

Element Materials Technology

(formerly PCTEST) 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 408.538.5600 http://www.element.com

PART 24 MEASUREMENT REPORT

Applicant Name:

Apple Inc. One Apple Park Way Cupertino, CA 95014 United States

Date of Testing: 10/01/2023 - 03/07/2024 Test Report Issue Date: 3/28/2024 Test Site/Location: Element Materials Technology, Morgan Hill, CA, USA Test Report Serial No.: 1C2311270066-08.BCG

FCC ID: Applicant Name:

BCGA2899

Apple Inc.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s):

Certification A2899, A2900 Tablet Device PCS Licensed Transmitter (PCB) 24 ANSI C63.26-2015, TIA-603-E-2016, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

Prepared by: WKR000006193

Reviewed by: WKR0000005805

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 1 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 1 of 217
1	•		V2.2 09/07/2023

TABLE OF CONTENTS

1.0	INTR	ODUCTION	5
	1.1	Scope	5
	1.2	Element Materials Technology Test Location	5
	1.3	Test Facility / Accreditations	5
2.0	PRO	DUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Antenna Description	7
	2.4	Test Support Equipment	7
	2.5	Test Configuration	8
	2.6	Software and Firmware	8
	2.7	EMI Suppression Device(s)/Modifications	8
3.0	DESC	CRIPTION OF TESTS	9
	3.1	Evaluation Procedure	9
	3.2	Radiated Spurious Emissions	9
4.0	MEAS	SUREMENT UNCERTAINTY	10
5.0	TEST	EQUIPMENT CALIBRATION DATA	11
6.0	SAMF	PLE CALCULATIONS	12
7.0	TEST	RESULTS	13
	7.1	Summary	13
	7.2	Occupied Bandwidth	14
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	48
	7.4	Band Edge Emissions at Antenna Terminal	65
	7.5	Peak-Average Ratio	. 117
	7.6	Radiated Power (EIRP)	. 173
	7.7	Radiated Spurious Emissions	. 195
	7.8	Frequency Stability / Temperature Variation	.213
8.0	CON	CLUSION	217

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 2 01 217
			V2 2 09/07/2023

ħ

EIRP **Tx Frequency** PAR at 0.1% Emission Max. Power Mode **Bandwidth** Modulation OBW [MHz] Max. Power Range [MHz] Designator [dB] [W] [dBm] WCDMA1900 5 MHz Spread Spectrum 1852.4 - 1907.6 4.1659 2.87 0.562 27.50 4M17F9W QPSK 1850.7 - 1909.3 1.1076 4.98 0.560 27.48 1M11G7W 16QAM 1850.7 - 1909.3 1.1160 5.80 0.480 26.81 1M12D7W 1.4 MHz 64QAM 1M11D7W 1850.7 - 1909.3 1.1079 6.40 0.368 25.66 256QAM 1850.7 - 1909.3 1.1048 6.81 0.189 22.77 1M10D7W QPSK 1851.5 - 1908.5 2.7199 4.64 0.556 27.45 2M72G7W 16QAM 1851.5 - 1908.5 2.7169 5.65 0.484 26.85 2M72D7W 3 MHz 2M72D7W 64QAM 1851.5 - 1908.5 2.7151 6.45 0.364 25.61 256QAM 1851.5 - 1908.5 2.7160 6.88 0.191 22.81 2M72D7W QPSK 1852.5 - 1907.5 4.5336 4.91 0.562 27.50 4M53G7W 16QAM 1852.5 - 1907.5 4.5303 5.83 0.483 26.84 4M53D7W 5 MHz 4.5392 64QAM 1852.5 - 1907.5 6.46 0.375 25.74 4M54D7W 256QAM 1852.5 - 1907.5 4.5454 7.06 0.190 22.78 4M55D7W Band 2 QPSK 1855 - 1905 9.0421 5.01 0.556 27.45 9M04G7W 1856 - 1905 9.0487 5.89 0.488 26.88 9M05D7W 16QAM 10MHz 64QAM 1857 - 1905 9.0597 6.47 0.366 25.63 9M06D7W 1858 - 1905 9.0540 22.74 256QAM 7.03 0.188 9M05D7W 1857.5 - 1902.5 QPSK 13.526 5.00 0.558 27.47 13M5G7W 1857.5 - 1902.5 13.521 0.470 26.72 16QAM 5.80 13M5D7W 15 MHz 1857.5 - 1902.5 13.518 64QAM 6.47 25.54 13M5D7W 0.358 256QAM 1857.5 - 1902.5 13.550 7.27 0.183 22.63 13M6D7W 1860 - 1900 QPSK 18.012 4.92 0.553 27.43 18M0G7W 16QAM 1860 - 1900 18.051 5.87 0.499 26.98 18M1D7W 20 MHz 64QAM 1860 - 1900 18.025 6.44 0.379 25.79 18M0D7W 256QAM 1860 - 1900 18.002 7.20 0.181 22.58 18M0D7W 1850.7 - 1914.3 QPSK 1.1076 4.96 0.561 27.49 1M11G7W 1850.7 - 1914.3 26.74 1M12D7W 16QAM 1.1160 5.76 0.472 1.4 MHz 64QAM 1850.7 - 1914.3 1.1079 6.42 0.373 25.72 1M11D7W 256QAM 1850.7 - 1914.3 1.1048 6.71 0.190 22.78 1M10D7W QPSK 1851.5 - 1913.5 2.7199 4.63 0.557 27.46 2M72G7W 16QAM 1851.5 - 1913.5 2.7169 5.63 0.484 26.85 2M72D7W 3 MHz 0.376 64QAM 1851.5 - 1913.5 2.7151 6.41 25.75 2M72D7W 6.84 22.82 256QAM 1851.5 - 1913.5 2.7160 0.191 2M72D7W 4M53G7W QPSK 1852.5 - 1912.5 4.5336 4.89 0.562 27.50 4M53D7W 16QAM 1852.5 - 1912.5 4.5303 5.77 0.494 26.94 5 MHz 64QAM 1852.5 - 1912.5 4.5392 6.41 0.380 25.80 4M54D7W 256QAM 1852.5 - 1912.5 4.5454 6.94 0.186 22.70 4M55D7W Band 25 QPSK 1855 - 1910 9.0421 4.99 0.560 27.48 9M04G7W 16QAM 1855 - 1910 9.0487 5.81 0.483 26.84 9M05D7W 10 MHz 64QAM 1855 - 1910 9.0597 6.43 0.369 25.67 9M06D7W 256QAM 1855 - 1910 9.0540 7.00 0.189 22.77 9M05D7W QPSK 1857.5 - 1907.5 13.526 5.01 0.543 27.35 13M5G7W 16QAM 1857.5 - 1907.5 13.521 5.91 0.460 26.63 13M5D7W 15 MHz 1857.5 - 1907.5 64QAM 13.518 6.41 0.365 25.62 13M5D7W 256QAM 1857.5 - 1907.5 13.550 7.30 0.191 22.82 13M6D7W QPSK 1860 - 1905 18.012 4.92 0.551 27.41 18M0G7W 18.051 16QAM 1860 - 1905 0.499 26.98 18M1D7W 5.84 20 MHz 64QAM 1860 - 1905 6.41 18M0D7W 18.025 0.372 25 70 256QAM 1860 - 1905 18.002 6.58 0.191 22.82 18M0D7W

EUT Overview

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 5 01 217
			V2.2 09/07/2023

