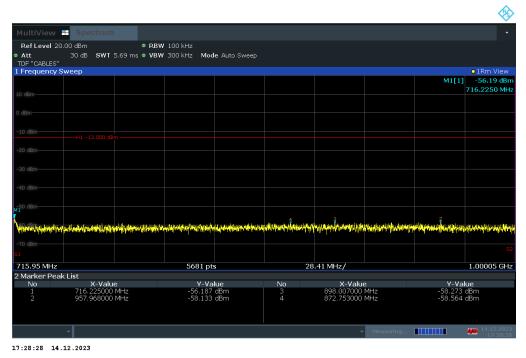

Plot 7-177. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 111 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage III 01 551	
			V2.2 09/07/2023	

									(*)
MultiView	Spectrum	1							+
Ref Level 20.	00 dBm	• RBW	100 kHz						
 Att TDF "CABLES" 	30 dB SWT	5.69 ms 🗢 VBW	300 kHz Mod	e Auto Sweep					
1 Frequency Sv	weep								o1Rm View
								M1[1]	-58.23 dBm 844.1480 MHz
10 dBm									0111110010112
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm-									
-40 dBm									
-50 dBm				M1					
h driver of the hand going	han ditte state and the state of the state o	urat phonesa at the second	an a	adatised a design of the state of the second states of the second states of the second states of the second st	and the production of the second s	neditariyaitsaakiyaaks	yantun jihar dahanarya	makalomiyiliyiliyiliyiliyiliyili	hippensonatautopp
-70 dBm									
S1									
715.95 MHz			5681 pt	S	28	.41 MHz/			1.00005 GHz
2 Marker Peak									
No 1	X-Valu 844.148000		Y-Va -58,229		No 2	X-Value 997.225000		Y-Val -58,333	
1	644.146000	MHZ	-38.229	ubiii		997.223000	MINZ	-36.333	
	*					~	Measuring		14.12.2023 17:27:22

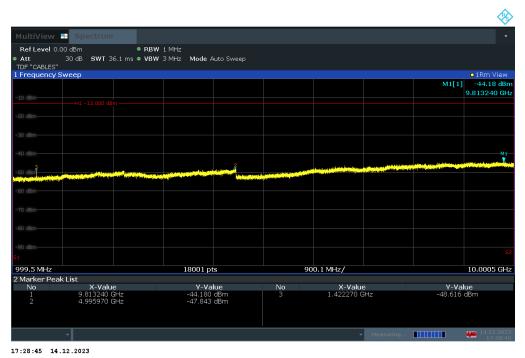
17:27:22 14.12.2023

Plot 7-179. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 112 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device		
			V2.2 09/07/2023	

MultiView	Spectrum								+
Ref Level 20.	.00 dBm	● RBW	/ 100 kHz						
Att	30 dB SWT	13.4 ms • VBW	300 kHz Moo	e Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								o1Rm View
								M1[1]	-58.90 dBm
									596.6670 MHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
								2. 🛉	. 3
designation of the baseling	ana internet de stat inner di Brekter, en	net allowed as a submitte	A support of the state of the first	The second subliding the	relevable to and trained the				and a state of the second s
unitation and statistic pro-	planting it birds with the	hitisteening as the needed within the	ad Supply which which	and the second	SAUTO DATA			a condecorte	a statute with the con-
-70 dBm-									
S1									
29.95 MHz			13361 p	s	66	.81 MHz/			698.05 MHz
2 Marker Peak	liet		10001 0						
No	X-Valu	e	Y-Va	lue	No	X-Valu	e	Y-Va	ue
1	596.667000	MHz	-58.899	dBm	4	306.146000	MHz	-60.230	dBm
2	570.565000		-58.962			50.977000		-60.659	
3	656.272000	MHZ	-59.564	dBm		193.787000	MHZ	-61.046	dBm
									14 12 2022
	×					~	Measuring		<pre>### 14.12.2023 17:28:11</pre>

17:28:11 14.12.2023

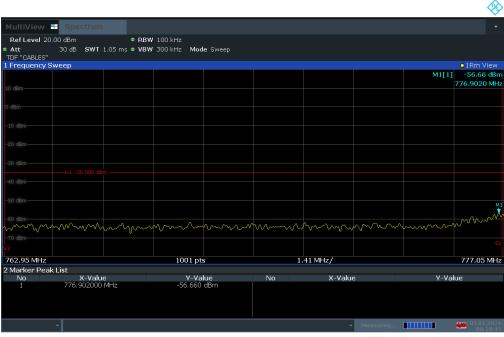

Plot 7-180. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-181. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 113 of 351	
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 113 01 351	
	·		V2.2 09/07/2023	



