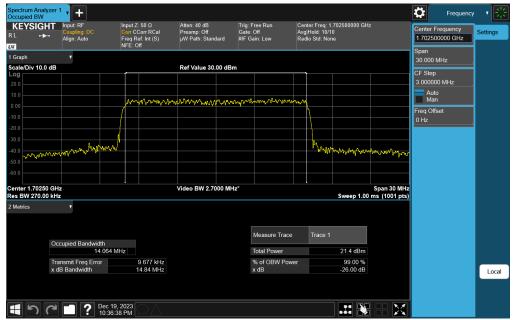
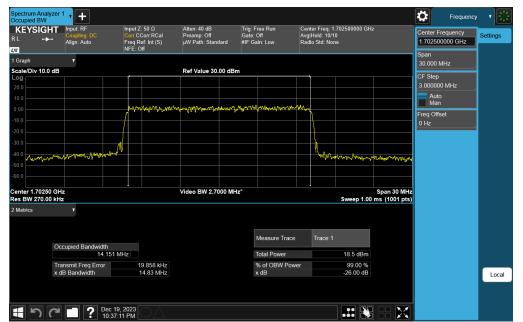


Plot 7-115. Occupied Bandwidth Plot (NR Band n70 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-116. Occupied Bandwidth Plot (NR Band n70 - 15MHz QPSK - Full RB)

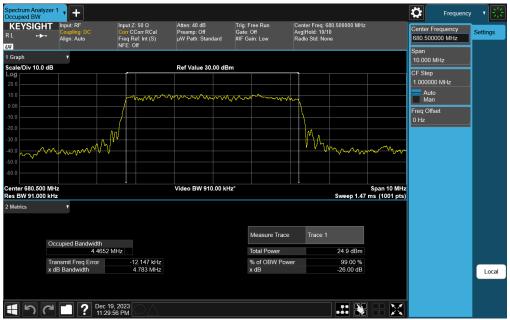
FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 75 01 544
			V2 2 09/07/2023

KEYSIGI ⊥ ↔ ₪	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off rd #IF Gain: Low	Avg H	r Freq: 1./ lold: 10/10 Std: None		z	Center Frequen	
Graph cale/Div 10.0	T A B		Ref Value 30.0	0 dBm					Span 30.000 MHz	
			Rei Value 30.0						CF Step 3.000000 MHz	
0.0		6.6 odb0 h +	A 144 . A 14 AA.	Mulananan					Auto Man	
				a dha Cana akadar da a.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Freq Offset 0 Hz	
	Mala	₩				W				
0.0	month the second second	×				- Jensty	ᢣᡊᢦ᠆ᢦᡗᡃᢂᠰᢂᡐᡀᢔ	apan hare Athones		
0.0 enter 1.7025 es BW 270.0			Video BW 2.700	0 MHz*			Surger 1 00	Span 30 MHz ms (1001 pts)		
Metrics	•							115 (1001 pts)		
				Measure T	race	Trace 1				
	Occupied Bandwidth 14.215	5 MHz		Total Powe	r		22.0 dBm			
	Transmit Freq Error x dB Bandwidth	3.020 kHz 14.80 MHz		% of OBW x dB	Power		99.00 % -26.00 dB			Loca


Plot 7-117. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-118. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 70 01 344
			V2 2 09/07/2023

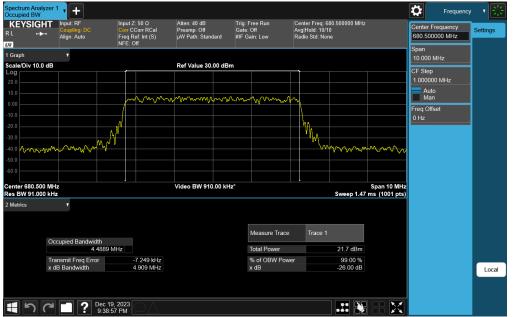


Plot 7-119. Occupied Bandwidth Plot (NR Band n70 - 15MHz CP-OFDM 256-QAM - Full RB)

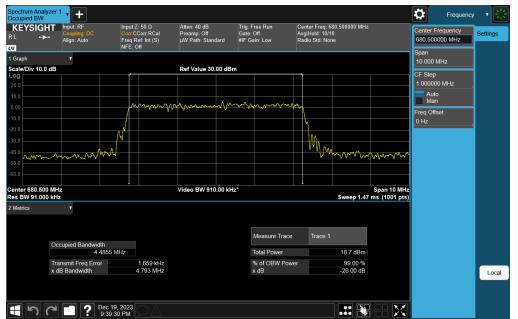
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 77 01 344
			V2.2 09/07/2023

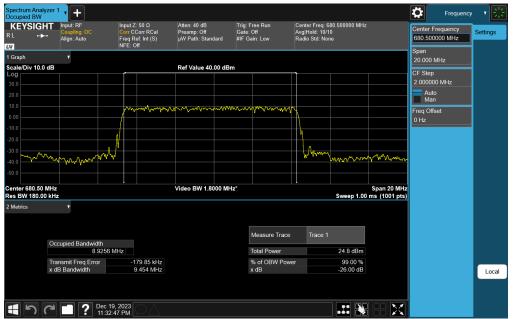
NR Band n71

Plot 7-120. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-121. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s-OFDM QPSK - Full RB)

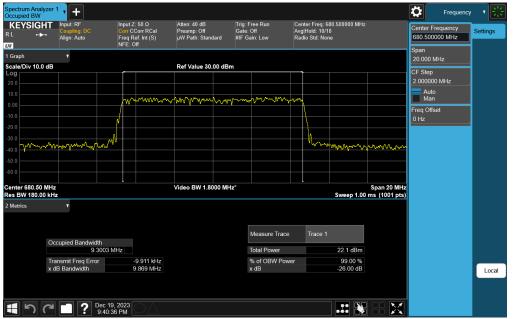
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 76 01 344
		· ·	V2 2 09/07/2023


Plot 7-122. Occupied Bandwidth Plot (NR Band n71 - 5MHz DFT-s--OFDM 16-QAM - Full RB)


Plot 7-123. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 64-QAM - Full RB)

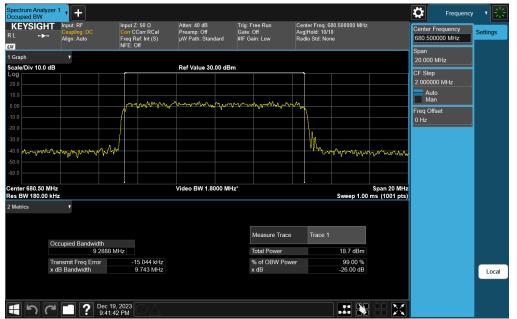
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 79 of 344	
			V2 2 09/07/2023	

Plot 7-124. Occupied Bandwidth Plot (NR Band n71 - 5MHz CP-OFDM 256-QAM - Full RB)


Plot 7-125. Occupied Bandwidth Plot (NR Band n71 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

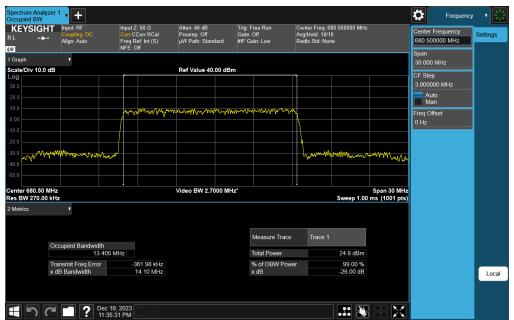
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 90 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 80 of 344	
	•	· ·	V2 2 09/07/2023	

Plot 7-126. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-127. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 61 01 344	
			V2 2 09/07/2023	