					EIRP			
Mode	Bandwidth	Modulation	Tx Frequency Range [MHz]	OBW [MHz]	PAR at 0.1% [dB]	Max. Power [W]	Max. Power [dBm]	Emission Designato
		π/2 BPSK	1852.5 - 1907.5	4.5015	4.06	0.557	27.46	4M50G7W
		QPSK	1852.5 - 1907.5	4.4420	5.33	0.562	27.50	4M44G7W
	5 MHz	16QAM	1852.5 - 1907.5	4.4926	6.31	0.471	26.73	4M49D7W
	5 1011 12	64QAM	1852.5 - 1907.5	4.4691	6.42	0.305	24.84	4M47D7W
		256QAM	1852.5 - 1907.5	4.4814	6.63	0.220	23.42	4M48D7W
-								
		π/2 BPSK	1855 - 1905	8.9077	4.31	0.557	27.46	8M91G7W
		QPSK	1855 - 1905	9.3056	5.51	0.562	27.50	9M31G7W
	10 MHz	16QAM	1855 - 1905	9.3063	6.39	0.483	26.84	9M31D7W
		64QAM	1855 - 1905	9.2829	6.62	0.351	25.45	9M28D7W
NR Band n2		256QAM	1855 - 1905	9.3366	6.61	0.219	23.41	9M34D7W
Bana na		π/2 BPSK	1857.5 - 1902.5	13.4431	4.21	0.562	27.50	13M4G7W
		QPSK	1857.5 - 1902.5	14.1389	5.38	0.562	27.50	14M1G7W
	15 MHz	16QAM	1857.5 - 1902.5	14.1618	6.35	0.466	26.69	14M2D7W
		64QAM	1857.5 - 1902.5	14.1115	6.49	0.332	25.21	14M1D7W
		256QAM	1857.5 - 1902.5	14.0667	6.66	0.198	22.96	14M1D7W
		π/2 BPSK	1860 - 1900	17.9727	4.25	0.558	27.46	18M0G7W
		QPSK	1860 - 1900	19.0324	5.44	0.562	27.50	19M0G7W
	20 MHz	16QAM	1860 - 1900	19.0456	6.33	0.495	26.95	19M0D7W
		64QAM	1860 - 1900	19.0324	6.60	0.366	25.64	19M0D7W
		256QAM	1860 - 1900	18.9648	6.65	0.224	23.51	19M0D7W
		π/2 BPSK	1852.5 - 1912.5	4.5015	3.98	0.554	27.44	4M50G7W
	5 MHz	QPSK	1852.5 - 1912.5	4.4420	5.34	0.562	27.50	4M44G7V
		16QAM	1852.5 - 1912.5	4.4926	6.29	0.462	26.65	4M49D7W
		64QAM	1852.5 - 1912.5	4.4691	6.63	0.327	25.15	4M47D7V
-		256QAM	1852.5 - 1912.5	4.4814	6.57	0.215	23.32	4M48D7V
	10 MHz	π/2 BPSK	1855 - 1910	8.9077	4.35	0.562	27.50	8M91G7V
		QPSK	1855 - 1910	9.3056	5.50	0.553	27.43	9M31G7V
		16QAM	1855 - 1910	9.3063	6.29	0.457	26.60	9M31D7V
		64QAM	1855 - 1910	9.2829	6.56	0.318	25.03	9M28D7V
		256QAM	1855 - 1910	9.3366	6.60	0.200	23.00	9M34D7W
		π/2 BPSK	1857.5 - 1907.5	13.4431	4.21	0.558	27.46	13M4G7V
		QPSK	1857.5 - 1907.5	14.1389	5.41	0.562	27.50	14M1G7V
	15 MHz	16QAM	1857.5 - 1907.5	14.1618	6.22	0.468	26.70	14M2D7W
	10 10112	64QAM	1857.5 - 1907.5	14.1115	6.62	0.316	25.00	14M1D7W
	-	256QAM	1857.5 - 1907.5	14.0667		0.200		14M1D7W
-					6.69		23.02	
		π/2 BPSK	1860 - 1905	17.9727	4.29	0.562	27.50	18M0G7V
		QPSK	1860 - 1905	19.0324	5.46	0.556	27.45	19M0G7V
	20 MHz	16QAM	1860 - 1905	19.0456	6.25	0.484	26.85	19M0D7V
		64QAM	1860 - 1905	19.0324	6.49	0.313	24.95	19M0D7V
NR Band n25		256QAM	1860 - 1905	18.9648	6.69	0.198	22.97	19M0D7V
		π/2 BPSK	1862.5 - 1902.5	22.8869	4.14	0.559	27.48	22M9G7V
		QPSK	1862.5 - 1902.5	23.8512	5.29	0.562	27.50	23M9G7V
	25 MHz	16QAM	1862.5 - 1902.5	23.7222	6.19	0.474	26.76	23M7D7V
		64QAM	1862.5 - 1902.5	23.8207	6.52	0.319	25.04	23M8D7V
		256QAM	1862.5 - 1902.5	23.7530	6.77	0.198	22.97	23M8D7V
-		π/2 BPSK	1865 - 1900	28.6368	4.29	0.562	27.50	28M6G7V
		QPSK	1865 - 1900	28.6104	5.50	0.561	27.49	28M6G7V
	30 MHz	16QAM	1865 - 1900	28.6118	6.34	0.484	26.85	28M6D7V
	00 11112	64QAM	1865 - 1900	28.5847	6.51	0.335	25.24	28M6D7V
		256QAM	1865 - 1900	28.5645	6.72	0.205	23.12	28M6D7V
-			1867.5 - 1897.5					
		π/2 BPSK		32.2767	4.41	0.560	27.48	32M3G7V
	05 111	QPSK	1867.5 - 1897.5	33.7441	5.52	0.562	27.50	33M7G7V
	35 MHz	16QAM	1867.5 - 1897.5	33.6906	6.34	0.476	26.78	33M7D7V
		64QAM	1867.5 - 1897.5	33.6102	6.49	0.348	25.42	33M6D7V
		256QAM	1867.5 - 1897.5	33.6894	6.69	0.220	23.42	33M7D7V
		π/2 BPSK	1870 - 1895	38.5794	4.37	0.554	27.43	38M6G7V
		QPSK	1870 - 1895	38.6093	5.43	0.562	27.50	38M6G7V
	40 MHz	16QAM	1870 - 1895	38.5259	6.25	0.447	26.50	38M5D7W
		64QAM	1870 - 1895	38.5470	6.56	0.318	25.03	38M5D7W
		256QAM	1870 - 1895	38.6539	6.72	0.206	23.14	38M7D7W

EUT Overview

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 4 01 217

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Materials Technology Test Location

These measurement tests were conducted at the Element Materials Technology facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology

- Element Materials Technology is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Agreements (MRAs).

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 5 01 217
			V2.2 09/07/2023

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Tablet Device FCC ID:BCGA2899**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 24.

Test Device Serial No.: MV3WTWWGT4, VGTVQGM9J9, RX5LQRFQ9Q, DLXGYV0005D0000FH3, DLXGYV0002L0000FH3

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 WCDMA/HSPA, Multi-band LTE, 5G NR (FR1), 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, 802.11a/ax WIFI 6E, 802.15.4, Bluetooth (1x, EDR, LE1M, LE2M, HDR4, HDR8), NB UNII (1x, HDR4, HDR8), WPT

This device supports BT Beamforming

This device supports simultaneous transmission operations, which allows for multiple transmitters to transmit simultaneously on the same antenna. The table below shows all configurations possible.

		Wifi 2GHz	Bluetooth	Thread	Wifi 5GHz	Wifi 6GHz	NB UNII	LTE/FR1 NR	LTE/FR1 NR
Antenna	Simultaneous Tx Config	802.11 b/g/n/ax	BDR, EDR, HDR4/8, LE1/2M	802.15.4	802.11 a/n/ac/ax	802.11 a/ax	BDR, HDR4/8	MB/HB	UHB
Antenna 3b	Config 1	X	X	X	√	X	X	√	X
Antenna 3b	Config 2	X	X	X	X	~	×	\checkmark	X
Antenna 3b	Config 3	X	X	X	X	X	~	\checkmark	X
Antenna 3a	Config 4	√	X	X	X	X	X	X	√
Antenna 3a	Config 5	X	~	X	X	X	×	X	√
Antenna 3a	Config 6	X	X	\checkmark	X	X	×	X	√
Antenna 1a	Config 7	\checkmark	X	X	X	X	×	X	√
Antenna 1a	Config 8	X	\checkmark	X	X	X	X	X	√
Antenna 1a	Config 9	X	X	✓	X	X	×	X	√
Antenna 1b	Config 10	X	X	X	√	X	X	√	X
Antenna 1b	Config 11	X	X	X	X	√	X	√	X
Antenna 1b	Config 12	X	X	X	X	X	√	√	X

Table 2-1. Simultaneous Transmission Configurations

✓ = Support; × = Not Support

Note:

All the above simultaneous transmission configurations have been tested and the worst case configuration was found to be Config 8 and reported in RF Bluetooth, RF FCC Part 96 reports.

Specific 2.4GHz Wi-Fi antenna that can only transmit simultaneously with 2.4GHz Bluetooth antenna is listed in the SAR test report. For BT (2.4GHz) in connected mode and Wi-Fi (2.4GHz) - Wi-Fi max power will not exceed minimum of (13.5dBm, SAR max cap, Reg max cap) power. For BT (2.4GHz) in disconnected mode and Wi-Fi (2.4GHz) - BT will be using iPA only and Wi-Fi max power will not exceed minimum of (SAR max cap, Reg max cap) power. Bluetooth can simultaneously transmit with IEEE 802.11a/n/ac/ax 5/6 GHz on separate antenna.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 0 01 217
			\/2 2 00/07/2023

2.3 Antenna Description

The following antenna gains provided by the manufacturer were used for testing.

Band	Antenna Gain [dBi]						
Danu	Antenna 4	Antenna 1b	Antenna 3b	Antenna 2			
WCDMA 1900							
LTE Band 2/25	1.8	0.7	0.2	2.3			
NR Band n2/n25							

Table 2-2. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model:	A2141	S/N:	C02H604EQ05D							
	w/AC/DC Adapter	Model:	A2166	S/N:	C4H042705ZNPM0WA6							
2	Apple USB-C Cable	Model:	Spartan	S/N:	GXK1336018XKTR024							
3	USB-C Cable	Model:	A246C	S/N:	DWH80115BK826GV19							
	w/ AC Adapter	Model:	A2305	S/N:	C4H95160004PF4F4V							
4	DC Power Supply	Model:	KPS3010D	S/N:	N/A							
5	Apple Pencil	Model:	A2538	S/N:	KJ26TCFXJW							
	T -11	T	0		Table 2.2. Test Support Equipment							

 Table 2-3. Test Support Equipment

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage / 01217
,			V/2 2 09/07/2023

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015, TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

2.6 Software and Firmware

The test was conducted with firmware version 21E8197 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage o 01 217
			\/2 2 00/07/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the documents titled "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015 and TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} = Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And$

 $EIRP_{[dBm]} = E_{[dB\mu V/m]} + 20logD - 104.8$; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

Radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015 and TIA-603-E-2016.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 9 01 217	
			\/2 2 00/07/2023	

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.07
Radiated Disturbance (<30MHz)	4.12
Radiated Disturbance (30MHz-1GHz)	4.85
Radiated Disturbance (1-18GHz)	5.08
Radiated Disturbance (>18GHz)	4.59

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 10 01 217
			V2.2 09/07/2023

