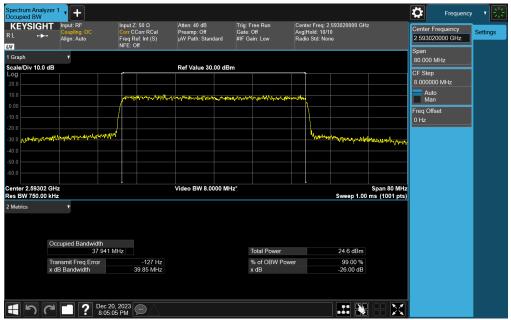

Plot 7-109. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 64-QAM - Full RB)


Plot 7-110. Occupied Bandwidth Plot (NR Band n41 - 30MHz CP-OFDM 256-QAM - Full RB)

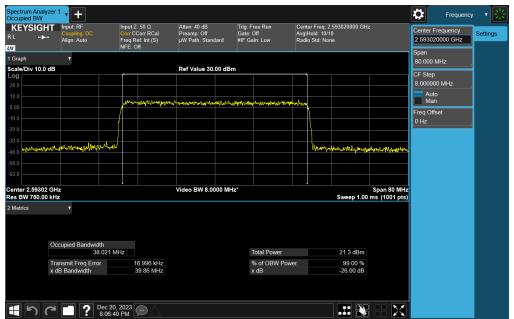
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage / 1015/1
			V/2 2 09/07/2023

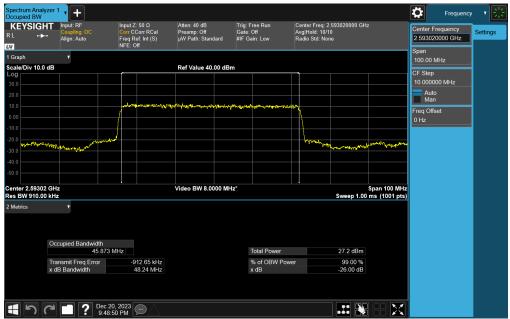
Plot 7-111. Occupied Bandwidth Plot (NR Band n41 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-112. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 72 01 57 1
			V2 2 09/07/2023

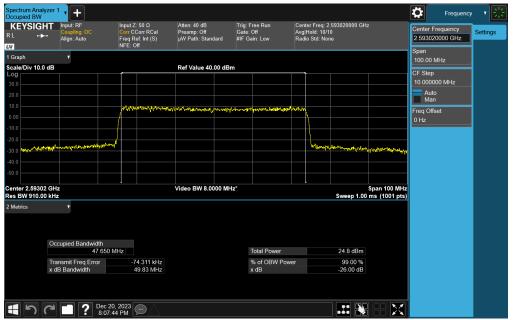
KEYSIGHT └ +►+ 1	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: Avg Hold: 10 Radio Std: N			Center Frequency 2.593020000 GHz	Settings
Graph	•							Span 80.000 MHz	
cale/Div 10.0 dB			Ref Value 30.00 dBn	n				CF Step	
								8.000000 MHz	
0.0		moundance	wither and the second states and the second s	and the second of the second of the	www			Man Man	
		4						Freq Offset 0 Hz	
0.0	Approximation and				William	-	A to Part to a to	·/	
0.0							. av Inderstand		
0.0									
nter 2.59302 GF s BW 750.00 kH			Video BW 8.0000 MH	z*		Sweep 1.00	Span 80 MHz ms (1001 pts)		
Metrics	Y								
O	ccupied Bandwidth 38 025 M	1Hz		Total Power		24 7 dBm			
Tr	ccupied Bandwidth 38.025 M ansmit Freq Error dB Bandwidth	1Hz -104.64 kHz 39.80 MHz		Total Power % of OBW Pow x dB	ver	24.7 dBm 99.00 % -26.00 dB			


Plot 7-113. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 16-QAM - Full RB)


Plot 7-114. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Domo 72 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 73 of 571
			V2 2 09/07/2023

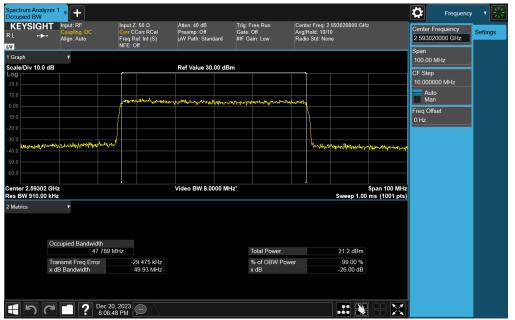
Plot 7-115. Occupied Bandwidth Plot (NR Band n41 - 40MHz CP-OFDM 256-QAM - Full RB)


Plot 7-116. Occupied Bandwidth Plot (NR Band n41 - 50MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 74 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 74 01 57 1
			1/2 2 09/07/2023

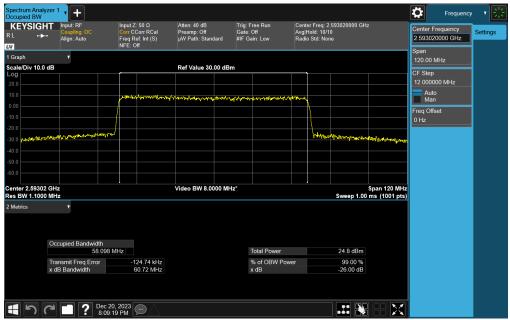
z
MHz


Plot 7-117. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM QPSK - Full RB)


Plot 7-118. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 16-QAM - Full RB)

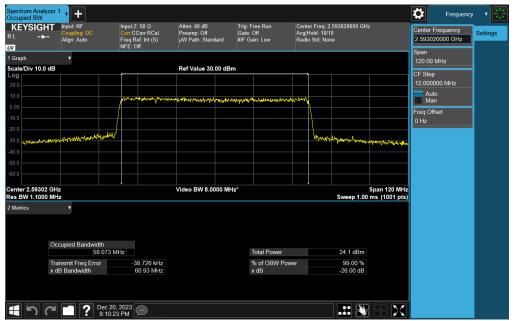
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 75 01 57 1
	•	·	V2 2 09/07/2023

Plot 7-119. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 64-QAM - Full RB)


Plot 7-120. Occupied Bandwidth Plot (NR Band n41 - 50MHz CP-OFDM 256-QAM - Full RB)

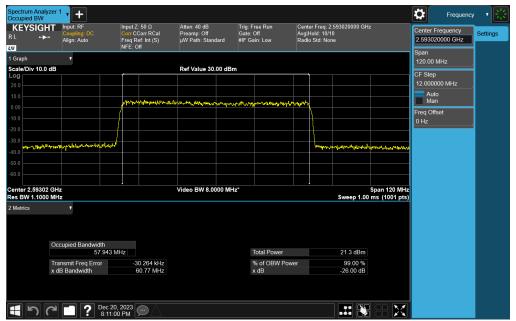
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 70 01 57 1
			V/2 2 09/07/2023

Plot 7-121. Occupied Bandwidth Plot (NR Band n41 - 60MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-122. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage // 015/1
			1/2 2 09/07/2023