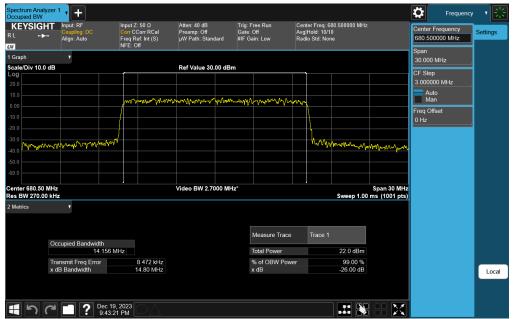
KEYSIGH	Coupling: DC	Corr C	Z:50Ω Corr RCal Ref: Int (S) Off	Atten: 40 dB Preamp: Off μW Path: Star		Trig: Free Run Gate: Off #IF Gain: Low	Avg	iter Freq: 6 Hold: 10/1 lio Std: No			Center Fr 680.5000 Span		Settings
Graph cale/Div 10.0	v dB			Ref Value 30	00 dBm						20.000 N	IHz	
											CF Step 2.000000	MHz	
				1100		A. A.A. A.A.	~ ^				Auto Man		
		\bigwedge	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10/4- Awards	o At adirA.	warmarka	r ywrai				Freq Offs 0 Hz	et	
-20.0	man	M						J.	450	m			
	MMMMM MA.A.								1084 Arcant	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-60.0 Center 680.50				Video BW 1.8	000 MHz*					Span 20 MHz			
Res BW 180.00 2 Metrics	T T								Sweep 1.00	ms (1001 pts)			
	Occupied Bandwidth					Measure Tra	ce	Trace 1					
	9.3099	9 MHz				Total Power			21.7 dBm				
	Transmit Freq Error x dB Bandwidth		-2.071 kHz 9.827 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB				Local


Plot 7-128. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 64-QAM - Full RB)

Plot 7-129. Occupied Bandwidth Plot (NR Band n71 - 10MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 62 01 344
			V/2 2 09/07/2023

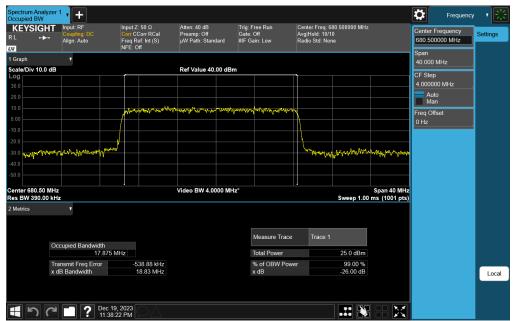
Plot 7-130. Occupied Bandwidth Plot (NR Band n71 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-131. Occupied Bandwidth Plot (NR Band n71 - 15MHz QPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 83 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 03 01 344	
			\/2 2 09/07/2023	

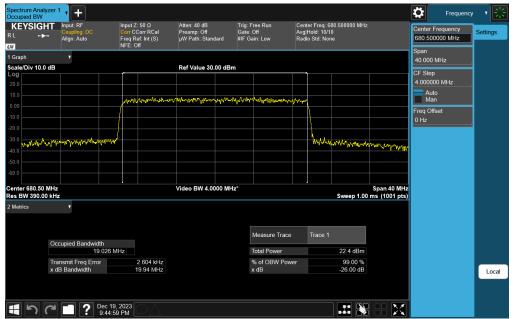
KEYSIGH ≀L -►- ™	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg	iter Freq: 6 Hold: 10/1 lio Std: Nor			Center Fr 680.500 Span		Settings
Graph cale/Div 10.0 d	T AR		Ref Value 30.00 dE	le					30.000 N	٨Hz	J
_og _0.0			Rei Value 30.00 dL						CF Step 3.00000) MHz	
10.0		a dilla differentia d	man and the second	المرتجب بمرجع المرجم	N. I				Auto Man		
				Alm Ark Durns A.	ered and				Freq Offs 0 Hz		
-20.0 -30.0	www.men.	Jan				how	Yes Munum	Manana			
-40.0											
Center 680.50 M Res BW 270.00			Video BW 2.7000 M	Hz*			Sween 1 00	Span 30 MHz ms (1001 pts)			
2 Metrics	Y										
	Occupied Bandwidth			Measure Tra	ace	Trace 1					
		1 MHz		Total Power			22.4 dBm				
	Transmit Freq Error x dB Bandwidth	1.724 kHz 14.82 MHz		% of OBW F x dB	ower		99.00 % -26.00 dB				Local

Plot 7-132. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 16-QAM - Full RB)


Plot 7-133. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	23 - 3/16/2024 Tablet Device	
			V2 2 09/07/2023

Plot 7-134. Occupied Bandwidth Plot (NR Band n71 - 15MHz CP-OFDM 256-QAM - Full RB)


Plot 7-135. Occupied Bandwidth Plot (NR Band n71 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 85 of 344	
		-	V2 2 09/07/2023	

L +≯ 1	HT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg	ter Freq: 6 Hold: 10/ [,] io Std: No			Center Frequency 680.500000 MHz Span	Settings
Graph cale/Div 10.0	V RIL		Ref Value 30.00	10					40.000 MHz	
og			Ref Value 30.00 (3BM					CF Step 4.000000 MHz	1
									Auto	
		an a	however have	www.www.	-Jug mary	1			Man Freq Offset	
0.0						\uparrow			0 Hz	
	www.www.wew	w l				Mr. mar				
0.0	Max better and dough the same				_		and an all the way	mannana		
0.0										
nter 680.50			Video BW 4.0000	M11-8				Span 40 MHz		
es BW 390.0			Video BW 4.0000	MITZ			Sweep 1.00	ms (1001 pts)		
Metrics	۲									
	Occupied Bandwidth			Measure Tr	ace	Trace 1				
		MHz		Total Power			22.4 dBm			
				% of OBW F	Power		99.00 %			
	18.832 Transmit Freq Error x dB Bandwidth	-4.704 kHz 19.95 MHz		x dB			-26.00 dB			Loca

Plot 7-136. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM QPSK - Full RB)

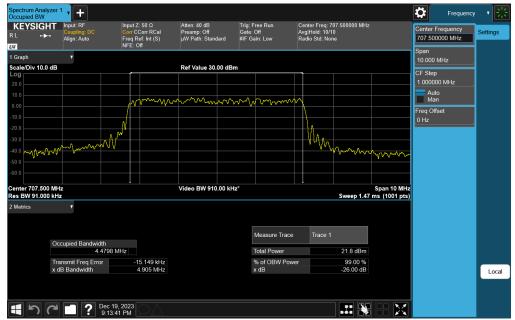
Plot 7-137. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 00 01 344
			V2 2 09/07/2023

KEYSIGI ⊥ +≯ I	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off rd #IF Gain: Low	Avg	nter Freq: 6 Hold: 10/1 dio Std: Nor			Center Frequency 680.500000 MHz Span	Settings
Graph ale/Div 10.0	T dB		Ref Value 30.0	0 dBm					40.000 MHz	
									CF Step 4.000000 MHz	
		matrix - 4, other fields (MMT) in	- mu trading mak	www.mana	And and the s				Auto Man	
00			ulan nun anal ta colo	ter or N k of a loop of	1. 314 manufath				Freq Offset 0 Hz	
	www.whenhyhanaandh.tery	wa				Manun	mparter year year	Withorpourse		
nter 680.50 s BW 390.0		l	Video BW 4.000	0 MHz*			Sweep 1.00	Span 40 MHz ms (1001 pts)		
Netrics	۲									
	0 10 1.1			Measur	e Trace	Trace 1				
	Occupied Bandwidth 18.89	9 MHz		Total Po	wer		22.0 dBm			
	Transmit Freq Error x dB Bandwidth	-20.499 kHz 19.90 MHz		% of OE x dB	3W Power		99.00 % -26.00 dB			Local

Plot 7-138. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 64-QAM - Full RB)

Plot 7-139. Occupied Bandwidth Plot (NR Band n71 - 20MHz CP-OFDM 256-QAM - Full RB)