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	6/21/2023	Annual	6/21/2024	MY49430244
ESPEC	SU-241	Tabletop Temperature Chamber	11/17/2023	Annual	11/17/2024	92009574
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	3/30/2023	Annual	3/30/2024	00218555
Keysight Technology	N9040B	UXA Signal Analyzer	11/5/2023	Annual	11/5/2024	MY57213068
Rohde & Schwarz	TS-PR18	Pre-Amplifier (1GHz - 18GHz)	8/31/2023	Annual	8/31/2024	100052
Rohde & Schwarz	FSV40	Signal Analyzer (10Hz-40GHz)	5/11/2023	Annual	5/11/2024	101619
Rohde & Schwarz	ESW44	EMI Test Receiver	6/6/2023	Annual	6/6/2024	101668
Rohde & Schwarz	TS-PR8	Pre-Amplifier (30MHz - 8GHz)	6/22/2023	Annual	6/22/2024	102356
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	11/30/2023	Annual	11/30/2024	161616
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	12/27/2023	Annual	12/27/2024	164715
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	6/2/2023	Annual	6/2/2024	100050
Rohde & Schwarz	HFH2-Z2	Loop Antenna	5/1/2023	Annual	5/1/2024	100519
Rohde & Schwarz	FSW43	Signal Analyzer (2Hz-43.5GHz)	7/13/2023	Annual	7/13/2024	101261
Schwarzbeck	VULB 9162	Bilog Antenna (30MHz - 6GHz)	4/17/2023	Annual	4/17/2024	00304

Table 5-1. Test Equipment

Notes:

1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 11 of 217
		·	V2.2 09/07/2023

6.0 SAMPLE CALCULATIONS

Emission Designator

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

π/2 BPSK / QPSK Modulation

Emission Designator = 8M62G7W BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination of Any

QAM Modulation

Emission Designator = 8M45D7W BW = 8.45 MHz D = Amplitude/Angle Modulated 7 = Quantized/Digital Info W = Combination of Any

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 12 01 217
		·	V2.2 09/07/2023

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	<u>BCGA2899</u>
FCC Classification:	PCS Licensed Transmitter (PCB)
Mode(s):	WCDMA/LTE/NR

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Occupied Bandwidth	2.1049	N/A	N/A	Section 7.2
	Conducted Band Edge / Spurious Emissions	2.1051, 24.238(a)	-13 dBm at Band Edge and for all out-of-band emissions	PASS	Sections 7.3, 7.4
	Peak-Average Ratio	24.232(d)	< 13 dB	PASS	Section 7.5
CONDUCTED	Transmitter Conducted Output Power	2.1046	N/A	N/A	See RF Exposure Report
	Frequency Stability	2.1055, 24.235	Fundamental emissions stay within authorized frequency block over the temperature and voltage range as tested	PASS	Section 7.8
	Equivalent Isotropic Radiated Power	24.232(c)	< 2 Watts max. EIRP	PASS	Section 7.6
RADIATED	Radiated Spurious Emissions	2.1053, 24.238(a)	-13 dBm for all out-of-band emissions	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3. All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is Element EMC Software Tool EMC Software Tool v1.1.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 13 01 217
			V2.2 09/07/2023

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

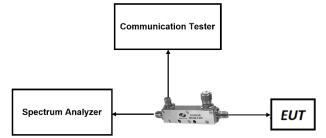


Figure 7-1. Test Instrument & Measurement Setup


Test Notes

None.

FCC ID: BCGA2899	element	DT PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 14 01 217
			1/2 2 00/07/2023

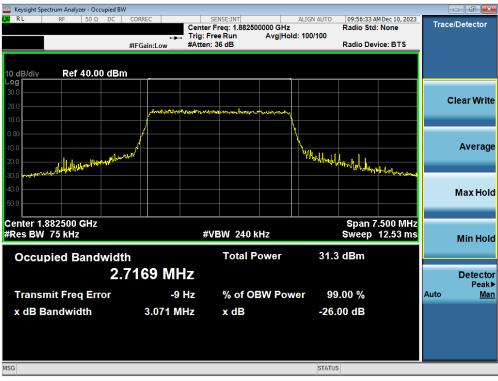
LTE Band 25/2


Plot 7-1. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz QPSK - Full RB Configuration)

Plot 7-2. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 15 01 217	
			V2.2 09/07/2023	

Plot 7-3. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 64-QAM - Full RB Configuration)


Plot 7-4. Occupied Bandwidth Plot (LTE Band 25/2 - 1.4MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 10 01 217
			1/2 2 09/07/2023

Plot 7-5. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 17 01 217
			V/2 2 09/07/2023

Keysight Spectrum Analyzer - Occ	upied BW						- 6 💌
LXI RL RF 50 Ω	DC CORREC	SENSE:INT			MDec 10, 2023	Trace	/Detector
		Center Freq: 1.882		Radio Std:	None	Hace	Delector
	+ #IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold: 10	Radio Dev	ice: BTS		
	#IFGdIII.LOW	#rttell: 00 uB		itualo Dev	ICC. DTO		
10 dB/div Ref 40.00	0 dBm						
Log							
30.0							
20.0						C	lear Write
10.0	monden	and we have been and the second	enorther and the				
	/		L L				
0.00							
-10.0	/		<u> </u>				Average
-20.0	the all is a little and the second		\	Maken & date and the			
MANAUA MANA A MANA A DATA IN	Indeki . Ino			Matter and a second	PT W W W W		
-30.0							
-40.0							Max Hold
-50.0							
Center 1.882500 GHz				Span 7	.500 MHz		
#Res BW/75 kHz		#VBW 240	kHz		12.53 ms		Min Hold
							WIII HOIU
Occupied Band	width	Total	Power	30.2 dBm			
	2.7151 M	IHZ					Detector
							Peak▶
Transmit Freq Err	or -19	5 Hz % of C	BW Power	99.00 %		Auto	<u>Man</u>
x dB Bandwidth	3.110	MHz xdB		-26.00 dB			
	01110			20100 012			
MSG				STATUS			
				0.0100			

Plot 7-7. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 64-QAM - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 25/2 - 3MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 18 of 217
			V2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied BW					
LXI RE 50Ω DC	CORREC	SENSE:INT Center Freq: 1.88250	ALIGN AUTO	09:57:36 AM Dec 10, 2023 Radio Std: None	Trace/Detector
	↔ #IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold: 100/100	Radio Device: BTS	
	#IFGdIII.LOW	#Allen: 00 ab		Radio Berice: Biro	
10 dB/div Ref 40.00 dBm					
Log					
30.0					Clear Write
10.0	mm	- hor way	many		
0.00	/				
-10.0	J.				Average
-20.0	J*		how	<u>~ m </u>	· · · · · · · · · · · · · · · · · · ·
-30.0 muchanthe Warter				monor MMM	
-40.0					Max Hold
-50.0					Maxilolu
				0	
Center 1.882500 GHz Res BW 120 kHz		#VBW 3901	(Hz	Span 12.50 MHz Sweep 1 ms	
					Min Hold
Occupied Bandwidt	า	Total P	ower 32.	5 dBm	
4.	5336 MH	z			Detector
Transmit Freq Error	-1.927 k	(Hz % of O	BW Power 99	.00 %	Peak▶ Auto Man
x dB Bandwidth	5.134 M	IHz x dB	-26.	00 dB	
MSG			STATU	s	
noo			STATU.		

Plot 7-9. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz QPSK - Full RB Configuration)


Plot 7-10. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 19 01 217
			1/2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied	BW					
LX/RL RF 50Ω DC		SENSE:INT		M Dec 10, 2023	Trace	Detector
		Freq: 1.882500000 GHz	Radio Sto	: None	IIace/	Delector
		Free Run Avg Hold 1:36 dB	I: 100/100 Radio De	dee: BTS		
	#IFGain:Low #Atten	i. 30 ub	Radio De	Ace. B13		
10 dB/div Ref 40.00 dB	tm					
Log						
30.0						
20.0					CI	ear Write
	man Arman	mmmmmm				
10.0						
0.00	<u>(</u>	l	\			
-10.0						Average
	R					Average
-20.0 Juntown Mary mit	~~~		May paray value	Am Dan a		
-30.0				1 40 14 1		
-40.0					_	
					I	Max Hold
-50.0						
Center 1.882500 GHz			Span ′	2.50 MHz		
Res BW 120 kHz	#	VBW 390 kHz	Sw	eep 1 ms		Min Hold
Occupied Bandwid	ith	Total Power	30.7 dBm			
						-
4	.5392 MHz					Detector
	7 440 1-11-	0/ - 6 ODIA/ D	00.00.0/		A	Peak▶
Transmit Freq Error	7.440 kHz	% of OBW Pow	er 99.00 %		Auto	<u>Man</u>
x dB Bandwidth	5.141 MHz	x dB	-26.00 dB			
			Loioo al			
MSG			STATUS			