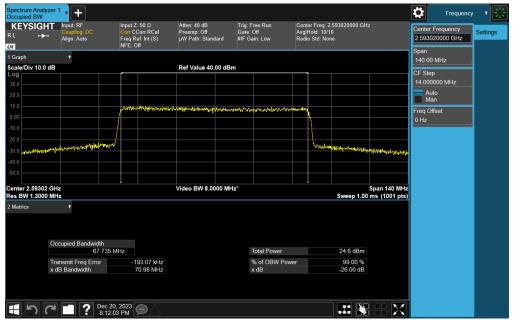
	Input: RF Coupling: DC Align: Auto		Corr RCal ef: Int (S)	Atten: 40 dB Preamp: Off μW Path: Stan		irig: Free Run Sate: Off IF Gain: Low	Avg	er Freq: 2 Hold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz	Settings
Graph	T										Span 120.00 MHz	
ale/Div 10.0 dB				Ref Value 40	.00 dBm						CF Step	
											12.000000 MHz	_
1.0											Man	
00		And the second	an ang tang ang tang tang tang tang tang	Jensed and the second second	nor provident	and an and a second	Morrow				Freq Offset	
								<u> </u>			0 Hz	
		4.0						<u> </u>				
.0 when the second	and the second and the second second	w.~						"here here	Wine-hardbookinghr	why and the second s		
nter 2.59302 GH s BW 1.1000 MH				Video BW 8.0	000 MHz*					Span 120 MHz ms (1001 pts)		
letrics Of	▼ ccupied Bandwidth											
	57.96	4 MHz				Total Power			24.8 dBm			
	ansmit Freq Error dB Bandwidth		32.119 kHz 50.62 MHz			% of OBW Po x dB	ower		99.00 % -26.00 dB			


Plot 7-123. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 16-QAM - Full RB)

Plot 7-124. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 70 01 57 1
	*	·	1/2 2 09/07/2023

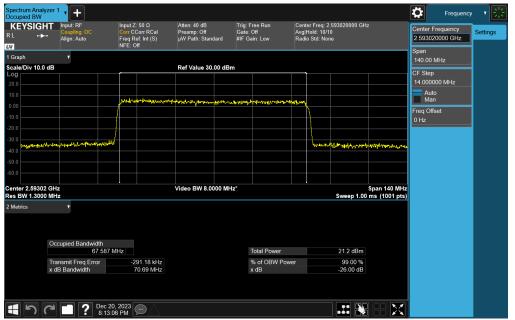
Plot 7-125. Occupied Bandwidth Plot (NR Band n41 - 60MHz CP-OFDM 256-QAM - Full RB)


Plot 7-126. Occupied Bandwidth Plot (NR Band n41 - 70MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 571
1C2311270066-10.BCG	G 10/01/2023 - 03/07/2024 Tablet Device		Fage 79 01 57 1
			\/2 2 00/07/2023

KEYSIGHT →→→	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avgit	er Freq: 2 Hold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz Span	Settings
Graph	•								140.00 MHz	
ale/Div 10.0 dB			Ref Value 30.00 dl	Bm					CF Step	
									14.000000 MHz	
		Maggine and and and and	harth the and the here of the star	un and the second states and the	s manada				Auto Man	
						1			Freq Offset	
									0 Hz	
.0 .0 стуру улимани (unulognation for the state of t					white	[↓] ↓ <mark>₽</mark> ₩₩₩₩₩₩	Lauger of the state of the second state of the		
.0										
nter 2.59302 GH s BW 1.3000 MH			Video BW 8.0000 N	IHz*				Span 140 MHz ms (1001 pts)		
Aetrics	۲									
0	ccupied Bandwidth 67.799 N	ЛНz		Total Power			24.6 dBm			
	ansmit Freq Error	-235.26 kHz		% of OBW F	ower		99.00 %			
x	dB Bandwidth	70.91 MHz		x dB			-26.00 dB			

Plot 7-127. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM QPSK - Full RB)


Plot 7-128. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 80 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024 Tablet Device		Fage 60 01 57 1
			V/2 2 09/07/2023

Spectrum Analy Occupied BW	zer 1 🔹 🕇								\$	Frequency	· · · ※
KEYSIGH RL ↔		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg H	r Freq: 2.5 old: 10/10 Std: None		2	2.59302	requency 0000 GHz	Settings
1 Graph									Span 140.00 I	ИHz	
Scale/Div 10.0	dB		Ref Value 30.00 dBr	m					CF Step		
20.0									14.0000		
10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.anglewillen.com.angle	angralismer partitions	hellynney				Auto Man		
0.00									Freq Off:	et	
20.0						L I			0 Hz		
-30.0	wayestation and with a sub-					Wernet	there the all being	-			
-40.0					+						
-50.0											
-60.0											
Center 2.59302 Res BW 1.3000		•	Video BW 8.0000 MH	iz*				Span 140 MHz ms (1001 pts)			
2 Metrics	v										
	Occupied Bandwidth 67.634 M	H7		Total Power			24.2 dBm				
	Transmit Freq Error	-159.27 kHz		% of OBW Po	wer		99.00 %				
	x dB Bandwidth	70.85 MHz		x dB			-26.00 dB				
50	Dec 20	2023									

Plot 7-129. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 64-QAM - Full RB)


Plot 7-130. Occupied Bandwidth Plot (NR Band n41 - 70MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Degre 94 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 81 of 571
L		·	V2.2 09/07/2023

Plot 7-131. Occupied Bandwidth Plot (NR Band n41 - 80MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-132. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024 Tablet Device		Fage 62 01 57 1
			V/2 2 09/07/2023

KEYSIGHT ∟ •►•	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standar	Trig: Free Run Gate: Off d #IF Gain: Low	Center Fre Avg Hold: Radio Std:			Center Frequency 2.593020000 GHz Span	Settings
Graph	v							Span 160.00 MHz	
ale/Div 10.0 dB			Ref Value 30.00	dBm				CF Step 16.000000 MHz	
.0		tura la constitución de Milana						Auto	
			and the stand of the second of the second	www.artenage.com.com.com.com.com.com.com.com.com.com	aren (Man Freg Offset	
.0								0 Hz	
.0 papyroundifier	-	v			-	many	- Contractor - Alter and		
nter 2.59302 GH s BW 1.5000 MH			Video BW 8.0000	MHz*			Span 160 MHz ms (1001 pts)		
letrics	7						113 (1001 pt3)		
Oc	cupied Bandwidth 77.766	i MHz		Total Power		24.6 dBm			
	insmit Freq Error B Bandwidth	-176.22 kHz 81.43 MHz		% of OBW P x dB	ower	99.00 % -26.00 dB			

Plot 7-133. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 16-QAM - Full RB)

Plot 7-134. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 92 of 574
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 83 of 571
			V2 2 09/07/2023

. +•	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg F	er Freq: 2 Iold: 10/1 Std: Nor		z	Center Frequency 2.593020000 GHz Span	Settings
iraph ale/Div 10.0 dB	•		Ref Value 30.00 dE	Im					160.00 MHz	
			Ref value 30.00 de	om					CF Step 16.000000 MHz	
									Auto	
		prosperior and	het opposite and a second second	พ _{พัฒนา} มาการจะสูงประ	d al parties				Man Freq Offset	
o									0 Hz	
	the altration of the second									
	edfreffitfedelikae foerfaat op een alemat					www.	lann miriferialfasterings	ĸ ^ſ ᠉᠆ᠮᡪᢩᡰᡁ᠊ᠮᡵ᠁ᡟᡗᢑ᠕᠂ᢔ᠋᠕ᢩᠰ		
.0										
nter 2.59302 GF	42		Video BW 8.0000 M	Hz*				Span 160 MHz		
BW 1.5000 MI								ms (1001 pts)		
letrics	Ccupied Bandwidth	MHz		Total Power			21.0 dBm			
O							99.00 %			
	77.763 ansmit Freg Error	-258.37 kHz		% of OBW F	ower					