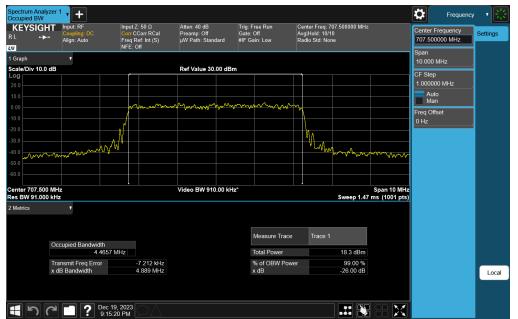

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 07 01 344
			\/2 2 09/07/2023

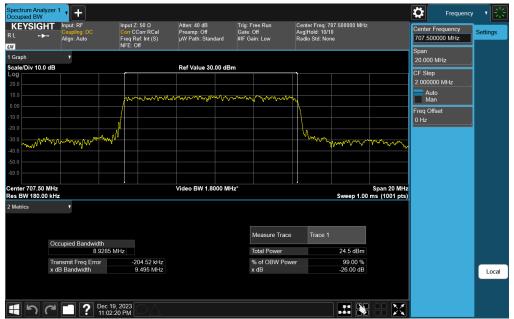
NR Band n12


Plot 7-140. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-141. Occupied Bandwidth Plot (NR Band n12 - 5MHz DFT-s-OFDM QPSK - Full RB)

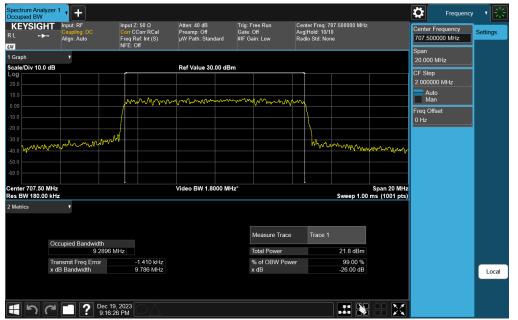
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 88 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Faye 00 01 344
			V2.2 09/07/2023


Plot 7-142. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 16-QAM - Full RB)


Plot 7-143. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 64-QAM - Full RB)

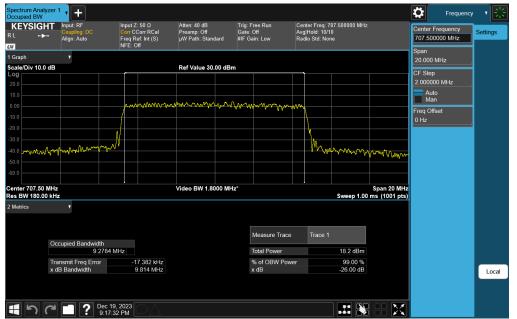
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 89 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device		
			\/2 2 09/07/2023	

Plot 7-144. Occupied Bandwidth Plot (NR Band n12 - 5MHz CP-OFDM 256-QAM - Full RB)


Plot 7-145. Occupied Bandwidth Plot (NR Band n12 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 00 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 90 of 344	
		· ·	V2 2 09/07/2023	

Plot 7-146. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-147. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 16-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 91 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024 Tablet Device		Fage 91 01 344
		·	V2 2 09/07/2023

KEYSIGH ≀L +► ™	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg Ho	Freq: 707.5000 Id: 10/10 Std: None	00 MHz	Center Free 707.50000 Span	
Graph cale/Div 10.0	T dB		Ref Value 30.00 di	3				20.000 MH	z
-og 20.0			Rei Value 30.00 ut					CF Step 2.000000 f	ЛНz
10.0		4- 4- pM 0 M A	m may man	- 0. m A A 40 0 - 0				Auto Man	
				and the state of t	www.			Freq Offset 0 Hz	
						۸			
-40.0	www.when	~				"MAM	www.www.wy		
Center 707.50 I Res BW 180.00		•	Video BW 1.8000 N	IHz*	•	Swee	Span 20 MH p 1.00 ms (1001 pts		
2 Metrics	T								
				Measure Tra	ice T	race 1			
	Occupied Bandwidth 9.2965	5 MHz		Total Power	_	21.5	dBm		
	Transmit Freq Error x dB Bandwidth	-5.697 kHz 9.823 MHz		% of OBW P x dB	ower		.00 % 00 dB		Loca

Plot 7-148. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 64-QAM - Full RB)


Plot 7-149. Occupied Bandwidth Plot (NR Band n12 - 10MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 92 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	2023 - 3/16/2024 Tablet Device	
			V2 2 09/07/2023

Plot 7-150. Occupied Bandwidth Plot (NR Band n12 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-151. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM QPSK - Full RB)

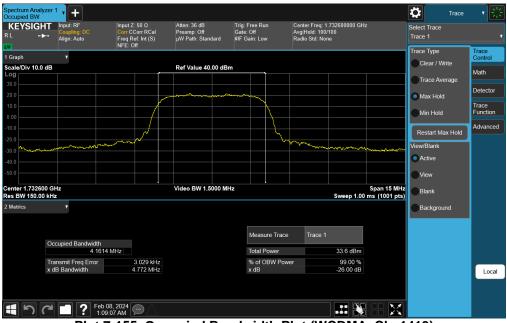
FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 344
1C2311270066-09.BCG	B 10/1/2023 - 3/16/2024 Tablet Device		Fage 95 01 544
			V2 2 09/07/2023

KEYSIGI ≀L ↔	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off rd #IF Gain: Low	Avg	iter Freq: 7 Hold: 10/1 lio Std: Nor			Center Fre 707.5000 Span		Settings
Graph cale/Div 10.0	Y		Ref Value 30.00	dBee					30.000 M	Hz	
og			Rer value 30.00						CF Step 3.000000	MHz	
20.0									Auto	111112	
0.00			Para Maren Jan Landa	pman	wheel and a second s				Freq Offse	et	
-20.0		04							0 Hz		
40.0	Mondall					Yharven	An month	Manul Why and			
Center 707.50 Res BW 270.0			Video BW 2.700	0 MHz*			S	Span 30 MHz ms (1001 pts)			
2 Metrics	T						Sweep 1.00				
				Measure	Trace	Trace 1					
	Occupied Bandwidth 14.146	MHz		Total Pov	ver		21.9 dBm				
	Transmit Freq Error x dB Bandwidth	-17.902 kHz 14.77 MHz		% of OB x dB	W Power		99.00 % -26.00 dB				Local

Plot 7-152. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 16-QAM - Full RB)

Plot 7-153. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 64-QAM - Full RB)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 94 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 94 01 344
		-	V2 2 09/07/2023



Plot 7-154. Occupied Bandwidth Plot (NR Band n12 - 15MHz CP-OFDM 256-QAM - Full RB)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 95 01 544
			V2.2 09/07/2023

WCDMA AWS

Plot 7-155. Occupied Bandwidth Plot (WCDMA, Ch. 1413)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 96 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	3/16/2024 Tablet Device	
<u>-</u>	•	·	V2.2 09/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §27.53

Test Overview and Limit

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 18GHz (separated into at least two plots per channel)
- 2. RBW ≥ 100kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = RMS
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

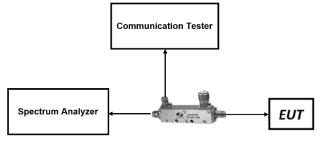
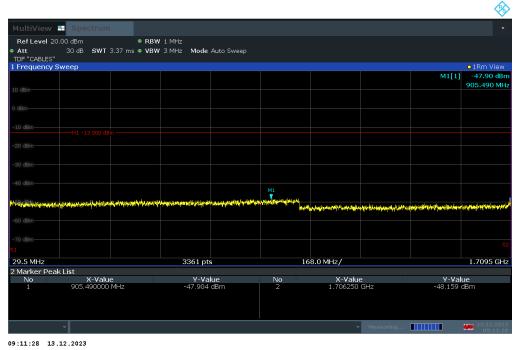
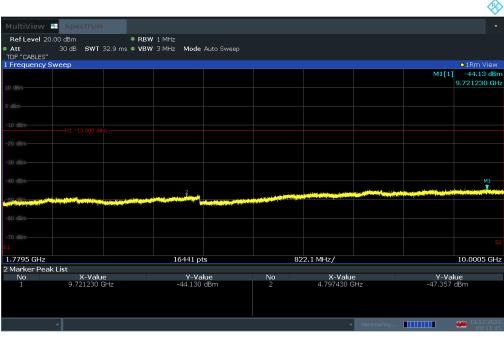