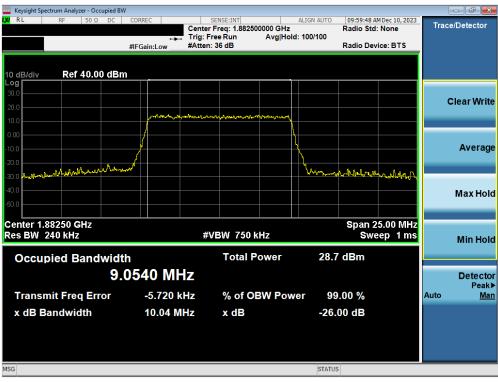
Plot 7-11. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 64-QAM - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (LTE Band 25/2 - 5MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 20 01 217
			V/2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied BV								
LX/ RL RF 50Ω DC	CORREC	SENSE:INT Center Freq: 1.882	500000 GHz	ALIGN AUTO	09:59:16 A	MDec 10, 2023	Trace	/Detector
	↔ #IFGain:Low	Trig: Free Run #Atten: 36 dB	Avg Hold	: 100/100	Radio Dev	ice: BTS		
,	#IFGalli.Low	mattern oo ub			readio Dev			
10 dB/div Ref 40.00 dBr	n							
Log	<u> </u>							
30.0							c	lear Write
20.0	mm	manum	mmm					
10.0								
0.00				1				
-10.0	الم راس			une.				Average
hammed and all all all and a					Murmely daly	www.mathurit		
-30.0								
-40.0								Max Hold
-50.0								_
Center 1.88250 GHz						5.00 MHz		
Res BW 240 kHz		#VBW 750	kHz		Swe	ep 1 ms		Min Hold
Occupied Bandwidt	th	Total	Power	32.1	dBm			
	0421 MI	47						Detector
9.	0421 1011	ΠΖ						Detector Peak▶
Transmit Freq Error	-13.376	kHz % of (OBW Pow	er 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth	10.11 N	/Hz xdB		-26.	00 dB			
MSG				STATUS	6			

Plot 7-13. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz QPSK - Full RB Configuration)


Plot 7-14. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Faye 21 01 217
			V2 2 09/07/2023

🔤 Keysight Sp	ectrum Analyz	zer - Occu	upied BW										
LXI RL	RF	50 Ω	DC	CORREC			NSE:INT		ALIGN AUTO		AM Dec 10, 2023	Tro	e/Detector
								00000 GHz		Radio Sto	d: None	Irac	ce/Detector
						Trig: Fre #Atten: 3		Avg Hole	1:>100/100				
				#IFGain:L	ow	#Atten: 3	56 dB			Radio De	vice: BTS		
10 dB/div	Dof	40.00) dBm										
Log	RGI	40.00	, abii					i					
30.0													
													Clear Write
20.0					~~~~~~/~~~~~/	man	hearteman						onean mine
10.0							- Praticity Designation						
				1				R					
0.00				J' I									
-10.0				. / -					<u>\</u>				Average
-20.0		to De	willia	ላላ.					"YAL YUMA	hm A			
molow	Jhally MM	~~~~~~~~~~								hm hrilling how	Mymalin		
-30.0													
-40.0													Max Hold
-50.0													
-30.0												_	
Center 1.	00250 0	-								- Cnon			
						40.0	NW 750				25.00 MHz		
Res BW	240 KHZ					₩VE	3W 750	KHZ		SW	eep 1ms		Min Hold
Occu	pied B	and	widt	h			Total I	ower	30	.8 dBm			
			0 (0507	MH								Detector
			9.0	0591		Z							Detector
-				•	440 1-11		0/ - 5 0	DW D		0.00.0/		0	Peak▶
Transi	mit Fred	q Erro	or	-8.	440 kH	Z	% of 0	BW Pow	er s	9.00 %		Auto	<u>Man</u>
x dB B	Bandwid	lth		10	.03 MH	7	x dB		-20	6.00 dB			
				10	.00 1111	-	AUD		74				
MSG									STAT	US			

Plot 7-15. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 64-QAM - Full RB Configuration)

Plot 7-16. Occupied Bandwidth Plot (LTE Band 25/2 - 10MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 22 01 217
			V2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied Β'		CENCE THE	41701		10 - 10 - 2022		
, KL RF 50Ω DC	CORREC	SENSE:INT		Radio Std	MDec 10, 2023 None	Trace/E	etector
	↔ #IFGain:Low	→ Trig: Free Run #Atten: 36 dB	Avg Hold: 100/1	00 Radio Dev	ice: BTS		
10 dB/div Ref 40.00 dBr	n						
Log 30.0							
20.0		margan show hat ble an other				Cle	ear Write
10.0		and the second state of th	the second of				
0.00	/						
-10.0	h anda			. 1.			Average
-20.0			141.00	Walling Wat play what	winder		
-30.0							
-40.0						Ν	lax Hold
-50.0							
Center 1.88250 GHz					7.50 MHz		
Res BW 360 kHz		#VBW 1.11	VIHZ	SWE	ep 1ms	1	Min Hold
Occupied Bandwid	th	Total	Power	32.2 dBm			
1:	3.526 M	Hz					Detector
Transmit Freq Error	-15.909		BW Power	99.00 %		Auto	Peak▶ Man
						Auto	wan
x dB Bandwidth	14.96 N	MHz xdB		-26.00 dB			
MSG				STATUS			

Plot 7-17. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz QPSK - Full RB Configuration)

Plot 7-18. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 23 01 217
			\/2 2 09/07/2023

Keysight Spectrum Analyzer - Occupied	BW				- # ×
LX RL RF 50Ω DC		SENSE:INT		36 AM Dec 10, 2023	Trace/Detector
		er Freq: 1.882500000 GHz Free Run Avg Ho		Std: None	Trace/Detector
		n: 36 dB	old: 100/100 Radio I	Device: BTS	
	#IFGallI.LOW #/tec		Rudio	Bettice: B 10	
10 dB/div Ref 40.00 dE	3m				
Log					
30.0					
20.0					Clear Write
10.0	ernese philips proved	www.werdlow.www.chymlen	1		
0.00					
-10.0					Average
-20.0	- Aller		Lathe Lange 1, 1		
and a drawlow representation			Kangely Langer and Andrew Conners	her here manus	
-40.0					Max Hold
-50.0					
Center 1.88250 GHz			Spar	n 37.50 MHz	
Res BW 360 kHz	1	#VBW 1.1 MHz	Ś	weep 1 ms	Min Hold
					WIII TIOIG
Occupied Bandwid	dth	Total Power	30.3 dBm		
	3.518 MHz				Detector
Transmit Freq Error	2.110 kHz	% of OBW Po	wer 99.00 %		Peak▶ Auto Man
· · · · ·					Man
x dB Bandwidth	14.91 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7-19. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 64-QAM - Full RB Configuration)

Plot 7-20. Occupied Bandwidth Plot (LTE Band 25/2 - 15MHz 256-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 24 01 217
			V2 2 09/07/2023

D2 RL RF 50 Ω DC CORREC SENSE:INT ALIGN AUTO 10:01:33 AMDec 10, 2023 Center Freq: 1.882500000 GHz Radio Std: None Radio Std: None Radio Device: BTS 10 dB/div Ref 40.00 dBm Ref 40.00 dBm 20.0 Clear W Clear W Clear W	
Clear W	
#IFGain:Low #Atten: 36 dB Radio Device: BTS 10 dB/div Ref 40.00 dBm 20 0 0 10 0 0	Vrite
ID dB/div Ref 40.00 dBm Log	Vrite
Log Image: Constraint of the second of the sec	Vrite
Log Image: Constraint of the second of the sec	Vrite
Log Image: Constraint of the second of the sec	Vrite
30.0	Vrite
20.0 Clear W 10.0	Vrite
Aver	rage
200 Wimanus de Cartes	
arts and when the second s	
-40.0 Max H	hold
50.0	ioiu
Center 1.88250 GHz Span 50.00 MHz	
Res BW 470 kHz #VBW 1.5 MHz Sweep 1 ms	
Res BW 470 KHZ #VBW 1.3 MHZ Sweep THIS Min H	Hold
Occupied Bandwidth Total Power 32.3 dBm	
18.012 MHz Deter	otor
	eak▶
	ear.► Man
·	
x dB Bandwidth 19.73 MHz x dB -26.00 dB	
MSG STATUS	

Plot 7-21. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz QPSK - Full RB Configuration)

Plot 7-22. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 25 01 217
			V/2 2 09/07/2023

Keysight Spectrum Ana	alyzer - Occ	upied BW										
LXI RL RF	50 Ω	DC COF	RREC		NSE:INT		AL	IGN AUTO		M Dec 10, 2023	Trac	e/Detector
					req: 1.88250				Radio Std	None	IIac	e/Delector
				Trig: Fre #Atten: 3		Avg Hol	d:>1	100/100	Radio Dev	ion BTS		
		#IF	Gain:Low	#Atten: 3					Radio Dev	ICE: DIS		
10 dB/div Re	f 40.00) dBm										
Log	1 10100											
30.0												
20.0												Clear Write
			And a	when and the	mound	Amorenany						
10.0												
0.00			<u>,</u>				<u>\</u>					
-10.0			{				٦					Average
		and wall					W	yuman				Average
-20.0	Strate Branch and							114	Waller	hadden as .		
-20.0 -30.0										All a start of the second s		
-40.0												
												Max Hold
-50.0												
Center 1.88250										0.00 MHz		
Res BW 470 kH	Z			#VE	3W 1.5 M	HZ			SWe	ep 1ms		Min Hold
Occupied	Band	width			Total P	ower		31.0	dBm			
		10 0	25 MI	L -,								Detector
		10.0	23 IVI	ΠZ								Detector Peak▶
Transmit Fre	eq Err	or	-43.372	kHz	% of O	SW Pow	/er	99.	00 %		Auto	Peak≱ <u>Man</u>
x dB Bandwi	idth		19.87 N	IHZ	x dB			-26.0	0 dB			
MSG								STATUS				

Plot 7-23. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 64-QAM - Full RB Configuration)