Plot 7-182. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

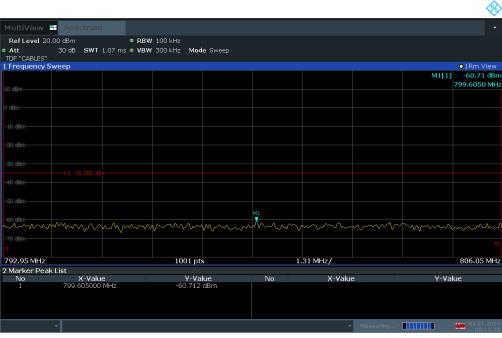

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 114 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 114 01 551
			1/2 2 00/07/2022

LTE Band 13

Plot 7-183. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

00:10:46 03.01.2024

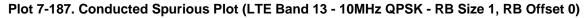
Plot 7-184. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

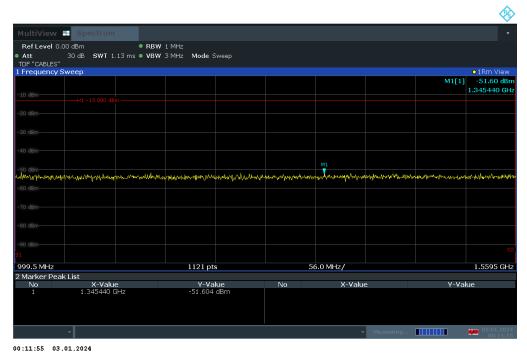

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 115 of 251
1C2311270064-09.BCG	1-09.BCG 10/1/2023 - 3/19/2024 Tablet Device		Page 115 of 351
,			1/2 2 09/07/2023

								(*)
MultiView	Spectrum							•
Ref Level 20.	00 dBm	RBW 100 kHz						
Att TDF "CABLES"	30 dB SWT 1.01 ms	• VBW 300 kHz Mod	e Sweep					
1 Frequency S	weep							o1Rm View
				M1[1]]			-54.25 dBm
10 dBm							7	87.14810 MHz
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 MBm								
h.h.	mint							
		m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim$	$\sim\sim\sim\sim\sim\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim\sim\sim\sim\sim$	\sim
-70 dBm								
si								l Ĩ
786.95 MHz		1001 pt	8	61	10.0 kHz/			793.05 MHz
2 Marker Peak								
No	X-Value	Y-Va		No	X-Value		Y-Va	
1 2	787.148100 MHz 787.934200 MHz	-54.249 -55.132	dBm dBm	3 4	787.379600 788.245000	MHz MHz	-55.291 -56.172	dBm dBm
	107.130 1200 Mill2	33.132	donn			t II fan		
	*				*	Measuring		03.01.2024 00:11:03
	•							00:11:03

00:11:03 03.01.2024

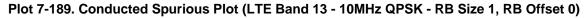
00:11:21 03.01.2024

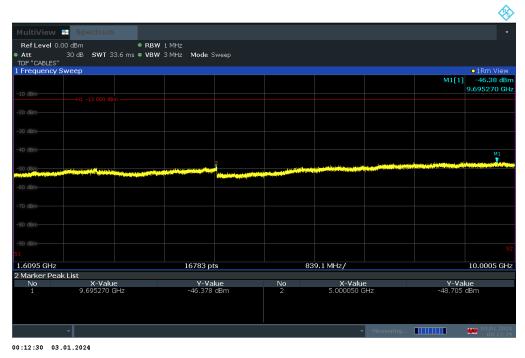

Plot 7-186. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)


FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 116 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 110 01 331
			V2.2 09/07/2023

