

Element Materials Technology

(formerly PCTEST)
18855 Adams Ct, Morgan Hill, CA 95037 USA
Tel. +1.408.538.5600
http://www.element.com

SAR EVALUATION REPORT

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 USA Date of Testing:

11/29/2023 - 02/26/2024

Test Report Issue Date:

03/27/2024

Test Site/Location:

Element, Morgan Hill, CA, USA

Document Serial No.:

1C2311270063-01.BCG (Rev 1)

FCC ID: BCGA2902

APPLICANT: APPLE, INC.

DUT Type: Tablet Device **Application Type:** Certification

FCC Rule Part(s): CFR §2.1093

Models: A2902

Equipment	Band & Mode	Tx Frequency	SAR
Class	Dalid & Mode	1x riequelicy	1g Body (W/kg)
DTS	2.4 GHz WIFI	2412 - 2472 MHz	1.18
NII	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz		1.18
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	0.98
DSS/DTS			1.19
DTS	802.15.4	2405 - 2475 MHz	1.15
NII	NB U-NII 1	5162 - 5245 MHz	0.62
NII	NB U-NII 3	5733 - 5844 MHz	0.68
DXX	wPT	13.56 MHz	<0.1
Sin	nultaneous SAR per KDI	B 690783 D01v01r03:	1.52
Equipment Class	Band & Mode	Tx Frequency	APD (W/m^2)
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	6.78
Equipment Class	Band & Mode	Tx Frequency	Reported PD (W/m*2)
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	7.08

Note: This revised Test Report supersedes and replaces the previously issued test report on the sane subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

RJ Ortanez

Executive Vice President

Prepared by: 009897

Reviewed by: 010082

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 1 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 1 01 100

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTROD	JCTION	. 26
3	DOSIME	TRIC ASSESSMENT	. 27
4	TEST CO	ONFIGURATION POSITIONS	. 28
5	RF EXPO	OSURE LIMITS	. 29
6	FCC ME	ASUREMENT PROCEDURES	. 31
7	RF CON	DUCTED POWERS	. 34
8	SYSTEM	VERIFICATION	. 72
9	SAR DAT	TA SUMMARY	. 77
10	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	. 86
11	SAR ME	ASUREMENT VARIABILITY	. 93
12	EQUIPM	ENT LIST	. 94
13	MEASUF	REMENT UNCERTAINTIES	. 95
14	CONCLU	ISION	. 98
15	REFERE	NCES	. 99
APPEN APPEN APPEN APPEN APPEN APPEN	IDIX A: IDIX B: IDIX C: IDIX D: IDIX E: IDIX F: IDIX G: IDIX H:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES PLOTS SAR TISSUE SPECIFICATIONS SAR SYSTEM VALIDATION 802.11AX RU SAR EXCLUSION DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS WI AN TIME-AVERAGED SAR VERIFICATION	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:
FCC ID. BCGA2902	SAK EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 2 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 2 01 100

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency			
2.4 GHz WLAN	Voice/Data	2412 - 2472 MHz			
		U-NII-1: 5180 - 5240 MHz			
F CU - 14/151	Vaice/Data	U-NII-2A: 5260 - 5320 MHz			
5 GHz WIFI	Voice/Data	U-NII-2C: 5500 - 5720 MH			
		U-NII-3: 5745 - 5825 MHz			
		U-NII-5: 5955 - 6415 MHz			
6 GHz WIFI	Voice/Data	U-NII-6: 6435 - 6515 MHz			
O GHZ WIFI	Voice/Data U-NII-7: 6535 - 6875 M				
		U-NII-8: 6895 - 7115 MHz			
Bluetooth	Data	2402 - 2480 MHz			
802.15.4	Data	2405 - 2475 MHz			
NB UNII-1	Data	5162 - 5245 MHz			
NB UNII-3	Data	5733 - 5844 MHz			
WPT	N/A	13.56 MHz			

1.2 Power Reduction for SAR

This device additionally utilizes a power reduction mechanism for Bluetooth/802.15/NB UNII and WLAN operations. When Bluetooth/802.15.4/NB UNII is operating simultaneously with certain combinations of WLAN antennas, the output power is permanently reduced.

Additionally, this device uses an independent mechanism that limits WIFI powers to a time-averaged output power. For the purposes of this test report, all SAR measurements were performed with the algorithm disabled at the maximum time-averaged output power level. Verification data for this time-averaged SAR mechanism can be found in the WLAN Time-Averaged SAR Verification Appendix.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D04v01.

The tolerances specified in the tables in this document refers to conducted tolerances.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 3 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 3 01 100

1.3.1 Maximum WLAN Time-Averaged Output Power

			IEEE 802.11 (Maxim	um in dBm) - WF8	15.25 14 19.00 18 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19 19.00 19)	
Mode 2.4 GHz WIFI 20 MHz Bandwidth	Channel			MIMO			
	Chamilei	b	g	n	ax SU	g/n	ax SU
	1	19.00	15.25	15.25	15.25	14.25	14.25
	2	19.00	19.00	19.00	19.00	18.25	18.00
	3	19.00	19.00	19.00	19.00	19.00	19.00
	4	19.00	19.00	19.00	19.00	19.00	19.00
	5	19.00	19.00	19.00	19.00	19.00	19.00
2.4.611-34/151	6	19.00	19.00	19.00	19.00	19.00	19.00
-	7	19.00	19.00	19.00	19.00	19.00	19.00
20 WHZ Balluwidti	8	19.00	19.00	19.00	19.00	19.00	19.00
	9	19.00	19.00	19.00	19.00	19.00	19.00
	10	19.00	19.00	19.00	18.50	19.00	18.00
	11	19.00	17.00	17.00	16.50	16.50	15.50
	12	19.00	14.00	14.00	14.00	13.50	13.50
	13	17.50	9.50	9.50	NS	9.00	NS

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

		IEEE 802.11 (Maximum in dBm) - WF7b Tolerance (+0/-3 dB)								
Mode	Channel		SI	so		MI	мо			
	Channel	b	g	n	ax SU	g/n	ax SU			
	1	20.00	15.25	15.25	15.25	14.25	14.25			
	2	20.00	19.00	19.00	19.00	18.25	18.00			
	3	20.00	20.00	20.00	20.00	19.50	19.50			
	4	20.00	20.00	20.00	20.00	20.00	20.00			
	5	20.00	20.00	20.00	20.00	20.00	20.00			
2.4.611-14/151	6	20.00	20.00	20.00	20.00	20.00	20.00			
2.4 GHz WIFI 20 MHz Bandwidth	7	20.00	20.00	20.00	20.00	20.00	20.00			
20 MHZ Balluwiutii	8	20.00	20.00	20.00	20.00	20.00	20.00			
	9	20.00	20.00	20.00	20.00	19.50	19.50			
	10	20.00	20.00	20.00	18.50	19.00	18.00			
	11	20.00	17.00	17.00	16.50	16.50	15.50			
	12	19.50	14.00	14.00	14.00	13.50	13.50			
	13	17.50	9.50	9.50	NS	9.00	NS			

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 4 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 4 01 100

			IEEE 802.1	L1 (Maximum in dBn	n) - WF8 Tolerance	(+0/-3 dB)		
Mode	Channel	SISO			MIMO CDD			SDM
	Channel	a	n/ac	ax SU	a/n/ac	ax SU	n/ac	ax SU
	36	18.00	18.00	17.00	16.50	15.50	16.50	15.50
	40	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	44	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	48	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	52	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	56	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	60	18.00	18.00	18.00	17.00	17.00	17.00	17.00
	64	18.00	18.00	17.50	17.00	16.50	17.00	16.50
	100	16.25	16.25	16.25	16.25	16.00	16.25	16.00
	104	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	108	16.25	16.25	16.25	16.25	16.25	16.25	16.25
5 GHz WIFI	112	16.25	16.25	16.25	16.25	16.25	16.25	16.25
20 MHz Bandwidth	116	16.25	16.25	16.25	16.25	16.25	16.25	16.25
20 MHZ Bandwidth	120	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	124	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	128	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	132	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	136	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	140	15.75	15.75	15.75	15.50	14.00	15.50	14.00
	144	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	149	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	153	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	157	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	161	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	165	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	38		16.00	14.50	14.50	13.50	14.50	13.50
	46		18.00	18.00	18.00	18.00	18.00	18.00
	54		18.00	18.00	18.00	18.00	18.00	18.00
	62		16.50	15.00	15.00	14.50	15.00	14.50
	102		15.50	15.00	14.50	13.50	14.50	13.50
5 GHz WIFI	110		16.25	16.25	16.25	16.25	16.25	16.25
40 MHz Bandwidth	118		16.25	16.25	16.25	16.25	16.25	16.25
	126		16.25	16.25	16.25	16.25	16.25	16.25
	134		16.25	16.25	16.25	16.25	16.25	16.25
	142		16.25	16.25	16.25	16.25	16.25	16.25
	151		17.00	17.00	17.00	17.00	17.00	17.00
	159		17.00	17.00	17.00	17.00	17.00	17.00
	42		14.50	13.50	12.75	12.00	12.75	12.00
	58		15.50	15.00	14.50	14.50	14.50	14.50
5 GHz WIFI	106		14.50	14.00	13.50	13.00	13.50	13.00
80 MHz Bandwidth	122		16.25	16.25	16.25	16.25	16.25	16.25
	138		16.25	16.25	16.25	16.25	16.25	16.25
	155		17.00	17.00	17.00	17.00	17.00	17.00
5 GHz WIFI	50		13.00	13.00	11.00	11.00	11.00	11.00
160 MHz Bandwidth	114		12.50	12.00	11.00	11.00	11.00	11.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 5 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye 5 01 100

			IEEE 802.1	1 (Maximum in dBm	n) - WF7a Tolerance	(+0/-3 dB)		
Mode	Channal	SISO			MIM	O CDD	MIMO SDM	
	Channel	a	n/ac	ax SU	a/n/ac	ax SU	n/ac	ax SU
	36	16.25	16.25	16.25	16.25	15.50	16.25	15.50
	40	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	44	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	48	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	52	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	56	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	60	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	64	16.25	16.25	16.25	16.25	16.25	16.25	16.25
	100	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	104	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	108	14.50	14.50	14.50	14.50	14.50	14.50	14.50
5 GHz WIFI	112	14.50	14.50	14.50	14.50	14.50	14.50	14.50
20 MHz Bandwidth	116	14.50	14.50	14.50	14.50	14.50	14.50	14.50
20 MILE DATIONIUM	120	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	124	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	128	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	132	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	136	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	140	14.50	14.50	14.50	14.50	14.00	14.50	14.00
	144	14.50	14.50	14.50	14.50	14.50	14.50	14.50
	149	14.75	14.75	14.75	14.75	14.75	14.75	14.75
	153	14.75	14.75	14.75	14.75	14.75	14.75	14.75
	157	14.75	14.75	14.75	14.75	14.75	14.75	14.75
	161	14.75	14.75	14.75	14.75	14.75	14.75	14.75
	165	14.75	14.75	14.75	14.75	14.75	14.75	14.75
	38		16.00	14.50	14.50	13.50	14.50	13.50
	46		16.25	16.25	16.25	16.25	16.25	16.25
	54		16.25	16.25	16.25	16.25	16.25	16.25
	62		16.25	15.00	15.00	14.50	15.00	14.50
	102		14.50	14.50	14.50	13.50	14.50	13.50
5 GHz WIFI	110		14.50	14.50	14.50	14.50	14.50	14.50
40 MHz Bandwidth	118		14.50	14.50	14.50	14.50	14.50	14.50
	126		14.50	14.50	14.50	14.50	14.50	14.50
	134		14.50	14.50	14.50	14.50	14.50	14.50
	142		14.50	14.50	14.50	14.50	14.50	14.50
	151		14.75	14.75	14.75	14.75	14.75	14.75
	159		14.75	14.75	14.75	14.75	14.75	14.75
	42		14.50	13.50	12.75	12.00	12.75	12.00
	58		15.50	15.00	14.50	14.50	14.50	14.50
5 GHz WIFI	106		14.50	14.00	13.50	13.00	13.50	13.00
80 MHz Bandwidth	122		14.50	14.50	14.50	14.50	14.50	14.50
	138		14.50	14.50	14.50	14.50	14.50	14.50
	155		14.75	14.75	14.75	14.75	14.75	14.75
5 GHz WIFI	50		13.00	13.00	11.00	11.00	11.00	11.00
160 MHz Bandwidth	114		12.50	12.00	11.00	11.00	11.00	11.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 6 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage o or 100

		IEEE 802.11 (Maximum in dBm) - WF8				
Mode	Channel	Tolerance		(+0/-3 dB)		
		SISO		MIMO		
	Ī	a	ax (SU)	ax (SU) CDD	ax (SU) SDM	
	2	NS	NS	NS	NS	
	1	3.50	3.50	-2.00	1.00	
	5	3.50	3.50	-2.00	1.00	
	9-29	3.50	3.50	-2.00	1.00	
	33-61	4.25	4.25	-1.25	1.75	
	65-85	5.00	5.00	-0.50	2.50	
6 GHz WIFI	89	5.00	5.00	-0.50	2.50	
(20MHz BW)	93	5.00	5.00	-0.50	2.50	
(LP)	97-113	4.75	4.75	-0.50	2.25	
	117-181	5.25	5.25	-0.25	2.75	
	185	5.25	5.25	-0.25	2.75	
	189-225	6.75	6.75	0.75	3.75	
	229	6.75	6.75	0.75	3.75	
	233	6.75	6.75	0.75	3.75	
	3		6.50	1.00	4.00	
	11		6.50	1.00	4.00	
	19-27		6.50	1.00	4.00	
	35-59		7.25	1.75	4.75	
ľ	67-75		8.00	2.50	5.50	
	83		8.00	2.50	5.50	
6 GHz WIFI	91		8.00	2.50	5.50	
(40MHz BW)	99-107		7.75	2.50	5.25	
(LP)	115		7.75	2.50	5.25	
	123-179		8.25	2.75	5.75	
	187		8.25	2.75	5.75	
	195-219		9.75	3.75	6.75	
	227		9.75	3.75	6.75	
	7		9.50	4.00	7.00	
	23		9.50	4.00	7.00	
	39-55		10.25	4.75	7.75	
	71		11.00	5.50	8.50	
	87		11.00	5.50	8.50	
6 GHz WIFI	103		10.75	5.50	8.25	
(80MHz BW)	119		10.75	5.50	8.25	
(LP)	135-167		11.25	5.75	8.75	
	183		11.25	5.75	8.75	
	199		11.50	6.75	9.75	
	215		11.50	6.75	9.75	
	15		12.00	6.50	9.50	
	47		12.75	7.25	10.25	
6 GHz WIFI	79		13.50	8.00	11.00	
(160MHz BW)	111		13.25	8.00	10.75	
(LP)	143		13.75	8.25	11.25	
	175		11.50	8.25	11.25	
	207		11.50	9.25	11.50	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 7 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye / 0/ 100

			IEEE 802.11 (Maxir	num in dBm) - WF8	3	
Mode	Channel		Tolerance	(+0/-3 dB)		
		SI	SISO		MIMO	
	ľ	a	ax (SU)	ax (SU) CDD	ax (SU) SDM	
	2	NS	NS	NS	NS	
	1	13.75	13.75	13.75	13.75	
	5	13.75	13.75	13.75	13.75	
	9-29	13.75	13.75	13.75	13.75	
-	33-61	13.75	13.75	13.75	13.75	
	65-85	14.25	14.25	14.25	14.25	
6 GHz WIFI	89	14.25	14.25	14.25	14.25	
(20MHz BW)	93	14.25	14.25	14.25	14.25	
(SP)	97-113	NS	NS	NS	NS	
	117-181	15.25	15.25	15.25	15.25	
	185	NS	NS	NS	NS	
	189-225	NS	NS	NS	NS	
	229	NS	NS	NS	NS	
	233	NS	NS	NS	NS	
	3		13.75	13.75	13.75	
	11		13.75	13.75	13.75	
	19-27		13.75	13.75	13.75	
	35-59		13.75	13.75	13.75	
	67-75		14.25	14.25	14.25	
	83		14.25	14.25	14.25	
6 GHz WIFI	91		14.25	14.25	14.25	
(40MHz BW)	99-107		NS	NS	NS	
(SP)	115		NS	NS	NS	
	123-179		16.00	16.00	16.00	
	187		NS	NS	NS	
	195-219		NS	NS	NS	
	227		NS	NS	NS	
	7		13.75	13.75	13.75	
	23		14.25	14.25	14.25	
	39-55		13.75	13.75	13.75	
	71		14.25	14.25	14.25	
	87		14.25	14.25	14.25	
6 GHz WIFI	103		NS	NS	NS	
(80MHz BW)	119		NS	NS	NS	
(SP)	135-167		16.00	16.00	16.00	
<u> </u>	183		NS	NS	NS	
<u> </u>	199		NS	NS	NS	
	215		NS	NS	NS	
L	15		13.75	13.75	13.75	
<u> </u>	47		13.75	13.75	13.75	
6 GHz WIFI	79		14.25	14.25	14.25	
(160MHz BW)	111		NS	NS	NS	
(SP)	143		16.00	16.00	16.00	
<u> </u>	175		NS	NS	NS	
	207		NS	NS	NS	

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 8 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye o or 100

		IEEE 802.11 (Maximum in dBm) - WF7a				
Mode	Channel		Tolerance	e (+0/-3 dB)		
		SISO		MIMO		
	ľ	a	ax (SU)	ax (SU) CDD	ax (SU) SDM	
	2	NS	NS	NS	NS	
	1	3.50	3.50	-2.00	1.00	
	5	3.50	3.50	-2.00	1.00	
	9-29	3.50	3.50	-2.00	1.00	
	33-61	4.25	4.25	-1.25	1.75	
	65-85	5.00	5.00	-0.50	2.50	
6 GHz WIFI	89	5.00	5.00	-0.50	2.50	
(20MHz BW)	93	5.00	5.00	-0.50	2.50	
(LP)	97-113	4.75	4.75	-0.50	2.25	
	117-181	5.25	5.25	-0.25	2.75	
	185	5.25	5.25	-0.25	2.75	
	189-225	6.75	6.75	0.75	3.75	
	229	6.75	6.75	0.75	3.75	
	233	6.75	6.75	0.75	3.75	
	3		6.50	1.00	4.00	
	11		6.50	1.00	4.00	
	19-27		6.50	1.00	4.00	
	35-59		7.25	1.75	4.75	
	67-75		8.00	2.50	5.50	
	83		8.00	2.50	5.50	
6 GHz WIFI	91		8.00	2.50	5.50	
(40MHz BW)	99-107		7.75	2.50	5.25	
(LP)	115		7.75	2.50	5.25	
	123-179		8.25	2.75	5.75	
	187		8.25	2.75	5.75	
	195-219		9.75	3.75	6.75	
	227		9.75	3.75	6.75	
	7		9.50	4.00	7.00	
	23		9.50	4.00	7.00	
	39-55		10.25	4.75	7.75	
	71		11.00	5.50	8.50	
	87		11.00	5.50	8.50	
6 GHz WIFI	103		10.75	5.50	8.25	
(80MHz BW)	119		10.75	5.50	8.25	
(LP)	135-167		11.25	5.75	8.75	
	183		11.25	5.75	8.75	
	199		11.25	6.75	9.75	
	215		11.25	6.75	9.75	
	15		12.00	6.50	9.50	
	47		12.25	7.25	10.25	
6 GHz WIFI	79		12.25	8.00	11.00	
(160MHz BW)	111		11.75	8.00	10.75	
(LP)	143		11.25	8.25	11.25	
	175		11.25	8.25	11.25	
	207		11.25	9.25	11.25	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 9 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 9 01 100

		IEEE 802.11 (Maximum in dBm) - WF7a			7a	
Mode	Channel		Tolerance	Tolerance (+0/-3 dB)		
		S	ISO	MI	МО	
		a	ax (SU)	ax (SU) CDD	ax (SU) SDM	
	2	NS	NS	NS	NS	
	1	12.25	12.25	12.25	12.25	
	5	12.25	12.25	12.25	12.25	
	9-29	12.25	12.25	12.25	12.25	
	33-61	12.25	12.25	12.25	12.25	
	65-85	12.25	12.25	12.25	12.25	
6 GHz WIFI	89	12.25	12.25	12.25	12.25	
(20MHz BW)	93	12.25	12.25	12.25	12.25	
(SP)	97-113	NS	NS	NS	NS	
	117-181	11.25	11.25	11.25	11.25	
	185	NS	NS	NS	NS	
	189-225	NS	NS	NS	NS	
	229	NS	NS	NS	NS	
	233	NS	NS	NS	NS	
	3		12.25	12.25	12.25	
	11		12.25	12.25	12.25	
	19-27		12.25	12.25	12.25	
	35-59		12.25	12.25	12.25	
	67-75		12.25	12.25	12.25	
	83		12.25	12.25	12.25	
6 GHz WIFI	91		12.25	12.25	12.25	
(40MHz BW)	99-107		NS	NS	NS	
(SP)	115		NS	NS	NS	
	123-179		11.25	11.25	11.25	
	187		NS	NS	NS	
	195-219		NS	NS	NS	
	227		NS	NS	NS	
	7		12.25	12.25	12.25	
	23		12.25	12.25	12.25	
	39-55		12.25	12.25	12.25	
	71		12.25	12.25	12.25	
	87		12.25	12.25	12.25	
6 GHz WIFI	103		NS	NS	NS	
(80MHz BW)	119		NS	NS	NS	
(SP)	135-167		11.25	11.25	11.25	
	183		NS	NS	NS	
	199		NS	NS	NS	
	215		NS	NS	NS	
	15		12.25	12.25	12.25	
	47		12.25	12.25	12.25	
6 GHz WIFI	79		12.25	12.25	12.25	
(160MHz BW)	111		NS	NS	NS	
(SP)	143		11.25	11.25	11.25	
	175		NS	NS	NS	
	207		NS	NS	NS	

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 10 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye 10 01 100

1.3.2 Bluetooth Maximum Output Power

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
Bluetooth BDR	Maximum	20.00	11.50
Biuetootii BDR	Nominal	18.50	10.00
Bluetooth EDR	Maximum	15.00	8.00
BluetoothEDK	Nominal	13.50	6.50
Bluetooth LE	Maximum	20.00	11.50
Bluetootii Le	Nominal	18.50	10.00
Divista eth LIDDA	Maximum	14.50	6.00
Bluetooth HDR4	Nominal	13.00	4.50
Bluetooth HDR8	Maximum	14.50	6.00
סוטפנטטנוו חטאס	Nominal	13.00	4.50

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
Bluetooth BDR	Maximum	17.00	11.50
Bidetootii BDK	Nominal	15.50	10.00
Divotanth FDD	Maximum	13.50	8.00
Bluetooth EDR	Nominal	12.00	6.50
Divote eth I F	Maximum	20.00	11.50
Bluetooth LE	Nominal	18.50	10.00
Bluetooth HDR4	Maximum	14.50	6.00
סועפנטטנוו חטא4	Nominal	13.00	4.50
Bluetooth HDR8	Maximum	14.50	6.00
Bluetootii nDK8	Nominal	13.00	4.50

Note: In TxBF operations, each antenna transmits at allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 11 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 11 01 100

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	20.00	11.50
Biuetooth BDK	Nominal	18.50	10.00
Bluetooth EDR	Maximum	15.00	8.00
Bidetootii EDK	Nominal	13.50	6.50
Dlustooth I E	Bluetooth LE Maximum		11.50
Bluetooth LE	Nominal	18.50	10.00
Bluetooth HDR4	Maximum	14.50	6.00
Biuetouth HDK4	Nominal	13.00	4.50
Bluetooth HDR8	Maximum	14.50	6.00
Bluetooth HDK8	Nominal	13.00	4.50

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	17.00	11.50
bluetootii bbk	Nominal	15.50	10.00
Bluetooth EDR	Maximum	13.50	8.00
Bluetootii EDK	Nominal	12.00	6.50
Bluetooth LE	Maximum	20.00	11.50
Bidetootii LE	Nominal	18.50	10.00
Bluetooth HDR4	Maximum	14.50	6.00
Bidetootii nDK4	Nominal	13.00	4.50
Bluetooth HDR8	Maximum	14.50	6.00
סומפנטטנוו חטאס	Nominal	13.00	4.50