Plot 7-24. Occupied Bandwidth Plot (LTE Band 25/2 - 20MHz 256-QAM - Full RB Configuration)

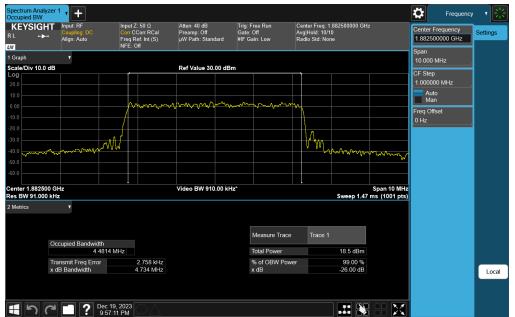
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 20 01 217
			V2 2 09/07/2023

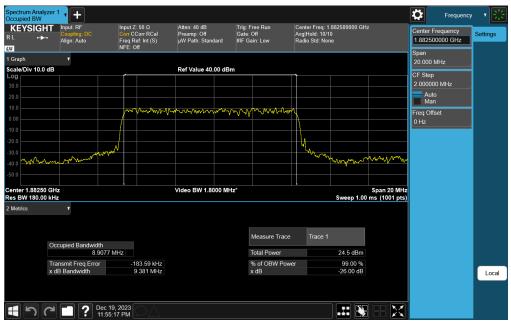
NR Band n25/n2

Plot 7-25. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz DFT-s-OFDM π/2 BPSK - Full RB)

Plot 7-26. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM QPSK - Full RB)

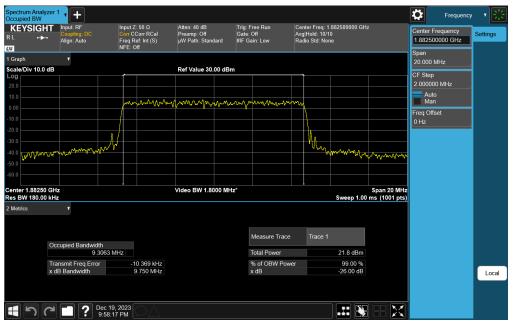
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 27 of 217	
			V2.2 09/07/2023	


Plot 7-27. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 16QAM - Full RB)


Plot 7-28. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 28 of 217	
			V2.2 09/07/2023	

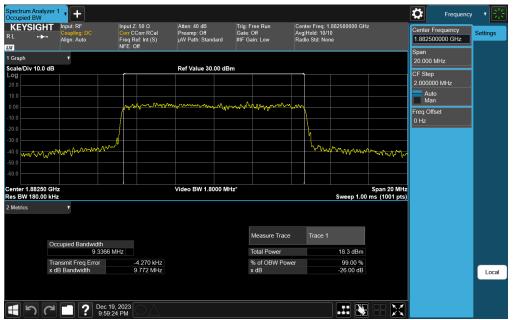
Plot 7-29. Occupied Bandwidth Plot (NR Band n25/n2 - 5MHz CP-OFDM 256QAM - Full RB)


Plot 7-30. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz DFT-s-OFDM π/2 BPSK - Full RB)

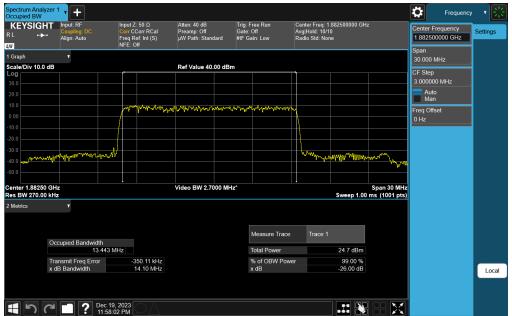
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 29 01 217
			V2.2 09/07/2023

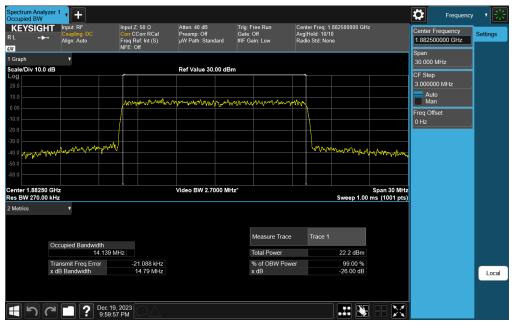
KEYSIGH	Coupling: DC	Corr Freq	Z: 50 Ω CCorr RCal Ref: Int (S)	Atten: 40 dB Preamp: Off µW Path: Stan		Trig: Free Run Gate: Off #IF Gain: Low	Avg	nter Freq: 1 Hold: 10/1 dio Std: No			Center Frequency 1.882500000 GHz	Settings
a		NFE:	Off								Span	
Graph											20.000 MHz	
cale/Div 10.0 og	dB		_	Ref Value 30	.00 dBm						CF Step	
0.0											2.000000 MHz	
											Auto	
.00		Ŋ	mm	humany	p-www.h-	www.www.w	mm	\			Man	
0.0		_/						\			Freq Offset	
0.0								1			0 Hz	
0.0		<u>الإ</u>						1				
0.0	Magale marker with	✓						how				
0.0	- Макон								Momm	- Murray Mary		
0.0												
nter 1.88250 s BW 180.00				Video BW 1.8	000 MHz'				C	Span 20 MHz ms (1001 pts)		
Metrics	v v								Sweep 1.00	ins (1001 pts)		
vieulics												
						Measure Tra	ce	Trace 1				
	Occupied Bandwidth 9,3056	MUZ				Total Power	_		22.0 dBm			
	Transmit Freg Error		-5.455 kHz			% of OBW P	ower		99.00 %			
	x dB Bandwidth		9.761 MHz			x dB	owei		-26.00 dB			Loca
												2000


Plot 7-31. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM QPSK - Full RB)


Plot 7-32. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 16QAM - Full RB)

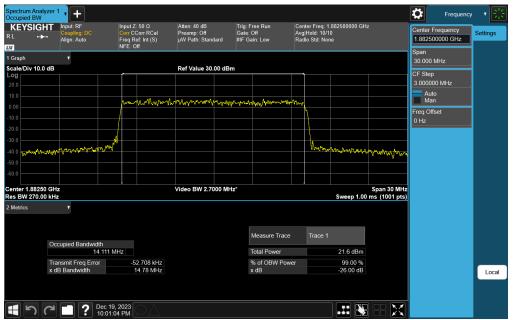
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 30 01 217
			V2.2 09/07/2023


Plot 7-33. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 64QAM - Full RB)


Plot 7-34. Occupied Bandwidth Plot (NR Band n25/n2 - 10MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage ST 01 217
	·		V2.2 09/07/2023

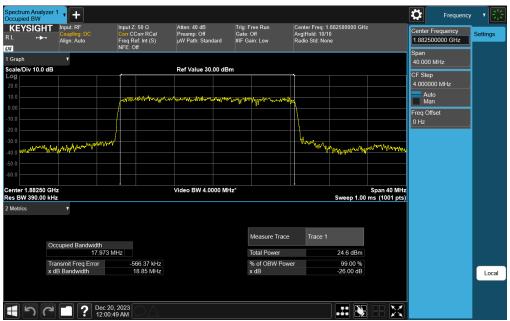
Plot 7-35. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-36. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 32 01 217
	·		V2.2 09/07/2023

Graph		Freq Ref: Int (S) NFE: Off	Preamp: Off µW Path: Stan		ate: Off IF Gain: Low		Hold: 10/1 io Std: Nor			Center Freq 1.88250000		Settings
	•									Span 30.000 MH	z ,	
ale/Div 10.0 o	1B		Ref Value 30	.00 dBm						CF Step		
										3.000000 N	1Hz	
0.0		wyymaranter	mamput	mann	mannahan	mm				Man		
.0										Freq Offset		
							1			0 Hz		
		ļ					1					
.0 tophy 0.	mmmmmmm	v					mana	wown	mountain			
nter 1.88250			Video BW 2.7	000 MHz*					Span 30 MHz			
s BW 270.00								Sweep 1.00	ms (1001 pts)			
letrics	*											
					Measure Trac	e	Trace 1					
	Occupied Bandwidth 14.162 M	ИHz			Total Power			22.1 dBm				
	Transmit Freq Error	3.916 kHz			% of OBW Po	wer		99.00 %				
	x dB Bandwidth	14.87 MHz			x dB			-26.00 dB				Loca

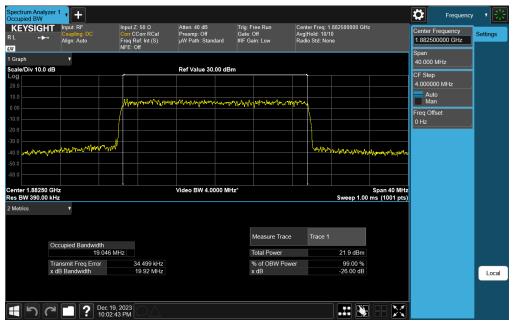
Plot 7-37. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 16QAM - Full RB)


Plot 7-38. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 55 01 217
			V2.2 09/07/2023

iraph ale/Div 10.0 dB 9 .0	3									0	
.0	3									Span 30.000 MHz	
			Ref Value 30.	.00 dBm						CF Step	1
										3.000000 MHz	
										Auto Man	
		www.	mont	man	mm arman martine	~~~~				Freq Offset	1
										0 Hz	
							1				
	An march						mar.	when more a			
.0 www.www. .0	Anthrow And and died						_	a w way			
.0											
nter 1.88250 GH s BW 270.00 kH			Video BW 2.70	000 MHz*				Sween 1 00	Span 30 MHz ms (1001 pts)		
letrics	v										
					Measure Trace		Trace 1				
0	ccupied Bandwidth 14.067 N	MHz			Total Power			18.6 dBm			
	ransmit Freq Error	-30.520 kHz			% of OBW Pow	er		99.00 %			
x	dB Bandwidth	14.80 MHz			x dB			-26.00 dB			Loca