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 97 of 344
		·	V2.2 09/07/2023


Test Notes

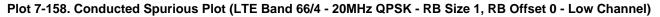
- Per Part 27, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

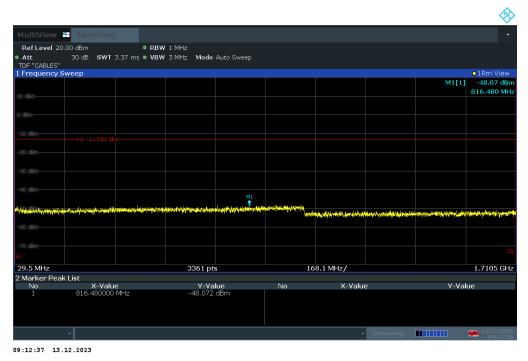

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 98 01 344	
			V2.2 09/07/2023	

LTE Band 66/4

Plot 7-156. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

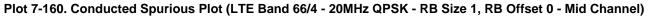
09:11:46 13.12.2023

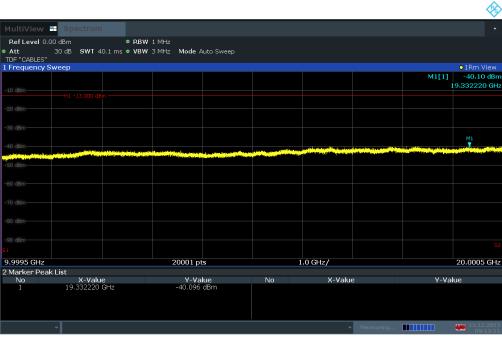

Plot 7-157. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 99 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 99 01 344	
			V2.2 09/07/2023	

MultiView	- Spectrum								•
Ref Level 0.	.00 dBm	● RBW	1 MHz						
 Att 	30 dB SWT 4	0.1 m s 🗢 VBW	3 MHz Mode A	uto Sweep					
TDF "CABLES"									
1 Frequency	Sweep		1	1	1				•1Rm View
								M1[1]	
-10 dBm									19.776740 GHz
-20 dBm									
-30 dBm									
									M1
-40 dBm		and the set of the set	a shamabit same ta		مغابطا المسترين والمراج				
		and the second state of the second state of the			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	محمد في يلك الشخصة الشخص .	Contraction of the second s		
-50 dBm									
-60 dBm									
-70 dBm-									
-80 dBm									
-90 dBm									52
51									
9.9995 GHz	1		20001 pi	s		1.0 GHz/			20.0005 GHz
2 Marker Pea									
No 1	X-Valu 19.776740	e	Y-Va -40.043	lue	No	X-Value	2	Y-V∂	ilue
1 ¹	19.776740	GHZ	-40.043	abm					
									13 12 2023
	Ÿ.					~	Measuring		13.12.2023 09:12:03

09:12:04 13.12.2023

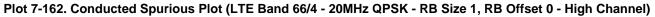

Plot 7-159. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

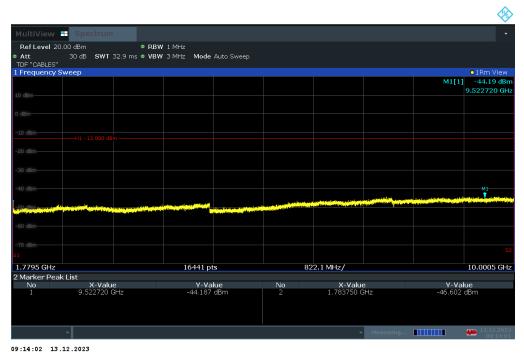

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 100 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 100 of 344	
	•	·	V2.2 09/07/2023	

MultiView	Spectrum								•
Ref Level 20	.00 dBm	• RB	N 1 MHz						
 Att 	30 dB SWT	32.9 ms 🗢 VB	N/3 MHz Mode	Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								•1Rm View
								M1[1]	-43.74 dBm 9.668730 GHz
10 dBm									9.668730 GH2
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm-									M1
-40 aBm-									Ť
- FO. dBm	and a state of the second								and the second se
and the second se		The second second second second		The later of the second second second	No. of Market State				
-60 dBm									
-70 dBm									
51									
1.7795 GHz			16441 p	to		22.1 MHz/			10.0005 GHz
2 Marker Peal	List		10441 p	LS	0.				10.0003 GH2
No	X-Valu	e	Y-Va	lue	No	X-Valu	P	Y-Va	lue
1	9.668730	GHz	-43.739		2	5.008450 (-47.188	
									13.12.2023 09:12:53
									09:12:53

09:12:54 13.12.2023

09:13:12 13.12.2023


Plot 7-161. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 101 of 244	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 101 of 344	
	•	·	V2.2 09/07/2023	

MultiView	Spectrum								-
Ref Level 20	.00 dBm	• RBW	1 MHz						
Att	30 dB SWT	3.37 ms • VBW	3 MHz Mode	Auto Sweep					
TDF "CABLES"									
1 Frequency S	weep								IRm View
								M1[1]	-48.07 dBm
10 dBm									889.010 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
					M1				
William Rate and state	and in married and a she had	antiger för sver af taraffer star	والمرزقان المعطاطيا فرقط	فالما وسيتحفظ فبأواد وسيتاه	-				Litting the discu
a dalah saya saya ta bita	Contraction of the second second	and the second se	and the serie section of the	official contracts of	i i internet	eleforestering and a second state	n ber verheit in ber verheiten fich	afre alley provide the sub-	
-60 dBm									
-70 dBm									
S1									
29.5 MHz			3361 pt		16	58.1 MHz/			1.7105 GHz
29.5 MHZ			5501 pc	,	10	00,1 MHZ/			1.7105 GHZ
2 Marker Pear No	X-Valu	0	Y-Va	110	No	X-Value	s	Y-Val	10
1	889.010000		-48.075		140	A fulu	-	1 400	
						~	Measuring		13.12.2023
						· · · ·			09:13:44

09:13:45 13.12.2023

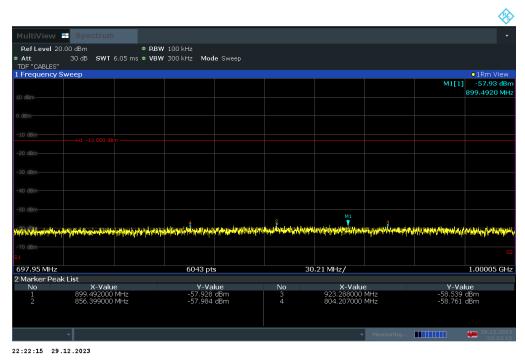
Plot 7-163. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 102 01 344
	-		V2.2 09/07/2023

									
MultiView	Spectrum								•
Ref Level 0.0	00 dBm	● RBW	1 MHz						
 Att TDF "CABLES" 	30 dB SWT 4	0.1 ms 🗢 VBW	3 MHz Mode #	Auto Sweep					
1 Frequency S	Sweep								o1Rm View
								M1[1]	-39.73 dBm
-10 dBm-									19.287710 GHz
-TO OBILI-	H1 -13.000 dB								
-20 dBm									
EO GOM									
-30 dBm									
00 0011									M1
-40 dBm						to a transfer		and the second	1
	and a state of the						and and the second states		and a survey of the state
-50 dBm-									
-60 dBm									
-70 dBm									
-80 dBm									
-90 dBm									
S1									52
9.9995 GHz			20001 p	ts		1.0 GHz/			20.0005 GHz
2 Marker Pea	k List								
No	X-Value		Y-Va		No	X-Value	2	Y-Va	ilue
1	19.287710	GHz	-39.726	dBm					
									10.10.0000
									13.12.2023 09:14:19