									*
MultiView	Spectrum								•
Ref Level 20.0	00 dBm	• RBW	100 kHz						
 Att TDF "CABLES" 	30 dB SWT	3.89 ms 🗢 VBW	300 kHz Mod	e Sweep					
1 Frequency Sv	weep								o1Rm View
								M1[1]	
10 dBm									889.5030 MHz
0 dBm									
-10 dBm-									
-20 dBm-									
-30 dBm									
-30 ubm									
-40 dBm-									
-50 dBm									
and all meters		2	a kita a data a data	the state of the second	all the second second	8 11		unity/strapping	
adiminal distriction of the	a ta kana kana kana kana kana kana kana	and the dreated with the start of the start	le thé search a bha bha bha an	alata wasialada anda	ah dan san san san san san san san san san s	ah hara di sana matana da sa	ardese distance in the day	And the state of the	and in a second state of the second second
-70 dBm-									
51									52
805.95 MHz			3883 pt	s	19	.41 MHz/			1.00005 GHz
2 Marker Peak									
No	X-Valu		Y-Va		No	X-Valu		Y-Va	
1 2	889.503000 850.813000		-58.346 -58.443			923.345000	MHz	-58.826	dBm
	*						Measuring		03.01.2024 00:11:37

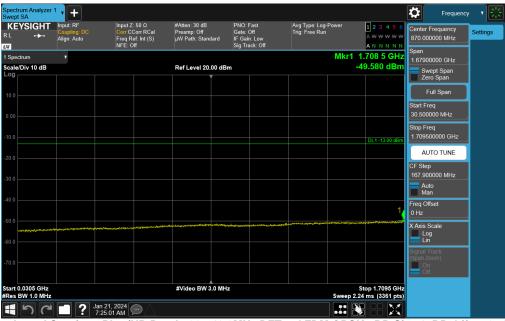
00:11:38 03.01.2024


Plot 7-188. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)


FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 117 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024 Tablet Device		Fage 117 01 551
			V2 2 09/07/2023

									~
MultiView	Spectrum	1							
Ref Level 20.	00 dBm	• RBV	N 1 MHz						
 Att 	30 dB SWT	1.03 ms • VB	N/3 MHz Mo	de Sweep					
TDF "CABLES"									
1 Frequency Sv	weep								O1Rm View
								M1[1]	-48.76 dBm
10 dBm									1.5640660 GHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
40 dBm									
	M1								
- EG dam									
Mypromorante	" Wyhattan mon	New Annersky man	de the man and	www.wwwww	montermore	Mary marked with	moundance	a har show the way had been as	al manufation
-60 dBm									
-70 dBm									
81									52
ĵ.									
1.5585 GHz			1023	pts		5.2 MHz/			1.6105 GHz
2 Marker Peak	List X-Valu			-Value	11-	V 11-1-	-	Y-Va	
No 1	1.564066 (-value 761 dBm	No	X-Valu	e	y-va	liue
-	1.504000	0112	40.7	OI GBIII					
									02.01.2024
	Ň.						Measuring		03.01.2024 00:12:12

00:12:13 03.01.2024



Plot 7-190. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 118 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 116 01 551
			\/2 2 09/07/2023

NR Band n66

Plot 7-191. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-192. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 119 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 119 01 551
			V2.2 09/07/2023

Plot 7-193. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-194. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 120 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 120 01 351
			\/2 2 09/07/2023

Plot 7-195. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

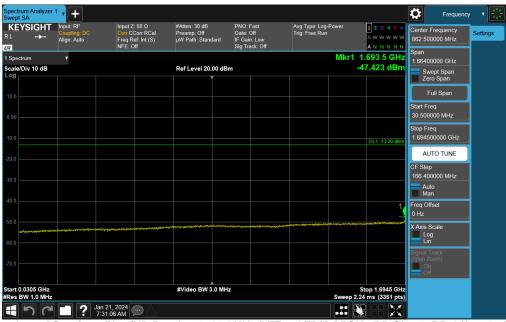
Plot 7-196. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 121 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 121 01 551
	*	·	V/2 2 09/07/2023

Plot 7-197. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-198. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 122 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 122 01 551
	*	·	V/2 2 09/07/2023


KEYSIGHT ∟ +►+ I	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 10 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A W W W W A N N N N N	Center Frequency 15.000000000 GHz Span	Settings
Spectrum	۲					19.987 5 GHz	9.99900000 GHz	
ale/Div 10 dB			Ref Level 16.50 dB	m		-59.913 dBm	Swept Span Zero Span	
							Full Span	
							Start Freq	
							10.000500000 GHz	
						DL1 -13.00 dBm	Stop Freq 19.999500000 GHz	1
.5								
							AUTO TUNE	
							CF Step 999.900000 MHz	
							Auto	
							Man Freg Offset	
							0 Hz	
						1	X Axis Scale Log	1
.5							Lin	
							Signal Track (Span Zoom)	
							On Off	
rt 10.001 GHz			#Video BW 3.0 MH	-		Stop 20.000 GHz		
es BW 1.0 MHz			WHILEO DW 5.0 MIT		Sweep ~18	.9 ms (20001 pts)		