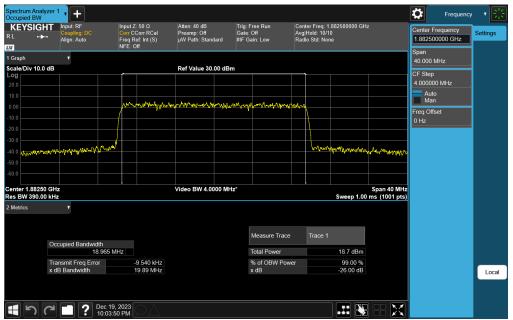
Plot 7-39. Occupied Bandwidth Plot (NR Band n25/n2 - 15MHz CP-OFDM 256QAM - Full RB)


Plot 7-40. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 34 01 217
			V2.2 09/07/2023

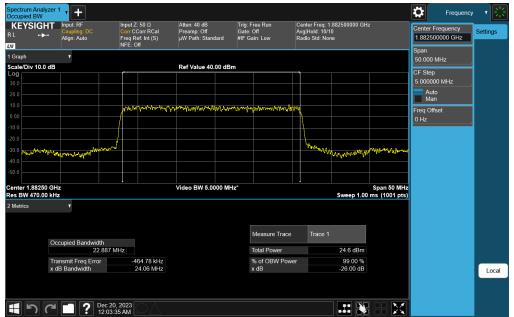
KEYSIGH		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	Atten: 40 dB Preamp: Off μW Path: Stan	Ga	g: Free Run ite: Off Gain: Low	Avgl	er Freq: 1 Hold: 10/1 o Std: Noi			Center Frequency 1.882500000 GHz	Settings
or Graph	•	NFE: Off								Span	1
cale/Div 10.0			Ref Value 30.	00 dBm						40.000 MHz	
og										CF Step 4.000000 MHz	
0.0										Auto	1
0.0		wymania	nonman	www.	wanter	and the second				Man	
0.0										Freq Offset	1
0.0		1					{			0 Hz	
0.0	way were and were and						Kulum	haman	an the state of the state of the		
0.0											
enter 1.88250			Video BW 4.00						Span 40 MHz		
es BW 390.00			VIGEO BVV 4.00					Sweep 1.00	ms (1001 pts)		
Metrics	v										
					Measure Tra	ce	Trace 1				
	Occupied Bandwidth										
	19.032 M				Total Power			22.2 dBm			
	Transmit Freq Error x dB Bandwidth	-4.037 kHz 19.91 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB			Loca
											LUCA

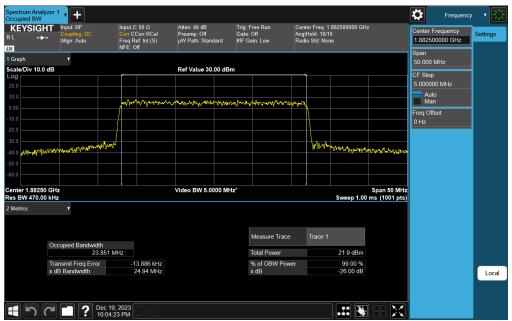
Plot 7-41. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM QPSK - Full RB)


Plot 7-42. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 25 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 35 of 217
			V2.2 09/07/2023

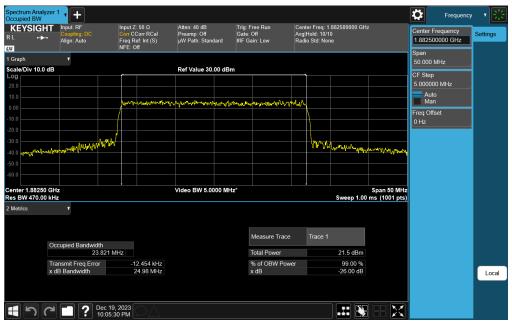
Graph * teade/Div 10.0 dB Ref Value 30.00 dBm CP CF Step 000 CF Step	Settings	Center Frequency 1.882500000 GHz Span		2500000 GHz	er Freq: 1. lold: 10/10 Std: Non	Avgi	rig: Free Run Sate: Off IF Gain: Low	dard	Atten: 40 dB Preamp: Off μW Path: Stand	ıt Ζ: 50 Ω r CCorr RCal q Ref: Int (S) :: Off	Corr Freq	Input: RF Coupling: DC Align: Auto	EYSIGHT .≁·
Og												•	
4.000000 MHz Auto	i .	CF Step						00 dBm	Ref Value 30.				
Man Image: Constraint Streeg Error -5.053 kHz % of OBW Power 99.00 %		4.000000 MHz											
Occupied Bandwidth 19 032 MHz Measure Trace 1 Occupied Bandwidth 19 032 MHz Transmit Freq Error													
Occupied Bandwidth Image: Market Bandwidth <td< td=""><td></td><td></td><td></td><td></td><td></td><td>www.we</td><td>WWWWWW</td><td>n na serve</td><td>Mandella</td><td>W. Marine Marine</td><td></td><td></td><td></td></td<>						www.we	WWWWWW	n na serve	Mandella	W. Marine Marine			
Occupied Bandwidth 19 032 MHz Video BW 4.0000 MHz* Span 40 MHz Occupied Bandwidth 19 032 MHz Measure Trace Trace 1 Transmit Freq Error -5 053 kHz % of OBW Power 99 00 %											<u> </u>		
Operation Measure Trace Trace 1 Occupied Bandwidth 10.032 MHz Total Power 21.5 dBm					1						<u>}</u> −		
Mode Mode Mode Mode Measure Trace Trace 1 Occupied Bandwidth 19 032 MHz Total Power 21.5 dBm Transmit Freq Error -5.053 kHz % of OBW Power 99.00 %					Mudan at						www.		
Occupied Bandwidth 19 032 MHz Video BW 4.0000 MHz* Span 40 MHz Sweep 1.00 ms (1001 pts) Occupied Bandwidth 19 032 MHz Measure Trace Trace 1 Transmit Freq Error -5.053 kHz % of OBW Power 99 00 %			the work was	www.Asspr-	al							and the form the second	and the second
nter 1.88250 GHz Span 40 MHz Sweep 1.00 ms (1001 pts) Retrices Occupied Bandwidth 19 032 MHz Transmit Freq Error -5.053 kHz % of OBW Power 99 00 %													
s BW 390.00 kHz Sweep 1.00 ms (1001 pts) letrics													
Itetrics								000 MHz	Video BW 4.00		· · ·		
Measure Trace Trace 1 19 032 MHz Total Power 21.5 dBm Transmit Freq Error -5 053 kHz % of OBW Power 99 00 %			ms (1001 pts)	Sweep 1.00									
Occupied Bandwidth Total Power 21.5 dBm 19 032 MHz Transmit Freq Error -5 053 kHz % of OBW Power 99 00 %												Y	trics
Occupied Bandwidth Total Power 21.5 dBm 19 032 MHz Transmit Freq Error -5 053 kHz % of OBW Power 99 00 %													
19.032 MHz Total Power 21.5 dBm Transmit Freq Error -5.053 kHz % of OBW Power 99.00 %					Trace 1	ice	Measure Tr				b	cupied Bandwid	0
				21.5 dBm			Total Power						
v dP Dandwidth 10.02 MHz						ower					r		
X db Baildwiddin 19.93 MHz X db -20.00 db	Loca			-26.00 dB			x dB			19.93 MHz		B Bandwidth	x


Plot 7-43. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 64QAM - Full RB)


Plot 7-44. Occupied Bandwidth Plot (NR Band n25/n2 - 20MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 36 of 217
			V2.2 09/07/2023

Plot 7-45. Occupied Bandwidth Plot (NR Band n25 - 25MHz DFT-s-OFDM π/2 BPSK - Full RB)


Plot 7-46. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM QPSK - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 37 of 217
			V2.2 09/07/2023

KEYSIG ≀L → ⊠	HT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off d #IF Gain: Low	Center Fr Avg Hold: Radio Sto			Frequency 500000 GHz	Settings
Graph	•						Span 50.000) MHz	
cale/Div 10.	0 dB		Ref Value 30.00) dBm			CF Ste	D	
20.0								000 MHz	
10.0								uto	
0.00		rennon	martinetications	and Marshandow	real production		M		
		/					Freq O 0 Hz	ffset	
						usilate.			
40.0 00000	mannewsplatin				· · · · ·	Magazan Manuna	unun		
Center 1.8825	50 GHz		Video BW 5.000	0 MHz*			Span 50 MHz		
Res BW 470.0			11400 811 0.000			Sweep 1.00 m			
2 Metrics	•			Measure Tra	ace Tra	ce 1			
	Occupied Bandwidth	1Hz		Total Power		22 1 dBm			
	Occupied Bandwidth 23.722 M Transmit Freg Error	1Hz -3.561 kHz		Total Power % of OBW F	ower	22.1 dBm 99.00 %			