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 12 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 12 01 100

1.3.3 **Bluetooth Reduced Output Power**

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
			Antenna WF8
Bluetooth BDR	Maximum	13.00	11.50
biuetootii bDK	Nominal	11.50	10.00
Bluetooth EDR	Maximum	13.00	8.00
Bidetootii EDK	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
Bidetootii Le	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	13.00	6.00
סועפנטטנוו חטא4	Nominal	11.50	4.50
Bluetooth HDR8	Maximum	13.00	6.00
Biuetootii noko	Nominal	11.50	4.50

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
Bluetooth BDR	Maximum	13.00	11.50
Bidetootii BDR	Nominal	11.50	10.00
Bluetooth EDR	Maximum	13.00	8.00
Bidetootii EDK	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
biuetootii LE	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	13.00	6.00
Diuetoutii nDK4	Nominal	11.50	4.50
Bluetooth HDR8	Maximum	13.00	6.00
סועפנטטנוו חטאס	Nominal	11.50	4.50

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 13 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 13 of 100

-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	13.00	11.50
Bluetooth BDK	Nominal	11.50	10.00
Bluetooth EDR	Maximum	13.00	8.00
Bluetooth EDK	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
Bluetooth LE	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	13.00	6.00
Diuetootii nDK4	Nominal	11.50	4.50
Bluetooth HDR8	Maximum	13.00	6.00
ם ווופנטטנוו חטאס	Nominal	11.50	4.50

Note: Below table is applicable in the following conditions:
_-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF7b	Antenna WF7b
Bluetooth BDR	Maximum	13.00	11.50
Bluetooth buk	Nominal	11.50	10.00
Bluetooth EDR	Maximum	13.00	8.00
Bluetootii EDK	Nominal	11.50	6.50
Bluetooth LE	Maximum	13.00	11.50
Biuetootii LE	Nominal	11.50	10.00
Bluetooth HDR4	Maximum	13.00	6.00
Didetootii nDK4	Nominal	11.50	4.50
Bluetooth HDR8	Maximum	13.00	6.00
ם שלום היים היים היים היים היים היים היים הי	Nominal	11.50	4.50

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 14 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 14 01 100

1.3.4 802.15.4 Max Output Power

Mode / Band		Modulated Average (ePA) Single Tx Chain (dBm)	Modulated Average (iPA) Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
802.15.4	Maximum	21.00	11.50
802.15.4	Nominal	19.50	10.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
902 15 4	Maximum	21.50	11.50
802.15.4	Nominal	20.00	10.00

1.3.5 802.15.4 Reduced Output Power

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

	802.15.4	Maximum Nominal	14.00 12.50	11.50 10.00
ı		D. 4 =	14.00	44.50
			Antenna WF8	Antenna WF8
	Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
			Modulated Average (ePA)	Modulated Average (iPA)

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 5/6 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7b	Antenna WF7b
802.15.4	Maximum	14.50	11.50
002.15.4	Nominal	13.00	10.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 15 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 15 01 100

NB UNII Max Output Power 1.3.6

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	10.00	6.50
IND OINII-T DOK	Nominal	8.50	5.00
NB UNII-1 HDR4	Maximum	12.50	2.50
IND UNII-1 HDR4	Nominal	11.00	1.00
NB UNII-1 HDR8	Maximum	13.50	2.50
IND CIVIL-T UDKO	Nominal	12.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	7.00	6.50
IND OINII-T DOK	Nominal	5.50	5.00
ND HALL 4 HDD4	Maximum	9.50	2.50
NB UNII-1 HDR4	Nominal	8.00	1.00
ND HALL 4 HDD0	Maximum	12.00	2.50
NB UNII-1 HDR8	Nominal	10.50	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	10.00	6.50
IND OINII-T DOK	Nominal	8.50	5.00
ND HALL 4 HDD4	Maximum	12.50	2.50
NB UNII-1 HDR4	Nominal	11.00	1.00
NB UNII-1 HDR8	Maximum	13.50	2.50
	Nominal	12.00	1.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 16 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye 10 01 100

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	7.00	6.50
IND CIVIL-T DDK	Nominal	5.50	5.00
NB UNII-1 HDR4	Maximum	9.50	2.50
IND UNII-1 HDK4	Nominal	8.00	1.00
NB UNII-1 HDR8	Maximum	12.00	2.50
IND CIVIL-T UDKO	Nominal	10.50	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	13.50	6.50
אטם כ-וווווט פאו	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
IND UNII-3 HDK4	Nominal	12.00	1.00
ND HALL 2 HDD0	Maximum	13.50	2.50
NB UNII-3 HDR8	Nominal	12.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	13.50	6.50
אסם כ-וווורס פעו	Nominal	12.00	5.00
ND HALL 2 HDD4	Maximum	13.50	2.50
NB UNII-3 HDR4	Nominal	12.00	1.00
ND LINII 2 LIDDO	Maximum	13.50	2.50
NB UNII-3 HDR8	Nominal	12.00	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 17 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 17 01 100

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	13.50	6.50
IND CIVIL-2 DDK	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
IND UINII-3 HDR4	Nominal	12.00	1.00
NB UNII-3 HDR8	Maximum	13.50	2.50
וואם טואוו-3 חטאס	Nominal	12.00	1.00

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	13.50	6.50
אטם כ-וואוט פאו	Nominal	12.00	5.00
NB UNII-3 HDR4	Maximum	13.50	2.50
	Nominal	12.00	1.00
ND HALL 2 HDD0	Maximum	13.50	2.50
NB UNII-3 HDR8	Nominal	12.00	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

NB UNII Reduced Output Power 1.3.7

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)	
		Single Tx Chain (dBm)	Single Tx Chain (dBm)	
		Antenna WF8	Antenna WF8	
NB UNII-1 BDR	Maximum	10.00	6.50	
NR OMII-T ROK	Nominal	8.50	5.00	
NB UNII-1 HDR4	Maximum	10.00	2.50	
	Nominal	8.50	1.00	
NB UNII-1 HDR8	Maximum	10.00	2.50	
	Nominal	8.50	1.00	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 18 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage to of 100

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-1 BDR	Maximum	7.00	6.50
IND OMII-T DOK	Nominal	5.50	5.00
ND HALL 4 HDD4	Maximum	9.50	2.50
NB UNII-1 HDR4	Nominal	8.00	1.00
NID LINIU 4 LIDDO	Maximum	10.00	2.50
NB UNII-1 HDR8	Nominal	8.50	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

Note: Below table is applicable in the following conditions:

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	9.50	6.50
IND OINII-T DOK	Nominal	8.00	5.00
NB UNII-1 HDR4	Maximum	9.50	2.50
IND UNII-1 HDK4	Nominal	8.00	1.00
NB UNII-1 HDR8	Maximum	9.50	2.50
IND CIVIL-T LIDKO	Nominal	8.00	1.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 19 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 19 01 100

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-1 BDR	Maximum	7.00	6.50
IND CIVII-T DOK	Nominal	5.50	5.00
NB UNII-1 HDR4	Maximum	9.50	2.50
IND CIVII-1 HDK4	Nominal	8.00	1.00
NB UNII-1 HDR8	Maximum	9.50	2.50
IND CIVII-T UDKO	Nominal	8.00	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

Note: Below table is applicable in the following conditions:

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	10.00	6.50
IND CINII-2 DDK	Nominal	8.50	5.00
NB UNII-3 HDR4	Maximum	10.00	2.50
IND UINII-3 HDK4	Nominal	8.50	1.00
NB UNII-3 HDR8	Maximum	10.00	2.50
	Nominal	8.50	1.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 20 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 20 01 100
		RFV 23.0

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		TXBF (dBm)	TXBF (dBm)
		Antenna WF8	Antenna WF8
NB UNII-3 BDR	Maximum	10.00	6.50
NR ONII-3 RDK	Nominal	8.50	5.00
ND HALL 2 HDD4	Maximum	10.00	2.50
NB UNII-3 HDR4	Nominal	8.50	1.00
NB UNII-3 HDR8	Maximum	10.00	2.50
ואם טואוו-ט חטאס	Nominal	8.50	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

Note: Below table is applicable in the following conditions:
-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

		Modulated Average (ePA)	Modulated Average (iPA)
Mode / Band		Single Tx Chain (dBm)	Single Tx Chain (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	8.50	6.50
אסם כ-וואוט פאו	Nominal	7.00	5.00
NB UNII-3 HDR4	Maximum	8.50	2.50
IND UINII-3 HDK4	Nominal	7.00	1.00
NB UNII-3 HDR8	Maximum	8.50	2.50
ואם טואוו-3 חטאס	Nominal	7.00	1.00

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 21 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 21 01 100
		RFV 23.0

-Simultaneous conditions with 2.4 GHz WLAN and WPT active.

Ciridital local Schallone Will 2.1 GHz WE W and W 1 dollve.			
Mode / Band		Modulated Average (ePA)	Modulated Average (iPA)
		TXBF (dBm)	TXBF (dBm)
		Antenna WF7a	Antenna WF7a
NB UNII-3 BDR	Maximum	8.50	6.50
NR ONII-3 RDK	Nominal	7.00	5.00
NB UNII-3 HDR4	Maximum	8.50	2.50
	Nominal	7.00	1.00
NB UNII-3 HDR8	Maximum	8.50	2.50
	Nominal	7.00	1.00

Note: In TxBF operations, each antenna transmits at maximum allowed powers as indicated above.

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filings.

Note: Per FCC KDB Publication 616217 D04v01r01, front side of the device is not required to be evaluated for SAR. All other edges were evaluated for simultaneous transmission analysis.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 22 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 22 01 100

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D04v01, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D04v01 4.3.2 procedures.

Table 1-1
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Body
1	2.4 GHz WI-FI MIMO + WPT	Yes
2	5/6 GHz WI-FI MIMO + WPT	Yes
3	2.4 GHz Bluetooth (TXBF) + WPT	Yes
4	NB UNII (TXBF) + WPT	Yes
5	2.4 GHz Bluetooth Antenna WF7b + 2.4 GHz WI-FI Antenna WF8 + WPT	Yes
6	802.15.4 Antenna WF7b + 2.4 GHz WI-FI Antenna WF8 + WPT	Yes
7	2.4 GHz Bluetooth + 5/6 GHz WI-FI + WPT	Yes
8	802.15.4 + 5/6 GHz WI-FI + WPT	Yes
9	2.4 GHz Bluetooth + 5/6 GHz WI-FI MIMO + WPT	Yes
10	802.15.4 + 5/6 GHz WI-FI MIMO + WPT	Yes
11	2.4 GHz Bluetooth (TXBF) + 5/6 GHz WI-FI + WPT	Yes
12	2.4 GHz Bluetooth (TXBF) + 5/6 GHz WI-FI MIMO + WPT	Yes
13	NB UNII + 2.4 GHz WI-FI + WPT	Yes
14	NB UNII + 2.4 GHz WI-FI MIMO + WPT	Yes
15	NB UNII (TXBF) + 2.4 GHz WI-FI + WPT	Yes
16	NB UNII (TXBF) + 2.4 GHz WI-FI MIMO + WPT	Yes

- 1. 2.4GHz WIFI and 2.4 GHz Bluetooth/802.15.4 can transmit simultaneously on separate antennas, Specific 2.4 GHz WIFI Antenna that can only transmit simultaneously with 2.4 GHz Bluetooth/802.15.4 is listed in the above table. In this scenario, Wi-Fi max power will not exceed minimum of (13.5 dBm, SAR max cap, Reg max cap) power. Additionally, in disconnected mode, BT will be using iPA only.
- 2. 2.4 GHz WLAN and 5 GHz WLAN cannot transmit simultaneously.
- 3. This device supports 2x2 MIMO Tx for WLAN 802.11a/g/n/ac/ax. 802.11a/g/n/ac/ax supports CDD and STBC and 802.11n/ac/ax additionally supports SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 4. This device supports VoWIFI.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Based on the maximum allowed power for the respective antennas, U-NII-2A was evaluated for Antenna WF8 and WF7a. Additional testing for U-NII-1 was not required since all reported SAR was less than 1.2 W/kg per FCC KDB Publication 248227 D01v02r02.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:
1 00 121 2007 12002		Technical Manager
Document S/N:	DUT Type:	Page 23 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 23 01 100
		REV/ 23 0

The WLAN/Bluetooth chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report. WLAN/Bluetooth SAR worst case configuration was spotchecked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining WLAN/Bluetooth configurations.

This device supports channel 1-13 for 2.4 GHz WLAN. However, because channel 12/13 targets are not higher than that of channels 1-11, channels 1, 6, and 11 were considered for SAR testing per FCC KDB 248227 D01V02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 160 MHz Bandwidth only for 5/6 GHz
- b) 3 Tx antenna output
- c) 256 QAM is supported
- d) TDWR and Band gap channels are supported

This device supports IEEE 802.11ax with the following features:

- a) Up to 160 MHz Bandwidth only for 5/6 GHz
- b) Up to 20 MHz Bandwidth only for 2.4 GHz
- c) No aggregate channel configurations
- d) 3 Tx antenna output
- e) Up to 1024 QAM is supported
- f) TDWR and Band gap channels are supported for 5 GHz
- g) MU-MIMO UL Operations are not supported

Per April 2019 TCB Workshop Notes, SAR testing was not required for 802.11ax when applying the initial test configuration procedures of KDB 248227, with 802.11ax considered a higher order 802.11 mode.

Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. FCC KDB 648474 and FCC KDB 248227 were followed for test positions, distances, and modes. Per TCB workshop October 2020 notes, 5 channels were tested. Absorbed power density (APD) using a 4cm2 averaging area is reported based on SAR measurements. Incident power density is evaluated at 2mm ensuring that the resolution is sufficient such that integrated power density (iPD) between d=2mm and d= λ /5mm is \geq -1dB per equipment manufacturer guidance. Power density results are scaled up for uncertainty above 30%.

1.7 Guidance Applied

- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D04v01 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet)
- November 2017, October 2018, April 2019, November 2019, October 2020 TCB Workshop Notes (IEEE 802.11ax)
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz) (Nov 2021)
- IEEE 1528-2013
- IEC TR 63170:2018
- IEC 62479:2010

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Doma 24 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 24 of 100
		REV 23.0

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: BCGA2902	D: BCGA2902 SAR EVALUATION REPORT	Approved by:
FCC ID. BCGA2902		Technical Manager
Document S/N:	DUT Type:	Page 25 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 25 01 100

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

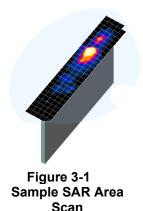
where:

 $\sigma \;\;$ = $\;$ conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]


FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 26 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 20 01 100

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

		Maximum Area Scan Maximum Zoom Scan		Maximum Zoom Scan Spatial Resolution (mm)		Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			$\Delta z_{zoom}(n)$	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤ 4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 27 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 27 01 100
		REV/ 23.0

12/03/2023

4 TEST CONFIGURATION POSITIONS

4.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

SAR Testing for Tablet per KDB Publication 616217 D04v01r02 4.2

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D04v01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 28 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 20 01 100

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure Limits for Frequencies below 6 GHz

Table 5-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT		
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 29 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 23 01 100
		REV/ 23 0

RF Exposure Limits for Frequencies above 6 GHz 5.4

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m2 or mW/cm2.

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm2 per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

> Table 5-2 Human Exposure Limits Specified in FCC 47 CFR §1.1310

Human Exposure to Radiofrequency (RF) Radiation Limits					
Frequency Range Power Density Average Time [MHz] [mW/cm²] [Minutes]					
(A) Limi	ts For Occupational / Controlled E	nvironments			
1,500 – 100,000 5.0 6					
(B) Limits For General Population / Uncontrolled Environments					
1,500 – 100,000 1.0 30					

Note: 1.0 mW/cm² is 10 W/m²

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogo 20 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 30 of 100
		REV 23.0

6 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D04v01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 31 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 31 of 100
		REV/ 23.0

12/03/2023

tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

6.2.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel, i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.5 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band. SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11q and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.2.6 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.5). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 32 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 32 01 100
		REV/ 23 0

12/03/2023

6.2.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.8 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D04v01 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 33 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 33 of 100

7 RF CONDUCTED POWERS

7.1 WLAN Maximum Time-Averaged Conducted Powers

Table 7-1
2.4 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1

2.4GHz WIFI (20MHz 802.11b SISO ANT WF8)				
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		17.54	
2437	6	Average	17.48	
2462	11		17.57	
2.4GHz	WIFI (20MHz	802.11g SI	SO ANT WF8)	
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.27	
2437	6	Average	17.91	
2462	11		15.92	
2.4GHz	WIFI (20MHz	802.11n SI	SO ANT WF8)	
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.26	
2437	6	Average	17.88	
2462	11		15.91	
2.4GHz V	2.4GHz WIFI (20MHz 802.11ax SISO ANT WF8)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.13	
2437	6	Average	17.80	

Table 7-2
2.4 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2

2.4GHz WIFI (20MHz 802.11b SISO ANT WF8)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		17.41
2437	6	Average	17.71
2462	11		17.68
2.4GHz V	WIFI (20MHz	802.11g SI	SO ANT WF8)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
-	Channel	Detector	
[MHz]	Channel 1 6	Detector Average	Power [dBm]

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 34 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 34 01 100
		RFV 23.0

12/03/2023

2.4GHz WIFI (20MHz 802.11n SISO ANT WF8)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.23
2437	6	Average	18.02
2462	11		15.93
2.4GHz WIFI (20MHz 802.11ax SISO ANT WF8)			
2.4GHZ V	VIFI (ZUMIHZ	802.11ax SI	SO ANT WF8)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
Freq.			Conducted
Freq. [MHz]			Conducted Power [dBm]

Table 7-3
2.4 GHz WLAN Maximum Average RF Power – Antenna WF7b, Variant 1

2.4GHz WIFI (20MHz 802.11b SISO ANT WF7b)				
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		19.03	
2437	6	Average	19.19	
2462	11		19.28	
2.4GHz V	VIFI (20MHz	802.11g SIS	O ANT WF7b)	
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.21	
2437	6	Average	19.02	
2462	11		16.13	
2.4GHz V	2.4GHz WIFI (20MHz 802.11n SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.22	
2437	6	Average	19.01	
2462	11		16.12	
2.4GHz W	TFI (20MHz	802.11ax SI	SO ANT WF7b)	
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]	
2412	1		14.29	
2437	6	Average	19.04	
2462	11		15.56	

Table 7-4
2.4 GHz WLAN Maximum Average RF Power – Antenna WF7b, Variant 2

2.4GHz WIFI (20MHz 802.11b SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		18.93
2437	6	Average	19.07
2462	11	1	19.29

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 35 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 33 of 100

2.4GHz WIFI (20MHz 802.11g SISO ANT WF7b)			
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.31
2437	6	Average	19.15
2462	11		16.17
2.4GHz V	VIFI (20MHz	802.11n SIS	O ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.32
2437	6	Average	19.15
2462	11		16.18
2.4GHz W	TFI (20MHz	802.11ax SI	SO ANT WF7b)
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]
2412	1		14.24
2437	6	Average	19.19
2462	11		15.48

Table 7-5 5 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1

COLL WIEL (40) HI 000 11 CIGO ANTEWEO)					
5GHz WIFI (40MHz 802.11n SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-1	5190	38	14.62		
	5230	46	17.09		
UNII-2A	5270	54	17.15		
	5310	62	15.51		
5GHz WIFI (40MHz 802.11ac SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-1	5190	38	14.96		
	5230	46	16.95		
UNII-2A	5270	54	17.06		
	5310	62	15.66		
5GHz W	5GHz WIFI (40MHz 802.11ax SISO ANT WF8)				
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
I DITE 1	5190	38	13.73		
UNII-1	5230	46	16.90		
UNII-2A	5270	54	17.04		
	5310	62	14.12		
5GHz WIFI (80MHz 802.11ac SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-2C	5530	106	13.52		
	5610	122	15.32		
	5690	138	15.40		
UNII-3	5775	155	15.57		

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 36 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 30 or 100

5GHz WIFI (80MHz 802.11ax SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
	5530	106	13.12		
UNII-2C	5610	122	15.38		
	5690	138	15.31		
UNII-3	5775	155	16.01		

Table 7-6
5 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2

SGHz WIFI (40MHz 802.11n SISO ANT WF8) Band Freq. [MHz] Channel Power [dBm] UNII-1 5190 38 14.61 5230 46 17.05 UNII-2A 5270 54 16.93 5310 62 15.45 5GHz WIFI (40MHz 802.11ac SISO ANT WF8)	d
MHz	d
UNII-2A S190 38 14.61 17.05 16.93 15.45 16.93 16.93 17.45 16.93 17.45 16.93 17.45 16.93 17.45	
UNII-2A 5230 46 17.05 UNII-2A 5270 54 16.93 5310 62 15.45	
UNII-2A 5230 46 17.05 UNII-2A 5270 54 16.93 5310 62 15.45	
UNII-2A 5270 54 16.93 5310 62 15.45	
UNII-2A 5310 62 15.45	
	_
COLE WIT (TOWNER COZITION DISCIENT WITC)	
	_
Band Freq. Channel Avg. Conducte	
[MHz] Power [dBm]	
INII 1 5190 38 14.95	
UNII-1 5230 46 17.03	
UNII-2A 5270 54 17.06	
5310 62 15.19	
5GHz WIFI (40MHz 802.11ax SISO ANT WF8)	
Freq. Avg. Conducte	А
Band [MHz] Channel Avg. Conducted Power [dBm]	
UNII-1 5190 38 13.44	
5230 46 16.98	
UNII-2A 5270 54 17.14	
5310 62 13.93	
5GHz WIFI (80MHz 802.11ac SISO ANT WF8)	
Freq. Avg. Conducte	d
Band [MHz] Channel Power [dBm]	
5530 106 13.48	
UNII-2C 5610 122 15.35	
5690 138 15.30	
UNII-3 5775 155 15.85	
5GHz WIFI (80MHz 802.11ax SISO ANT WF8)	
	4
Freq. Avg. Conducte	u
Band Freq. Channel Avg. Conducted Power [dBm]	
Band [MHz] Channel Power [dBm]	
Band [MHz] Channel Power [dBm]	
Band [MHz] Channel Power [dBm]	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 37 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 37 01 100

Table 7-7
5 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 1

5GHz W	5GHz WIFI (40MHz 802.11n SISO ANT WF7a)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
UNII-1	5190	38	15.09			
OIVII-I	5230	46	15.21			
UNII-2A	5270	54	15.18			
OIVII 271	5310	62	15.30			
5GHz W	IFI (40MHz 8	02.11ac SIS	O ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
LINIII 1	5190	38	15.04			
UNII-1	5230	46	15.17			
UNII-2A	5270	54	15.22			
UNII-ZA	5310	62	15.14			
5GHz W	IFI (40MHz 8	302.11ax SIS	SO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
	5190	38	13.44			
UNII-1	5230	46	15.17			
1011101	5270	54	15.18			
UNII-2A	5310	62	13.93			
5GHz W	IFI (80MHz 8	302.11ac SIS	SO ANT WF7a)			
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
	5530	106	13.24			
UNII-2C	5610	100				
0111120	3010	122	13.79			
	5690	138	13.12			
UNII-3						
	5690 5775	138 155	13.12			
	5690 5775	138 155	13.12 13.62			
5GHz W	5690 5775 IFI (80MHz 8 Freq.	138 155 802.11ax SIS	13.12 13.62 30 ANT WF7a) Avg. Conducted			
5GHz W	5690 5775 IFI (80MHz 8 Freq. [MHz]	138 155 302.11ax SIS Channel	13.12 13.62 GO ANT WF7a) Avg. Conducted Power [dBm]			
5GHz W	5690 5775 IFI (80MHz 8 Freq. [MHz]	138 155 302.11ax SIS Channel	13.12 13.62 GO ANT WF7a) Avg. Conducted Power [dBm] 13.17			