Plot 7-135. Occupied Bandwidth Plot (NR Band n41 - 80MHz CP-OFDM 256-QAM - Full RB)

Plot 7-136. Occupied Bandwidth Plot (NR Band n41 - 90MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 94 of 571	
1C2311270066-10.BCG	5 10/01/2023 - 03/07/2024 Tablet Device	Tablet Device	Page 84 of 571	
			1/2 2 09/07/2023	

KEYSIGHT └ ·►· I	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg F	er Freq: 2 Hold: 10/1 Std: Nor			Center Frequency 2.593020000 GHz Span	Settings
Graph	v								Span 180.00 MHz	
cale/Div 10.0 dB			Ref Value 30.00 dE	3m					CF Step	
									18.000000 MHz	
		Manufatural Street and Street and Street	Manan Amerika Manda Manana	ways have the start and	www.w				Auto Man	
						1			Freq Offset	
						1			0 Hz	
0.0 0.0	man	/				home	e all the second	apather John was shown		
nter 2.59302 Gi s BW 1.8000 M			Video BW 8.0000 M	Hz*				Span 180 MHz ms (1001 pts)		
letrics	T						oncep 1.00	113 (1001 pts)		
0	ccupied Bandwidth 87.897	MH7		Total Power			24.6 dBm			
Т	ansmit Freq Error	-229.57 kHz		% of OBW Po	wer		99.00 %			
	dB Bandwidth	92.16 MHz		x dB			-26.00 dB			
^										
Â										

Plot 7-137. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM QPSK - Full RB)

Plot 7-138. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 85 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 65 01 57 1
			V2 2 09/07/2023

KEYSIGHT └ ·►· I	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Fr Avg Hold: Radio Sto			Center Frequency 2.593020000 GHz	Settings
Graph	•							Span 180.00 MHz	
ale/Div 10.0 dB			Ref Value 30.00 dB	m				CF Step	
0.0								18.000000 MHz	
00		performer and the other second	y waran an a	wayson/wood/waleson/ord/waleson/waleson/wood/waleson/waleson/wood/waleson/waleson/waleson/waleson/waleson/wales	Made and			Man	
								Freq Offset 0 Hz	
0.0	المالي ورور المراسي معاد					Autor and an an			
.0	- He Condition is a set					and the second	-18-18-18-18-18-18-18-18-18-18-18-18-18-		
nter 2.59302 Gi s BW 1.8000 M			Video BW 8.0000 MH	lz*			Span 180 MHz ms (1001 pts)		
Netrics	Y								
0	ccupied Bandwidth 87.899) MHz		Total Power		24.1 dBm			
	ansmit Freq Error dB Bandwidth	-210.44 kHz 92.13 MHz		% of OBW P x dB	ower	99.00 % -26.00 dB			

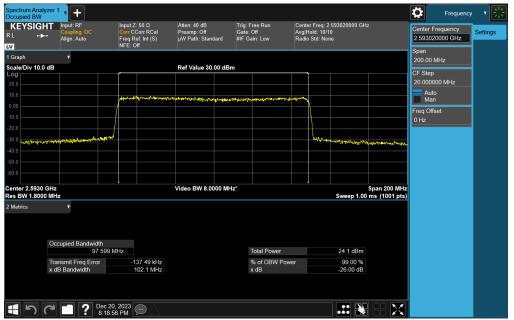
Plot 7-139. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 64-QAM - Full RB)


Plot 7-140. Occupied Bandwidth Plot (NR Band n41 - 90MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	s: EUT Type:		
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 86 of 571	
			V/2 2 09/07/2023	

KEYSIGHT ⊥ •►• ⊿	Input: RF Coupling: DC Align: Auto			Corr RCal ef: Int (S)	Atten: 40 dB Preamp: Off µW Path: Stan	dard	Trig: Fi Gate: (#IF Ga		Avg	ter Freq: 2 Hold: 10/1 io Std: Nor	593020000 GH: 0 1e		Center Frequency 2.593020000 GHz Span	Settings
Graph ale/Div 10.0 dE	T				Ref Value 40.	00 dBm							200.00 MHz	
			Í		Rei Value 40.								CF Step 20.000000 MHz	
													Auto Man	
			and the second	den hennen sonstaal lijska	teren networks	an dia 1997	- Martala na	the street and the street of t	- -	\			Freq Offset 0 Hz	
D.0	per and a more more and									Maraya	non an	who where we want the		
enter 2.5930 GH es BW 1.8000 M			•		Video BW 8.00	000 MHz						Span 200 MHz ms (1001 pts)		
Metrics	T													
0	ccupied Bandwid	dth												
	. 90	6.505 M	Hz				٦	otal Power			27.2 dBm			
	ransmit Freq Erro dB Bandwidth	or		06.20 kHz 101.1 MHz				6 of OBW Pow ∶dB	er		99.00 % -26.00 dB			

Plot 7-141. Occupied Bandwidth Plot (NR Band n41 - 100MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-142. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 571
1C2311270066-10.BCG	G 10/01/2023 - 03/07/2024 Tablet Device		Fage of 01571
	•	·	V2 2 09/07/2023

Graph * 200.00 MHz Cale/Div 10.0 dB Ref Value 30.00 dBm CF Step 20.00000 MHz Cite CF Step 20.00000 MHz Cite Cite Cite Cite C	++-	Input: RF Coupling: DC Align: Auto	C	nput Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) IFE: Off	Atten: 40 dB Preamp: Off μW Path: Stand	Gate	Free Run :: Off Gain: Low	Avg F	er Freq: 2 lold: 10/1 o Std: Nor			Center Frequency 2.593020000 GHz	Settings
CF Step 2000 CF Step 200000 MHz Auto Man Freq Offset Hz Syseep 1.00 ms (1001 pts) Metrics					D-61/41 00 /							Span 200.00 MHz	
Auto Auto	/DIV 10.0 a				Ref value 30.0	JU dBm							
000 Image: Construction of the second seco				al a factor of the state of the s	U-lathangleand-alleration	the stand and a stand and a stand	wallandame	-				Auto	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												Freq Offset	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alma an	not the second of the second of the	m						-	htterren terry terry terry	harrillflyly-frogramp		
es BW 1.8000 MHz Sweep 1.00 ms (1001 pts) Metrics Y													
es BW 1.8000 MHz Sweep 1.00 ms (1001 pts) Metrics Y	- 0 5020 0					00 841					C		
97.827 MHz Total Power 24.6 dBm		Occupied Bandwic		7			Total Power			24.6 dBm			
Transmit Freq Error -225.33 kHz % of OBW Power 99.00 %								wer					
x dB Bandwidth 102 3 MHz x dB -26 00 dB			,										

Plot 7-143. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 16-QAM - Full RB)