Plot 7-199. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 123 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 123 01 351
			1/2 2 00/07/2022

NR Band n70

Plot 7-200. Conducted Spurious Plot (NR Band n70 -10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-201. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 124 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 124 01 551
	<u>.</u>		V2.2 09/07/2023

Plot 7-202. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectrum Analyzer	1 • +						~	
Swept SA							Frequency	
	Input: RF Coupling: DC	Input Z: 50 Ω Corr CCorr RCal	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off	Avg Type: Log-Pov Trig: Free Run		Center Frequency	Settings
	Align: Auto	Freq Ref: Int (S) NFE: Off	µW Path: Standard	IF Gain: Low Sig Track: Off		A ₩ ₩ ₩ ₩ ₩ A N N N N N	862.500000 MHz	
1 Spectrum	•	p				Mkr1 1.691 5 GHz	Span 1.66400000 GHz	
Scale/Div 10 dB			Ref Level 20.00 dB	m		-49.413 dBm	Swept Span	
Log			Ĭ Ť				Zero Span	
10.0							Full Span	
10.0							Start Freq	
0.00							30.500000 MHz	
							Stop Freg	
-10.0						DL1-13.00 dBm	1.694500000 GHz	
							AUTO TUNE	
-20.0							CF Step	
							CF Step 166.400000 MHz	
-30.0							Auto	
-40.0							Man	
						1/	Freq Offset 0 Hz	
-50.0						and planter front and a start of the start o	L	
ويسروه والمعالي والمحاور والمسار والمسار	******	distante a second state to the state of the					X Axis Scale Log	
-60.0							Lin	
							Signal Track (Span Zoom)	
-70.0							On Off	
Start 0.0305 GHz #Res BW 1.0 MHz			#Video BW 3.0 MH	z		Stop 1.6945 GHz weep 2.24 ms (3361 pts)		
	Jar	21, 2024						
	Jar ?: Jar 7::	33:07 AM				# 🚯 🕂 🔀		

Plot 7-203. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element 🕞	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 125 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 125 01 551
	•	-	1/2 2 09/07/2023

Plot 7-204. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

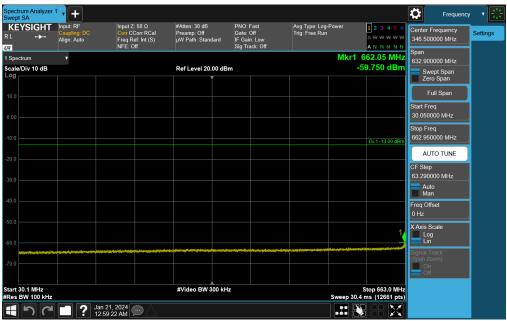
Plot 7-205. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Technical Manager Page 126 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 120 01 351
	•	•	\/2 2 09/07/2023

Plot 7-206. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-207. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 127 01 551
	•	·	V/2 2 09/07/2023


C	put: RF oupling: DC ign: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 10 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A \two transformed with the transformed at the transformed	Center Frequency 15.000000000 GHz Span	Setting
	۲					9.859 5 GHz	9.99900000 GHz	
cale/Div 10 dB			Ref Level 16.50 dE	lm		-59.853 dBm	Swept Span Zero Span	
.50							Full Span	
50							Start Freq 10.000500000 GHz	
3.5						DL1 -13.00 dBm	Stop Freq 19.999500000 GHz	
3.5							AUTO TUNE	
3.5							CF Step 999.900000 MHz	
							Auto Man	
							Freq Offset 0 Hz	
3.5							X Axis Scale Log Lin	
3.5							Signal Track (Span Zoom) On	
							Off	
art 10.001 GHz Res BW 1.0 MHz			#Video BW 3.0 MH	z	Sween ~18	Stop 20.000 GHz .9 ms (20001 pts)		

Plot 7-208. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 128 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 126 01 551
			1/2 2 00/07/2022