Table 7-8
5 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 2

5GHz WIFI (40MHz 802.11n SISO ANT WF7a)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-1	5190	38	15.05		
UNII-1	5230	46	15.28		
UNII-2A	5270	54	15.35		
UNII-ZA	5310	62	15.18		

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 38 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye 30 01 100

5GHz W	IFI (40MHz 8	302.11ac SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
UNII-1	5190	38	15.06
ONII-1	5230	46	15.21
UNII-2A	5270	54	15.16
UNII-ZA	5310	62	15.23
5GHz W	IFI (40MHz 8	302.11ax SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
I IN III 1	5190	38	13.34
UNII-1	5230	46	15.21
I INIII 2 A	5270	54	15.17
UNII-2A	5310	62	14.03
5GHz W	IFI (80MHz 8	302.11ac SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5530	106	13.75
UNII-2C	5610	122	13.99
	5690	138	13.35
UNII-3	5775	155	13.51
5GHz W	IFI (80MHz 8	302.11ax SIS	SO ANT WF7a)
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]
	5530	106	12.92
UNII-2C	5610	122	13.46
	5690	138	13.30
III-3	5775	155	13.61

Table 7-9
5 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 1

5GHz WIFI (40MHz 802.11n MIMO)					
Band Freq[Freq [MHz] Channel	Avg. Conducted Powers [dBm]			
			ANT WF8	ANT WF7a	MIMO
UNII-1	5190	38	13.52	13.56	16.55
UNII-1	5230	46	16.91	15.32	19.20
UNII-2A	5270	54	17.11	15.27	19.30
UNII-ZA	5310	62	13.81	13.95	16.89
5GHz WIFI (80MHz 802.11ac MIMO)					
		5GHz WIFI	(80MHz 802.11a	c MIMO)	
Band	Freq [MHz]			c MIMO) onducted Powers	[dBm]
Band	Freq [MHz]			,	[dBm]
Band	Freq [MHz]		Avg. C	onducted Powers	
Band UNII-2C	1. 1	Channel	Avg. C	onducted Powers	MIMO
	5530	Channel	Avg. Co ANT WF8 12.52	onducted Powers ANT WF7a 12.36	MIMO 15.45

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 39 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 39 01 100

Table 7-10
5 GHz WLAN Maximum Average RF Power – Antenna WF8 and WF7a MIMO, Variant 2

	5GHz WIFI (40MHz 802.11n MIMO)					
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]			
			ANT WF8	ANT WF7A	MIMO	
UNII-1	5190	38	13.48	13.41	16.46	
UNII-I	5230	46	16.90	15.18	19.13	
UNII-2A	5270	54	17.09	15.20	19.26	
UNII-ZA	5310	62	13.94	13.98	16.97	
5GHz WIFI (80MHz 802.11ac MIMO)						
	•	5GHz WIFI	(80MHz 802.11a	c MIMO)		
Band	Freq [MHz]			c MIMO) onducted Powers	[dBm]	
Band	Freq [MHz]			,	[dBm]	
Band	Freq [MHz]		Avg. C	onducted Powers		
Band UNII-2C	11. 3	Channel	Avg. C	onducted Powers	MIMO	
	5530	Channel	Avg. C ANT WF8 12.43	onducted Powers ANT WF7A 12.45	MIMO 15.45	

Table 7-11
6 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 1

6GHz WIFI (160MHz 802.11ax SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-5	6025	15	12.49		
UNII-3	6345	79	13.16		
UNII-6	6505	111	12.85		
UNII-7	6665	143	14.49		
UNII-8	6985	207	9.79		

Table 7-12
6 GHz WLAN Maximum Average RF Power – Antenna WF8, Variant 2

6GHz WIFI (160MHz 802.11ax SISO ANT WF8)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-5	6025	15	12.26		
UNII-3	6345	79	12.31		
UNII-6	6505	111	12.30		
UNII-7	6665	143	14.01		
UNII-8	6985	207	9.59		

Table 7-13
6 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 1

6GHz WI	6GHz WIFI (160MHz 802.11ax SISO ANT WF7a)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
UNII-5	6025	15	11.65			
UNII-3	6345	79	11.39			
UNII-6	6505	111	11.55			
UNII-7	6665	143	10.68			
UNII-8	6985	207	10.17			

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogo 40 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 40 of 100
		REV 23.0

12/03/2023

Table 7-14
6 GHz WLAN Maximum Average RF Power – Antenna WF7a, Variant 2

6GHz WIFI (160MHz 802.11ax SISO ANT WF7a)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-5	6025	15	11.43		
UNII-3	6345	79	10.88		
UNII-6	6505	111	10.85		
UNII-7	6665	143	10.01		
UNII-8	6985	207	9.63		

7.2 Notes for WLAN

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The WLAN chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions.
- Two device variants are referenced as Variant 1 and Variant 2 in this report.
- WLAN SAR worst case configuration was spotchecked on Variant 1 and Variant 2.

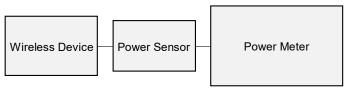


Figure 7-1
Power Measurement Setup

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogg 44 of 400
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 41 of 100
		REV 23.0

7.3 Bluetooth Maximum Conducted Powers

Table 7-16
Bluetooth Maximum Average RF Power – Antenna WF8, Variant 1

Frequency [MHz]	Modulation	Data Rate [Mbps]	Channel No.	Avg Conducted Power	
r requericy [imitz]				[dBm]	[mW]
2402	GFSK	1.0	0	18.92	77.983
2441	GFSK	1.0	39	18.92	77.983
2480	GFSK	1.0	78	19.20	83.176

Table 7-17
Bluetooth Maximum Average RF Power – Antenna WF8, Variant 2

Frequency [MHz]	Modulation Data Rate [Mbps]	Channel	Avg Cor Pov		
			No.	[dBm]	[mW]
2402	GFSK	1.0	0	18.91	77.804
2441	GFSK	1.0	39	18.84	76.560
2480	GFSK	1.0	78	19.17	82.604

Table 7-18
Bluetooth Maximum Average RF Power – Antenna WF7b, Variant 1

Frequency [MHz]	Modulation	Data Rate Cha	Channel	Avg Conducted Power	
Frequency [MH2]	Wiodulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	19.70	93.325
2441	GFSK	1.0	39	19.73	93.972
2480	GFSK	1.0	78	19.76	94.624

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 42 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 42 01 100
		RFV 23.0

Table 7-19
Bluetooth Maximum Average RF Power – Antenna WF7b, Variant 2

Frequency [MHz]	_	Data	Data Channel	Avg Conducted Power	
r requericy [ivii iz]	Wiodulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	19.72	93.756
2441	GFSK	1.0	39	19.70	93.325
2480	GFSK	1.0	78	19.76	98.175

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 43 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 43 01 100

7.4 802.15.4 Maximum Conducted Powers

Table 7-20 802.15.4 Maximum Average RF Power – Antenna WF8, Variant 1

Frequency [MHz]	_	Data Rate	Channel	Avg Cor Pov	nducted wer
Frequency [Min2]	Modulation	[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	0.25	11	19.01	79.616
2440	O-QPSK	0.25	18	19.17	82.604
2475	O-QPSK	0.25	25	19.31	85.310

Table 7-21 802.15.4 Maximum Average RF Power – Antenna WF8, Variant 2

Eroguanov [MHz]	Modulation	Data Rate [Mbps]	Channel No.	Avg Conducted Power	
Frequency [MH2]				[dBm]	[mW]
2405	O-QPSK	0.25	11	19.25	84.140
2440	O-QPSK	0.25	18	19.16	82.414
2475	O-QPSK	0.25	25	19.04	80.168

Table 7-22 802.15.4 Maximum Average RF Power – Antenna WF7b, Variant 1

Fragua nov [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power	
Frequency [MHz]		[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	0.25	11	19.58	90.782
2440	O-QPSK	0.25	18	19.85	96.605
2475	O-QPSK	0.25	25	19.65	92.257

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 44 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 44 01 100

Table 7-23 802.15.4 Maximum Average RF Power – Antenna WF7b, Variant 2

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Conducted Power	
Frequency [MH2]	Wiodulation	[Mbps]	No.	[dBm]	[mW]
2405	O-QPSK	0.25	11	19.84	96.383
2440	O-QPSK	0.25	18	19.70	93.325
2475	O-QPSK	0.25	25	19.61	91.411

7.5 NB UNII Maximum Conducted Powers

Table 7-24
NB UNII-1 Maximum Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
	8 U-NII 1	5162	Low	12.98
HDR - 8		5204	Mid	13.16
		5245	High	13.15

Table 7-25
NB UNII-1 Maximum Average RF Power – Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
		5162	Low	13.15
HDR - 8	U-NII 1	5204	Mid	13.10
		5245	High	13.13

Table 7-26
NB UNII-1 Maximum Average RF Power – Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
		5162	Low	12.69
HDR-8	U-NII 1	5204	Mid	12.68
		5245	High	12.63

Table 7-27
NB UNII-1 Maximum Average RF Power – Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
		5162	Low	12.42
HDR-8	U-NII 1	5204	Mid	12.58
		5245	High	12.41

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 45 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	raye 40 01 100
		REV 23.0

12/03/2023

Table 7-28 NB UNII-3 Maximum Average RF Power - Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
		5733	Low	11.97
BDR	U-NII 3	5789	Mid	12.09
		5844	High	12.00

Table 7-29 NB UNII-3 Maximum Average RF Power - Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
		5733	Low	12.35
BDR	U-NII 3	5789	Mid	12.24
		5844	High	12.30

Table 7-30 NB UNII-3 Maximum Average RF Power - Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
		5733	Low	12.53
BDR	U-NII 3	5789	Mid	12.50
		5844	High	12.59

Table 7-31 NB UNII-3 Maximum Average RF Power - Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
		5733	Low	12.49
BDR U-	U-NII 3	5789	Mid	12.47
		5844	High	12.46

7.6 **Bluetooth Reduced Conducted Powers**

Table 7-32 Bluetooth Reduced Average RF Power - Antenna WF8, Variant 1

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Cor Pov	nducted wer
r requericy [imitz]	Wiodulation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	12.13	16.331
2441	GFSK	1.0	39	12.15	16.406
2480	GFSK	1.0	78	11.81	15.171

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 46 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 40 01 100

RFV 23 0

Table 7-33
Bluetooth Reduced Average RF Power – Antenna WF8, Variant 2

Frequency [MHz]	Modulation	Data Rate Channe		Avg Cor Pov	nducted wer
r requericy [imitz]	Woddiation	[Mbps]	No.	[dBm]	[mW]
2402	GFSK	1.0	0	12.40	77.804
2441	GFSK	1.0	39	12.23	76.560
2480	GFSK	1.0	78	11.88	82.604

Table 7-34
Bluetooth Reduced Average RF Power – Antenna WF7b, Variant 1

Frequency [MHz]	Modulation	Data Channel Avg Con			
r requericy [imitz]	Wiodulation	[Mbps]	l No l	[dBm]	[mW]
2402	GFSK	1.0	0	12.15	16.406
2441	GFSK	1.0	39	12.28	16.904
2480	GFSK	1.0	78	12.35	17.179

Table 7-35
Bluetooth Reduced Average RF Power – Antenna WF7b, Variant 2

Frequency [MHz]	Modulation	Data Channel Avg Cond Powe			
Trequency [Miliz]	Wodulation	[Mbps] No.	[dBm]	[mW]	
2402	GFSK	1.0	0	12.34	17.140
2441	GFSK	1.0	39	12.44	17.539
2480	GFSK	1.0	78	12.48	17.701

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 47 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 47 01 100

7.7 802.15.4 Reduced Conducted Powers

Table 7-36 802.15.4 Reduced Average RF Power - Antenna WF8, Variant 1

Frequency [MHz]	Modulation	Data	Data Channel		Channel Power		
Frequency [MH2]	Modulation	[Mbps]	No.	[dBm]	[mW]		
2405	O-QPSK	0.25	11	12.80	19.055		
2440	O-QPSK	0.25	18	12.83	19.187		
2475	O-QPSK	0.25	25	12.87	19.364		

Table 7-37 802.15.4 Reduced Average RF Power - Antenna WF8, Variant 2

Frequency [MHz]	Modulation	Data Rate	Channel	Avg Cor Pov	nducted wer
Frequency [MH2]	Modulation	[Mbps]	l No l	[dBm]	[mW]
2405	O-QPSK	0.25	11	12.82	19.143
2440	O-QPSK	0.25	18	12.86	19.320
2475	O-QPSK	0.25	25	12.83	19.187

Table 7-38 802.15.4 Reduced Average RF Power - Antenna WF7b, Variant 1

Frequency [MHz]	Modulation	Data Rate			nducted wer
Frequency [MH2]	Modulation	[Mbps] No.	[dBm]	[mW]	
2405	O-QPSK	0.25	11	13.79	23.933
2440	O-QPSK	0.25	18	13.70	23.442
2475	O-QPSK	0.25	25	13.52	22.491

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 48 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 46 of 100

Table 7-39 802.15.4 Reduced Average RF Power - Antenna WF7b, Variant 2

Frequency [MHz]	Modulation	Data	Data Channel Power		
Frequency [MH2]	Modulation	[Mbps] No.	[dBm]	[mW]	
2405	O-QPSK	0.25	11	13.62	23.014
2440	O-QPSK	0.25	18	13.75	23.714
2475	O-QPSK	0.25	25	13.86	24.322

7.8 **NB UNII Reduced Conducted Powers**

Table 7-40 NB UNII-1 Reduced Average RF Power - Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
		5162	Low	8.78
BDR	U-NII 1	5204	Mid	8.81
		5245	High	8.85

Table 7-41 NB UNII-1 Reduced Average RF Power - Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
BDR	U-NII 1	5162	Low	9.15
		5204	Mid	9.06
		5245	High	9.12

Table 7-42 NB UNII-1 Reduced Average RF Power - Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
BDR		5162	Low	8.86
	U-NII 1	5204	Mid	8.95
		5245	High	8.74

Table 7-43 NB UNII-1 Reduced Average RF Power - Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
BDR	U-NII 1	5162	Low	8.72
		5204	Mid	8.59
		5245	High	8.54

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 49 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 49 01 100

REV 23.0

Table 7-44 NB UNII-3 Reduced Average RF Power – Antenna WF8, Variant 1

Туре	Band	Frequency	Channel	Average
BDR	U-NII 3	5733	Low	8.79
		5789	Mid	8.92
		5844	High	9.09

Table 7-45 NB UNII-3 Reduced Average RF Power - Antenna WF8, Variant 2

Туре	Band	Frequency	Channel	Average
BDR	U-NII 3	5733	Low	9.41
		5789	Mid	9.26
		5844	High	9.26

Table 7-46 NB UNII-3 Reduced Average RF Power – Antenna WF7a, Variant 1

Туре	Band	Frequency	Channel	Average
BDR	U-NII 3	5733	Low	8.45
		5789	Mid	8.37
		5844	High	8.49

Table 7-47 NB UNII-3 Reduced Average RF Power – Antenna WF7a, Variant 2

Туре	Band	Frequency	Channel	Average
BDR	U-NII 3	5733	Low	8.49
		5789	Mid	8.48
		5844	High	8.50

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 50 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 50 01 100

7.9 Bluetooth Duty Cycle Plots

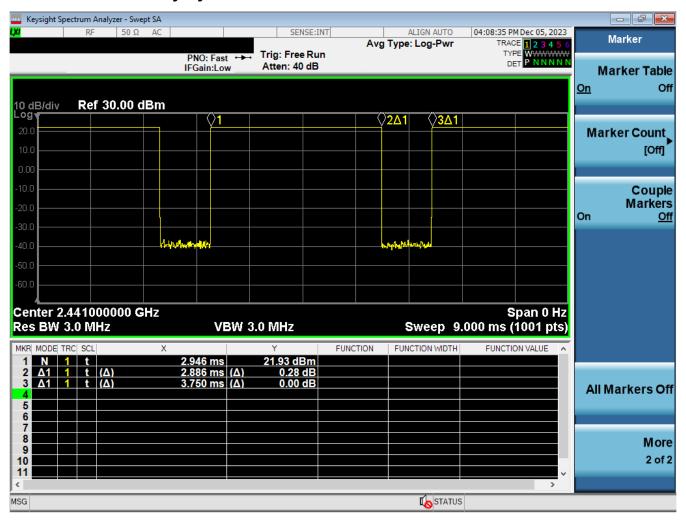


Figure 7-2
Bluetooth Transmission Plot – Antenna WF8, Variant 1

Equation 7-1
Bluetooth Duty Cycle Calculation – Antenna WF8, Variant 1

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.886 \, \textit{ms}}{3.750 \, \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 51 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 51 01 100

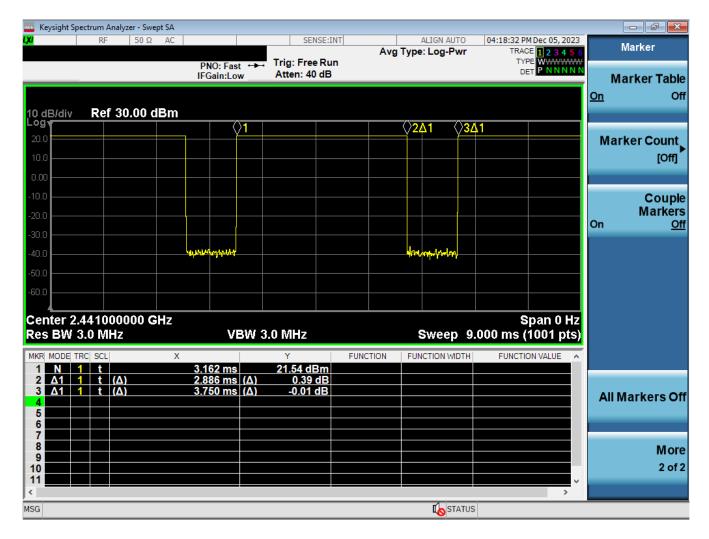


Figure 7-3
Bluetooth Transmission Plot – Antenna WF8, Variant 2

Equation 7-2
Bluetooth Duty Cycle Calculation – Antenna WF8, Variant 2

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.886 \ \textit{ms}}{3.750 \ \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 52 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 52 01 100

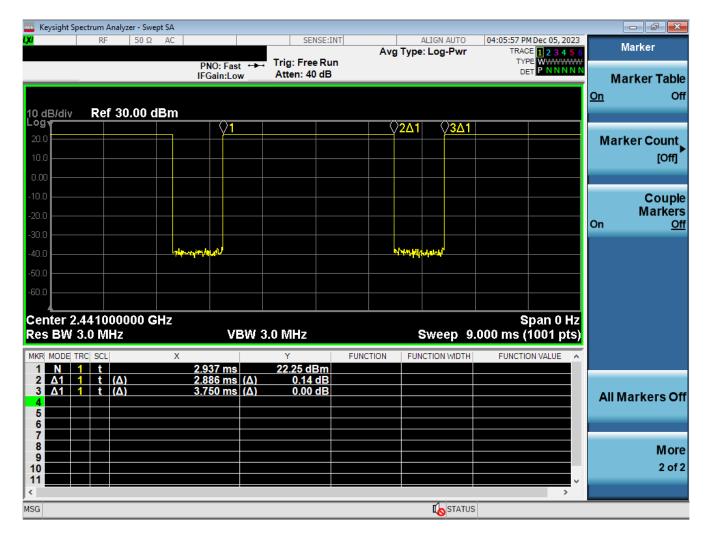


Figure 7-4
Bluetooth Transmission Plot – Antenna WF7b, Variant 1

Equation 7-3
Bluetooth Duty Cycle Calculation – Antenna WF7b, Variant 1

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.886 \, \textit{ms}}{3.750 \, \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 53 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 55 01 100

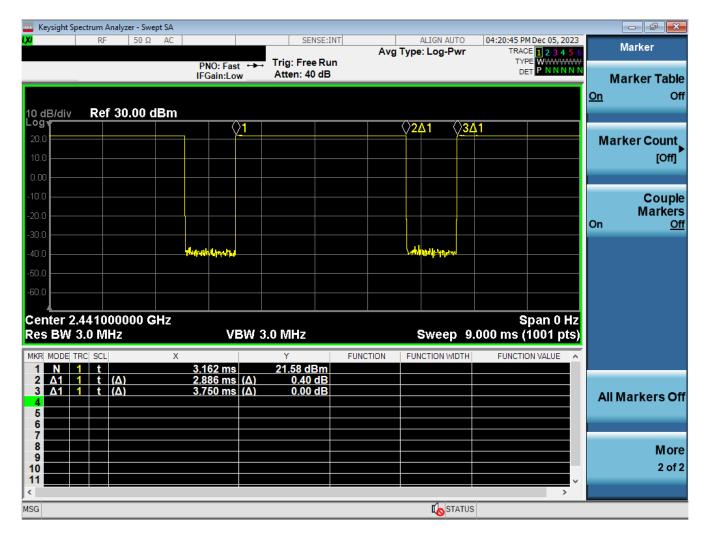


Figure 7-5
Bluetooth Transmission Plot – Antenna WF7b, Variant 2

Equation 7-4
Bluetooth Duty Cycle Calculation – Antenna WF7b, Variant 2

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.886 \ \textit{ms}}{3.750 \ \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 54 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 54 of 100

7.10 802.15.4 Duty Cycle Plots

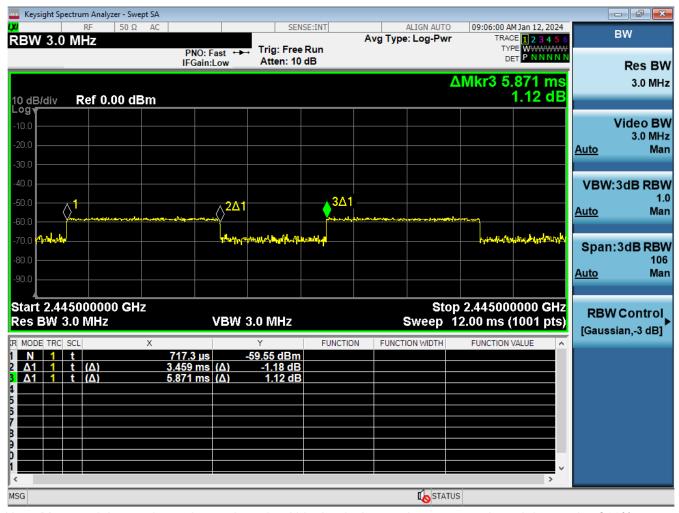

Note: Measured duty cycle as shown above is within the device maximum source-based duty cycle of 60%.

Figure 7-6 802.15.4 Transmission Plot – Variant 1

Equation 7-5 802.15.4 Duty Cycle Calculation – Variant 1

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{3.459 \, \textit{ms}}{5.883 \, \textit{ms}} * 100\% = 58.80\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 55 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 55 of 100

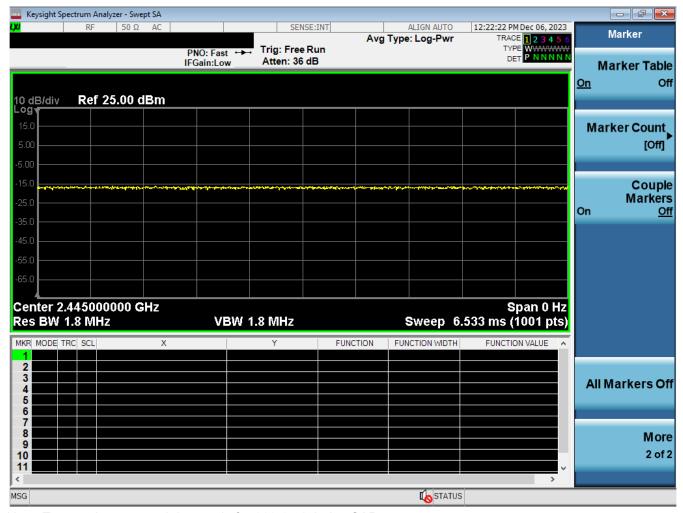

Note: Measured duty cycle as shown above is within the device maximum source-based duty cycle of 60%.

Figure 7-7 802.15.4 Transmission Plot – Variant 2

Equation 7-6 802.15.4 Duty Cycle Calculation – Variant 2

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{3.459\ ms}{5.871\ ms} * 100\% = 59.92\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 56 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 50 01 100

Note: Test mode measured duty cycle for 802.15.4 during SAR measurement.