Plot 7-144. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	ates: EUT Type:	
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 88 of 571
			V2 2 09/07/2023

EYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg H	er Freq: 2 Iold: 10/1 Std: Nor			Center Frequency 2.593020000 GF Span	
aph le/Div 10.0 dB	Y		Ref Value 30.00 dE	2					200.00 MHz	
1			Ref Value 30.00 de	Sm					CF Step 20.000000 MHz	
0									Auto	
0		permanent	- March Anality Ala Angeler	-	Un the star				Man	
, ,		1				\			Freq Offset	
)						\			0 Hz	
	and the second second second					\ 				
)	an and the second second second					11-14-14-	Ann an a	an a		
ter 2.5930 GHz		+	Video BW 8.0000 M	Hz*				Span 200 MHz		
BW 1.8000 MH	z						Sweep 1.00	ms (1001 pts)		
etrics	▼ cupied Bandwidth									
	97.542 M	MHz		Total Power			21.0 dBm			
	insmit Freq Error B Bandwidth	-145.07 kHz 102.2 MHz		% of OBW P x dB	ower		99.00 % -26.00 dB			

Plot 7-145. Occupied Bandwidth Plot (NR Band n41 - 100MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 69 01 57 1
			1/2 2 00/07/2022

ULCA - LTE Band 7

Plot 7-146. Occupied Bandwidth Plot (LTE Band 7 – (20+20)MHz QPSK - Full RB)

Plot 7-147. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 50 01 57 1
			V2.2 09/07/2023

Plot 7-148. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 64-QAM - Full RB)

Plot 7-149. Occupied Bandwidth Plot (LTE Band 7 - (20+20)MHz 256-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 91 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 91 01 57 1
	•		V2.2 09/07/2023

ULCA - LTE Band 41

Plot 7-150. Occupied Bandwidth Plot (LTE Band 41 – (20+20)MHz QPSK - Full RB)

Plot 7-151. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 92 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 92 01 57 1
			V2.2 09/07/2023

Plot 7-152. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 64-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (LTE Band 41 - (20+20)MHz 256-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024 Tablet Device		Fage 95 01 57 1
			V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal

§2.1051, §27.53(a), §27.53(m)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

For Band 30, the minimum permissible attenuation level of any spurious emission <2288MHz and >2365MHz is 70 + 10 log10(P[Watts]).

For LTE Bands 7, 41, and NR FR1 Band n41 the minimum permissible, n41 the minimum permissible attenuation level of any spurious emission is 55 + 10log₁₀(*P*[*Watts*]).

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

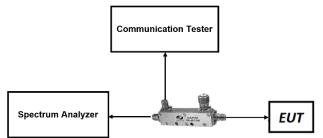


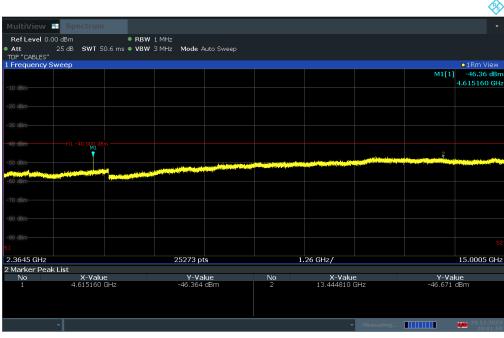
Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024 Tablet Device		Fage 94 01 57 1
			1/2 2 00/07/2022

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 3. Uplink carrier aggregation for LTE Band 7 is only supported in this EUT while operating in Power Class 3.
- 4. Uplink carrier aggregation for LTE Band 41 is supported in this EUT while operating in Power Class 2 and Power Class 3.
- 5. Uplink carrier aggregation intra-band conducted spurious emissions were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device. The worst case (highest) powers were found while operating with QPSK modulation, as shown in the tables below, with both carriers set to transmit using 1RB.
- 6. Uplink carrier aggregation inter-band emission was investigated and found to not be the worst case.

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 05 of E71	
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 95 of 571	
			1/2 2 00/07/2022	


LTE Band 30

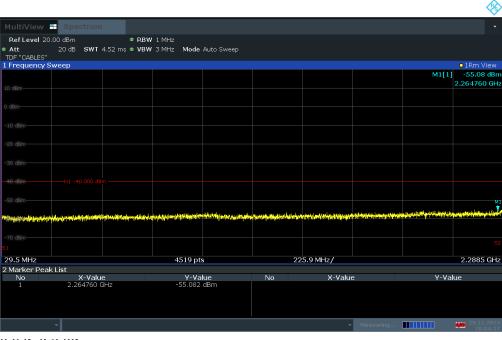
									(*)
MultiView	Spectrum								•
Ref Level 20.	.00 dBm	• RBW	1 MHz						
 Att 	20 dB SWT	4.52 ms 💿 VBW	3 MHz Mode	Auto Sweep					
TDF "CABLES"									●1Rm View
1 Frequency S	weep						M1[1]		-53.27 dBm
							WILI		2.286250 GHz
10 dBm									LILOULOU ONL
0 dBm-									
-10 dBm-									
10 abiii									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
Meldennahmister an stander bis bander	فأر ومأرة الأمر والأعد أالأو وأرفاه والمراجع	فتحط فيعلمه المتناطية فالعراق	المعادية وحابات أرتبهم والمعادية	-	executed when the develop	and the destriction of	and the state of a state of the	Martin Cardenic Cardination of the	asti kuquaraa ayaa
		and a straight of a straight of the	and the second second		and the second second				
-70 dBm									
51									
29.5 MHz			4519 pt		22	25.9 MHz/			2.2885 GHz
2 Marker Peak	list		1315 pt.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.515 141127			2.2003 GHZ
No	X-Valu		Y-Va		No	X-Value	e	<u>Y-v</u>	'alue
	2.286250 0	GHz	-53.268	dBm					
									29.12.2023
						~	Measuring		29.12.2023 20:01:42

~

20:01:43 29.12.2023

Plot 7-154. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

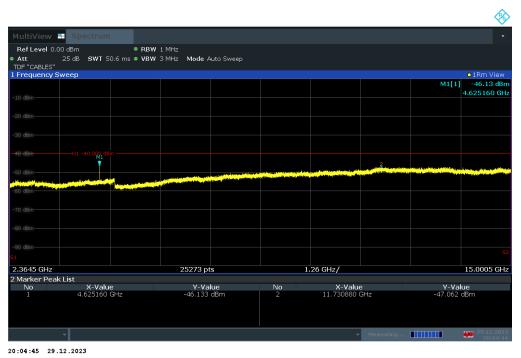
20:02:00 29.12.2023


Plot 7-155. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

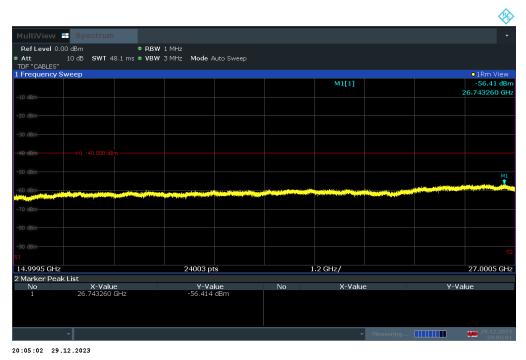
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 90 01 57 1
			V2.2 09/07/2023

	o1Rm View
M1[1]	-56.32 dBr
26.	.288280 GF
and the second state of the second state of the	
2	27.0005 GF
Y-Value	e
	29.12.202
uri	uring 🚺