NR Band n71

Plot 7-209. Conducted Spurious Plot (NR Band n71 -20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-210. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 129 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Page 129 01 351
	•	·	V2.2 09/07/2023

Plot 7-211. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectrum Analyzer Swept SA	' • (+)						Frequency	· • 🛞
KEYSIGHT RL ↔→ ™	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A W W W W W A N N N N N	Center Frequency 346.500000 MHz Span	Settings
1 Spectrum Scale/Div 10 dB	T		Ref Level 20.00 dE	łm	Mk	r1 662.65 MHz -61.309 dBm	632.900000 MHz	
Log			Ĭ				Swept Span Zero Span	
10.0							Full Span	
0.00							Start Freq 30.050000 MHz	
-10.0						DL1-13.00 dBm	Stop Freq 662.950000 MHz	
-20.0							AUTO TUNE	
-30.0							CF Step 63.290000 MHz	
							Auto Man	
-40.0							Freq Offset 0 Hz	1
-50.0						1	X Axis Scale Log Lin	
parla a ser tip agric for a ser a far a ser				Angle alle man and a data and a spin of the	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	rendering and a substitute of the second	Signal Track (Span Zoom)	
-70.0							On Off	
Start 30.1 MHz #Res BW 100 kHz			#Video BW 300 kH	łz	Sweep	Stop 663.0 MHz 30.4 ms (12661 pts)		
- っ つ	Jan ? Jan 1:0	21, 2024 01:02 AM						

Plot 7-212. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 130 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 130 01 351
		·	\/2 2 09/07/2023

Plot 7-213. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-214. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 131 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 131 01 351
	•	•	1/2 2 09/07/2023

Spectrum Analyzer Swept SA							Frequenc	y v
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 346.500000 MHz	Settings
Spectrum	T				Mkr	662.35 MHz	Span 632.900000 MHz	
cale/Div 10 dB			Ref Level 20.00 dE	lm		-61.715 dBm	Swept Span Zero Span	
							Full Span	
							Start Freq 30.050000 MHz	
0.0						DL1 -13.00 dBm	Stop Freq 662.950000 MHz	
							AUTO TUNE	
30.0							CF Step 63.290000 MHz	
							Auto Man	
							Freq Offset 0 Hz	
						1	X Axis Scale Log Lin	
70.0				unitario anti de antica de antice de anti		**************************************	Signal Track (Span Zoom) On	
							Off	
art 30.1 MHz Res BW 100 kHz			#Video BW 300 kH	İz	Sweep 3	Stop 663.0 MHz 0.4 ms (12661 pts)		
1 n a	Jan ? Jan	21, 2024 2:43 AM						

Plot 7-215. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Spectrum Analyzer	1 • +						Frequency	
Swept SA KEYSIGHT RL +>+	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Pow Trig: Free Run	er 1 2 3 4 5 6 A W W W W A N N N N N	Center Frequency 849.000000 MHz	Settings
1 Spectrum Scale/Div 10 dB	T		Ref Level 20.00 dB	Im		Mkr1 698.10 MHz -59.837 dBm	301.900000 MHz	
Log							Swept Span Zero Span	
10.0							Full Span Start Freq	
0.00							698.050000 MHz	
-10.0						DL1-13.00 dBm	Stop Freq 999.950000 MHz	
-20.0							AUTO TUNE	
-30.0							CF Step 30.190000 MHz	
-40.0							Auto Man	
-50.0							Freq Offset 0 Hz	
1							X Axis Scale Log Lin	
-60.0		an a	angagani pantanini filin minan ding dan menagian	****	****	and and the second s	Signal Track (Span Zoom)	
-70.0							On Off	
Start 698.1 MHz #Res BW 100 kHz			#Video BW 300 kH	İz	s	Stop 1.000 GHz weep 14.5 ms (6041 pts)		
م ا	Ja 1:	n 21, 2024 .03:10 AM				# 🔛 🔀		

Plot 7-216. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 132 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 132 01 331
			V/2 2 09/07/2023

Plot 7-217. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 133 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 133 01 331
	•		V2.2 09/07/2023

NR Band n12

Plot 7-218. Conducted Spurious Plot (NR Band n12 -15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-219. Conducted Spurious Plot (NR Band n12 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2903	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 134 of 351
1C2311270064-09.BCG	10/1/2023 - 3/19/2024	Tablet Device	Fage 134 01 331
		·	V2.2 09/07/2023