Figure 7-8 802.15.4 Transmission Plot – Antenna WF8 /WF7b, Variant 1 and 2

Equation 7-7 802.15.4 Duty Cycle Calculation – Antenna WF8 /WF7b, Variant 1 and 2

 $Duty\ Cycle = 100\%$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 57 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 37 01 100
		REV 23.0

12/03/2023

7.11 NB UNII Duty Cycle Plots

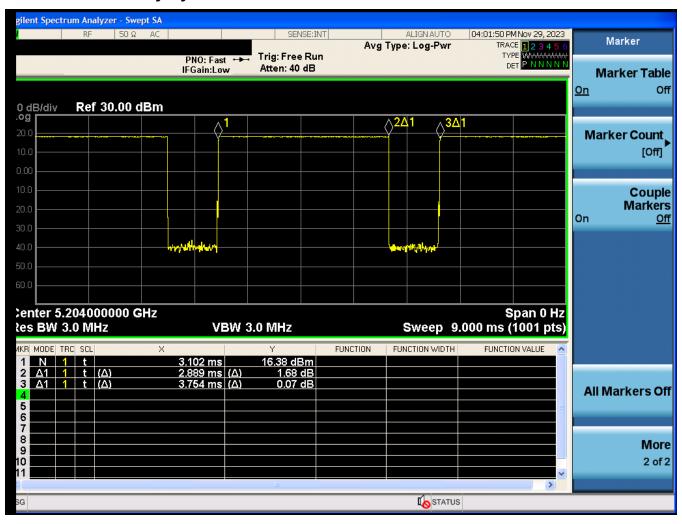


Figure 7-9 NB UNII 1 (HDR8) Transmission Plot - Antenna WF8, Variant 1

Equation 7-8 NB UNII 1 (HDR8) Duty Cycle Calculation - Antenna WF8, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.889\ ms}{3.754\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 58 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 36 01 100

RFV 23 0 12/03/2023

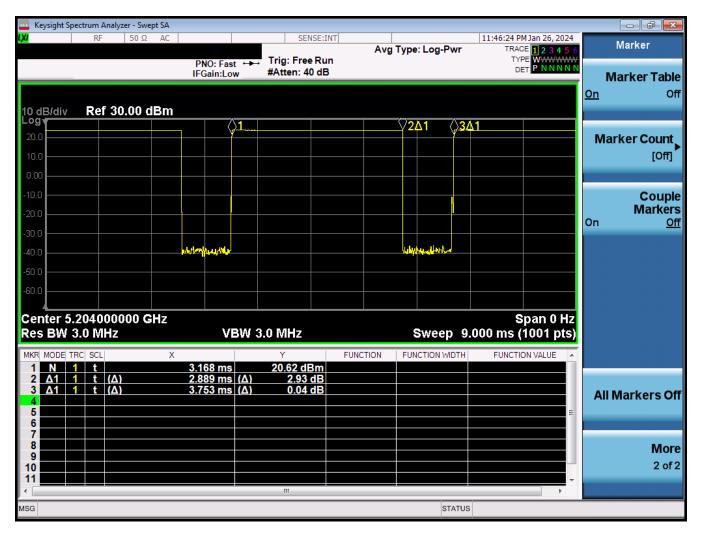


Figure 7-10
NB UNII 1 (BDR) Transmission Plot – Antenna WF8, Variant 1

Equation 7-9
NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.889\ ms}{3.753\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 59 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 59 01 100

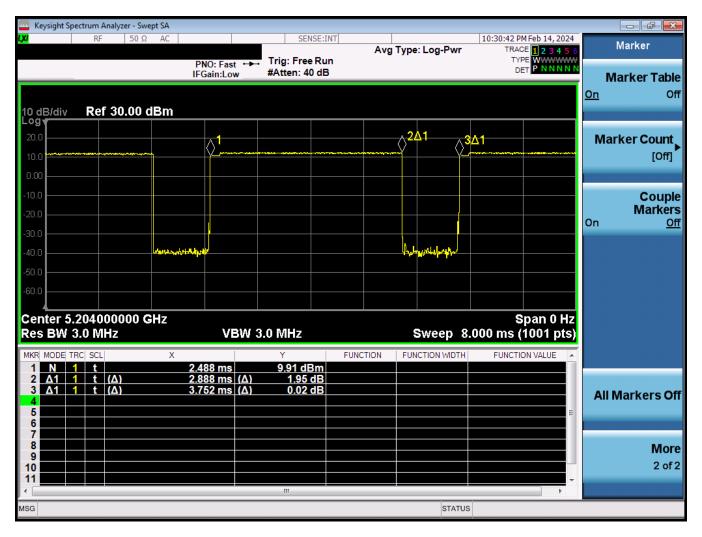


Figure 7-11

NB UNII 1 (HDR8) Transmission Plot – Antenna WF8, Variant 2

Equation 7-10

NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF8, Variant 2

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.888 \, \textit{ms}}{3.752 \, \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 60 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage ou or 100

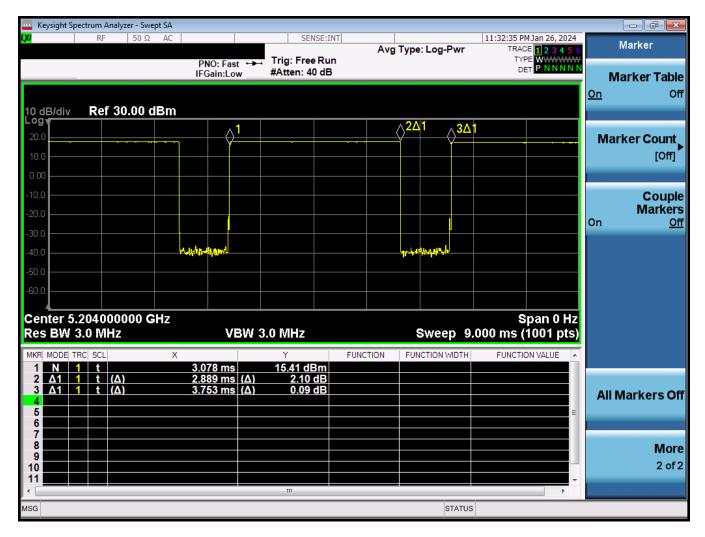


Figure 7-12
NB UNII 1 (BDR) Transmission Plot – Antenna WF8, Variant 2

Equation 7-11

NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 2

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.889\ ms}{3.753\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:
		Technical Manager
Document S/N:	DUT Type:	Page 61 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage of or 100
		REV 23.0



Figure 7-13 NB UNII 1 (HDR8) Transmission Plot – Antenna WF7a, Variant 1

Equation 7-12 NB UNII 1 (HDR8) Duty Cycle Calculation - Antenna WF7a, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.888\ ms}{3.752\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 62 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 02 01 100

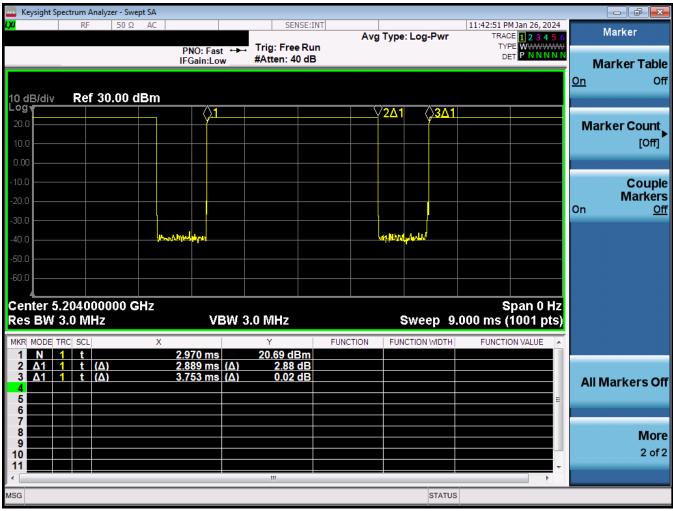


Figure 7-14 NB UNII 1 (BDR) Transmission Plot - Antenna WF7a, Variant 1

Equation 7-13 NB UNII 1 (BDR) Duty Cycle Calculation - Antenna WF7a, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.889\ ms}{3.753\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 63 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 03 01 100

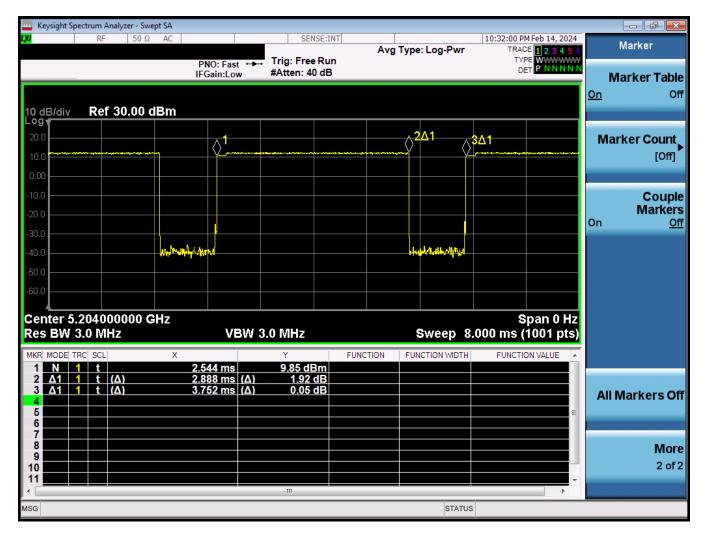


Figure 7-15
NB UNII 1 (HDR8) Transmission Plot – Antenna WF7a, Variant 2

Equation 7-14 NB UNII 1 (HDR8) Duty Cycle Calculation – Antenna WF7a, Variant 2

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.888\ ms}{3.752\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 64 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 04 01 100

Figure 7-16
NB UNII 1 (BDR) Transmission Plot – Antenna WF7a, Variant 2

Equation 7-15
NB UNII 1 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 2

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}}*100\% = \frac{2.889 \ \textit{ms}}{3.753 \ \textit{ms}}*100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 65 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 05 01 100

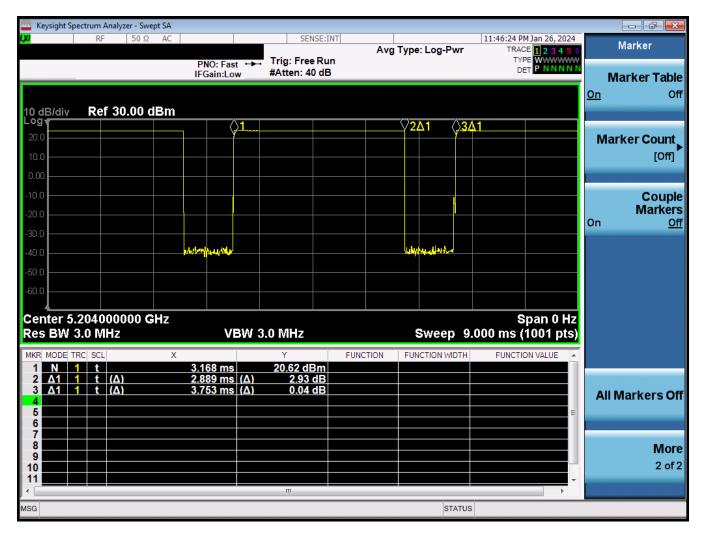


Figure 7-17
NB UNII 3 (BDR) Transmission Plot – Antenna WF8, Variant 1

Equation 7-16
NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.889\ ms}{3.753\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 66 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage oo or 100

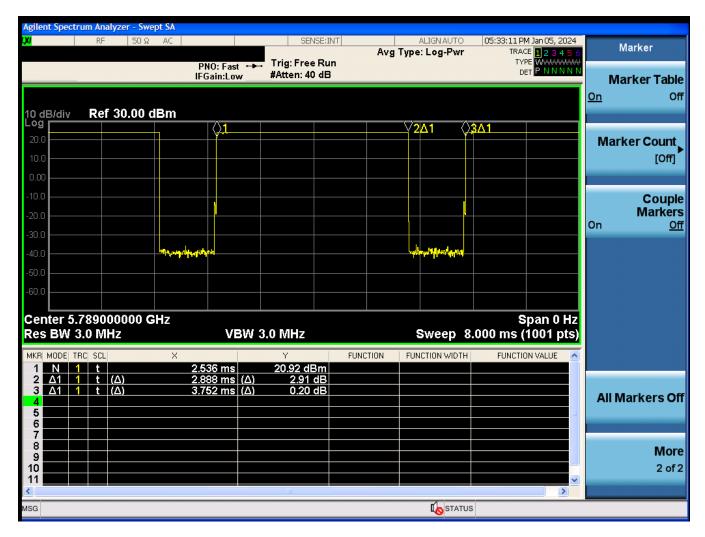


Figure 7-18
NB UNII 3 (BDR) Transmission Plot – Antenna WF8, Variant 2

Equation 7-17
NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF8, Variant 2

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.888 \, \textit{ms}}{3.752 \, \textit{ms}} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 67 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 07 01 100

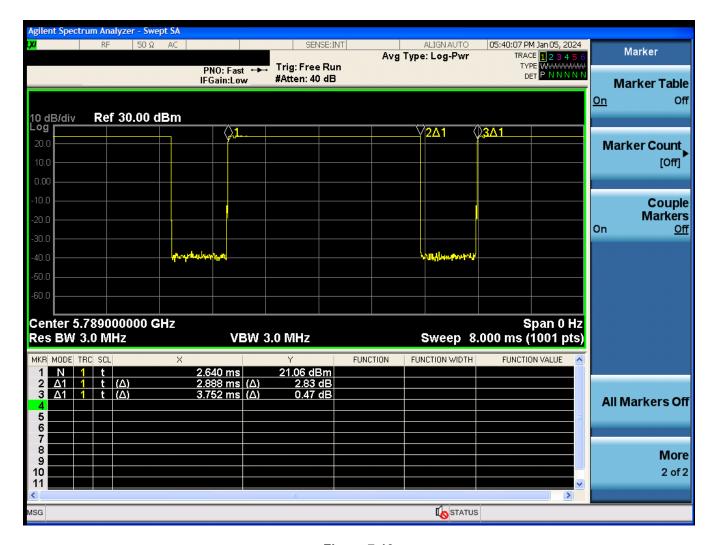


Figure 7-19
NB UNII 3 (BDR) Transmission Plot – Antenna WF7a, Variant 1

Equation 7-18

NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 1

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.888\ ms}{3.752\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Page 68 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage oo or 100	

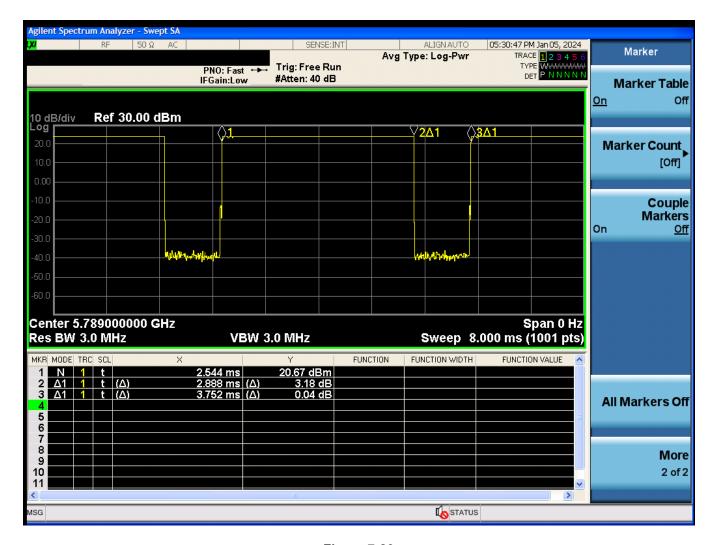


Figure 7-20
NB UNII 3 (BDR) Transmission Plot – Antenna WF7a, Variant 2

Equation 7-19
NB UNII 3 (BDR) Duty Cycle Calculation – Antenna WF7a, Variant 2

Duty Cycle =
$$\frac{Pulse\ Width}{Period} * 100\% = \frac{2.888\ ms}{3.752\ ms} * 100\% = 77.0\%$$

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager		
Document S/N:	DUT Type:	Page 69 of 100		
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 09 01 100		

7.12 Bluetooth/NB UNII Power Reduction Verification Summary

Table 7-48 Bluetooth Power Reduction Verification

Antenna	Mode/Band	Condition (s)	Maximum Scenario Maximum Allowed Tune Up Power [dBm]	Reduced Scenario Maximum Allowed Tune Up Power [dBm]	Maximum Measured Power [dBm]	Reduced Measured Power [dBm]	Verdict
	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF7A ON	20.0	13.0	18.01	11.98	PASS
Ant WF7b	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF8 ON	20.0	13.0	18.01	11.98	PASS
	802.15.4	5/6 GHz WLAN Ant WF7A + Ant WF8 ON	21.5	14.5	19.75	13.48	PASS
	802.15.4	5/6 GHz WLAN Ant WF7A ON	21.0	14.0	20.00	13.75	PASS
Ant WF8	802.15.4	5/6 GHz WLAN Ant WF8 ON	21.0	14.0	20.00	13.75	PASS
	2.4 GHz Bluetooth	5/6 GHz WLAN Ant WF7A + Ant WF8 ON	20.0	13.0	18.45	11.06	PASS

Maximum power will not exceed minimum of (SAR max cap, Reg max cap). Power reduction backoff for simultaneous transmission is applied to SAR max cap for each antenna. Reduced power level will not exceed minimum of (SAR max cap-power reduction backoff, Reg max cap).

Conducted powers were measured for each mode/band and applied condition. All conducted power measurements were verified to be below the maximum allowed.

Table 7-49 NB UNII Power Reduction Verification

Antenna	Mode/Band	Condition (s)	Maximum Scenario Maximum Allowed Tune Up Power [dBm]	Reduced Scenario Maximum Allowed Tune Up Power [dBm]	Maximum Measured Power [dBm]	Reduced Measured Power [dBm]	Verdict
	NB UNII	2.4 GHz WLAN Ant WF7B ON	13.5	8.5	11.71	6.80	PASS
Ant WF7a	NB UNII	2.4 GHz WLAN Ant WF8 ON	13.5	8.5	11.71	6.80	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B + Ant WF8 ON	13.5	8.5	11.71	6.80	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B ON	13.5	10.0	11.82	9.35	PASS
Ant WF8	NB UNII	2.4 GHz WLAN Ant WF8 ON	13.5	10.0	11.82	9.35	PASS
	NB UNII	2.4 GHz WLAN Ant WF7B + Ant WF8 ON	13.5	10.0	11.82	9.35	PASS

Maximum power will not exceed minimum of (SAR max cap, Reg max cap). Power reduction backoff for simultaneous transmission is applied to SAR max cap for each antenna. Reduced power level will not exceed minimum of (SAR max cap-power reduction backoff, Reg max cap).

Per manufacturer, 2.4 GHz Bluetooth and 802.15.4 share the same antenna path and reduces with the same power backoff when it transmits simultaneously with cellular and 5/6 GHz WLAN antennas. Therefore, conducted power measurements were measured for both mode/band as shown above and applied condition. All conducted power measurements were verified to be below the maximum allowed.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Page 70 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 70 of 100	
		REV 23.0	

12/03/2023

7.13 Notes for Bluetooth

- The Bluetooth chipset in this device is produced by two different suppliers. The electrically identical
 modules are manufactured with identical mechanical structures to meet the same specifications and
 functions. Two device variants are referenced as Variant 1 and Variant 2 in this report.
- Bluetooth SAR worst case configuration was spotchecked on Variant 1 and Variant 2.
- Full power measurements were performed for Variant 1 and Variant 2 per FCC KDB Procedures 248227.

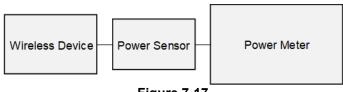


Figure 7-17
Power Measurement Setup

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 71 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage / 1 01 100

8.1 Tissue Verification

Table 8-1 Measured Tissue Properties

					· · · · ·						
Calibrated for Tests Performed	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev ε		
on:	rissue rype	(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε	76 UEV 0	70 UCV E		
		. ,	12	0.725	53.346	0.750	55.000	-3.33%	-3.01%		
		13	0.725	53.337	0.750	55.000	-3.33%	-3.02%			
			14	0.725	53.291	0.750	55.000	-3.33%	-3.11%		
01/02/2024	30 Head	22.6									
			30	0.728	52.949	0.750	55.000	-2.93%	-3.73%		
			60	0.733	52.109	0.753	54.325	-2.66%	-4.08%		
			65	0.735	52.018	0.753	54.213	-2.39%	-4.05%		
			2300	1.652	40.912	1.670	39.500	-1.08%	3.57%		
			2310	1.659	40.909	1.679	39.480	-1.19%	3.62%		
			2320	1.666	40.900	1.687	39.460	-1.24%	3.65%		
			2400	1.729	40.760	1.756	39.289	-1.54%	3.74%		
			2450	1.766	40.692	1.800	39.200	-1.89%	3.81%		
			2480	1.789	40.638	1.833	39.162	-2.40%	3.77%		
			2500	1.806	40.607	1.855	39.136	-2.64%	3.76%		
11/29/2023	2450 Head	19.0	2510	1.816	40.592	1.866	39.123	-2.68%	3.75%		
			2535	1.837	40.557	1.893	39.092	-2.96%	3.75%		
			2550	1.848	40.535	1.909	39.073	-3.20%	3.74%		
			2560	1.855	40.524	1.920	39.060	-3.39%	3.75%		
			2600	1.888	40.457	1.964	39.009	-3.87%	3.71%		
			2650	1.933	40.391	2.018	38.945	-4.21%	3.71%		
					2680	1.956	40.344	2.051	38.907	-4.63%	3.69%
			2700	1.974	40.294	2.073	38.882	-4.78%	3.63%		
			2300	1.694	38.619	1.670	39.500	1.44%	-2.23%		
			2310	1.705	38.578	1.679	39.480	1.55%	-2.28%		
			2320	1.717	38.537	1.687	39.460	1.78%	-2.34%		
			2400	1.809	38.213	1.756	39.289	3.02%	-2.74%		
			2450	1.869	38.018	1.800	39.200	3.83%	-3.02%		
			2480	1.903	37.889	1.833	39.162	3.82%	-3.25%		
			2500	1.925	37.796	1.855	39.136	3.77%	-3.42%		
11/29/2023	2450 Head	24.8	2510	1.936	37.751	1.866	39.123	3.75%	-3.51%		
			2535	1.965	37.654	1.893	39.092	3.80%	-3.68%		
			2550	1.984	37.596	1.909	39.073	3.93%	-3.78%		
			2560	1.995	37.554	1.920	39.060	3.91%	-3.86%		
			2600	2.041	37.374	1.964	39.009	3.92%	-4.19%		
			2650	2.099	37.176	2.018	38.945	4.01%	-4.54%		
			2680	2.133	37.049	2.051	38.907	4.00%	-4.78%		
			2700	2.156	36.965	2.073	38.882	4.00%	-4.93%		
			2300	1.626	38.739	1.670	39.500	-2.63%	-1.93%		
			2310	1.635	38.725	1.679	39.480	-2.62%	-1.91%		
			2320	1.643	38.713	1.687	39.460	-2.61%	-1.89%		
			2400	1.701	38.607	1.756	39.289	-3.13%	-1.74%		
			2450	1.745	38.529	1.800	39.200	-3.06%	-1.71%		
02/26/2024	2450 Head	19.0	2480	1.767	38.486	1.833	39.162	-3.60%	-1.73%		
-2,20,202,	_ 100 1 1000		2500	1.781	38.448	1.855	39.136	-3.99%	-1.76%		
			2510	1.788	38.430	1.866	39.123	-4.18%	-1.77%		
			2535	1.809	38.392	1.893	39.092	-4.44%	-1.79%		
			2550	1.823	38.373	1.909	39.073	-4.50%	-1.79%		
			2560	1.831	38.365	1.920	39.060	-4.64%	-1.78%		
		1	2000	1.001	00.000	1.020	00.000	7.07/8	1.7078		