Plot 7-156. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

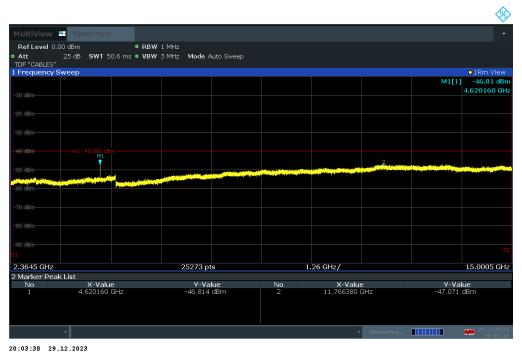


20:04:28 29.12.2023


Plot 7-157. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

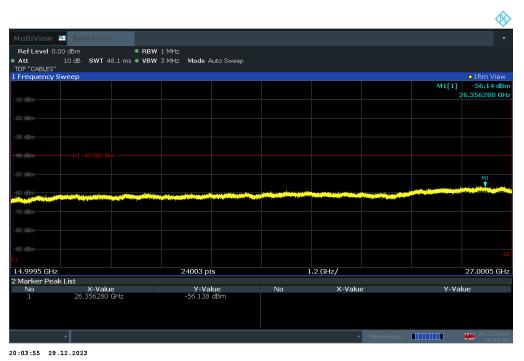
FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 97 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 97 01 57 1
	•	·	V2.2 09/07/2023

Plot 7-158. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – High Channel)


Plot 7-159. Conducted Spurious Plot (LTE Band 30 - 5MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 90 01 57 1
			V2.2 09/07/2023

MultiView	- Spectrum							•
Ref Level 20 Att TDF "CABLES"		● RBW 1 MHz ns ● VBW 3 MHz Mod	e Auto Sweep					
1 Frequency S	Sweep							●1Rm View
							M1[1]	-54.02 dBm
10 dBm								2.236260 GHz
20 0011								
0 dBm-								
-10 dBm								
-20 dBm								
-30 dBm								
-48 dBm								
no dom								
-50 dBm								M1
								a an bour and the same
which provide the state of the	an sa an	netalap provide statistication of the	water the state of	nin heimen sin en heime	en an	and the second secon		And the state of the state of the
-70 dBm								
S1								
29.5 MHz		4519 p	ots	22	25.9 MHz/			2.2885 GHz
2 Marker Pea								
No	X-Value		alue	No	X-Valu	e	Y-Va	ilue
1	2.236260 GHz	-54.02	4 QD11					
	*				~	Measuring		29.12.2023 20:03:20
20:03:21 29	.12.2023							

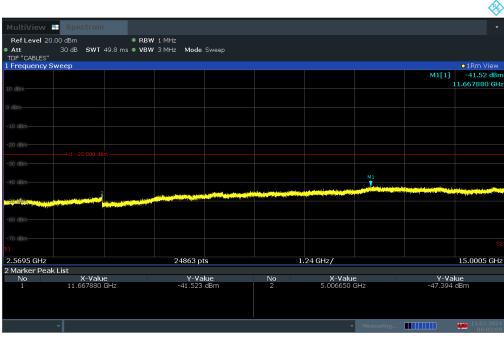

Plot 7-160. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-161. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 99 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 99 01 57 1
			V2.2 09/07/2023

Plot 7-162. Conducted Spurious Plot (LTE Band 30 - 10MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 571	
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 100 of 571	
			1/2 2 00/07/2022	



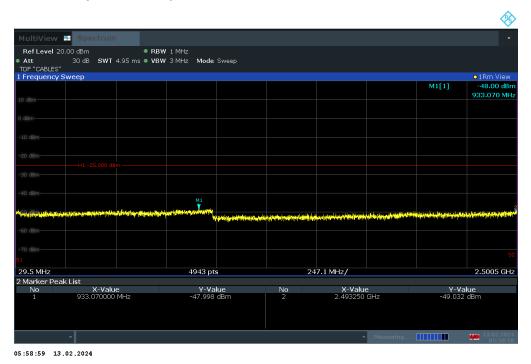
LTE Band 7

MultiView	- Spectrum								
Ref Level 20	0.00 dBm	● RBW	1 MHz						
Att	30 dB SWT 4.9	ms 🗢 VBW	3 MHz Mode S	Sweep					
TDF "CABLES"									
Frequency :	Sweep							M1[1]	 1Rm View -48,12 dBr
								MILI	860.080 MH
									i and the second se
10 dBm									
	I a horter about		*						
and the property of the proper	ann chathair thaile tran aigeann		No. of the Role of House Street Street Street	e berguistig timp stragge	الأجمير ووحد أراد الجمير وتراجعوا	مەببىلىك كىرىغۇغۇغانى بىرىمە	hip de partir a star a star a star de tra	en fildstatelen for delle stille ander	a printing of the second second
60 dBm									
29.5 MHz			4893 pt	S	24	4.6 MHz/			2.4755 GF
: Marker Pea	ak List								
No	X-Value		Y-Va	lue	No	X-Valu	e	Y-Val	lue
	860.080000 MH	IZ	-48.123	asm	2	2.473750	GHZ	-49.120	asm
						~	Measuring		13.02.202

06:01:52 13.02.2024

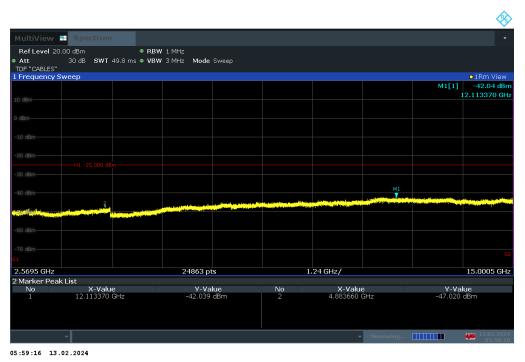
Plot 7-163. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

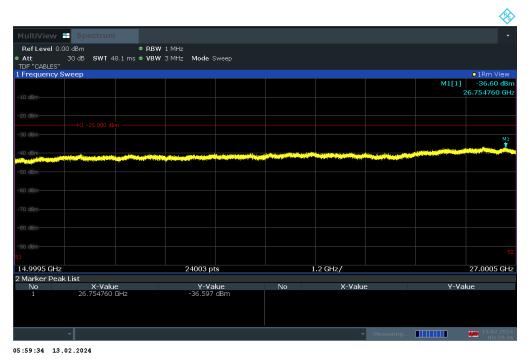
06:02:10 13.02.2024


Plot 7-164. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 101 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 101 01 371
			V2.2 09/07/2023