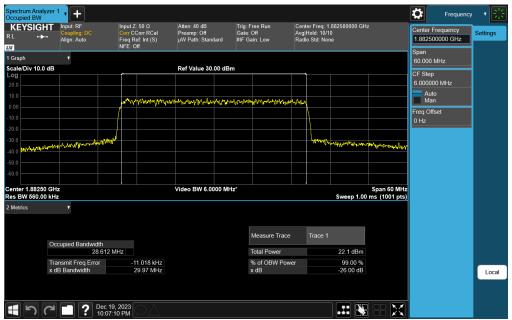
Plot 7-47. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 16QAM - Full RB)

Plot 7-48. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 38 of 217	
	·		V2.2 09/07/2023	

Graph ale/Div 10.0 dl 10	T B						o Std: Nor	U			00 GHz	
g	в									Span 50.000 MH	lz ,	
		_	Ref Value 30.	.00 dBm		_				CF Step		
										5.000000 N	иHz	
										Auto Man		
		have have have	hphanetaphlen	montrophyrap	www.mpapymanaa	hav.				Freq Offset		
		/					\			0 Hz		
							<u>}</u>					
		/						1				
.0 millionstranding	and the second second second						and the second	where and or you	mannan			
nter 1.88250 G	GHz		Video BW 5.00	000 MHz*					Span 50 MHz			
s BW 470.00 k	Hz							Sweep 1.00	ms (1001 pts)			
letrics	•				Measure Trace		Trace 1					
(Occupied Bandwidth				measure mace		fiace i					
	23.753 N	1Hz			Total Power			18.6 dBm				
	Transmit Freq Error dB Bandwidth	18.739 kHz 24.95 MHz			% of OBW Powe x dB	er		99.00 % -26.00 dB				
)	Cub Banuwidth	24.95 MHZ			XUB			-20.00 dB				Loca

Plot 7-49. Occupied Bandwidth Plot (NR Band n25 - 25MHz CP-OFDM 256QAM - Full RB)

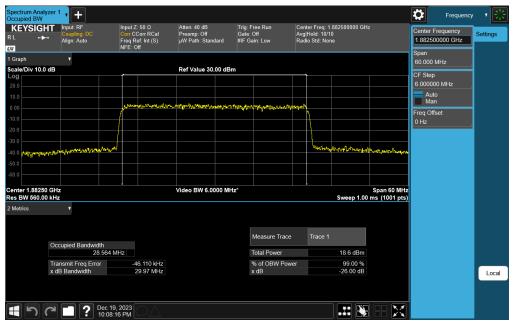

Plot 7-50. Occupied Bandwidth Plot (NR Band n25 - 30MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 39 01 217
	·		V2.2 09/07/2023

0.00 dBm		6 6 6 6 6 FI	Span 60.000 MHz SF Step 60.00000 MHz 60.00000 MHz Auto Man Freq Offset 0 Hz	
		Fi	CF Step 6.000000 MHz Auto Man Freq Offset	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			6.000000 MHz Auto Man	
			Man Freq Offset	
			Freq Offset	
			u Hz	
		Venpallutur Mary		
	An Jackins Jacking	and and a construction		
0000 MHz*		Span 60 MHz		
	Sweep 1.			
Measure Trac	ace Trace 1			
Total Power	22.0 dBn	n		
% of OBW Po	'ower 99.00 %	%		
x dB	-26.00 dE	В		Loca
	Measure Tra Total Power % of OBW F	Sweep 1. Measure Trace Trace 1 Total Power 22.0 dBv % of OBW Power 99.00 0	Sweep 1.00 ms (1001 pts) Measure Trace 1 Total Power 22.0 dBm % of OBW Power 99.00 %	Sweep 1.00 ms (1001 pts) Measure Trace Trace 1 Total Power 22 0 dBm % of OBW Power 99.00 %

Plot 7-51. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM QPSK - Full RB)

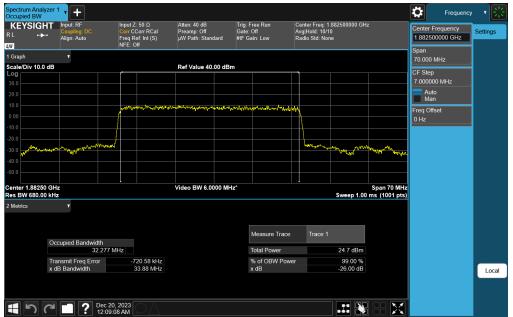



Plot 7-52. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 16QAM - Full RB)

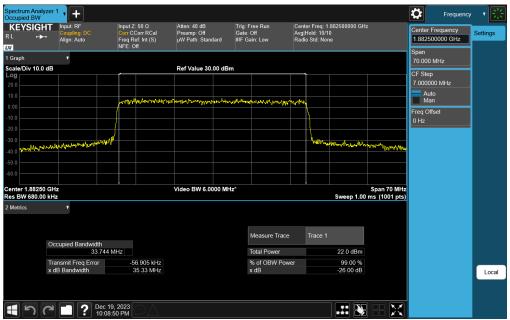
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 40 of 217
<u></u>	·		V2.2 09/07/2023



KEYSIG	HT Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Stand	Ga	g:FreeRun ate:Off Gain:Low	Avgl	er Freq: 1 Hold: 10/1 o Std: Nor			Center Frequency 1.882500000 GHz	Settings
Graph	•									Span 60.000 MHz	
cale/Div 10. og	0 dB		Ref Value 30.	00 dBm						CF Step	
										6.000000 MHz	
		mymudala	and an IMA and	aughters and a second	during a station	A . A 1 - 44				Auto Man	
			a a de la constante de la const	a Mar 6 - 16 a 4 144-	anna, alladdor i					Freq Offset	
							$\uparrow$			0 Hz	
-20.0		./					1				
-30.0	www.may.co.pay.wy.datest	hi					h Mirt	the way way way way way was a second	Montheast		
-40.0	х										
-50.0											
Center 1.882 Res BW 560.0			Video BW 6.00	000 MHz*				Sween 1 00	Span 60 MHz ms (1001 pts)		
2 Metrics	Y				Measure Tra	ce	Trace 1				
	Occupied Bandwidth										
	28.585				Total Power			21.6 dBm			
	Transmit Freq Error x dB Bandwidth	-34.718 kHz 30.02 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB			Loca


Plot 7-53. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 64QAM - Full RB)




Plot 7-54. Occupied Bandwidth Plot (NR Band n25 - 30MHz CP-OFDM 256QAM - Full RB)

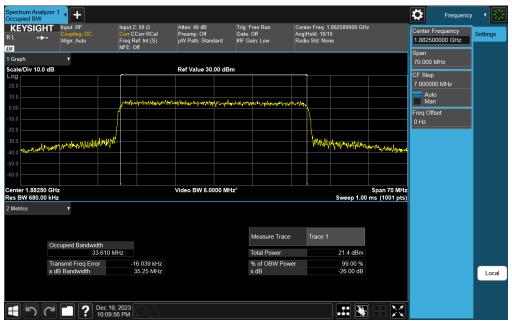
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 41 of 217	
			V2.2 09/07/2023	





Plot 7-55. Occupied Bandwidth Plot (NR Band n25 - 35MHz DFT-s-OFDM π/2 BPSK - Full RB)




Plot 7-56. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM QPSK - Full RB)

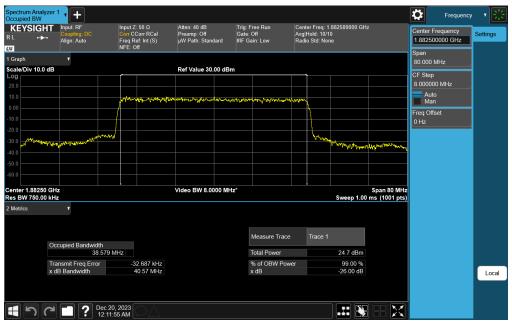
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 42 01 217
			V2.2 09/07/2023



Graph sale/Div 10.0 dB 99 0.0 0.0	•										
<b>9</b> 0.0 0.0										Span 70.000 MHz	
			Ref Value 30.	00 dBm						CF Step	<b>i</b> .
										7.000000 MHz	
			5 at 4							Auto Man	
00		When the states	wheelerder	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****************	mary	<b>\</b>			Freq Offset	
		<u>/</u>								0 Hz	
							<b> </b>				-
0.0	now want wat						Mayya	Marthank the second	montenant		
).0	Phild Inc. 1								and the state of the second		
nter 1.88250 GH		•	Video BW 6.00	000 MHz*					Span 70 MHz		
s BW 680.00 kH	Iz							Sweep 1.00	ms (1001 pts)		
<b>Netrics</b>	•										
0	ccupied Bandwidth				Measure Trac	e	Trace 1				
	33.691 N	1Hz			Total Power			22.1 dBm			
	ansmit Freq Error	35.512 kHz			% of OBW Po	wer		99.00 %			
x	dB Bandwidth	35.37 MHz			x dB			-26.00 dB			Loca

Plot 7-57. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 16QAM - Full RB)




Plot 7-58. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 64QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 43 01 217
			V2.2 09/07/2023