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Page 72 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 12 01 100	

Calibrated for ests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			5180	4.423	35.050	4.635	36.009	-4.57%	-2.66%
			5190	4.440	35.034	4.645	35.998	-4.41%	-2.68%
			5200	4.453	35.029	4.655	35.986	-4.34%	-2.66%
		İ	5210	4.461	35.023	4.666	35.975	-4.39%	-2.65%
			5220	4.465	35.007	4.676	35.963	-4.51%	-2.66%
			5240	4.487	34.962	4.696	35.940	-4.45%	-2.72%
			5250	4.497	34.960	4.706	35.929	-4.44%	-2.70%
			5260	4.507	34.936	4.717	35.917	-4.45%	-2.73%
			5270	4.523	34.907	4.727	35.906	-4.32%	-2.78%
			5280	4.538	34.872	4.737	35.894	-4.20%	-2.85%
			5290	4.550	34.853	4.748	35.883	-4.17%	-2.87%
			5300	4.560	34.847	4.758	35.871	-4.16%	-2.85%
			5320	4.586	34.837	4.778	35.849	-4.02%	-2.82%
			5500	4.782	34.494	4.963	35.643	-3.65%	-3.22%
			5510	4.789	34.474	4.973	35.632	-3.70%	-3.25%
			5520	4.795	34.457	4.983	35.620	-3.77%	-3.27%
			5530	4.805	34.449	4.994	35.609	-3.78%	-3.26%
			5540	4.820	34.436	5.004	35.597	-3.68%	-3.26%
			5550	4.830	34.427	5.014	35.586	-3.67%	-3.26%
			5560	4.836	34.413	5.024	35.574	-3.74%	-3.26%
			5580	4.852	34.367	5.045	35.551	-3.83%	-3.33%
			5600	4.887	34.292	5.065	35.529	-3.51%	-3.48%
			5610	4.902	34.282	5.076	35.518	-3.43%	-3.48%
		İ	5620	4.915	34.273	5.086	35.506	-3.36%	-3.47%
		İ	5640	4.938	34.243	5.106	35.483	-3.29%	-3.49%
40/4/:	F000		5660	4.954	34.217	5.127	35.460	-3.37%	-3.51%
12/14/2023	5200-5800 Head	19.0	5670	4.960	34.197	5.137	35.449	-3.45%	-3.53%
			5680	4.968	34.168	5.147	35.437	-3.48%	-3.58%
			5690	4.980	34.134	5.158	35.426	-3.45%	-3.65%
			5700	4.998	34.103	5.168	35.414	-3.29%	-3.70%
			5710	5.014	34.082	5.178	35.403	-3.17%	-3.73%
			5720	5.029	34.076	5.188	35.391	-3.06%	-3.72%
			5745	5.054	34.049	5.214	35.363	-3.07%	-3.72%
			5750	5.061	34.041	5.219	35.357	-3.03%	-3.72%
			5755	5.064	34.033	5.224	35.351	-3.06%	-3.73%
			5765	5.072	34.012	5.234	35.340	-3.10%	-3.76%
			5775	5.076	34.000	5.245	35.329	-3.22%	-3.76%
			5785	5.082	33.977	5.255	35.317	-3.29%	-3.79%
			5795	5.092	33.939	5.265	35.305	-3.29%	-3.87%
			5800	5.099	33.921	5.270	35.300	-3.24%	-3.91%
			5800	5.099	33.921	5.270	35.300	-3.24%	-3.91%
			5805	5.108	33.906	5.275	35.294	-3.17%	-3.93%
			5825	5.138	33.874	5.296	35.271	-2.98%	-3.96%
			5835	5.155	33.866	5.305	35.230	-2.83%	-3.87%
			5845	5.166	33.857	5.315	35.210	-2.80%	-3.84%
			5855	5.174	33.845	5.325	35.197	-2.84%	-3.84%
			5865	5.180	33.829	5.336	35.190	-2.92%	-3.87%
			5865	5.180	33.829	5.336	35.190	-2.92%	-3.87%
			5865	5.180	33.829	5.336	35.190	-2.92%	-3.87%
			5865	5.180	33.829	5.336	35.190	-2.92%	-3.87%
			5875	5.190	33.806	5.347	35.183	-2.92%	-3.91%
							35.177		
			5885	5.201	33.786	5.357		-2.91%	-3.95%
			5905	5.225	33.722	5.379	35.163	-2.86%	-4.10%
		İ	5180	4.408	35.736	4.635	36.009	-4.90%	-0.76%
			5190	4.419	35.717	4.645	35.998	-4.87%	-0.78%
			5200	4.428	35.708	4.655	35.986	-4.88%	-0.77%
		İ	5210	4.437	35.700	4.666	35.975	-4.91%	-0.76%
			5220	4.450	35.681	4.676	35.963	-4.83%	-0.78%
			5240	4.476	35.616	4.696	35.940	-4.68%	-0.90%
		İ	5250	4.486	35.606	4.706	35.929	-4.67%	-0.90%
			5260	4.494	35.592	4.717	35.917	-4.73%	-0.90%
			5270	4.505	35.568	4.727	35.906	-4.70%	-0.94%
			5280	4.519	35.545	4.737	35.894	-4.60%	-0.97%
		İ	5290	4.532	35.532	4.748	35.883	-4.55%	-0.98%
			5300	4.540	35.505	4.758	35.871	-4.58%	-1.02%
			5310	4.547	35.482	4.768	35.860	-4.64%	-1.05%
		1	5320	4.558	35.464	4.778	35.849	-4.60%	-1.07%
			5500	4.755	35.146	4.963	35.643	-4.19%	-1.39%
12/26/2023	5200-5800 Head	19.8	5510	4.763	35.130	4.973	35.632	-4.22%	-1.41%
			5520	4.703	35.110	4.983	35.620	-4.22%	-1.41%
				4.772		4.983	35.609		
			5530		35.085			-4.23%	-1.47%
			5540	4.794	35.059	5.004	35.597	-4.20%	-1.51%
		İ	5550	4.808	35.033	5.014	35.586	-4.11%	-1.55%
			5560	4.820	35.015	5.024	35.574	-4.06%	-1.57%
			5580	4.843	34.971	5.045	35.551	-4.00%	-1.63%
		ĺ	5600	4.869	34.935	5.065	35.529	-3.87%	-1.67%
			5610	4.879	34.934	5.076	35.518	-3.88%	-1.64%
			5620	4.887	34.917	5.086	35.506	-3.91%	-1.66%
			5640	4.916	34.851	5.106	35.483	-3.72%	-1.78%
			5660	4.941	34.822	5.127	35.460	-3.63%	-1.80%
			5670	4.949	34.819	5.137	35.449	-3.66%	-1.78%
		1	5680	4.959	34.798	5.147	35.437	-3.65%	-1.80%

FCC ID: BCGA2902	SAR EVALUATION REPORT				
Document S/N:	DUT Type:	Page 73 of 100			
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 73 01 100			

Calibrated for Tests Performed	Tissue Type	Tissue Temp During Calibration	Measured Frequency	Measured Conductivity,	Measured Dielectric	TARGET Conductivity,	TARGET Dielectric	% dev σ	% dev ε
on:		(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		,,,,,,,,
			5690	4.970	34.778	5.158	35.426	-3.64%	-1.83%
			5700	4.976	34.749	5.168	35.414	-3.72%	-1.88%
			5710	4.986	34.725	5.178	35.403	-3.71%	-1.92%
			5720	5.000	34.716	5.188	35.391	-3.62%	-1.91%
			5745	5.032	34.669	5.214	35.363	-3.49%	-1.96%
			5750	5.036	34.657	5.219	35.357	-3.51%	-1.98%
			5755	5.043	34.645	5.224	35.351	-3.46%	-2.00%
			5765	5.055	34.627	5.234	35.340	-3.42%	-2.02%
			5775	5.065	34.611	5.245	35.329	-3.43%	-2.03%
			5785	5.075	34.591	5.255	35.317	-3.43%	-2.06%
			5795	5.087	34.573	5.265	35.305	-3.38%	-2.07%
			5800	5.093	34.566	5.270	35.300	-3.36%	-2.08%
12/26/2023	5200-5800 Head	19.8	5800	5.093	34.566	5.270	35.300	-3.36%	-2.08%
			5805	5.098	34.554	5.275	35.294	-3.36%	-2.10%
			5825	5.118	34.521	5.296	35.271	-3.36%	-2.13%
			5835	5.128	34.515	5.305	35.230	-3.34%	-2.03%
			5845	5.139	34.501	5.315	35.210	-3.31%	-2.01%
			5855	5.152	34.484	5.325	35.197	-3.25%	-2.03%
			5865	5.162	34.454	5.336	35.190	-3.26%	-2.09%
			5865	5.162	34.454	5.336	35.190	-3.26%	-2.09%
			5865	5.162	34.454	5.336	35.190	-3.26%	-2.09%
			5865	5.162	34.454	5.336	35.190	-3.26%	-2.09%
			5875	5.174	34.430	5.347	35.183	-3.24%	-2.14%
			5885	5.183	34.407	5.357	35.177	-3.25%	-2.19%
			5905	5.204	34.371	5.379	35.163	-3.25%	-2.25%
			5935	5.378	35.093	5.411	35.143	-0.61%	-0.14%
			5970	5.410	35.013	5.448	35.120	-0.70%	-0.30%
			5985	5.433	34.973	5.464	35.110	-0.57%	-0.39%
			6000	5.458	34.947	5.480	35.100	-0.40%	-0.44%
			6025	5.491	34.925	5.510	35.070	-0.34%	-0.41%
			6065	5.532	34.848	5.557	35.022	-0.45%	-0.50%
			6075	5.547	34.826	5.569	35.010	-0.40%	-0.53%
			6085	5.562	34.804	5.580	34.998	-0.32%	-0.55%
			6185	5.693	34.618	5.698	34.878	-0.09%	-0.75%
			6275	5.800	34.453	5.805	34.770	-0.09%	-0.91%
			6285	5.815	34.439	5.816	34.758	-0.02%	-0.92%
			6305	5.842	34.419	5.840	34.734	0.03%	-0.91%
			6345	5.880	34.350	5.887	34.686	-0.12%	-0.97%
12/03/2023	6000 Head	20.9	6475 6485	6.042 6.054	34.127 34.122	6.041 6.052	34.530 34.518	0.02% 0.03%	-1.17% -1.15%
12/03/2023	6000 Head	20.9	6500	6.067	34.107	6.070	34.500	-0.05%	-1.15%
			6505	6.071	34.097	6.076	34.494	-0.03%	-1.15%
			6545	6.130	33.967	6.122	34.446	0.13%	-1.13%
			6665	6.290	33.747	6.265	34.446	0.13%	-1.62%
			6675	6.303	33.745	6.273	34.302	0.40%	-1.59%
			6715	6.322	33.730	6.273	34.242	0.48%	-1.59%
			6785	6.429	33.591	6.400	34.242	0.05%	-1.66%
			6825	6.453	33.533	6.447	34.110	0.43%	-1.69%
			6985	6.653	33.275	6.633	33.918	0.30%	-1.90%
			7005	6.654	33.263	6.656	33.894	-0.03%	-1.86%
			7005	6.686	33.186	6.680	33.870	0.09%	-2.02%
			7500	7.282	32.329	7.240	33.300	0.58%	-2.02%
			7980	7.860	31.516	7.816	32.724	0.56%	-3.69%
			8000	7.948	31.365	7.840	32.724	1.38%	-4.08%
	l .		0000	1.340	31.303	1.040	JZ./UU	1.30%	-4 .00%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Note: Per April 2019 TCB Workshop Notes, single head-tissue simulating liquid specified in IEC 62209-1 is permitted to use for all SAR tests.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogo 74 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 74 of 100
	•	REV 23.0

12/03/2023

8.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in SAR System Validation Appendix.

Table 8-2 System Verification Results

SAR Frequency Fixed Frequency Fixed																						
AMI2 2450 HEAD 11/29/2023 21.2 20.2 0.10 750 7566 1402 5.590 52.600 55.900 6.27% 2.550 24.500 25.500 4.08% AM8 2450 HEAD 11/29/2023 21.2 20.2 0.10 921 7421 604 5.110 54.200 51.100 -5.72% 2.420 25.500 24.200 -5.10% AM9 2450 HEAD 07/25/204 20.3 19.8 0.10 750 7416 701 5.160 52.600 51.000 -1.09% 2440 24.500 24.100 -1.63% AM9 5250 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.740 80.500 74.800 -7.08% 1.070 22.900 21.400 -6.55% AM9 5500 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.940 80.200 80.200 80.200 75% 1150 23.200 60.33% AM9 5500 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.940 80.200 80.200 78.800 -7.58% 11160 23.200 23.200 60.33% AM9 5500 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.940 80.200 80.200 80.200 75% 1150 23.200 22.200 6.33% AM9 5500 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.940 80.200 80.300 78.800 -5.85% 1110 23.700 22.200 6.33% AM9 5500 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.940 80.500 79.000 -1.86% 1120 22.700 22.400 -1.52% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.950 80.500 79.000 -1.86% 1120 22.700 22.400 -1.32% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35% AM9 5750 HEAD 17/4/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1100 23.000 22.000 -4.35%		Frequency		Date			Power	Source SN	Probe SN	DAE					SAR 10g	SAR 10g			4cm2 APD	4cm2 ADP	Normalized	Deviation 4cm2 ADP (%)
AMB 2450 HEAD 11/28/2023 21.2 20.2 0.10 921 742.1 664 5.110 54.200 51.100 1.572% 22.500 24.200 5.50% AMB 2450 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.740 80.500 74.800 7.268% 1.070 22.900 21.400 1.659% AMB 2520 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.740 80.500 74.800 0.75% 1.160 22.900 21.100 1.659% AMB 2520 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 4.040 80.200 80.800 0.75% 1.160 23.100 23.200 0.45% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.800 83.200 80.800 0.75% 1.160 23.100 23.200 6.43% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.940 83.200 80.800 0.75% 1.110 23.700 22.200 6.43% AMB 2500 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 3.940 83.200 83.200 33.24% 1210 23.800 0.65 123 3746 1237 3.940 83.200 83.200 33.24% 1210 23.800 24.200 1.68% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.940 83.200 83.800 33.24% 1210 23.800 24.200 1.68% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.950 83.500 79.000 -1.86% 11.10 23.700 22.200 6.43% AMB 2500 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 3.840 81.000 75.800 -5.19% 11.10 23.700 22.000 23.000 -4.35% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 -5.19% 11.00 23.000 23.000 23.000 -4.35% AMB 2500 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 3.840 81.000 75.800 -5.19% 11.00 23.000 23.000 23.000 -4.35% AMB 2500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.200 -3.34% 1.000 23.000 23.000 23.000 -4.35%	AM14	13	HEAD	01/02/2024	21.2	20.8	1.00	1004	7360	534	0.574	0.578	0.574	-0.69%	0.353	0.356	0.353	-0.84%				
AM10 2450 HEAD 02/25/024 203 19.8 0.10 750 7416 701 5.160 52.600 51.600 -1.90% 24.100 24.500 24.100 -1.63% AM9 5250 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.740 80.500 74.800 -7.08% 1.070 22.900 21.400 -6.55% AM9 5500 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 4.040 80.200 80.800 0.75% 1160 23.200 0.43% AM9 5600 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.340 83.700 78.800 -5.585% 1.110 23.700 22.200 6.33% AM9 5600 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 3.340 83.700 78.800 -5.585% 1.110 23.700 22.200 6.33% AM9 5750 HEAD 12/14/2023 20.1 19.0 0.05 1163 3746 1237 3.350 80.500 79.000 -1.86% 1.1210 23.200 24.200 1.68% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.350 80.500 79.000 -1.86% 1.120 22.700 22.400 -1.32% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 -5.585% 1.110 22.700 22.400 -1.32% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 -5.18% 1.100 22.700 22.400 -4.35% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 -5.34% 1.100 22.000 2.000 -4.35% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.000 -5.34% 1.080 22.500 22.000 -4.35% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.000 -5.34% 1.080 22.500 22.000 -4.35%	AM12	2450	HEAD	11/29/2023	22.1	23.5	0.10	750	7546	1402	5.590	52.600	55.900	6.27%	2.550	24.500	25.500	4.08%				
AM0 5250 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.740 80.500 74.800 -7.08% 1.070 22.900 21.400 6.55% AM9 5250 HEAD 12/14/2023 20.4 19.3 0.05 1163 3746 1237 4.000 80.200 80.200 90.800 0.75% 1.160 23.000 23.00 0.43% AM9 5600 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.940 83.700 78.800 5.85% 1.110 23.700 22.200 6.633% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1163 3746 1237 4.000 83.000 83.000 33.24% 1.110 23.700 22.200 6.633% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1163 3746 1237 3.840 83.00 86.000 33.44% 1.1210 23.800 24.200 1.68% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.550 80.500 79.000 1.168% 1.1210 22.700 22.400 1.32% AM9 5750 HEAD 12/14/2023 20.1 19.0 0.05 1165 3746 1237 3.550 80.500 79.000 1.168% 1.120 22.700 22.400 1.32% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 5.19% 1.100 23.000 22.000 4.45% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 5.19% 1.100 23.000 22.000 4.45% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 5.19% 1.100 23.000 22.000 4.45% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.840 80.500 76.200 5.34% 1.000 23.000 22.000 4.45%	AM8	2450	HEAD	11/29/2023	21.2	20.2	0.10	921	7421	604	5.110	54.200	51.100	-5.72%	2.420	25.500	24.200	-5.10%				
AM9 5250 HEAD 12/25/2023 20.1 19.0 0.05 1163 3746 1237 4.040 80.200 80.800 0.75% 1.160 23.100 23.200 0.43% AM9 5600 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.940 83.700 78.800 -5.55% 1.110 23.700 22.200 -6.33% AM9 5600 HEAD 12/25/2023 20.1 19.0 0.05 1163 3746 1237 4.300 83.700 78.800 -5.25% 1.110 23.700 22.200 1.68% AM9 5750 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.950 80.500 79.000 -1.86% 1.120 22.700 22.400 1.23% AM9 5750 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 5.000 5.53% 1.100 22.700 22.400 1.23% AM9 5750 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 5.53% 1.100 22.000 22.000 -4.35% AM9 5800 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 5.53% 1.100 22.000 22.000 1.200 4.35% AM9 5800 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.800 5.53% 1.100 22.000 22.000 1.40% A35% AM9 5800 HEAD 12/25/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 75.200 5.34% 1.080 22.500 21.600 4.400%	AM10	2450	HEAD	02/26/2024	20.3	19.8	0.10	750	7416	701	5.160	52.600	51.600	-1.90%	2.410	24.500	24.100	-1.63%				
AM9 5500 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.940 83.700 78.800 -5.85% 1.110 23.700 22.200 6.33% AM9 5500 HEAD 12/725/2023 20.1 19.0 0.05 1163 3746 1237 4.300 83.300 86.000 3.24% 1.21D 23.800 24.200 1.65% AM9 5750 HEAD 12/714/2023 20.4 19.3 0.05 1123 3746 1237 3.550 80.500 79.000 -1.86% 1.120 22.700 22.400 -1.32% AM9 5750 HEAD 12/714/2023 20.1 19.0 0.05 1163 3746 1237 3.840 81.000 76.800 -5.19% 1.100 22.700 22.400 -4.35% AM9 5800 HEAD 12/74/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1.100 22.700 22.400 -4.35% AM9 5800 HEAD 12/74/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1.100 22.000 22.000 -4.35% AM9 5800 HEAD 12/74/2023 20.4 19.3 0.05 1123 3746 1237 3.840 81.000 76.800 -5.19% 1.100 82.000 22.000 -4.00%	AM9	5250	HEAD	12/14/2023	20.4	19.3	0.05	1123	3746	1237	3.740	80.500	74.800	-7.08%	1.070	22.900	21.400	-6.55%				
AM9 5600 HEAD 12/25/2023 20.1 19.0 0.05 1163 3746 1237 4.300 83.300 86.000 3.24% 1.210 23.800 24.200 1.68% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.950 80.500 79.000 -1.86% 1.120 22.700 22.400 -1.32% AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.810 80.500 76.200 -5.34% 1.000 22.000 22.000 -4.35% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.810 80.500 76.200 -5.34% 1.080 22.500 21.600 -4.00%	AM9	5250	HEAD	12/26/2023	20.1	19.0	0.05	1163	3746	1237	4.040	80.200	80.800	0.75%	1.160	23.100	23.200	0.43%				
AM9 5750 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.950 80.500 79.000 -1.86% 11.20 22.700 22.400 1.32% AM9 5750 HEAD 12/26/2023 20.1 19.0 0.05 1163 3746 1237 3.840 81.000 76.800 -5.19% 1.100 23.000 22.000 -4.35% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.810 80.500 76.200 -5.34% 1.080 22.500 21.600 -4.00%	AM9	5600	HEAD	12/14/2023	20.4	19.3	0.05	1123	3746	1237	3.940	83.700	78.800	-5.85%	1.110	23.700	22.200	-6.33%				
AM9 5750 HEAD 12/26/2023 20.1 19.0 0.05 1163 3746 1237 3.840 81.000 76.800 -5.19% 1.100 23.000 22.000 -4.35% AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.810 80.500 76.200 -5.34% 1.080 22.500 21.600 -4.00%	AM9	5600	HEAD	12/26/2023	20.1	19.0	0.05	1163	3746	1237	4.300	83.300	86.000	3.24%	1.210	23.800	24.200	1.68%				
AM9 5800 HEAD 12/14/2023 20.4 19.3 0.05 1123 3746 1237 3.810 80.500 76.200 -5.34% 1.080 22.500 21.600 -4.00%	AM9	5750	HEAD	12/14/2023	20.4	19.3	0.05	1123	3746	1237	3.950	80.500	79.000	-1.86%	1.120	22.700	22.400	-1.32%				
	AM9	5750	HEAD	12/26/2023	20.1	19.0	0.05	1163	3746	1237	3.840	81.000	76.800	-5.19%	1.100	23.000	22.000	-4.35%				
140 F000 WEB 40/05/2000 204 400 0.05 4400 2015 4200 2015 4200 2015 4200 2015 4200 4000 4000	AM9	5800	HEAD	12/14/2023	20.4	19.3	0.05	1123	3746	1237	3.810	80.500	76.200	-5.34%	1.080	22.500	21.600	-4.00%				
AM9 5800 HEAD 12/26/2023 20.1 19.0 0.05 1123 3746 1237 3.770 80.500 75.400 -6.34% 1.080 22.500 21.600 -4.00%	AM9	5800	HEAD	12/26/2023	20.1	19.0	0.05	1123	3746	1237	3.770	80.500	75.400	-6.34%	1.080	22.500	21.600	-4.00%				
AM2 6500 HEAD 12/03/2023 21.7 21.5 0.03 1020 7420 1333 7.670 296.000 306.800 3.65% 1.390 54.500 1.363 1.98% 33.9 1330 1356 1.9	AM2	6500	HEAD	12/03/2023	21.7	21.5	0.03	1020	7420	1333	7.670	296.000	306.800	3.65%	1.390	54.500	1.363	1.98%	33.9	1330	1356	1.95%

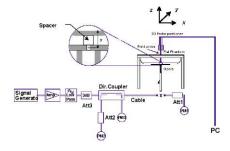


Figure 8-1 System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager		
Document S/N:	DUT Type:	Dogo 75 of 100		
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 75 of 100		

8.3 Power Density Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

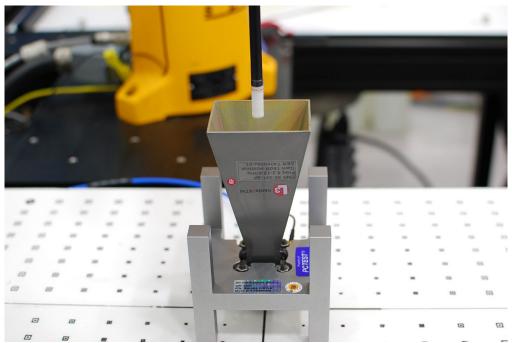


Figure 8-3
System Verification Setup Photo

System	Frequency	Date	Source	Probe	Prad	Normal psPD (W	/m² over 4 cm²)	Deviation (dB)	Total psPD (W	//m² over 4 cm²)	Deviation (dB)
System	(GHz)	Dute	S/N	S/N	(mW)	Measured	Target	Deviation (ab)	Measured	Target	Deviation (ub)
AM5	10	11/28/2023	1006	9523	93.3	54.20	58.50	-0.3316	54.30	58.90	-0.3532
AM5	10	11/30/2023	1006	9523	93.3	54.50	58.50	-0.3076	54.70	58.90	-0.3213