MultiViev	w 💶 Spectrum						<u>·</u>
Ref Level	0.00 dBm • P	BW 1 MHz					
Att	30 dB SWT 48.1 ms • V						
TDF "CABLE							
1 Frequence	cy Sweep						IRm View
						M1[1]	-36.75 dBm 26.210280 GHz
-10 dBm							26.210280 GHZ
-20 dBm							
-30 dBm							M1
						and the second second second second	and the second second second
-40 dBm	فسيرا فالمتحوين فتعتد فتجه ومستقر وطباه وجران					And the second se	A second s
-50 dBm							
-50 ubm-							
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm							
S1							
14.9995 G	iHz	24003 pts		1.2 GHz/			27.0005 GHz
2 Marker F							
No	X-Value	Y-Value	No	X-Valu	e	Y-Vá	alue
	26.210280 GHz	-36.751 dBm					
							10.00.0004
	*			~	Measuring		13.02.2024 06:02:27
06:02:27	13.02.2024						

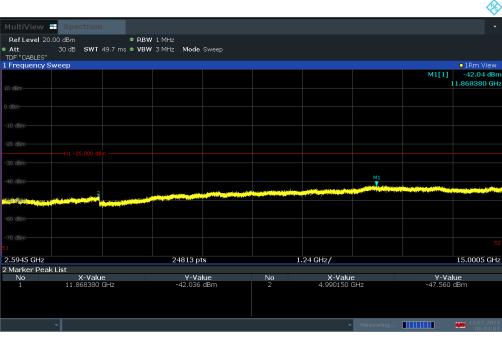

Plot 7-165. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-166. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 102 01 57 1
			V2.2 09/07/2023

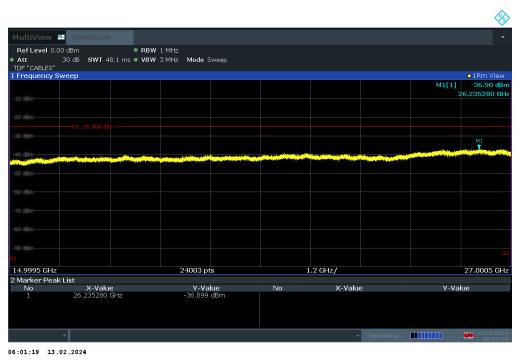
Plot 7-167. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-168. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 103 01 37 1
			V2.2 09/07/2023

10 dBm									
• Att 30 dB SWT 4.95 ms • VBW 3 MHz Mode Sweep DF requency Sweep • 1 Rm View 1 Frequency Sweep M1[1] • 47.75 dBm 996.550 MHz 0 dBm 0 0 • 10 dBm 0 0 • 0 dBm 0 0 • 10 dBm 0 0 • 0 dBm 0 0 • 0 dBm 0 0 • 0 dBm 0 0 • 10 dBm 0 0 • 0 dBm 0 0 • 0 dBm 0 0 • 0 dBm 0 0 • 10 dBm 0 0 • 0 dBm 0 0 0 • 0 dBm 0 0 0 • 0 dBm 0 0 0 0 • 0 dBm 0 0 0 0 0 • 0 dBm 0 0 0 0 0 0 • 0 dBm 0 0 0 0 0 0 0 • 0 dBm 0 0	MultiView	Spectrum							•
TDF "CQALES" I Frequency Sweep • I Rm View 10 dem A. A. J. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. A. J. S dem 996.550 MHz 10 dem A. J. S dem 100 Min 1	Ref Level 20.0	00 dBm •	RBW 1 MHz						
1 Frequency Sweep 0 18m View 10 den M1[1] -47.75 dBn 0 den A A A A 0 den A A A A A 10 den A A A A A A 0 den A A A A A A A 10 den A A A A A A A A 10 den A		30 dB SWT 4.95 ms •	VBW 3 MHz Mode	Sweep					
10 d8m 996.550 MHz 0 d8m 996.550 MHz 0 d8m 996.550 MHz -10 d8m 996.550 MHz -20 d8m 996.550 MHz -30 d8m		veep							o1Rm View
10 dBm- 0 dBm- 10 dBm- 11 -25.000 dBm- 11 -25.000 dBm- 10 dBm								M1[1]	-47.75 dBm
-10 dbm -20 dbm -30 dbm -40 dbm -30 dbm -40 dbm -50 dbm -50 dbm -50 dbm -60 dbm -60 dbm -70	10 dBm								996.550 MHz
20 dbm - +11 - 25.000 dbm	0 dBm								
-00 dbm	-10 dBm								
-30 dbm- -40 dbm- -70 dbm- -70 dbm- -10 dbm- -20 db	-20 dBm								
-00 dbm- -70 dbm- s1 29.5 MHz 4943 pts 247.1 MHz/ 2.5005 GHz 2Marker Peak List	-30 dBm								
-00 dbm- -70 dbm- s1 29.5 MHz 4943 pts 247.1 MHz/ 2.5005 GHz 2Marker Peak List	-40 dBm								
-00 dBm -70 dB			· · · · · · · · · · · · · · · · · · ·						
-00 dBm -70 dB	And the second second second	alayaya ya ili na alayaya ya daga ya daga ya daga ya daga ya	And the second	tini, utip of filmed a tablic for	aninyi alifi yesineyeketi	والفدوما بالمراجع والمترجع والمحصوط	n palating hyper particular and	ŧĸŗĦĸ Ŀĸ ĬĬ <u>ĸ</u> ŗĸ <mark>Į</mark> ĬŔĊħŔĬĬĸŗĸţŗ	allafa fisissi risperinteng
-70 dbm- 51 29.5 MHz 4943 pts 247.1 MHz/ 2.5005 GHz 24 Marker Peak List									
81 29.5 MHz 4943 pts 247.1 MHz/ 2.5005 GHz 2 Marker Peak List									
2 Marker Peak List	-70 dBm-								52
2 Marker Peak List	51								
			4943 pts	\$	24	7.1 MHz/			2.5005 GHz
No X-Value V-Value No X-Value V-Value									
1 996.550000 MHz -47.749 dBm 2 2.495250 GHz -48.717 dBm						X-Value 2 495250	CH7	Y-Va -48 717	dBm
		550,550000 Milliz	CE (1,1)	abm		2.495250	GHZ	40.717	
 Measuring Measuring Measuring 		*				*	Measuring		13.02.2024 06:00:43

06:00:44 13.02.2024



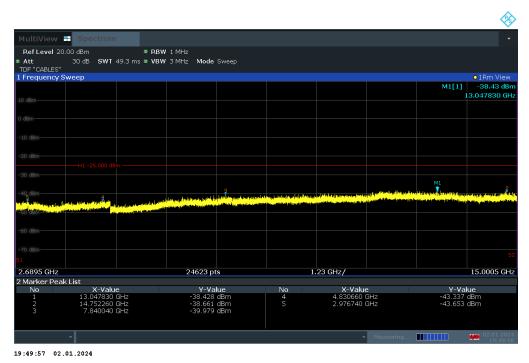
06:01:01 13.02.2024

Plot 7-170. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 104 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 104 01 57 1
			V2.2 09/07/2023

Plot 7-171. Conducted Spurious Plot (LTE Band 7 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

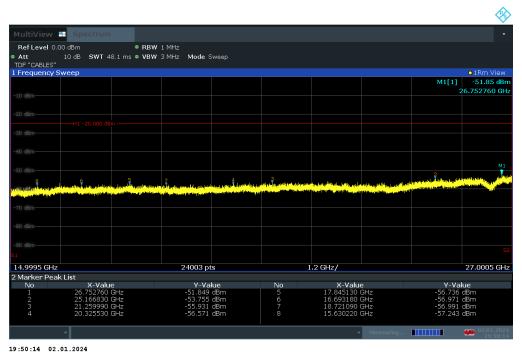
FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 105 01 57 1
			V2.2 09/07/2023