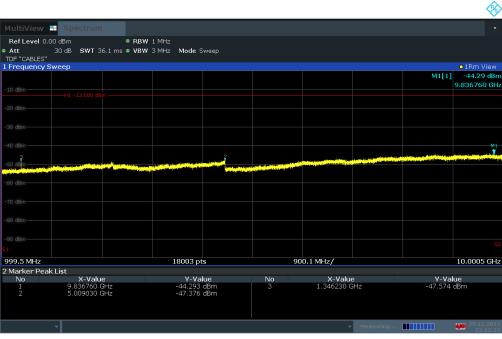
09:14:20 13.12.2023

Plot 7-164. Conducted Spurious Plot (LTE Band 66/4 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

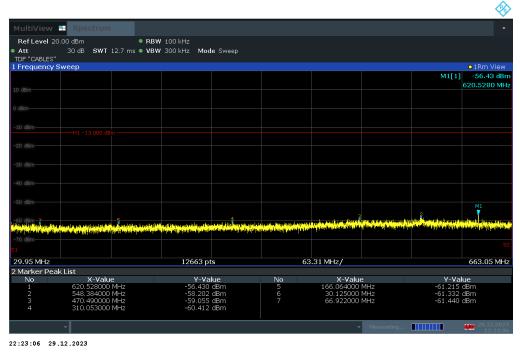

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 103 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 103 01 344
			1/2 2 00/07/2022

LTE Band 71

									\$
	Spectrum								
Ref Level 20).00 dBm	RBW	100 kHz						
 Att TDF "CABLES" 	30 dB SWT 12.7 n	ns 🗢 VBW	300 kHz Mod	e Sweep					
1 Frequency S	Sweep								o1Rm View
								M1[1]	-56.64 dBm
									613.0790 MHz
-10 dBm-	H1 -13 000 dBm								
									M1
-60 dBm	a 4	,	7	56			a ³	2	
ومرازلة المرار ألأله براقان		a india di	ومقربه والأوراء بالاتقار والمادية	the state of the state of the state		and provident allow the second			
-70 dBm	a norted base by manager of the star	nan Kura	(Avrillesseries) outsites (see	te est distants when a distance	he walls and a second second				
									S2
29.95 MHz			12643 pt	s	63	3.21 MHz/			662.05 MHz
2 Marker Pea	k List								
No	X-Value		Y-Va		No	X-Valu		Y-Va	
	613.079000 MHz		-56.642		6	335.851000		-60.256	
2 3	546.784000 MHz 482.889000 MHz		-57.692 -58.924		7 8	243.558000 207.111000		-60.797 -61.177	dBm
4	161.415000 MHz		-59.876		9	145.216000		-61.239	
	318.952000 MHz		-60.193		10	142.316000		-61.242	
	*					~	Measuring		29.12.2023 22:21:57
22:21:58 29	.12.2023								

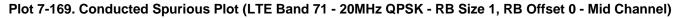

Plot 7-165. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

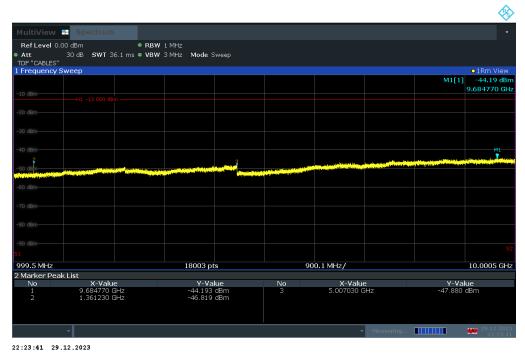
Plot 7-166. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 104 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 104 01 344	
			V2.2 09/07/2023	

22:22:33 29.12.2023

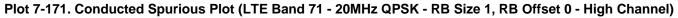
Plot 7-167. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

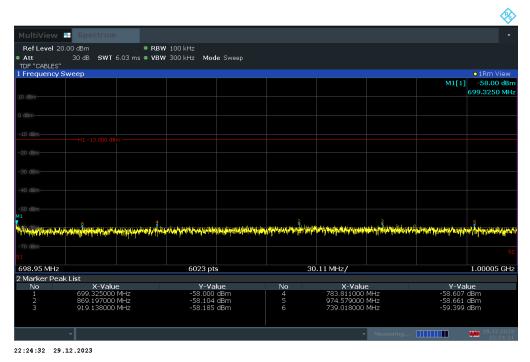

Plot 7-168. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 105 01 544	
	•	·	V2.2 09/07/2023	

MultiView	Spectrum								•
Ref Level 20. Att TDF "CABLES"		● RBW 6.05 ms ● VBW	100 kHz 300 kHz Moo	le Sweep					
1 Frequency S	weep								o1Rm View
								M1[1]	-57.99 dBm
10 dBm									891.1430 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
So abii									
-40 dBm									
-50 dBm									
SO GBIT						M1			
A SHARE AND A SHARE A	dia na ina dia kaominina dia	an the set of the state of the set of the	and an indiana the	na di kabupatan salah m	he a had a start to have the start of the st	sitilitation and stated a	a vint stratistical di plante	an a	under auf der für ertenne auf so
-70 dBm-	a a	all date de la contra contra de la contra							
S1									
697.95 MHz			6043 pt	s	30).21 MHz/			1.00005 GHz
2 Marker Peak	List					,,			
No	X-Valu		Y-Va		No	X-Valu		Y-Va	
1 2	891.143000 934.336000	MHz MHz	-57.987 -58.305		3 4	700.225000 793.859000	MHz MHz	-59.001 -59.071	dBm dBm
	v					~	Measuring		29.12.2023 22:23:23

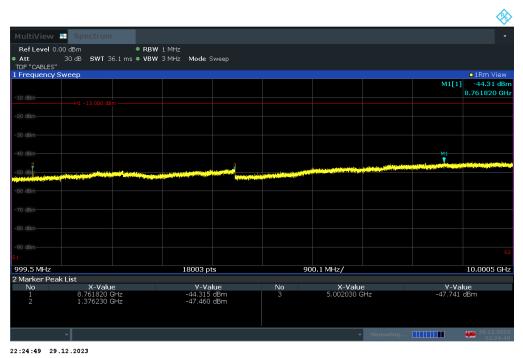
22:23:23 29.12.2023


Plot 7-170. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 100 01 344
		·	V2.2 09/07/2023