Table 8-3
10 GHz Verification Results

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 76 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 70 or 100

9 SAR DATA SUMMARY

9.1 Standalone SAR Data

Table 9-1
2.4 GHz WLAN Body SAR Data – Antenna WF8

																				_		
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Power	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Reported 10g SAR [W/kg]	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	0.13	2437	6	1	19.00	17.71	Back	0	V2	0.126	0.061	1.346	1.003	0.170	0.082	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	-0.04	2412	1	1	19.00	17.41	Тор	0	V2	0.709	0.316	1.442	1.003	1.025	0.457	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	0.04	2437	6	1	19.00	17.71	Тор	0	V2	0.827	0.365	1.346	1.003	1.116	0.493	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	-0.07	2462	11	1	19.00	17.68	Тор	0	V2	0.866	0.378	1.355	1.003	1.177	0.514	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	3YN4Y	99.7	-0.12	2462	11	1	19.00	17.57	Тор	0	V1	0.795	0.352	1.390	1.003	1.108	0.491	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	0.02	2437	6	1	19.00	17.71	Bottom	0	V2	0.009	0.004	1.346	1.003	0.012	0.005	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	0.06	2437	6	1	19.00	17.71	Right	0	V2	0.008	0.004	1.346	1.003	0.011	0.005	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF8	XD3J7	99.7	0.02	2437	6	1	19.00	17.71	Left	0	V2	0.001	0.000	1.346	1.003	0.001	0.000	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT S patial Peak Uncontrolled Eurosure/General Population										Body 1.6 W/kg (mW/g) averaged over 1 gram											

Table 9-2 2.4 GHz WLAN Body SAR Data – Antenna WF7b

		2.4 OHZ WEAR BODY OAR D										, ,	11101111	<u>~</u>	~							
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Reported 10g SAR [W/kg]	Plot#
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.04	2462	11	1	20.00	19.29	Back	0	V2	0.150	0.077	1.178	1.003	0.177	0.091	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	-0.21	2412	1	1	20.00	18.93	Тор	0	V2	0.769	0.330	1.279	1.003	0.987	0.423	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	-0.21	2437	6	1	20.00	19.07	Тор	0	V2	0.842	0.363	1.239	1.003	1.046	0.451	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.00	2462	11	1	20.00	19.29	Тор	0	V2	1.000	0.427	1.178	1.003	1.182	0.505	A1
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	3YN4Y	99.7	0.01	2462	11	1	20.00	19.28	Top	0	V1	0.993	0.425	1.180	1.003	1.175	0.503	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.04	2462	11	1	20.00	19.29	Bottom	0	V2	0.013	0.005	1.178	1.003	0.015	0.006	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.18	2462	11	1	20.00	19.29	Right	0	V2	0.007	0.003	1.178	1.003	0.008	0.004	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.20	2412	1	1	20.00	18.93	Left	0	V2	0.490	0.225	1.279	1.003	0.629	0.289	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	0.01	2437	6	1	20.00	19.07	Left	0	V2	0.568	0.259	1.239	1.003	0.706	0.322	
Body	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	WF7b	QJQY2	99.7	-0.01	2462	11	1	20.00	19.29	Left	0	V2	0.753	0.328	1.178	1.003	0.890	0.388	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													a	Body 1.6 W/kg (n veraged ove	nW/g)	•					

Table 9-3
5 GHz WLAN Body SAR Data – Antenna WF8

												Max											
Exposure	Band / Mode	Bandwidt h [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	U-NII band	Data Rate [Mbps]	Allowed Power [dBm]	Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Plot#
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	-0.16	5270	54	U-NII-2A	13.5	18.00	17.15	Back	0	V1	0.115	0.040	1.216	1.024	0.143	0.050	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	XD3J7	97.7	0.01	5270	54	U-NII-2A	13.5	18.00	16.93	Top	0	V2	0.893	0.287	1.279	1.024	1.170	0.376	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	-0.21	5270	54	U-NII-2A	13.5	18.00	17.15	Тор	0	V1	0.947	0.308	1.216	1.024	1.179	0.384	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	0.05	5270	54	U-NII-2A	13.5	18.00	17.15	Тор	0	V1	0.938	0.304	1.216	1.024	1.168	0.379	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	0.14	5310	62	U-NII-2A	13.5	16.50	15.51	Тор	0	V1	0.629	0.197	1.256	1.024	0.809	0.253	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	0.08	5270	54	U-NII-2A	13.5	18.00	17.15	Bottom	0	V1	0.006	0.000	1.216	1.024	0.007	0.000	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	0.06	5270	54	U-NII-2A	13.5	18.00	17.15	Right	0	V1	0.016	0.001	1.216	1.024	0.020	0.001	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8	MJFXK	97.7	0.06	5270	54	U-NII-2A	13.5	18.00	17.15	Left	0	V1	0.000	0.000	1.216	1.024	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.05	5610	122	U-NII-2C	29.3	16.25	15.35	Back	0	V2	0.085	0.032	1.230	1.048	0.110	0.041	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	MJFXK	95.4	0.04	5530	106	U-NII-2C	29.3	14.50	13.52	Тор	0	V1	0.588	0.179	1.253	1.048	0.772	0.235	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.00	5530	106	U-NII-2C	29.3	14.50	13.48	Top	0	V2	0.540	0.164	1.265	1.048	0.716	0.217	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	MJFXK	95.4	-0.14	5610	122	U-NII-2C	29.3	16.25	15.32	Top	0	V1	0.785	0.241	1.239	1.048	1.019	0.313	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	-0.11	5610	122	U-NII-2C	29.3	16.25	15.35	Top	0	V2	0.906	0.284	1.230	1.048	1.168	0.366	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	MJFXK	95.4	0.10	5690	138	U-NII-2C	29.3	16.25	15.40	Top	0	V1	0.639	0.194	1.216	1.048	0.814	0.247	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	-0.03	5690	138	U-NII-2C	29.3	16.25	15.30	Top	0	V2	0.736	0.224	1.245	1.048	0.960	0.292	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.07	5610	122	U-NII-2C	29.3	16.25	15.35	Bottom	0	V2	0.001	0.000	1.230	1.048	0.001	0.000	
Body	5 GHz WIFI/ IEEE 802. 11ac	80	OFDM	WF8	Q91YW	95.4	0.07	5610	122	U-NII-2C	29.3	16.25	15.35	Right	0	V2	0.000	0.000	1.230	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.03	5610	122	U-NII-2C	29.3	16.25	15.35	Left	0	V2	0.000	0.000	1.230	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.21	5775	155	U-NII-3	29.3	17.00	15.85	Back	0	V2	0.064	0.023	1.303	1.048	0.087	0.031	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.03	5775	155	U-NII-3	29.3	17.00	15.85	Тор	0	V2	0.839	0.248	1.303	1.048	1.146	0.339	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	MJFXK	95.4	0.02	5775	155	U-NII-3	29.3	17.00	15.57	Тор	0	V1	0.812	0.244	1.390	1.048	1.183	0.355	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.09	5775	155	U-NII-3	29.3	17.00	15.85	Bottom	0	V2	0.012	0.002	1.303	1.048	0.016	0.003	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.01	5775	155	U-NII-3	29.3	17.00	15.85	Right	0	V2	0.003	0.000	1.303	1.048	0.004	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	Q91YW	95.4	0.05	5775	155	U-NII-3	29.3	17.00	15.85	Left	0	V2	0.000	0.000	1.303	1.048	0.000	0.000	
				ANSI		1992 - SAFET	LIMIT											Body					
						al Peak												1.6 W/kg (m					
	Uncontrolled Exposure/General Population											averaged over 1 gram											

Note: Blue entry represents variability measurement.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 77 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 11 01 100

Table 9-4 5 GHz WLAN Body SAR Data – Antenna WF7a

Exposure	Band / Mode	Bandwi dth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	U-NII band	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Plot#
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	QJQY2	97.7	0.05	5270	54	U-NII-2A	13.5	16.25	15.35	Back	0	V2	0.094	0.037	1.230	1.024	0.118	0.047	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	QJQY2	97.7	-0.01	5270	54	U-NII-2A	13.5	16.25	15.35	Тор	0	V2	0.866	0.298	1.230	1.024	1.091	0.375	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	QJQY2	97.7	0.06	5310	62	U-NII-2A	13.5	16.25	15.18	Тор	0	V2	0.860	0.292	1.279	1.024	1.126	0.382	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	W7W3T	97.7	-0.03	5310	62	U-NII-2A	13.5	16.25	15.30	Тор	0	V1	0.794	0.268	1.245	1.024	1.012	0.342	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	XD3J7	97.7	0.05	5270	54	U-NII-2A	13.5	16.25	15.35	Bottom	0	V2	0.003	0.000	1.230	1.024	0.004	0.000	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	XD3J7	97.7	-0.01	5270	54	U-NII-2A	13.5	16.25	15.35	Right	0	V2	0.000	0.000	1.230	1.024	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF7a	QJQY2	97.7	0.09	5270	54	U-NII-2A	13.5	16.25	15.35	Left	0	V2	0.050	0.015	1.230	1.024	0.063	0.019	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	-0.15	5610	122	U-NII-2C	29.3	14.50	13.99	Back	0	V2	0.051	0.011	1.125	1.048	0.060	0.013	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	-0.05	5530	106	U-NII-2C	29.3	14.50	13.75	Тор	0	V2	0.838	0.265	1.189	1.048	1.044	0.330	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	-0.02	5610	122	U-NII-2C	29.3	14.50	13.99	Тор	0	V2	0.984	0.315	1.125	1.048	1.160	0.371	A2
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	0.02	5610	122	U-NII-2C	29.3	14.50	13.79	Тор	0	V1	0.901	0.276	1.178	1.048	1.112	0.341	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	0.12	5610	122	U-NII-2C	29.3	14.50	13.99	Тор	0	V2	0.911	0.285	1.125	1.048	1.074	0.336	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	-0.07	5690	138	U-NII-2C	29.3	14.50	13.35	Тор	0	V2	0.835	0.262	1.303	1.048	1.140	0.358	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	0.06	5610	122	U-NII-2C	29.3	14.50	13.99	Bottom	0	V2	0.000	0.000	1.125	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	0.06	5610	122	U-NII-2C	29.3	14.50	13.99	Right	0	V2	0.000	0.000	1.125	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	-0.09	5610	122	U-NII-2C	29.3	14.50	13.99	Left	0	V2	0.000	0.000	1.125	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	-0.09	5775	155	U-NII-3	29.3	14.75	13.62	Back	0	V1	0.086	0.033	1.297	1.048	0.117	0.045	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	QJQY2	95.4	0.07	5775	155	U-NII-3	29.3	14.75	13.51	Тор	0	V2	0.814	0.253	1.330	1.048	1.135	0.353	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	-0.11	5775	155	U-NII-3	29.3	14.75	13.62	Тор	0	V1	0.870	0.272	1.297	1.048	1.183	0.370	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4		5775	155	U-NII-3	29.3	14.75	13.62	Тор	0	V1	0.821	0.254	1.297	1.048	1.116	0.345	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	0.07	5775	155	U-NII-3	29.3	14.75	13.62	Bottom	0	V1	0.002	0.000	1.297	1.048	0.003	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	0.05	5775	155	U-NII-3	29.3	14.75	13.62	Right	0	V1	0.000	0.000	1.297	1.048	0.000	0.000	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a	3YN4Y	95.4	0.06	5775	155	U-NII-3	29.3	14.75	13.62	Left	0	V1	0.048	0.016	1.297	1.048	0.065	0.022	

Note: Blue entry represents variability measurement.

Table 9-5 5 GHz WLAN Body SAR Data – MIMO

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#	U-NII band	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	Plot#
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8 WF7a	3YN4Y	97.7	-0.02 -0.01	5270	54	U-NII-2A	13.5	18.00 16.25	17.11 15.27	Тор	0	V1	0.902	0.306 0.251	1.276	1.024	1.133 0.956	0.384	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8 WF7a	QJQY2	97.7	0.01 -0.04	5270	54	U-NII-2A	13.5	18.00 16.25	17.09 15.20	Тор	0	V2	0.895 0.796	0.302	1.294	1.024	1.130	0.381 0.338	
Body	5 GHz WIFI/ IEEE 802.11n	40	OFDM	WF8 WF7a	3YN4Y	97.7	0.13	5310	62	U-NII-2A	13.5	15.00 15.00	13.81	Тор	0	V1	0.470	0.154	1.315	1.024	0.633	0.207	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8 WF7a	3YN4Y	95.4	0.04	5530	106	U-NII-2C	29.3	13.50	12.52 12.36	Тор	0	V1	0.456 0.526	0.149	1.259	1.048	0.599	0.196	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8 WF7a	3YN4Y	95.4	-0.03 0.02	5610	122	U-NII-2C	29.3	16.25	15.03 13.61	Тор	0	V1	0.674 0.912	0.225	1.324	1.048	0.935	0.312	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	QJQY2	95.4	0.01	5610	122	U-NII-2C	29.3	16.25	14.97	Тор	0	V2	0.721	0.240	1.343	1.048	1.015	0.338	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a WF8 WF7a	3YN4Y	95.4	-0.02 0.01	5690	138	U-NII-2C	29.3	14.50 16.25	13.44 15.00	Тор	0	V1	0.800 0.578	0.267 0.188	1.276 1.334	1.048 1.048	1.070 0.808	0.357 0.263	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF8	3YN4Y	95.4	0.12	5775	155	U-NII-3	29.3	14.50 17.00	13.43 16.11	Тор	0	V1	0.784 0.819	0.248 0.265	1.279	1.048	1.051	0.332 0.341	
Body	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	WF7a WF8	OJQY2	95.4	-0.05 0.06	5775	155	U-NII-3	29.3	14.75 17.00	13.51 15.90	Тор	0	V2	0.797 0.682	0.260 0.227	1.330 1.288	1.048	1.111 0.921	0.362	
Body	3 GHz WITH TEEE 802.11ac	80	OIDIW	WF7a ANSI			0.04 Y LIMIT	3//3	155	0-1411-3	25.3	14.75	13.74	ТОР	Ů	V2	0.770	0.246 Bo	1.262 ody	1.048	1.018	0.325	
		ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak																1.6 W/k	g (mW/g)				
				Uncontr	olled Exposu	re/General P	opulation											averaged of	over 1 gram				

Note: Due to the spatial separation of Antenna WF7a and Antenna WF8, two measurement cubes were evaluated during MIMO SAR testing. Cubes 1 and 2 are located over the SAR distributions produced by Antenna WF8 and WF7a, respectively. Due to the spatial separation of the distributions, the conduct power of each antenna was individually considered for each measurement cube to determine the reported SAR.

Table 9-6 6 GHz WLAN Body SAR Data – Antenna WF8

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Reported 10g SAR [W/kg]	Plot#
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.09	6025	15	68.1	13.75	12.49	Back	0	V1	0.059	0.023	1.337	1.021	0.081	0.031	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6665	143	68.1	16.00	14.49	Back	0	V1	0.055	0.019	1.416	1.021	0.080	0.027	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.02	6025	15	68.1	13.75	12.49	Тор	0	V1	0.615	0.186	1.337	1.021	0.840	0.254	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6345	79	68.1	14.25	13.16	Тор	0	V1	0.334	0.103	1.285	1.021	0.438	0.135	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.12	6505	111	68.1	13.25	12.85	Top	0	V1	0.326	0.111	1.096	1.021	0.365	0.124	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	427P9	97.9	0.02	6665	143	68.1	16.00	14.01	Тор	0	V2	0.507	0.172	1.581	1.021	0.818	0.278	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.09	6665	143	68.1	16.00	14.49	Top	0	V1	0.616	0.207	1.416	1.021	0.891	0.299	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.02	6985	207	68.1	11.50	9.79	Тор	0	V1	0.288	0.087	1.483	1.021	0.436	0.132	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6025	15	68.1	13.75	12.49	Bottom	0	V1	0.002	0.000	1.337	1.021	0.003	0.000	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6665	143	68.1	16.00	14.49	Bottom	0	V1	0.009	0.003	1.416	1.021	0.013	0.004	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6025	15	68.1	13.75	12.49	Right	0	V1	0.002	0.000	1.337	1.021	0.003	0.000	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.18	6665	143	68.1	16.00	14.49	Right	0	V1	0.068	0.027	1.416	1.021	0.098	0.039	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.04	6025	15	68.1	13.75	12.49	Left	0	V1	0.000	0.000	1.337	1.021	0.000	0.000	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6665	143	68.1	16.00	14.49	Left	0	V1	0.002	0.000	1.416	1.021	0.003	0.000	
					Spatial Peak	AFETY LIMIT	on										Body L.6 W/kg (m\ eraged over:					

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N: 1C2311270063-01.BCG (Rev 1)	DUT Type: Tablet Device	Page 78 of 100
102011210000-01:BOO (1teV 1)	Tablet Bevice	DEV/ 00. 0

Table 9-7 6 GHz WLAN Body SAR Data – Antenna WF7a

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Allowed	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.15	6025	15	68.1	12.25	11.65	Back	0	V1	0.044	1.148	1.021	0.052	0.020	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.08	6025	15	68.1	12.25	11.65	Тор	0	V1	0.632	1.148	1.021	0.741	0.231	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.12	6345	79	68.1	12.25	11.39	Top	0	V1	0.666	1.219	1.021	0.829	0.244	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	427P9	97.9	0.05	6505	111	68.1	11.75	10.85	Top	0	V2	0.778	1.230	1.021	0.977	0.279	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.03	6505	111	68.1	11.75	11.55	Top	0	V1	0.839	1.047	1.021	0.897	0.262	A3
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.00	6505	111	68.1	11.75	11.55	Тор	0	V1	0.829	1.047	1.021	0.886	0.258	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.04	6665	143	68.1	11.25	10.68	Тор	0	V1	0.617	1.140	1.021	0.718	0.203	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.01	6985	207	68.1	11.25	10.17	Top	0	V1	0.600	1.282	1.021	0.785	0.208	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.01	6025	15	68.1	12.25	11.65	Bottom	0	V1	0.002	1.148	1.021	0.002	0.000	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.01	6025	15	68.1	12.25	11.65	Right	0	V1	0.000	1.148	1.021	0.000	0.000	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.02	6025	15	68.1	12.25	11.65	Left	0	V1	0.001	1.148	1.021	0.001	0.000	
					Spatial Peak	AFETY LIMIT eral Populati										1.6 W	Body /kg (mW/g) d over 1 gra				

Note: Blue entry represents variability measurement.

Table 9-8
6 GHz WLAN Body Absorbed Power Density Data – Antenna WF8

Exposure	Band/ Mode	Bandwidth	Service/	Ant.	Serial	Duty Cycle	Power	Frequency	Channel#	Data Rate		Conducted Power	Test Position	Spacing	Add'l Info	Measured APD	Power Scaling	Duty Cycle Scaling	APD	Plot#
		[MHz]	Modulation		Number	[%]	Drift [dB]	[MHz]		[Mbps]	Power [dBm]	[dBm]		[mm]		[W/m² (4cm²)]	Factor	Factor	[W/m² (4cm²)]	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.09	6025	15	68.1	13.75	12.49	Back	0	V1	0.52	1.337	1.021	0.70	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6665	143	68.1	16.00	14.49	Back	0	V1	0.42	1.416	1.021	0.61	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.02	6025	15	68.1	13.75	12.49	Top	0	V1	4.27	1.337	1.021	5.83	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6345	79	68.1	14.25	13.16	Тор	0	V1	2.37	1.285	1.021	3.11	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.12	6505	111	68.1	13.25	12.85	Top	0	V1	2.53	1.096	1.021	2.83	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	427P9	97.9	0.02	6665	143	68.1	16.00	14.01	Top	0	V2	3.89	1.581	1.021	6.28	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.09	6665	143	68.1	16.00	14.49	Top	0	V1	4.69	1.416	1.021	6.78	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.02	6985	207	68.1	11.50	9.79	Top	0	V1	1.98	1.483	1.021	3.00	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6025	15	68.1	13.75	12.49	Bottom	0	V1	0.00	1.337	1.021	0.00	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6665	143	68.1	16.00	14.49	Bottom	0	V1	0.06	1.416	1.021	0.09	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.08	6025	15	68.1	13.75	12.49	Right	0	V1	0.01	1.337	1.021	0.01	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.18	6665	143	68.1	16.00	14.49	Right	0	V1	0.59	1.416	1.021	0.85	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	-0.04	6025	15	68.1	13.75	12.49	Left	0	V1	0.00	1.337	1.021	0.01	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF8	W7W3T	97.9	0.01	6665	143	68.1	16.00	14.49	Left	0	V1	0.02	1.416	1.021	0.03	

Table 9-9
6 GHz WLAN Body Absorbed Power Density Data – Antenna WF7a

Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Allowed	Conducted Power [dBm]	Test Position	Spacing [mm]		Measured APD [W/m² (4cm²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Plot#
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.15	6025	15	68.1	12.25	11.65	Back	0	V1	0.38	1.148	1.021	0.45	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.08	6025	15	68.1	12.25	11.65	Тор	0	V1	4.52	1.148	1.021	5.30	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.12	6345	79	68.1	12.25	11.39	Тор	0	V1	4.54	1.219	1.021	5.65	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	427P9	97.9	0.05	6505	111	68.1	11.75	10.85	Тор	0	V2	5.13	1.230	1.021	6.44	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.03	6505	111	68.1	11.75	11.55	Тор	0	V1	5.62	1.047	1.021	6.01	A3
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.04	6665	143	68.1	11.25	10.68	Тор	0	V1	4.04	1.140	1.021	4.70	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	-0.01	6985	207	68.1	11.25	10.17	Тор	0	V1	3.71	1.282	1.021	4.86	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.01	6025	15	68.1	12.25	11.65	Bottom	0	V1	0.02	1.148	1.021	0.02	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.01	6025	15	68.1	12.25	11.65	Right	0	V1	0.00	1.148	1.021	0.00	
Body	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	WF7a	W7W3T	97.9	0.02	6025	15	68.1	12.25	11.65	Left	0	V1	0.02	1.148	1.021	0.02	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 79 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 79 of 100

Table 9-10
2.4 GHz Bluetooth Body SAR Data – Antenna WF8

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#	Data Rate [Mbps]	Allowed	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	0.06	2480	78	1	20.00	19.17	Back	0	V2	0.138	0.068	1.211	1.000	0.167	0.082	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	-0.02	2402	0	1	20.00	18.91	Тор	0	V2	0.731	0.320	1.285	1.000	0.939	0.411	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	-0.07	2441	39	1	20.00	18.84	Тор	0	V2	0.865	0.377	1.306	1.000	1.130	0.492	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	0.10	2480	78	1	20.00	19.17	Тор	0	V2	0.939	0.403	1.211	1.000	1.137	0.488	
Body	2.4 GHz Bluetooth	FHSS	WF8	MJFXK	77.0	0.00	2480	78	1	20.00	19.20	Тор	0	V1	0.987	0.424	1.202	1.000	1.186	0.510	A4
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	0.06	2480	78	1	20.00	19.17	Bottom	0	V2	0.005	0.002	1.211	1.000	0.006	0.002	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	0.04	2480	78	1	20.00	19.17	Right	0	V2	0.015	0.009	1.211	1.000	0.018	0.011	
Body	2.4 GHz Bluetooth	FHSS	WF8	XD3J7	77.0	0.01	2480	78	1	20.00	19.17	Left	0	V2	0.000	0.000	1.211	1.000	0.000	0.000	
Body	2.4 GHz Bluetooth	FHSS	WF8	3YN4Y	77.0	-0.11	2441	39	1	13.00	12.15	Back	0	V1	0.027	0.012	1.216	1.006	0.033	0.015	
Body	2.4 GHz Bluetooth	FHSS	WF8	3YN4Y	77.0	0.18	2441	39	1	13.00	12.15	Тор	0	V1	0.149	0.060	1.216	1.006	0.182	0.073	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population															Body 6 W/kg (m\ eraged over:					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