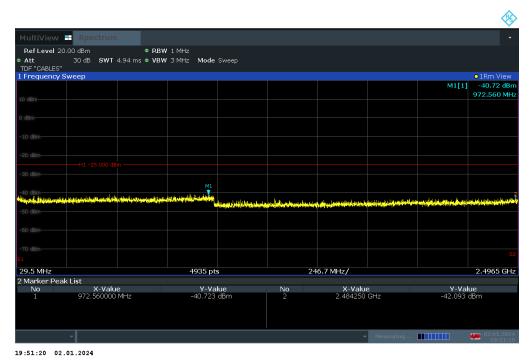


LTE Band 41

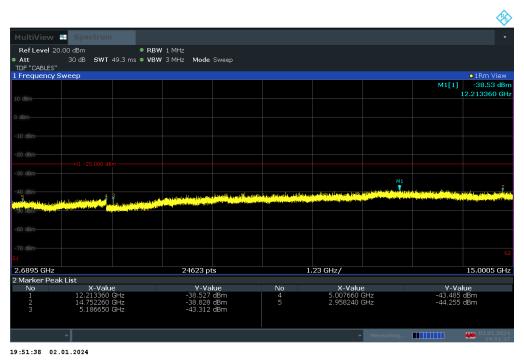
MultiView	Spectrum								•
Ref Level 20	00 dBm	• RBW	1 MHz						
 Att 		4.9 ms = VBW		Sweep					
TDF "CABLES"									
1 Frequency S	weep	1		1					IRm View
								M1[1]	-40.79 dBm
									807.090 MHz
-30 dBm									
-40 dBm	والبديد وبدايتك وبدايه	harden and the second second	han takan						
		and the state of the second state of the	And a state of the state of the balance of the state of the	وأطفقه عايلهم فالله يتفاجله أإرداعها وأشأت	والقامينة الأوام والهد ورغاره	a til handlige og het stat for der stat besek	Net in the second second in the second s	akteknovase asigebatektesistet	alley hits and state and state of the state
									S2
51									
29.5 MHz			4893 pt	S	24	4.6 MHz/			2.4755 GHz
2 Marker Peak									
No 1	X-Valu 807.090000		Y-Va -40,790	dBm	No 2	X-Value 2.466250		Y-Val -41,817	dBm
	007-050000		40.790	Centi		2,400230		41.017	
						~	Measuring		02.01.2024
						· · · · ·	measuring		19:49:38

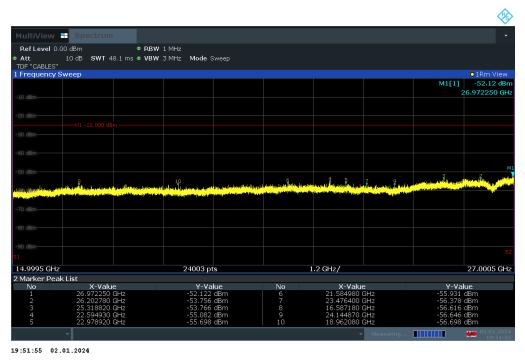
19:49:39 02.01.2024


Plot 7-172. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

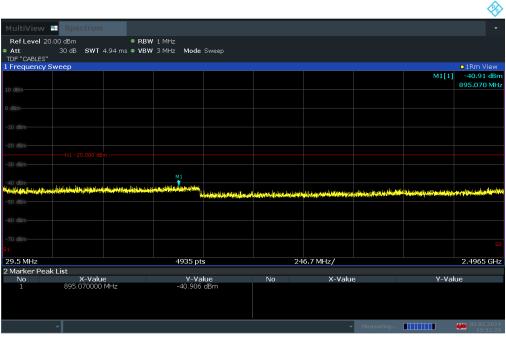

Plot 7-173. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 100 01 57 1
			V2.2 09/07/2023

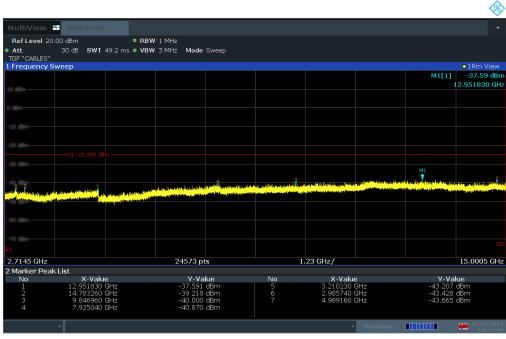

Plot 7-174. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-175. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
	•		V2.2 09/07/2023

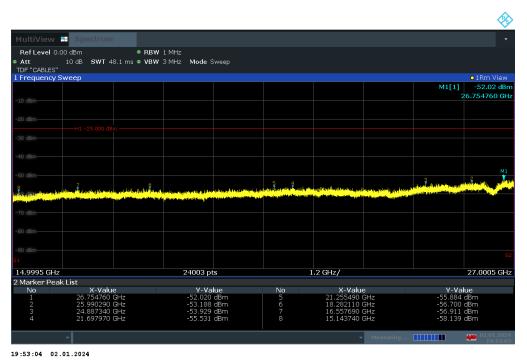

Plot 7-176. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-177. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 108 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
			V2.2 09/07/2023

19:52:28 02.01.2024

Plot 7-178. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)



19:52:46 02.01.2024

Plot 7-179. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

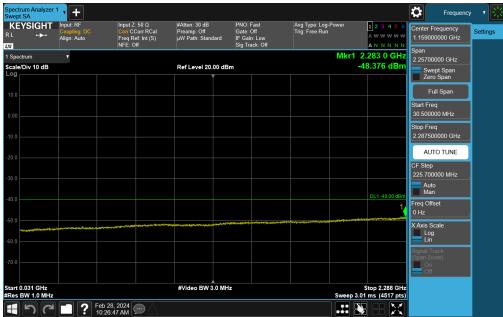
FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
			V2.2 09/07/2023

Plot 7-180. Conducted Spurious Plot (LTE Band 41 - 20MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 110 01 371
			V2.2 09/07/2023

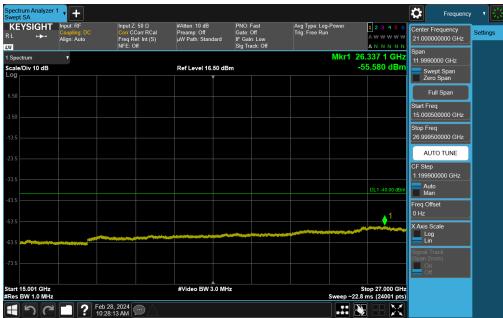
NR Band n30

Plot 7-181. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

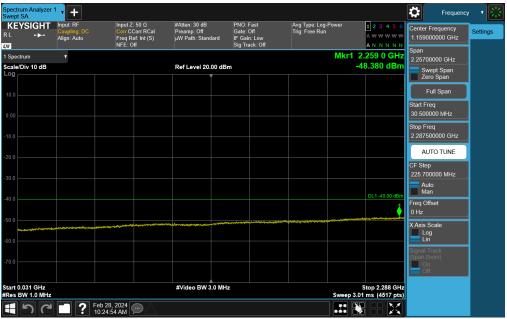

Plot 7-182. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 111 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
			V2.2 09/07/2023