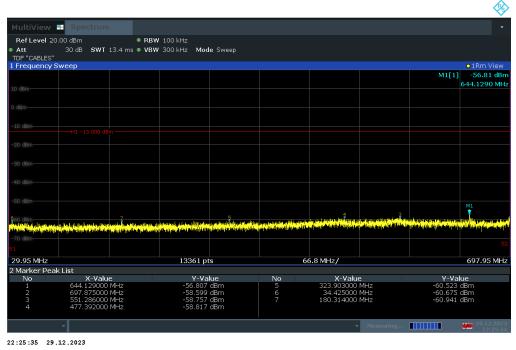
MultiView	Spectrum	1							•
Ref Level 20.	00 dBm	● RBW	/ 100 kHz						
Att TDF "CABLES"	30 dB SWT	12.7 ms 🗢 VBW	300 kHz Moo	le Sweep					
1 Frequency Sy	weep								O1Rm View
								M1[1]	-57.25 dBm
10 dBm-									628.0780 MHz
TO OPIN									
0 dBm									
o ubm									
-10 dBm-									
-10 0011-									
-20 dBm									
20 0011									
-30 dBm									
-30 ubii									
-40 dBm-									
io dom									
-50 dBm-									
5-60 dBm					4		3		
5-60 dBm Hatel di titua in dibu	وأذلا أأوأل أرأدا وأحدفه والألا	un é arreite a breite de la	والمربط والخرائد والاربسي	a din kata di Kata da ka	in the claim site is a feature of		and the state of the second	in the second	
-70 dBm	And distributed in some of a	a de la contra de la	h hadin a second second						
S1									
<u> </u>									
29.95 MHz			12663 p	ts	63	3.31 MHz/			663.05 MHz
2 Marker Peak		-			N -	× 11-1-	-	¥ 11-	
No 1	X-Valu 628.078000		Y-Va -57,255		No 5	X-Valu 31.725000		Y-Va -61.168	
2	552,434000		-58,533		6	213.860000		-61.195	
3	475.440000		-58.795			135.967000	MHz	-61.349	dBm
4	403.196000	MHz	-60.200	dBm					
									20 12 2022
	Ť						Measuring		29.12.2023 22:24:14

22:24:14 29.12.2023

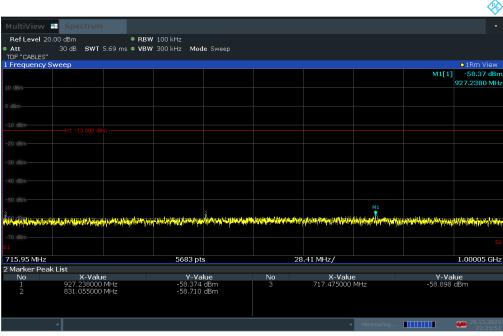


Plot 7-172. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 107 01 544
<u>-</u>		·	V2.2 09/07/2023

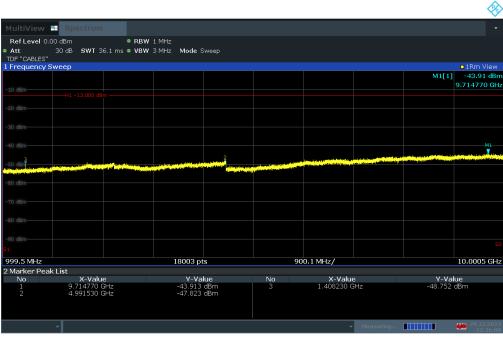


Plot 7-173. Conducted Spurious Plot (LTE Band 71 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

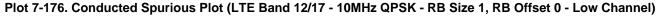

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 108 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 106 01 344	
			V2.2 09/07/2023	

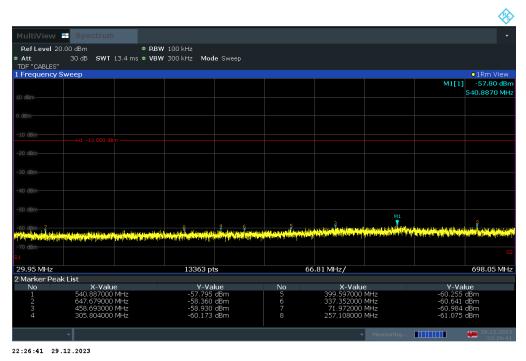
LTE Band 12/17

Plot 7-174. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

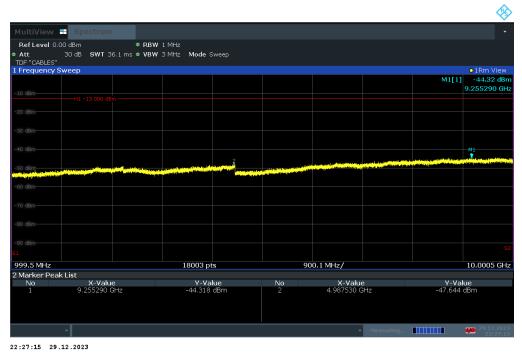


22:25:52 29.12.2023


Plot 7-175. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	
			V2.2 09/07/2023

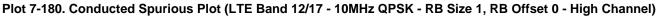
22:26:09 29.12.2023

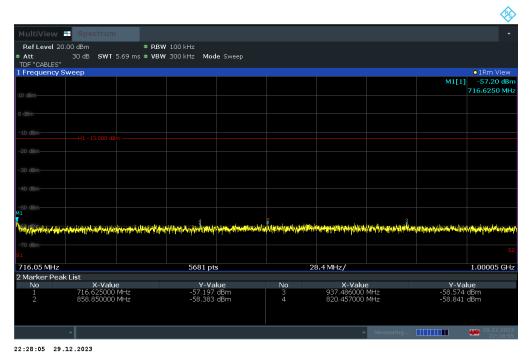

Plot 7-177. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	
	·		V2.2 09/07/2023

MultiView	Spectrun	n							
Ref Level 20	.00 dBm	● RBV	♥ 100 kHz						
Att TDF "CABLES"	30 dB SWT	5.69 ms 🗢 VBV	V 300 kHz Moo	le Sweep					
1 Frequency S	weep								o1Rm View
								M1[1]	
10 dBm									921.9890 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
3							M1		2
Webs and provident of the standard	entille of the second states of the second secon	and the second state of the second	an ad Ministry of specific different	have be der teller hande inder ha	and the state of the	ey in any equily of a start of the second of	hide philliple in a property of the	elistiya nami nepanatan	ne shall have a shall have t
-70 dBm									
et									
			Eco2 = 1						1 00005 011-
715.95 MHz 2 Marker Pea	< Lint		5683 pt	5	28	3.41 MHz/			1.00005 GHz
2 Marker Pear No	X-Valu	le	Y-Va	lue	No	X-Valu	e	Y-Va	lue
1	921.989000) MHz	-58.444	dBm	3	725.173000		-58.770	
2	992.076000) MHz	-58.731	dBm					
	_								
	*					-	Measuring		29.12.2023 22:26:58
22:26:58 29.	12.2023								

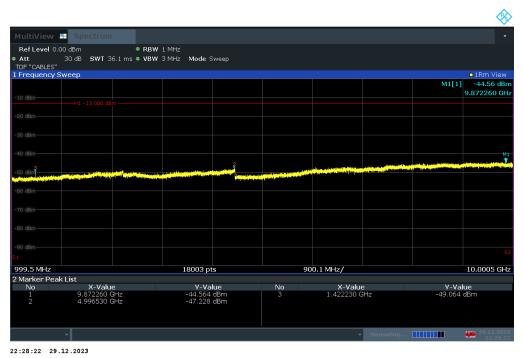
Plot 7-178. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 7-179. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 111 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 111 01 544
	·	•	V2.2 09/07/2023

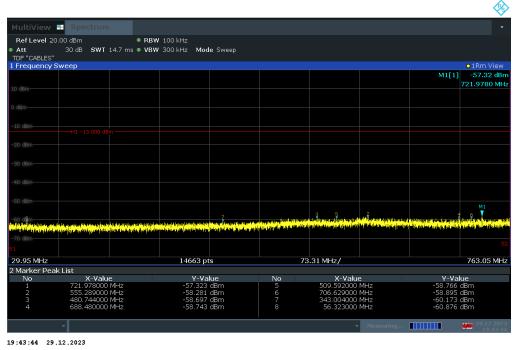
MultiView	Spectrum					-
Ref Level 20	.00 dBm ● R	BW 100 kHz				
Att	30 dB SWT 13.4 m s ● V I	3W 300 kHz Mode Sweep				
TDF "CABLES"						
Frequency S	Sweep					o1Rm View
					M1[1	-56.31 dBr
						651.0790 MH
20 dBm						
30 dBm						
						M1
						1
68 d ® n		6	e an air an at aile dh'ann a	Last an an investigation in the state		
	nien in stratege einen in die State die Verster die state die state in die state die state die state die state New York was andere state die s			and the distance of the part of the second	ومالمه بينا بالطائبان وليراجأ فالتعال وطيدام والدين	الغامانية والمازرة فأطرف
70 dBm-						
29.95 MHz		13363 pts		66.81 MHz/		698.05 MH
Marker Pea						
No	X-Value	Y-Value	No	X-Value	Y-Va	
	651.079000 MHz	-56.308 dBm		687.126000 MHz		
2 3	550.036000 MHz 481.241000 MHz	-58.483 dBm -58.530 dBm		294.955000 MHz 55.323000 MHz		
3 4	481.241000 MHz 669.077000 MHz	-58.530 dBm		159.115000 MHz		
	005.077000 1112	55.500 dBill		135.113000 Pilitz	01.525	Genn
						29.12.202
					easuring	22:27