Table 9-11
2.4 GHz Bluetooth Body SAR Data – Antenna WF7b

Band / Mode	Service / Modulation	Ant.	Serial Number		Power Drift [dB]	Frequency [MHz]			Power			Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	0.02	2480	78	1	20.00	19.76	Back	0	V2	0.116	0.059	1.057	1.006	0.123	0.063	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	-0.02	2402	0	1	20.00	19.72	Top	0	V2	0.663	0.294	1.067	1.006	0.712	0.316	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	-0.05	2441	39	1	20.00	19.70	Top	0	V2	0.795	0.347	1.072	1.006	0.858	0.374	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	-0.01	2480	78	1	20.00	19.76	Top	0	V2	0.856	0.369	1.057	1.006	0.911	0.393	
2.4 GHz Bluetooth	FHSS	WF7b	3YN4Y	77.0	-0.04	2480	78	1	20.00	19.76	Тор	0	V1	0.898	0.377	1.057	1.006	0.955	0.401	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	0.02	2480	78	1	20.00	19.76	Bottom	0	V2	0.012	0.005	1.057	1.006	0.013	0.005	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	0.03	2480	78	1	20.00	19.76	Right	0	V2	0.012	0.005	1.057	1.006	0.013	0.005	
2.4 GHz Bluetooth	FHSS	WF7b	Q91YW	77.0	0.07	2480	78	1	20.00	19.76	Left	0	V2	0.590	0.267	1.057	1.006	0.628	0.284	
2.4 GHz Bluetooth	FHSS	WF7b	3YN4Y	77.0	-0.13	2480	78	1	13.00	12.35	Back	0	V1	0.023	0.010	1.161	1.006	0.027	0.012	
2.4 GHz Bluetooth	FHSS	WF7b	3YN4Y	77.0	-0.01	2480	78	1	13.00	12.35	Top	0	V1	0.140	0.057	1.161	1.006	0.164	0.067	
2.4 GHz Bluetooth	FHSS	WF7b	3YN4Y	77.0	-0.07	2480	78	1	13.00	12.35	Left	0	V1	0.086	0.037	1.161	1.006	0.100	0.043	
			Spatial	Peak																-
	2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth 2.4 GHz Bluetooth	Band / Mode 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 2.4 GHz Bluetooth FHSS 3.4 GHz Bluetooth FHSS 4.4 GHz Bluetooth FHSS 4.4 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS 4.5 GHz Bluetooth FHSS	2.4 GHz Bluetooth	2.4 GHz Bluetooth	2.4 GHz Bluetooth	2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.05 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.05 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.05 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.04 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.04 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2.4 GHz Bluetooth FHSS WF7b WF7b WF7b WF7b Q91YW 77.0 0.01 2.4 GHz Bluetooth FHSS WF7b WF7b WF7b WF7b WF7b Q91YW 77.0 0.01 2.4 GHz Bluetooth FHSS WF7b WF7b WF7b WF7b WF7b WF7b WF7b WF7b	2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.02 2402 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.05 2441 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.01 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 -0.04 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2480 3.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.07 2480	2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2402 0 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2402 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.001 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.001 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.02 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.03 2480 78 2.4 GHz Bluetooth FHSS WF7b Q91YW 77.0 0.01 2480 78 2.4 GHz Bluetooth FHSS WF7b 3YM4Y 77.0 0.01 2480 78 2.4 GHz Bluetooth FHSS WF7b 3YM4Y 77.0 0.01 2480 78 2.4 GHz Bluetooth FHSS WF7b 3YM4Y 77.0 0.01 2480 78 3ANS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IEEE CS.3. 1992 - SAFETY LIMIT SPATS/IE	Rate Mode Service Ant. Serial Duty Cycle Power Frequency Channel # Rate Mumber Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks Pks	Rand / Mode	Rand Mode Service Ant. Serial Number Isl Duty Cycle Power Frequency Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Channel Isl Duty Duty Channel Isl Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty Duty D	Rand Mode Service Ant. Serial Number Duty Cycle Power Frequency Orint [dB] Duty Cycle Power Requency Orint Real Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate R	Remain Mode Service Ant. Serial Number Duty Cycle Power [MHz] Power Channel # Request Power Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain Remain	Rand Mode Service Ant. Serial Number Duty Cycle Power Infiled Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Rate Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channel Power Channe	Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result R	Rand Mode Service Ant. Serial Number Is Duty Cycle Power Prequency Channel # Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand	Service Ant. Serial Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Number Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa Issa	Service Ant Service Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Modulation Ant Service Modulation Modulation Modulation Ant Service Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Mo	Service Ant Service Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Ant Service Modulation Modulation Ant Service Modulation Modulation Ant Service Modulation Modulation Ant Service Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation Modulation	Service Ant. Serial Ant. Serial Ant. Number Is Is Duty Cycle Power Is Is Duty Cycle Is Is Duty Cycle Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Reported Report

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

Table 9-12 802.15.4 Body SAR Data – Antenna WF8

							<u>, </u>		, , ,,,,,,								
Exposure	Band / Mode	Ant.	Serial Number	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	
Body	802.15.4	WF8	3YN4Y	0.03	2475	25	21.00	19.31	Back	0	V1	0.178	0.088	1.476	0.158	0.078	
Body	802.15.4	WF8	3YN4Y	0.00	2405	11	21.00	19.01	Тор	0	V1	0.968	0.411	1.581	0.918	0.390	
Body	802.15.4	WF8	3YN4Y	-0.02	2440	18	21.00	19.17	Тор	0	V1	1.140	0.473	1.524	1.042	0.433	
Body	802.15.4	WF8	Q91YW	0.00	2475	25	21.00	19.04	Тор	0	V2	1.170	0.483	1.570	1.102	0.455	
Body	802.15.4	WF8	3YN4Y	0.01	2475	25	21.00	19.31	Тор	0	V1	1.300	0.531	1.476	1.151	0.470	A5
Body	802.15.4	WF8	3YN4Y	-0.04	2475	25	21.00	19.31	Тор	0	V1	1.280	0.527	1.476	1.134	0.467	
Body	802.15.4	WF8	3YN4Y	0.02	2475	25	21.00	19.31	Bottom	0	V1	0.014	0.006	1.476	0.012	0.005	
Body	802.15.4	WF8	3YN4Y	0.02	2475	25	21.00	19.31	Right	0	V1	0.023	0.012	1.476	0.020	0.011	
Body	802.15.4	WF8	3YN4Y	0.08	2475	25	21.00	19.31	Left	0	V1	0.001	0.000	1.476	0.001	0.000	
Body	802.15.4	WF8	3YN4Y	0.03	2475	25	14.00	12.87	Back	0	V1	0.037	0.017	1.297	0.029	0.013	
Body	802.15.4	WF8	3YN4Y	0.00	2475	25	14.00	12.87	Тор	0	V1	0.269	0.108	1.297	0.209	0.084	
	-	ANSI/IEE	E C95.1 199	2 - SAFETY L	IMIT							E	Body				
			Spatial F	eak								1.6 W/	kg (mW/g)				
	Unco	ontrolle	d Exposure/	General Po	pulation							averaged	over 1 gram	1			

Note: Manufacturer declared that maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at higher duty cycle of 100% and scaled down to 60%.

Note: Blue entry represents variability measurement.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dags 90 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 80 of 100
	•	REV 23.0

Table 9-13 802.15.4 Body SAR Data – Antenna WF7b

						<u> </u>				•·····							
Exposure	Band / Mode	Ant.	Serial Number	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Reported 10g SAR [W/kg]	
Body	802.15.4	WF7b	3YN4Y	0.01	2440	18	21.50	19.85	Back	0	V1	0.151	0.078	1.462	0.132	0.068	
Body	802.15.4	WF7b	3YN4Y	0.07	2405	11	21.50	19.58	Тор	0	V1	0.733	0.329	1.556	0.684	0.307	
Body	802.15.4	WF7b	3YN4Y	0.08	2440	18	21.50	19.85	Тор	0	V1	0.888	0.394	1.462	0.779	0.346	
Body	802.15.4	WF7b	3YN4Y	0.05	2475	25	21.50	19.65	Тор	0	V1	0.998	0.438	1.531	0.917	0.402	
Body	802.15.4	WF7b	QJQY2	0.04	2475	25	21.50	19.61	Тор	0	V2	0.955	0.421	1.545	0.885	0.390	
Body	802.15.4	WF7b	3YN4Y	-0.13	2440	18	21.50	19.85	Bottom	0	V1	0.010	0.003	1.462	0.009	0.003	
Body	802.15.4	WF7b	3YN4Y	0.07	2440	18	21.50	19.85	Right	0	V1	0.014	0.006	1.462	0.012	0.005	
Body	802.15.4	WF7b	3YN4Y	0.05	2440	18	21.50	19.85	Left	0	V1	0.621	0.288	1.462	0.545	0.253	
Body	802.15.4	WF7b	3YN4Y	-0.08	2405	11	14.50	13.79	Back	0	V1	0.022	0.010	1.178	0.016	0.007	
Body	802.15.4	WF7b	3YN4Y	-0.01	2405	11	14.50	13.79	Тор	0	V1	0.168	0.073	1.178	0.119	0.052	
Body	802.15.4	WF7b	3YN4Y	-0.13	2405	11	14.50	13.79	Left	0	V1	0.112	0.049	1.178	0.079	0.035	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population											1.6 W/kg	dy g (mW/g) over 1 gram				

Note: Manufacturer declared that maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at higher duty cycle of 100% and scaled down to 60%.

Table 9-14
NB UNII 1 Body SAR Data – Antenna WF8

					• • • • • • • • • • • • • • • • • • • •																
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	1g SAR	Reported 10g SAR [W/kg]	Plot#
Body	NB U-NII 1	FHSS	WF8	VWY0X	77.0	-0.02	5204	Mid	8	13.50	13.16	Back	0	V1	0.132	0.033	1.081	1.006	0.144	0.036	
Body	NB U-NII 1	FHSS	WF8	VWY0X	77.0	-0.10	5204	Mid	8	13.50	13.16	Тор	0	V1	0.320	0.102	1.081	1.006	0.348	0.111	
Body	NB U-NII 1	FHSS	WF8	XD3J7	77.0	0.00	5204	Mid	8	13.50	13.10	Тор	0	V2	0.335	0.103	1.096	1.006	0.370	0.114	
Body	NB U-NII 1	FHSS	WF8	VWY0X	77.0	0.09	5204	Mid	8	13.50	13.16	Bottom	0	V1	0.000	0.000	1.081	1.006	0.000	0.000	
Body	NB U-NII 1	FHSS	WF8	VWY0X	77.0	0.06	5204	Mid	8	13.50	13.16	Right	0	V1	0.003	0.000	1.081	1.006	0.003	0.000	
Body	NB U-NII 1	FHSS	WF8	VWY0X	77.0	0.07	5204	Mid	8	13.50	13.16	Left	0	V1	0.007	0.000	1.081	1.006	0.008	0.000	
Body	NB U-NII 1	FHSS	WF8	XD3J7	77.0	0.05	5162	Low	1	10.00	9.15	Back	0	V2	0.013	0.002	1.216	1.006	0.016	0.002	
Body	NB U-NII 1	FHSS	WF8	XD3J7	77.0	0.07	5162	Low	1	10.00	9.15	Тор	0	V2	0.108	0.032	1.216	1.006	0.132	0.039	
	ANS/IEEE (53/1992 - SAFT/IMIT Spatial Peak Uncontrolled Foundation Uncontrolled Foundation															Body 1.6 W/kg (m\					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

Table 9-15
NB UNII 3 Body SAR Data – Antenna WF8

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	1g SAR	Reported 10g SAR [W/kg]	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.01	5733	Low	1	13.50	12.35	Back	0	V2	0.029	0.008	1.303	1.006	0.038	0.010	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.08	5733	Low	1	13.50	12.35	Тор	0	V2	0.289	0.073	1.303	1.006	0.379	0.096	
Body	NB U-NII 3	FHSS	WF8	MJFXK	77.0	0.07	5733	Low	1	13.50	11.97	Тор	0	V1	0.258	0.063	1.422	1.006	0.369	0.090	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.02	5733	Low	1	13.50	12.35	Bottom	0	V2	0.002	0.000	1.303	1.006	0.003	0.000	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.07	5733	Low	1	13.50	12.35	Right	0	V2	0.000	0.000	1.303	1.006	0.000	0.000	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.01	5733	Low	1	13.50	12.35	Left	0	V2	0.000	0.000	1.303	1.006	0.000	0.000	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.01	5733	Low	1	10.00	9.41	Back	0	V2	0.003	0.000	1.146	1.006	0.003	0.000	
Body	NB U-NII 3	FHSS	WF8	Q91YW	77.0	0.21	5733	Low	1	10.00	9.41	Тор	0	V2	0.113	0.022	1.146	1.006	0.130	0.025	
	NB U-NII 3 FHSS W8 (931VW 77.0 0.21 5733 Low 1 10.00 9.4 ANSI/IEE (95.1) 1392 - SAFFYLWING Spatial Peak Uncontrolled Exposury/General Population															Body L.6 W/kg (mV eraged over 1					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogo 91 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 81 of 100
	•	REV 23.0

12/03/2023

Table 9-16 NB UNII 1 Body SAR Data - Antenna WF7a

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	1g SAR	Reported 10g SAR [W/kg]	
Body	NB U-NII 1	FHSS	WF7a	QJQY2	77.0	0.02	5204	Mid	8	13.50	12.58	Back	0	V2	0.057	0.023	1.236	1.006	0.071	0.029	
Body	NB U-NII 1	FHSS	WF7a	QJQY2	77.0	0.12	5162	Low	8	13.50	12.42	Тор	0	V2	0.480	0.166	1.282	1.006	0.619	0.214	
Body	NB U-NII 1	FHSS	WF7a	W7W3T	77.0	-0.12	5162	Low	8	13.50	12.69	Тор	0	V1	0.447	0.152	1.205	1.006	0.542	0.184	
Body	NB U-NII 1	FHSS	WF7a	QJQY2	77.0	0.05	5204	Mid	8	13.50	12.58	Bottom	0	V2	0.000	0.000	1.236	1.006	0.000	0.000	
Body	NB U-NII 1	FHSS	WF7a	QJQY2	77.0	0.08	5204	Mid	8	13.50	12.58	Right	0	V2	0.000	0.000	1.236	1.006	0.000	0.000	
Body	NB U-NII 1	FHSS	WF7a	QJQY2	77.0	0.01	5204	Mid	8	13.50	12.58	Left	0	V2	0.006	0.000	1.236	1.006	0.007	0.000	
Body	NB U-NII 1	FHSS	WF7a		77.0	-0.16	5162	Low	1	9.50	8.72	Тор	0	V2	0.143	0.046	1.197	1.006	0.172	0.055	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT															Body					
	ANSI/IEEE C95. 11992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population															L.6 W/kg (m\ eraged over					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

> **Table 9-17** NB UNII 3 Body SAR Data - Antenna WF7a

										-				-							
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Add'l Info	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	1g SAR	Reported 10g SAR [W/kg]	Plot#
Body	NB U-NII 3	FHSS	WF7a	W7W3T	77.0	0.05	5844	High	1	13.50	12.59	Back	0	V1	0.091	0.023	1.233	1.006	0.113	0.029	
Body	NB U-NII 3	FHSS	WF7a	W7W3T	77.0	0.09	5844	High	1	13.50	12.59	Тор	0	V1	0.547	0.156	1.233	1.006	0.679	0.194	A6
Body	NB U-NII 3	FHSS	WF7a	QJQY2	77.0	0.11	5844	High	1	13.50	12.46	Тор	0	V2	0.534	0.152	1.271	1.006	0.683	0.194	
Body	NB U-NII 3	FHSS	WF7a	W7W3T	77.0	0.05	5844	High	1	13.50	12.59	Bottom	0	V1	0.002	0.000	1.233	1.006	0.002	0.000	
Body	NB U-NII 3	FHSS	WF7a	W7W3T	77.0	0.20	5844	High	1	13.50	12.59	Right	0	V1	0.000	0.000	1.233	1.006	0.000	0.000	
Body	NB U-NII 3	FHSS	WF7a	W7W3T	77.0	0.05	5844	High	1	13.50	12.59	Left	0	V1	0.000	0.000	1.233	1.006	0.000	0.000	
Body	NB U-NII 3	FHSS	WF7a	QJQY2	77.0	0.01	5844	High	1	8.50	8.50	Back	0	V2	0.010	0.002	1.000	1.006	0.010	0.002	
Body	NB U-NII 3	FHSS	WF7a	QJQY2	77.0	-0.01	5844	High	1	8.50	8.50	Тор	0	V2	0.166	0.049	1.000	1.006	0.167	0.049	
	NB U-NII 3 FHSS WF72 OUCY2 77.0 -0.01 5844 High 1 8.50 8.50 ANSI/IEEE 058.11929. SAFETY LIMINE Spatial Peak Uncontrolled Exposure/General Population															Body 1.6 W/kg (mV eraged over :					

Note: The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is permanently limited to 77.5% per manufacturer.

Table 9-18 WDT SAP Data

		VVI	I SAK	Jala						
Exposure	Band / Mode	Service / Modulation	Serial Number	Power Drift [dB]	Frequency [MHz]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Measured 10g SAR [W/kg]	Plot#
Body	WPT	CW	HHF20	-0.15	13.56	Back	0	0.030	0.007	A7
Body	WPT	CW	HHF20	0.06	13.56	Тор	0	0.000	0.000	
Body	WPT	CW	HHF20	0.01	13.56	Bottom	0	0.000	0.000	
Body	WPT	CW	HHF20	0.02	13.56	Right	0	0.002	0.000	
Body	WPT	CW	HHF20	0.03	13.56	Left	0	0.000	0.000	
	ANSI/IEEE C95.1 1992 - SAFETY LIMIT							Body		
	Spatial	Peak					1.6 W	//kg (mW/g))	
	Uncontrolled Exposure	e/General Population	1				average	ed over 1 gra	ım	

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 82 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 02 01 100

9.2 **SAR Test Notes**

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publications 447 498 D04.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04v01.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 11 for variability analysis.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D04v01 was applied to determine SAR test exclusion for adjacent edge configurations.
- 8. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.2. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 9. The orange highlights throughout the report represent the highest scaled SAR per Equipment Class.
- 10. Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. Per October 2020 TCB Workshop notes, 5 channels were tested. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 6.2.4 for more information.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 6.2.5 for more information.
- 3. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D04v01 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 11 for complete analysis.
- When the maximum reported 1g averaged SAR is ≤0.8 W/kg. SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 6. The time-averaged mechanism for WLAN operations was disabled for the above SAR measurements. The SAR was scaled to the maximum time-averaged output power.
- 7. For WIFI 6 GHz, the RF Exposure was evaluated at the maximum output power, therefore no evaluations for time-averaged were required.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dama 92 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 83 of 100
		REV/ 23.0

Bluetooth/NB UNII Notes:

1. Bluetooth/NB-UNII SAR was evaluated with a test mode with hopping disabled with DH5 operation. The reported SAR was scaled to the 77.5% transmission duty factor to determine compliance since the duty factor of the device is limited to 77.5% per manufacturer. See Section 7.9 and 7.11 for the time domain plot and calculation for the duty factor of the device.

802.15.4 Notes:

1. The manufacturer declared that the maximum source-based duty cycle of 802.15.4 mode is permanently limited to 60%. SAR measurement for 802.15.4 is evaluated at a higher duty cycle of 100% and scaled down to 60%. See Section 7.10 for the time domain plot for the duty factor of the device at the maximum source-based duty cycle of 60% and at the test mode during SAR measurement of 100%.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 84 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 04 01 100

9.3 **Power Density Data**

												MEASUREMI	ENT RESULTS											
Frequency (MHz)	Channel	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift (dB)	Spacing (mm)	Antenna Config.	Variant	DUT Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Grid Step (A)	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per IEC 62479	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Normal psPD (W/m²)	Scaled Normal psPD (W/m²)	Total psPD (W/m²)	Scaled Total psPD (W/m²)	Plot #
6025	15	802.11ax	OFDM	160	13.75	12.49	0.15	2	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	2.110	1.554	1.337	1.021	2.400	5.091	3.170	6.725	
6025	15	802.11ax	OFDM	160	13.75	12.26	0.00	2	WF8	V2	YW62T427P9	68.1	Тор	97.9	0.25		1.554	1.409	1.021	2.070	4.628	2.340	5.231	
6345	79	802.11ax	OFDM	160	14.25	13.16	0.03	2	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	•	1.554	1.285	1.021	1.440	2.936	2.480	5.056	
6505	111	802.11ax	OFDM	160	13.25	12.85	-0.03	2	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	•	1.554	1.096	1.021	1.110	1.930	1.510	2.626	
6665	143	802.11ax	OFDM	160	16.00	14.49	0.03	2	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	-	1.554	1.416	1.021	2.570	5.774	2.840	6.381	
6985	207	802.11ax	OFDM	160	11.50	9.79	0.03	2	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25		1.554	1.483	1.021	2.210	5.200	2.800	6.588	
6665	143	802.11ax	OFDM	160	16.00	14.49	-0.06	2	WF8	V1	LM6K6W7W3T	68.1	Right	97.9	0.25		1.554	1.416	1.021	0.231	0.519	0.241	0.541	
6665	143	802.11ax	OFDM	160	16.00	14.49	-0.09	2	WF8	V1	LM6K6W7W3T	68.1	Back	97.9	0.25	-	1.554	1.416	1.021	0.112	0.252	0.199	0.447	
6665	143	802.11ax	OFDM	160	16.00	14.49	-0.03	2	WF8	V1	LM6K6W7W3T	68.1	Left	97.9	0.25	•	1.554	1.416	1.021	0.249	0.559	0.392	0.881	
6665	143	802.11ax	OFDM	160	16.00	14.49	-0.16	2	WF8	V1	LM6K6W7W3T	68.1	Bottom	97.9	0.25		1.554	1.416	1.021	0.521	1.171	0.553	1.242	
6025	15	802.11ax	OFDM	160	13.75	12.49	0.08	9.95	WF8	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	1.940	1.554	1.337	1.021	0.713	1.513	1.130	2.397	
6025	15	802.11ax	OFDM	160	12.25	11.65	-0.01	2	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25		1.554	1.148	1.021	2.100	3.825	3.330	6.065	
6345	79	802.11ax	OFDM	160	12.25	11.39	0.17	2	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25		1.554	1.219	1.021	3.260	6.305	3.440	6.653	
6505	111	802.11ax	OFDM	160	11.75	11.55	-0.11	2	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	3.130	1.554	1.047	1.021	3.990	6.628	4.260	7.077	A8
6505	111	802.11ax	OFDM	160	11.75	10.85	0.08	2	WF7a	V2	YW62T427P9	68.1	Тор	97.9	0.25		1.554	1.230	1.021	3.340	6.518	3.520	6.869	
6665	143	802.11ax	OFDM	160	11.25	10.68	0.10	2	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25		1.554	1.140	1.021	3.670	6.638	3.900	7.054	
6985	207	802.11ax	OFDM	160	11.25	10.17	0.03	2	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	-	1.554	1.282	1.021	3.140	6.387	3.460	7.038	
6025	15	802.11ax	OFDM	160	12.25	11.65	0.03	2	WF7a	V1	LM6K6W7W3T	68.1	Right	97.9	0.25		1.554	1.148	1.021	0.271	0.494	0.365	0.665	
6025	15	802.11ax	OFDM	160	12.25	11.65	-0.02	2	WF7a	V1	LM6K6W7W3T	68.1	Back	97.9	0.25		1.554	1.148	1.021	0.416	0.758	0.453	0.825	
6025	15	802.11ax	OFDM	160	12.25	11.65	-0.03	2	WF7a	V1	LM6K6W7W3T	68.1	Left	97.9	0.25	-	1.554	1.148	1.021	0.177	0.322	0.188	0.342	
6025	15	802.11ax	OFDM	160	12.25	11.65	0.05	2	WF7a	V1	LM6K6W7W3T	68.1	Bottom	97.9	0.25		1.554	1.148	1.021	0.112	0.204	0.116	0.211	
6505	111	802.11ax	OFDM	160	11.75	11.55	0.34	9.23	WF7a	V1	LM6K6W7W3T	68.1	Тор	97.9	0.25	1.190	1.554	1.047	1.021	1.070	1.777	1.250	2.077	
					R §1.1310 - SAFET Spatial Average Exposure / Gener													Power Density 10 W/m² eraged over 4 cm²						

9.4 **Power Density Notes**

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by λ/4.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 5. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 6. Per equipment manufacturer guidance, power density was measured at d=2mm and d=λ/5mm using the same grid size and grid step size for some frequencies and surfaces. The integrated Power Density (iPD) was calculated based on these measurements. Since iPD ratio between the two distances is ≥ -1dB, the grid step was sufficient for determining compliance at d=2mm.
- 7. PD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01.
- 8. PTP-PR algorithm was used during psPD measurement and calculations.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogg 95 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 85 of 100
		REV 23.0

12/03/2023

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D04v01 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D04v01 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Note:

SAR Summations for some scenarios when the output power levels are reduced, SAR values at the maximum output power level were used as the most conservative evaluation for simultaneous transmission analysis.