Plot 7-183. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

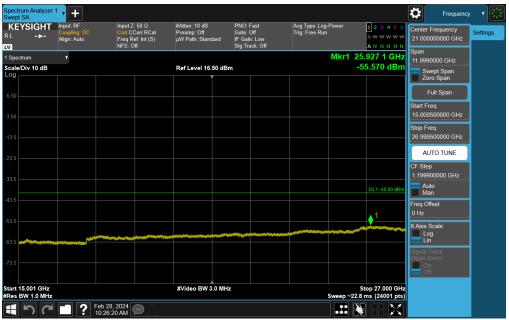

Plot 7-184. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 112 of 571
			V2 2 09/07/2023


Plot 7-185. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

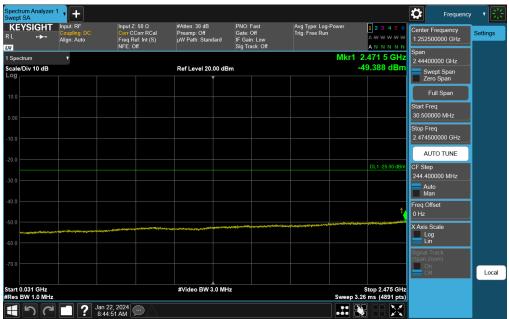

Plot 7-186. Conducted Spurious Plot (NR Band n30 - 5MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 112 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 113 of 571
	•		V2 2 09/07/2023


Plot 7-187. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-188. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element 🤁	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 114 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
			1/2 2 09/07/2023

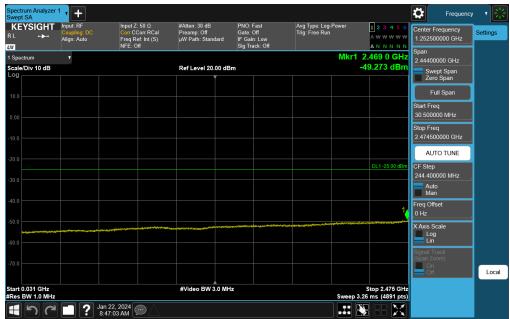


Plot 7-189. Conducted Spurious Plot (NR Band n30 - 10MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 115 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
	•	·	V2.2 09/07/2023

NR Band n7

Plot 7-190. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-191. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 116 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
	•		V2.2 09/07/2023

Plot 7-192. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-193. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 117 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
	•	·	V2.2 09/07/2023

Plot 7-194. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-195. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 118 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	
		·	V/2 2 09/07/2023

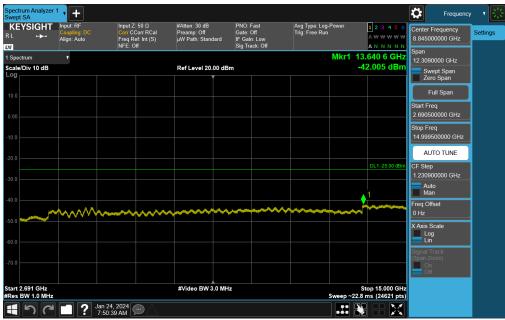
Plot 7-196. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-197. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 119 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 119 01 57 1
			V/2 2 09/07/2023



Plot 7-198. Conducted Spurious Plot (NR Band n7 - 40MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 120 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 120 01 57 1
			V2.2 09/07/2023

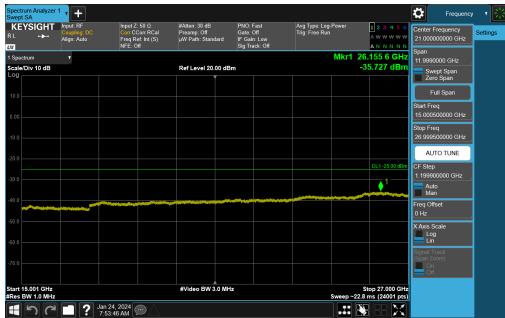
NR Band n41

Plot 7-199. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

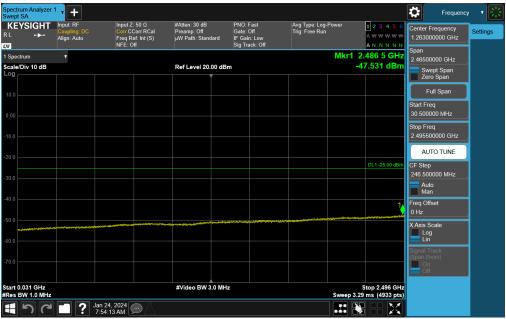
Plot 7-200. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 101 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 121 of 571
		·	V2.2 09/07/2023

Plot 7-201. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 7-202. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dame 100 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 122 of 571
	·	•	V2.2 09/07/2023


Plot 7-203. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-204. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 123 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 123 01 57 1
			1/2 2 09/07/2023


Plot 7-205. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

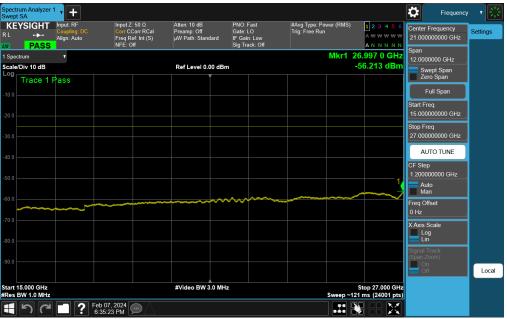
Plot 7-206. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 124 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 124 01 57 1
	·	-	V2.2 09/07/2023

Plot 7-207. Conducted Spurious Plot (NR Band n41 - 100MHz DFT-s-OFDM QPSK – RB Size 1, RB Offset 0 – High Channel)

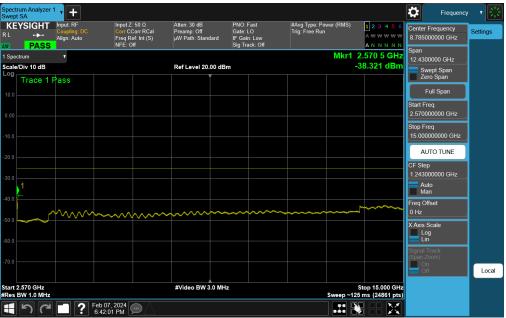
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 125 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 125 01 57 1
	•		V2.2 09/07/2023

ULCA - LTE Band 7


Plot 7-208. Conducted Spurious Plot (ULCA LTE 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-209. Conducted Spurious Plot (ULCA LTE 7 - (20+20)MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 106 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 126 of 571
	•	·	V2.2 09/07/2023


Plot 7-210. Conducted Spurious Plot (ULCA LTE 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

Plot 7-211. Conducted Spurious Plot (ULCA LTE 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 127 01 57 1
			\/2 2 09/07/2023

Plot 7-212. Conducted Spurious Plot (ULCA LTE 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 7-213. Conducted Spurious Plot (ULCA LTE 7 – (20+20)MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 128 of 571
1C2311270066-10.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 120 01 57 1
		·	\/2 2 09/07/2023