22:27:48 29.12.2023



Plot 7-181. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 112 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 112 01 344
			V2.2 09/07/2023



Plot 7-182. Conducted Spurious Plot (LTE Band 12/17 - 10MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 113 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 115 01 544	
			V2.2 09/07/2023	

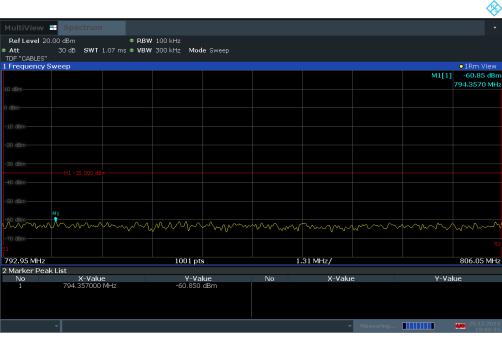
LTE Band 13

Plot 7-183. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

MultiView 😁 Spec	trum							•
Ref Level 20.00 dBm	• RBW	100 kHz						
Att 30 dB	SWT 1.05 ms • VBW	300 kHz Mod	e Sweep					
TDF "CABLES"								
1 Frequency Sweep							M11517	• 1Rm View -58.52 dBm
							M1[1]	-58.52 dBm 776.8320 MHz
								770,8320 МП
-20 dBm								
-30 dBm-								
								M1
-60 dBm-		m					0.000 0 /	10 month
mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~		www			mm	V~ - V ,
762.95 MHz		1001 pt	\$	1	.41 MHz/			777.05 MHz
2 Marker Peak List								
	-Value 2000 MHz	Y-Va -58,517	dBm	No	X-Valu	e	Y-Va	lue
1 //0.02	2000 11112	50.517	abin					
*					~	Measuring		29.12.2023
								19:44:01

19:44:01 29.12.2023

Plot 7-184. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 114 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 114 01 544
			V2.2 09/07/2023

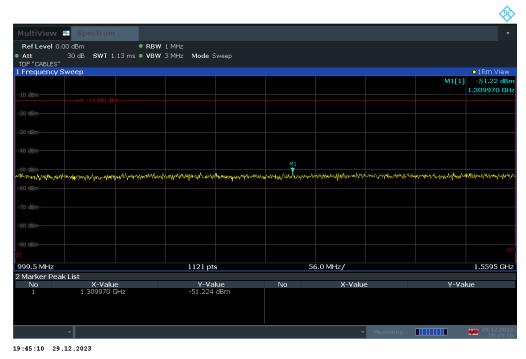
									\$
MultiView	Spectrum								
Ref Level 20.	00 dBm	• RBW	100 kHz						
 Att 	30 dB SWT	1.01 ms 🗢 VBW	300 kHz Mod	e Sweep					
TDF "CABLES"									
1 Frequency S	weep								• 1Rm View -53.34 dBm
					M1[1]				-53.34 dBm /87.33700 MHz
10 dBm-								· /	87.33700 MH2
0 dBm									
-10 dBm		m							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm M1									
k X									
m	\sim	N							
	· · · · • //•	m	\sim	\sim	$\sim\sim\sim\sim$	$\sim\sim\sim\sim\sim$	$\sim \sim \sim \sim \sim$	$h \sim h \sim h$	$h \sim h$
-70 dBm							Ň		Ľ.
TTO UBIN									52
786.95 MHz			1001 pt	5	61	10.0 kHz/			793.05 MHz
2 Marker Peak									
No 1	X-Valu 787.337000	e MHz	Y-Va -53.337		No 2	X-Value 788.196200		Y-Val -56,481	
-	/0/.00/000		00.007	denn	-	,00.130200		00, 101	30111
							Measurinq		29.12.2023
									19:44:18

19:44:18 29.12.2023

Plot 7-185. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

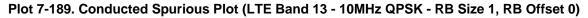
19:44:35 29.12.2023

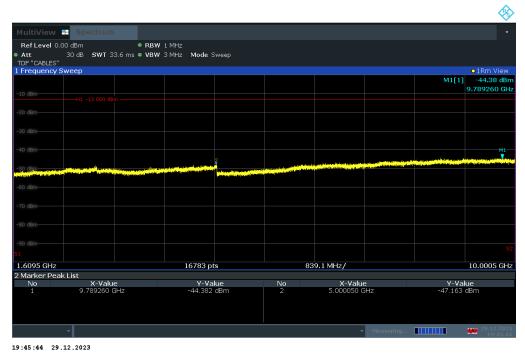
Plot 7-186. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 115 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 115 01 344	
			V2.2 09/07/2023	

									\$
MultiView	Spectrum								
Ref Level 20.0	D0 dBm	• RBW	100 kHz						
 Att TDF "CABLES" 	30 dB SWT	3.89 ms 🗢 VBW	300 kHz Mod	e Sweep					
1 Frequency Sv	veep								o1Rm View
								M1[1]	-58.49 dBm
10 dBm									880.5560 MHz
0 dBm									
-10 dBm									
-20 dBm									
00 10 10									
-30 dBm									
-40 dBm									
-50 dBm									
			M1						-
With Martin Marth & State		anter the property of the second	militaritari Anardilani	with the wind with the state of the state of the	alanahari sekil dari Milana sasa	and the shift of the should be the	Manhan at South and thinks	the Marty Martin American Statest	ส่งในการกลางสมบนโหงโหง มากร
	a na lla na na sao	an an an Art Arts Is at	tion liber a status		- Waterlas de la	the the date of the	distant and a set for the	dealer be all the	a lift a considerate de set
-70 dBm									
51									
805.95 MHz			3883 pt	\$	19	.41 MHz/			1.00005 GHz
2 Marker Peak									
No	X-Valu		Y-Va		No	X-Value		Y-Val -58.625	ue
1	880.556000	MHZ	-58.494	dBm		994.177000	MHZ	-58.625	dBm
							Measuring		29.12.2023
						~	measuring		19:44:52

19:44:53 29.12.2023


Plot 7-188. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)


FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 116 of 344	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 110 01 344	
	•	•	\/2 2 09/07/2023	

									~
MultiView	Spectrum	ı							
Ref Level 20.	.00 dBm	• RB	W 1 MHz						
 Att 	30 dB SWT	1.03 ms 🗢 VB	WI3 MHZ M	ode Sweep					
TDF "CABLES"									
1 Frequency S	weep	1							IRm View
								M1[1]	-48.59 dBm
10 dBm									1.5642690 GHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
40 dBm									
	M1								
-50 dBm	M								
-50 dBm	and make way was	r www.mer.norm	any water and the	Constract Andrew	manantantan	www.www.www.www	man	www.www.maduka.Work	Man marked Marked and Marked
-60 dBm									
-70 dBm									
51									
						50141			
1.5585 GHz			1023	3 pts		5.2 MHz/			1.6105 GHz
2 Marker Peak No	KLIST X-Valu		v	-Value	No	X-Valu	•	Y-Vá	sluo
1	1.564269			586 dBm	NU	∧-¥alu	C	1-44	alue
	_						Measuring		29.12.2023
	Ň.					~	measuring		19:45:27