*The SAR distributions for at least one of the antennas are spatially separated from the other antennas per FCC KDB Publication 248227 Section 6.1 procedures. Therefore, simultaneous transmission were treated independently for this configuration. See section 11.4 for more information about the Spatial Separation Analysis.

In some cases where simultaneous transmission scenarios overlap with the same power level (for example, cellular band + 2.4 GHz WIFI SISO and cellular band + 2.4 GHz WIFI MIMO), the most conservative SAR summation scenario was evaluated.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 86 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage oo or 100

10.3 Body SAR Simultaneous Transmission Analysis

Table 10-1 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth and wPT

Girialtanoda Tranomicolon Contano With 214 Girz Blactooth and Wi									
Simult Tx	Configuration	2.4 GHz Bluetooth Ant WF7b SAR (W/kg)	2.4 GHz Bluetooth Ant WF8 SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)				
		1	2	3	1+2+3				
	Back	0.123	0.167	0.030	0.320				
	Тор	0.955	1.186	0.000	1.186*				
Body SAR	Bottom	0.013	0.006	0.000	0.019				
	Right	0.013	0.018	0.002	0.033				
	Left	0.628	0.000	0.000	0.628				

Table 10-2 Simultaneous Transmission Scenario with NB U-NII TXBF and wPT

Simult Tx	Configuration	NB U-NII Ant WF7a SAR (W/kg)	NB U-NII Ant WF8 SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)
		1	2	3	1+2+3
	Back	0.113	0.144	0.030	0.287
	Тор	0.683	0.379	0.000	1.062
Body SAR	Bottom	0.002	0.003	0.000	0.005
	Right	0.000	0.003	0.002	0.005
	Left	0.007	0.008	0.000	0.015

Table 10-3
Simultaneous Transmission Scenario with 2.4 GHz WIFI with 2.4 Bluetooth and wPT

Official ledge 11 an emission occurrence with 2.4 on 2 with 1 with 2.4 bluetooth and with									
Simult Tx	Configuration	2.4 GHz WIFI Ant WF8 SAR (W/kg)	2.4 GHz Bluetooth Ant WF7b SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)				
		1	2	3	1+2+3				
	Back	0.170	0.123	0.030	0.323				
	Тор	1.177	0.955	0.000	1.177*				
Body SAR	Bottom	0.012	0.013	0.000	0.025				
	Right	0.011	0.013	0.002	0.026				
	Left	0.001	0.628	0.000	0.629				

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 87 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage of or 100
		REV 23.0

Table 10-4
Simultaneous Transmission Scenario 2.4 GHz WIFI with 802.15.4 and wPT

Simult Tx Configuratio			802.15.4 Ant WF7b SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)
		1	2	3	1+2+3
	Back	0.170	0.132	0.030	0.332
	Тор	1.177	0.917	0.000	1.177*
Body SAR	Bottom	0.012	0.009	0.000	0.021
	Right	0.011	0.012	0.002	0.025
	Left	0.001	0.545	0.000	0.546

Table 10-5

Simultaneous Transmission Scenario 5 GHz WIFI MIMO with 2.4 GHz Bluetooth and wPT

Simult Tx	Configuration	5 GHz WIFI Ant WF7a SAR (W/kg)		WIFI Ant AR (W/kg)	2.4 GHz B Ant WF7I dBm SAR	o at 13	2.4 GHz Bluetoo Ant WF8 at 13 d SAR (W/kg)		∑ SAR (W/kg)
		1		2	3		4	5	1+2+3+4+5
	Back	0.118	0	.143	0.02	7	0.033	0.030	0.351
	Тор	1.183	1.183 1.1		0.16	4	0.182	0.000	See Table Below
Body SAR	Bottom	0.004	0.004 0.016 0.000 0.020		0.013		0.006	0.000	0.039
	Right	0.000			0.01	3	0.018	0.002	0.053
	Left	0.065	0	000 0.1		0	0.000	0.000	0.165
Simult Tx	Configuration	5 GHz WIFI SAR (W		Ant WF	Bluetooth 7b at 13 R (W/kg)	Ant Wi	Hz Bluetooth F8 at 13 dBm IR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)
		1		2		3		4	1+2+3+4
Body SAR	Тор	1.173		0.1	164		0.182	0.000	1.519

Table 10-6

Simultaneous Transmission Scenario 6 GHz WIFI MIMO with 2.4 GHz Bluetooth TxBF and wPT

Circumstanted or contract	initialitaticodo Tranoniosom occinario o Griz Wil Timimo With 2.4 Griz biactocti Txbi ana Wi T										
Simult Tx	Configuration	6 GHz WIFI Ant WF7a SAR (W/kg)	6 GHz WIFI Ant WF8 SAR (W/kg)	2.4 GHz Bluetooth Ant WF7b at 13 dBm SAR (W/kg)	2.4 GHz Bluetooth Ant WF8 at 13 dBm SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)				
		1	2	3	4	5	1+2+3+4+5				
	Back	0.052	0.080	0.027	0.033	0.030	0.222				
	Тор	0.977	0.891	0.164	0.182	0.000	1.141*				
Body SAR	Bottom	0.002	0.013	0.013	0.006	0.000	0.034				
	Right	0.000	0.098	0.013	0.018	0.002	0.131				
	Left	0.001	0.003	0.100	0.000	0.000	0.104				

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 88 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 00 01 100

Table 10-7
Simultaneous Transmission Scenario 5 GHz WIFI MIMO with 802.15.4 and wPT

Omnakanoodo man	Sillission ocerialio	· • · · · -	****	0020	uu					
Simult Tx			5.4 Ant WF7b .5 dBm SAR (W/kg)		VIFI Ant R (W/kg)		5 GHz WIFI Ant WF7a SAR (W/kg)		g)	∑ SAR (W/kg)
			1	2	2	3		4		1+2+3+4
	Back		0.016	0.1	143	0.118		0.030		0.307
	Тор		0.119	1.1	183	1.183		0.000		See Table Below
Body SAR	Bottom		0.009	0.0)16	0.004		0.000		0.029
	Right		0.012		0.020		0.000			0.034
	Left		0.079 0.0		000	0.065		0.000		0.144
Simult Tx	Configurati	on	802.15.4 Ar at 14.5 dB (W/k	m SAR	5 GHz V	WIFI MIMO (W/kg)	wPT	SAR (W/kg)	2	∑ SAR (W/kg)
			1		2		3			1+2+3
Body SAR	Тор		0.11	9	1	.173		0.000		1.292

Table 10-8
Simultaneous Transmission Scenario 5 GHz WIFI MIMO with 802.15.4 and wPT

Simultaneous Transmission Scenario 3 Griz Wift Millino With 602. 15.4 and WF1									
Simult Tx			5.4 Ant WF8 4 dBm SAR (W/kg)		5 GHz WIFI Ant WF8 SAR (W/kg)		5 GHz WIFI Ant WF7a SAR (W/kg)		Σ SAR (W/kg)
			1	2	2	3		4	1+2+3+4
	Back		0.029		43	0.118		0.030	0.320
	Тор	0.209		1.1	83	1.183		0.000	See Table Below
Body SAR	Bottom		0.012	0.0)16	0.004		0.000	0.032
	Right		0.020	0.020		0.000		0.002	0.042
	Left		0.001	0.0	000	0.065		0.000	0.066
Simult Tx	Configuration		802.15.4 A at 14 dBr (W/k	n SAR		WIFI MIMO (W/kg)	wPT	SAR (W/kg)	∑ SAR (W/kg)
			1		2		3		1+2+3
Body SAR	Тор	·	0.20	9	1	.173		0.000	1.382

Table 10-9

Simultaneous Transmission Scenario 6 GHz WIFI MIMO with 802.15.4 and wPT

Official and the Control of Contr										
Simult Tx	Simult Tx Configuration		6 GHz WIFI Ant WF8 SAR (W/kg)	6 GHz WIFI Ant WF7a SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)				
		1	2	3	4	1+2+3+4				
	Back	0.016	0.080	0.052	0.030	0.178				
	Тор	0.119	0.891	0.977	0.000	1.096*				
Body SAR	Bottom	0.009	0.013	0.002	0.000	0.024				
	Right	0.012	0.098	0.000	0.002	0.112				
	Left	0.079	0.003	0.001	0.000	0.083				

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 89 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 09 01 100

Table 10-10

Simultaneous Transmission Scenario 6 GHz WIFI MIMO with 802.15.4 and wPT

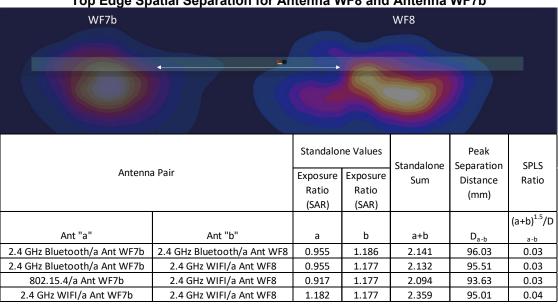
Simult Tx	Configuration	802.15.4 Ant WF8 at 14 dBm SAR (W/kg)	6 GHz WIFI Ant WF8 SAR (W/kg) 6 GHz WIFI A WF7a SAR (W		wPT SAR (W/kg)	∑ SAR (W/kg)
		1	2	3	4	1+2+3+4
	Back	0.029	0.080	0.052	0.030	0.191
	Тор	0.209	0.891	0.977	0.000	1.100*
Body SAR	Bottom	0.012	0.013	0.002	0.000	0.027
	Right	0.020	0.098	0.000	0.002	0.120
	Left	0.001	0.003	0.001	0.000	0.005

Table 10-11

Simultaneous Transmission Scenario with 2.4 GHz WIFI MIMO and NB U-NII TXBF and wPT

	mataneous Transmission occidato with 2.4 One with I millio and ND O-Nii TXDI and Wi T								
Simult Tx	Configuration	2.4 GHz WIFI Ant WF7b SAR (W/kg)	2.4 GHz WIFI Ant	NB U-NII Ant WF7a Reduced SAR (W/kg)	NB U-NII Ant WF8 Reduced SAR (W/kg)	wPT SAR (W/kg)	∑ SAR (W/kg)		
		1	2	3	4	5	1+2+3+4+5		
	Back	0.177	0.170	0.071	0.016	0.030	0.464		
	Тор	1.182	1.177	0.172	0.132	0.000	1.354*		
Body SAR	Bottom	0.015	0.012	0.002	0.003	0.000	0.032		
	Right	0.008	0.011	0.000	0.003	0.002	0.024		
	Left	0.890	0.001	0.007	0.008	0.000	0.906		

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 90 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 30 01 100


10.4 Spatial Separation Analysis

Per FCC KDB Publication 248227, antennas may be considered spatially separated when the aggregate SAR from multiple antennas at any location in the combined SAR distribution is either ≤ 1.2 W/kg where at least 90% of the SAR is attributed to a single SAR distribution or ≤ 0.4 W/kg where no more than one SAR distribution is contributing > 0.1 W/kg.

Spatial separation was determined by inspection of the area scan SAR distributions to confirm that at all locations, SAR was < 1.2 W/kg, where at least 90% of the SAR is attributed to a single SAR distribution. See below for illustrations of the spatial separated antennas considered.

10.4.1 Top Edge Spatial Separation Analysis

Figure 10-1
Top Edge Spatial Separation for Antenna WF8 and Antenna WF7b

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Dags 01 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 91 of 100	
		REV/ 23.0	

WF7a WF8 Standalone Values Peak Standalone Separation SPLS Antenna Pair Exposure Exposure Ratio Sum Distance Ratio Ratio (mm) (SAR) (SAR) (a+b)^{1.5}/D Ant "a" Ant "b" a+b b D_{a-b} 6 GHz WIFI/a Ant WF7a 6 GHz WIFI/a Ant WF8 0.977 0.891 1.868 81.69 0.03

Figure 10-2 Top Edge Spatial Separation for Antenna WF8 and Antenna WF7a

10.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D04v01 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 92 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 92 01 100

11 SAR MEASUREMENT VARIABILITY

11.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg.
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 11-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS															
Band	d FREQUENCY		FREC	QUENCY	Mode	Service	Ant	Data Rate (Mbps) Side Spa	Spacing	Measured SAR (1g)	1st Repeated SAR (1g) Ratio	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.							(W/kg)			(W/kg)		(W/kg)	1	
2450	2475.00	25	802.15.4	N/A	Ant WF8	0.25	Top	0 mm	1.300	1.280	1.016	N/A	N/A	N/A	N/A	
5250	5270.00	54	5 GHz WIFI/ IEEE 802.11n, 40 MHz Bandwidth	OFDM	Ant WF8	13.50	Top	0 mm	0.947	0.938	1.010	N/A	N/A	N/A	N/A	
5600	5610.00	122	5 GHz WIFI/ IEEE 802.11ac, 80 MHz Bandwidth	OFDM	Ant WF7a	29.30	Top	0 mm	0.984	0.911	1.080	N/A	N/A	N/A	N/A	
5750	5775.00	155	5 GHz WIFI/ IEEE 802.11ac, 80 MHz Bandwidth	OFDM	Ant WF7a	29.30	Top	0 mm	0.870	0.821	1.060	N/A	N/A	N/A	N/A	
6500	6505.00	111	6 GHz WIFI/ IEEE 802.11ax, 160 MHz Bandwidth	OFDM	Ant WF7a	68.10	Top	0 mm	0.839	0.829	1.012	N/A	N/A	N/A	N/A	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Bo	dy						
Spatial Peak							1.6 W/kg	(mW/g)								
			Uncontrolled Exposure/General Popul	lation						а	veraged o	ver 1 gram				

11.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Dogo 02 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 93 of 100	
		REV/ 23.0	

12/03/2023

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	11/14/2023	Annual	11/14/2024	MY45093852
Agilent	E4438C	ESG Vector Signal Generator	11/15/2023	Annual	11/15/2024	MY45092078
Agilent	N5182A	MXG Vector Signal Generator	10/12/2023	Annual	10/12/2024	MY47400015
Agilent	N5182A	MXG Vector Signal Generator	7/4/2023	Annual	7/4/2024	MY48180366
Agilent	8753ES	S-Parameter Vector Network Analyzer	7/21/2023	Annual	7/21/2024	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	6/2/2023	Annual	6/2/2024	MY40003841
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433973
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Anritsu	MN8110B	I/O Adaptor	CBT	N/A	CBT	6261747881
Anritsu	ML2496A	Power Meter	6/15/2023	Annual	6/15/2024	1138001
Anritsu	ML2495A	Power Meter	6/13/2023	Annual	6/13/2024	1039008
Anritsu	MA2411B	Pulse Power Sensor	8/22/2023	Annual	8/22/2024	1726262
Anritsu	MA2411B	Pulse Power Sensor	6/15/2023	Annual	6/15/2024	1126066
Anritsu	MT8000A	Radio Communication Test Station	3/21/2023	Annual	3/21/2024	6261987983
Anritsu	MT8000A	Radio Communication Test Station	6/15/2023	Annual	6/15/2024	6261914237
Anritsu	MT8000A	Radio Communication Test Station	4/6/2023	Annual	4/6/2024	6272337439
Anritsu	MA24106A	USB Power Sensor	6/15/2023	Annual	6/15/2024	1827530
Control Company	4052	Long Stem Thermometer	2/17/2023	Biennial	2/17/2025	230111049
Control Company	4040	Therm/Clock/Humidity Monitor	5/11/2022	Biennial	5/11/2024	221514925
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies	N6705B	DC Power Analyzer	5/5/2021	Triennial	5/5/2024	MY53004059
Keysight Technologies	N9020A	MXA Signal Analyzer	4/6/2023	Annual	4/6/2024	MY48010233
Agilent	N9020A	MXA Signal Analyzer	4/26/2022	Biennial	4/26/2024	MY56470202
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	7/5/2023	Annual	7/5/2024	31634
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	NC-100	Torque Wrench	CBT	N/A	CBT	22217
Seekonk	NC-100	Torque Wrench	CBT	N/A	CBT	1262
SPEAG	DAK-3.5		11/13/2023	Annual	11/13/2024	1277
SPEAG	DAK-3.5	Dielectric Assessment Kit Portable Dielectric Assessment Kit	8/14/2023	Annual	8/14/2024	1041
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A N/A	1331
SPEAG	MAIA	Modulation and Audio Interference Analyzer Modulation and Audio Interference Analyzer	N/A N/A	N/A N/A	N/A N/A	1331
SPEAG	DAK-12	Dielectric Assessment Kit (4MHz - 3GHz)	3/13/2023	Annual	3/13/2024	1102
SPEAG SPEAG	CLA-13 D2450V2	Confined Loop Antenna	11/9/2023	Annual Triennial	11/9/2024	1004 921
		2450 MHz SAR Dipole	11/9/2021		11/9/2024	
SPEAG	D2450V2	2450 MHz SAR Dipole	5/11/2022	Biennial	5/11/2024	750
SPEAG	D5GHzV2	5 GHz SAR Dipole	3/22/2022	Biennial	3/22/2024	1123
SPEAG	D5GHzV2	5 GHz SAR Dipole	6/9/2021	Triennial	6/9/2024	1163
SPEAG	D6.5GHzV2	6.5 GHz SAR Dipole	1/12/2023	Annual	1/12/2024	1020
SPEAG	10G Verification Source	10 GHz System Verification Antenna	10/13/2023	Annual	10/13/2024	1006
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2023	Annual	10/18/2024	1237
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/14/2023	Annual	4/14/2024	1402
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/15/2023	Annual	3/15/2024	604
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2023	Annual	10/18/2024	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/18/2023	Annual	10/18/2024	793
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/15/2023	Annual	3/15/2024	534
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/11/2023	Annual	5/11/2024	701
SPEAG	EX3DV4	SAR Probe	10/16/2023	Annual	10/16/2024	3746
	EX3DV4	SAR Probe	10/16/2023	Annual	10/16/2024	7420
SPEAG		SAR Probe	3/16/2023	Annual	3/16/2024	7421
SPEAG	EX3DV4					
SPEAG SPEAG	EX3DV4	SAR Probe	4/14/2023	Annual	4/14/2024	7546
SPEAG	EX3DV4 EX3DV4	SAR Probe SAR Probe			4/14/2024 3/16/2024	7546 7360
SPEAG SPEAG	EX3DV4	SAR Probe	4/14/2023	Annual	4/14/2024	

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by:	
FCC ID. BCGA2902	OAK EVALOATION KEI OKT	Technical Manager	
Document S/N:	DUT Type:	Dags 04 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 94 of 100	
		REV 23.0	

12/03/2023

MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements < 6 GHz:

e for SAR measurements < 6 GHz:									
а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		C _i	C _i	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
	000.						(± %)	(± %)	
Measurement System									
Probe Calibration	E2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E2.3	2	R	1.732	1	1	1.2	1.2	8
Linearity	E2.4	0.3	N	1	1	1	0.3	0.3	8
System Detection Limits	E2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E2.6	0.3	N	1	1	1	0.3	0.3	8
Response Time	E2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	8.0	R	1.732	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E5	4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)							12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to I \boxplus Std. 1528-2013

	,	
ECC ID: DCCA2002	SAR EVALUATION REPORT	Approved by:
FCC ID: BCGA2902	SAR EVALUATION REPORT	Technical Manager
Document S/N:	DUT Type:	Page 95 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 95 01 100

Applicable for SAR measurements > 6 GHz:

cable for SAR measurements > 6 GHz:									
а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
	360.	()			3		(± %)	(± %)	'
Measurement System	'		•	•			, , ,		
Probe Calibration	E2.1	9.3	N	1	1	1	9.3	9.3	∞
Axial Isotropy	E2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E2.2	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E2.3	2	R	1.732	1	1	1.2	1.2	∞
Linearity	E2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E2.4	0.25	R	1.732	1	1	0.1	0.1	∞
Modulation Response	E2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E2.8	2.6	R	1.732	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E6.1	3	R	1.732	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	0.8	R	1.732	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E5	4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related			,	,					•
Test Sample Positioning	E4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)			1	13.8	13.6	191			
Expanded Uncertainty			k=2				27.6	27.1	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to I⊞ Std. 1528-2013

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 96 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	rage 90 or 100

Applicable for Power Density measurements:

wer Density measurements:						
а	b	С	d	е	f =	g
					c x f/e	
	Unc.	Prob.			u _i	
Uncertainty Component	(± dB)	Dist.	Div.	C _i	(± dB)	V _i
					,	'
Measurement System						
Calibration	0.49	N	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	8
Frequency Response	0.20	R	1.73	1	0.12	8
Sensor Cross Coupling	0.00	R	1.73	1	0.00	∞
Isotropy	0.50	R	1.73	1	0.29	8
Linearity	0.20	R	1.73	1	0.12	8
Probe Scattering	0.00	R	1.73	1	0.00	8
Probe Positioning offset	0.30	R	1.73	1	0.17	8
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	8
Sensor Mechanical Offset	0.00	R	1.73	1	0.00	8
Probe Spatial Resolution	0.00	R	1.73	1	0.00	8
Field Impedence Dependance	0.00	R	1.73	1	0.00	8
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	8
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	8
Measurement Area Truncation	0.00	R	1.73	1	0.00	8
Data Acquisition	0.03	N	1	1	0.03	8
Sampling	0.00	R	1.73	1	0.00	8
Field Reconstruction	2.00	R	1.73	1	1.15	8
Forward Transformation	0.00	R	1.73	1	0.00	8
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	8
System Detection Limit	0.04	R	1.73	1	0.02	8
Test Sample Related						
Probe Coupling with DUT	0.00	R	1.73	1	0.00	8
Modulation Response	0.40	R	1.73	1	0.23	8
Integration Time	0.00	R	1.73	1	0.00	8
Response Time	0.00	R	1.73	1	0.00	8
Device Holder Influence	0.10	R	1.73	1	0.06	8
DUT alignment	0.00	R	1.73	1	0.00	8
RF Ambient Conditions	0.04	R	1.73	1	0.02	∞
Ambient Reflections	0.04	R	1.73	1	0.02	∞
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	∞
Drift of DUT	0.21	R	1.73	1	0.12	∞
Combined Standard Uncertainty (k=1)				1.34	∞	
Expanded Uncertainty k=2					2.68	
(95% CONFIDENCE LEVEL)						

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 97 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Faye 91 01 100

14 CONCLUSION

14.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g., ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g., age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Page 98 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Fage 96 01 100

15 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada; 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager	
Document S/N:	DUT Type:	Page 99 of 100	
1C2311270063-01.BCG (Rev 1)	Tablet Device	REV 23.0	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: BCGA2902	SAR EVALUATION REPORT	Approved by: Technical Manager
Document S/N:	DUT Type:	Dogo 100 of 100
1C2311270063-01.BCG (Rev 1)	Tablet Device	Page 100 of 100