19:45:27 29.12.2023

Plot 7-190. Conducted Spurious Plot (LTE Band 13 - 10MHz QPSK - RB Size 1, RB Offset 0)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 117 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 117 01 544
			V2.2 09/07/2023

NR Band n66

Plot 7-191. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-192. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 119 of 214	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 118 of 344	
<u></u>	•		V2.2 09/07/2023	

Plot 7-193. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-194. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 119 of 344
L		·	V2.2 09/07/2023

Plot 7-195. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-196. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 044	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 120 of 344	
	•	·	V2.2 09/07/2023	

Plot 7-197. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-198. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 af 044	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 121 of 344	
		•	V2.2 09/07/2023	

Plot 7-199. Conducted Spurious Plot (NR Band n66 - 40.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	A2899 element PART 27 MEASUREMENT REPORT	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 122 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Faye 122 01 344
			V2.2 09/07/2023

NR Band n70

Plot 7-200. Conducted Spurious Plot (NR Band n70 -10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-201. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element PART 27 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 of 044	
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 123 of 344	
		·	V2.2 09/07/2023	

Plot 7-202. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectrum Analyzer * Swept SA							Frequenc	y 1 🔣
KEYSIGHT ^{RL} ↔→→	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 862.500000 MHz Span	Settings
1 Spectrum Scale/Div 10 dB Log	•		Ref Level 20.00 dB	m	Mkr	1 1.693 0 GHz -50.214 dBm	1.66400000 GHz	1
10.0			Ĭ				Zero Span Full Span	
							Start Freq 30.500000 MHz Stop Freq	
						DL1-13.00 dBm	1.694500000 GHz	
							CF Step 166.400000 MHz	
40.0							Auto Man Freq Offset	
			1	يورول بر وي معارط (عرب الأور بر الأور مرب الم		1) 1414-141-141-141-141-141-141-141-141-14	0 Hz X Axis Scale	
60.0							Log Lin Signal Track	
							(Span Zoom) On Off	Local
Start 0.0305 GHz #Res BW 1.0 MHz			#Video BW 3.0 MH	z	Swee	Stop 1.6945 GHz 2.24 ms (3361 pts)		
1 7 7	Jan ? 3::	1 22, 2024 35:09 AM						

Plot 7-203. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 124 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 124 of 344
		·	V2.2 09/07/2023

Plot 7-204. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

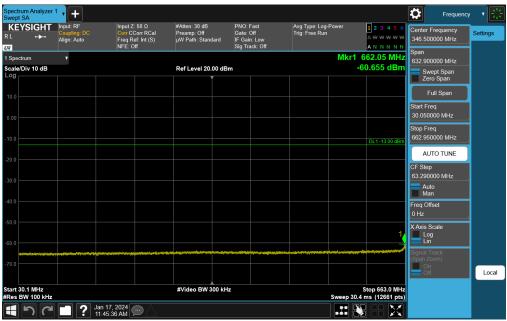
Plot 7-205. Conducted Spurious Plot (NR Band n70 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 125 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 125 of 344
	·	•	V2.2 09/07/2023

Plot 7-206. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-207. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 126 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 120 01 344
		•	1/2 2 09/07/2023



Plot 7-208. Conducted Spurious Plot (NR Band n70 - 10.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	GA2899 Celement PART 27 MEASUREMENT REPORT	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 127 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 127 01 544
			V2.2 09/07/2023

NR Band n71

Plot 7-209. Conducted Spurious Plot (NR Band n71 -20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-210. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 129 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 128 of 344
	•	•	V2.2 09/07/2023

Plot 7-211. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Spectrum Analyzer Swept SA	1 • +						Frequency	· • 🛞
KEYSIGHT RL +►+	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Center Frequency 346.500000 MHz Span	Settings
1 Spectrum Scale/Div 10 dB	T		Ref Level 20.00 dB	m	Mkr	1 660.15 MHz -62.710 dBm	632.900000 MHz	
Log			Ĭ				Swept Span Zero Span	
10.0							Full Span	
0.00							Start Freq 30.050000 MHz	
-10.0						DL1 -13.00 dBm	Stop Freq 662.950000 MHz	
-20.0							AUTO TUNE	
-30.0							CF Step 63.290000 MHz	
							Auto Man	
-40.0							Freq Offset 0 Hz	
-50.0						1	X Axis Scale Log Lin	
an the second	adjaving so that of the state o	add meiswegyari yn yw yw and dan yw dy agantino yw yw			anal ana kana ang kapatan		Signal Track (Span Zoom)	
-70.0							On Off	Local
Start 30.1 MHz #Res BW 100 kHz			#Video BW 300 kH	z	Sweep 3	Stop 663.0 MHz 0.4 ms (12661 pts)		
1 2 3	Jan ? 11:	17, 2024 47:18 AM						

Plot 7-212. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element)	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 120 of 244
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Page 129 of 344
		•	V2.2 09/07/2023

Plot 7-213. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-214. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 130 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 150 01 544
	•	·	V2.2 09/07/2023

Spectrum Analyzer Swept SA							Frequenc	y v 🗧
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 346.500000 MHz	Settings
Spectrum icale/Div 10 dB	v		Ref Level 20.00 dB	m	Mkı	1 658.20 MHz -63.006 dBm	Span 632.900000 MHz	J
og			Ĭ				Zero Span Full Span	
							Start Freq 30.050000 MHz	
10.0						DL1 -13.00 dBm	Stop Freq 662.950000 MHz	
							AUTO TUNE	
							63.290000 MHz Auto Man	
40.0							Freq Offset 0 Hz	
50.0						1	X Axis Scale Log Lin	1
70.0		1.4.5.2.1.1.5.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4					Signal Track (Span Zoom) On	
tart 30.1 MHz			#Video BW 300 kH	z		Stop 663.0 MHz	Off	Local
Res BW 100 kHz						30.4 ms (12661 pts)		
って	Jan ? Jan 12:5	17, 2024 3:37 PM				N - X		

Plot 7-215. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

Spectrum Analyzer Swept SA							Frequenc	y t 🛃
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	#Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 A \\ \\ \\ \\ \\ \\ \\ \\ \\ A N N N N N	Center Frequency 849.000000 MHz	Settings
Spectrum	T				Mkr	1 700.00 MHz	Span 301.900000 MHz	
cale/Div 10 dB			Ref Level 20.00 dB	lm		-61.697 dBm	Swept Span Zero Span	
							Full Span	
0.0							Start Freq 698.050000 MHz	
0.0							Stop Freq 999.950000 MHz	
0.0						DL1 -13.00 dBm	AUTO TUNE	
0.0							CF Step 30.190000 MHz	1
							Auto Man	
							Freq Offset 0 Hz	
0.0							X Axis Scale Log Lin	
the support and a second	-	runnigen gregene den soner et gegreget gere fledte bekange	antistanyi ayaye terata tisan ajayifant paatit	electrolity electrolity and a second	n den in varier and high war in the dening diversion day	******	Signal Track (Span Zoom)	1
							On Off	Loca
art 698.1 MHz Res BW 100 kHz			#Video BW 300 kH	lz	Sweep	Stop 1.000 GHz 14.5 ms (6041 pts)		
- - - - - - - - - - - - - -	Jan ? Jan	17, 2024 54:04 PM						

Plot 7-216. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 131 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 131 01 344
	*	•	1/2 2 09/07/2023



Plot 7-217. Conducted Spurious Plot (NR Band n71 - 20.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 132 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 152 01 544
			V2.2 09/07/2023

NR Band n12

Plot 7-218. Conducted Spurious Plot (NR Band n12 -15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-219. Conducted Spurious Plot (NR Band n12 - 15.0MHz DFT-s-OFDM QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element	PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 133 of 344
1C2311270066-09.BCG	10/1/2023 - 3/16/2024	Tablet Device	Fage 155 01 544
	*	•	1/2 2 09/07/2023