(EYSIG⊦ · ·≁ I		Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standa	Gate	Free Run Off ain: Low	Avgil	er Freq: 1 Hold: 10/1 p Std: Nor			Center Fred 1.8825000		Settings
Graph	•									Span 70.000 MH		
ale/Div 10.0	dB		Ref Value 30.00	0 dBm				1		CF Step		
0.0										7.000000 N	1Hz	
										Auto		
		Mandolahorman	warder of the second second	n distriction of the	unnumunn	-injins-lu				Man		
		1					\			Freq Offset 0 Hz		
							\			0112	ı	
							<u> </u>					
0.0 +++++++++++++++++++++++++++++++++++	www.man.com						how	alment and a failed	Montenan			
nter 1.88250												
nter 1.88250 s BW 680.00			Video BW 6.000	0 MHz				Sweep 1.00	Span 70 MHz ms (1001 pts)			
Metrics	•											
	Occupied Bandwidth				Measure Trace		Trace 1					
	33.689 M	IHz			Total Power			18.5 dBm				
	Transmit Freq Error	-50.018 kHz			% of OBW Pov	ver		99.00 %				
	x dB Bandwidth	35.27 MHz			x dB			-26.00 dB				Local

Plot 7-59. Occupied Bandwidth Plot (NR Band n25 - 35MHz CP-OFDM 256QAM - Full RB)



Plot 7-60. Occupied Bandwidth Plot (NR Band n25 - 40MHz DFT-s-OFDM π/2 BPSK - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 44 01 217
			V2.2 09/07/2023



aL →	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: Avg Hold: 10/ Radio Std: No		Center Frequency 1.882500000 GHz Span	Settings
Graph	T						Span 80.000 MHz	
cale/Div 10.0	dB	L,	Ref Value 30.00 d	Bm			CF Step	
20.0							8.000000 MHz	
							Auto Man	
		A ALAN A ALAN A A A A A A A A A A A A A	ana water water	ayon, is an interesting to the second second	www		Freq Offset	-
		/					0 Hz	
-30.0	have and grow work and				- Lun	*****		
	Appendix to the test					A THE OWNER AND A THE OWNER AND A		
-50.0								
Center 1.88250			Video BW 8.0000 N	/Hz*			80 MHz	
Res BW 750.0	v KHZ					Sweep 1.00 ms (10	J01 pts)	
2 Metrics								
2 Metrics								
2 Metrics	Or and Break with			Measure Tra	ce Trace 1	1		
2 Metrics	Occupied Bandwidth 38.609 M	IHz		Measure Tra	ce Trace 1	1 21.9 dBm		
2 Metrics	38.609 M Transmit Freq Error	-26.624 kHz		Total Power % of OBW P		21.9 dBm 99.00 %		
2 Metrics	38.609 N			Total Power		21.9 dBm		Loca
2 Metrics	38.609 M Transmit Freq Error	-26.624 kHz		Total Power % of OBW P		21.9 dBm 99.00 %		Loc

Plot 7-61. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM QPSK - Full RB)

KEYSIG L H 1	HT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off μW Path: Stan		ig: Free Run ate: Off F Gain: Low	Avgi	er Freq: 1 Hold: 10/1 o Std: Nor			Center Free 1.8825000		Settings
Graph	*									Span 80.000 MH	łz	
cale/Div 10. og	.0 dB		Ref Value 30	00 dBm						CF Step 8.000000 I	AL 1-	1
20.0										Auto	VIFIZ	
		property the property	warman	lowerstreet	white	176001-004				Man Freg Offset		
							}			0 Hz		
20.0												
40.0 <b>474/114</b>	NAM PARAMINAN IN THE AND A STREET	×					May yorge	an an angellan	merennestropa			
enter 1.882 Res BW 750.0			Video BW 8.0	000 MHz*				Sweep 1.00	Span 80 MHz ms (1001 pts)			
Metrics	۲											
	Occupied Bandwidth				Measure Tra	ce	Trace 1					
	38.526	MHz			Total Power			22.0 dBm				
	Transmit Freq Error x dB Bandwidth	-17.173 kHz 40.56 MHz			% of OBW P x dB	ower		99.00 % -26.00 dB				Loca
	, de suitanduit				Nub							Loca

Plot 7-62. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 16QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 45 01 217
			V2.2 09/07/2023



KEYSIG ≀L → M	HT Input: RF ← Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standard	Trig: Free Run Gate: Off #IF Gain: Low	Avg F	er Freq: 1 Hold: 10/1 Std: Nor			Center Frequency 1.882500000 GHz	Settings
Graph	T								Span 80.000 MHz	
cale/Div 10. .og	0 dB		Ref Value 30.00 d	#Bm					CF Step	
									8.000000 MHz	
		Marghamana	worklashen when we	anprodulation the second					Auto Man	
0.00									Freq Offset	
									0 Hz	
20.0 30.0										
40.0 -	war who and a provide that the	/				WWW AN	war many any hour	where he was an		
50.0										
				841.1-4				Cu 00 MU-		
enter 1.8825 les BW 750.0			Video BW 8.0000 I	MHZ			Sweep 1.00	Span 80 MHz ms (1001 pts)		
Metrics	•			Measure Tra	ace	Trace 1				
	Occupied Bandwidth 38.547 M	ИНZ		Total Power			21.4 dBm			
				% of OBW F	Power		99.00 %			
	Transmit Freq Error x dB Bandwidth	-46.150 kHz 40.48 MHz		70 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-26.00 dB			

Plot 7-63. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 64QAM - Full RB)

EYSIGI .→	Coupling: DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 40 dB Preamp: Off µW Path: Standa	Trig: Free Run Gate: Off rd #IF Gain: Low	Avgi	ter Freq: 1 Hold: 10/1 io Std: Nor			Center Frequency 1.882500000 GHz Span	Settings
raph ale/Div 10.0	v dR		Ref Value 30.00	) dBm					80.000 MHz	
8			Rei value 50.00						CF Step 8.000000 MHz	
.0									Auto	
		mannen	man Agenta Andreha	My to my sole ter to be from mostly	portuna				Man	
						\			Freq Offset 0 Hz	
0 8	phonormal and a second and a second	w				how	and an and the states	Admitheater		
.0								· · · · · · · · · · · · · · · · · · ·		
nter 1.8825			Video BW 8.000	0 MHz*				Span 80 MHz		
BW 750.0	0 kHz						Sweep 1.00	ms (1001 pts)		
eurcs										
				Measure Tra	ce	Trace 1				
	Occupied Bandwidth 38.654			Total Power			18.4 dBm			
	Transmit Freq Error	-106.61 kHz		% of OBW Po	wer		99.00 %			
	x dB Bandwidth	40.52 MHz		x dB			-26.00 dB			Loca

Plot 7-64. Occupied Bandwidth Plot (NR Band n25 - 40MHz CP-OFDM 256QAM - Full RB)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 40 01 217
	·		V2.2 09/07/2023



## WCDMA PCS

	Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCa Freq Ref: Int (S NFE: Off		Atten: 36 dB Preamp: Off μW Path: Standard	Trig: Free F Gate: Off #IF Gain: L		Center Freq Avg Hold: 10 Radio Std: N			Select Trace Trace 1	Trace 🔻	
oraph										Trace Type	Trace	
cale/Div 10.0 dl	3		_	Ref Value 40.00 dE	3m	-				Clear / Write	e Math	
_og 30.0										Trace Avera		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Max Hold	Dete	cto
		/								Min Hold	Trace Func	
10.0		لم ا				-				Restart Max	Hold Adva	ance
30.0	mm						man	mm		View/Blank		
40.0										 Active 		
50.0										- 		
										View		
enter 1.880000 es BW 150.00 k				Video BW 1.5000 N	lHz			Sweep 1.00 m	Span 15 MHz s (1001 pts)	Blank		
Metrics	v									Background		
					Mag	sure Trace	Trace	4				
(Occupied Bandwidth				wea	sule made	Trace	'				
		9 MHz			Total	Power		33.6 dBm				
	ransmit Freq Error dB Bandwidth	297 4.787 M			% of x dB	OBW Pow	rer	99.00 % -26.00 dB				
	do bullement				100			20.00 08				Loca
	Feb	07, 2024 27:38 PM										

Plot 7-65. Occupied Bandwidth Plot (WCDMA, Ch. 9400)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 47 01 217
			1/2 2 00/07/2023

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, §24.238(a)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data were reported.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 20GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

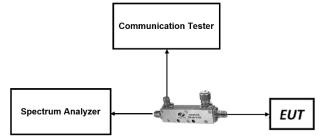
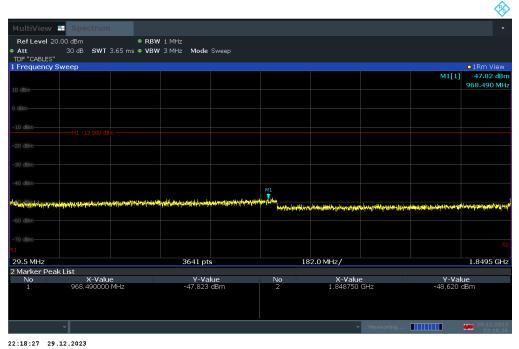
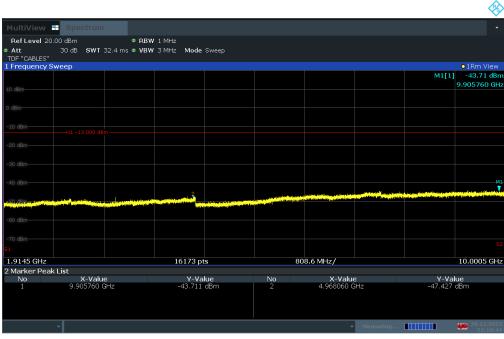


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 40 01 217
	·	-	V2 2 09/07/2023


Test Notes

- Per Part 24, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 3. NR band n25 overlaps the entire frequency range of NR band 2. Therefore, the conducted emissions data of NR band n25 provided in this report covers NR band n2.

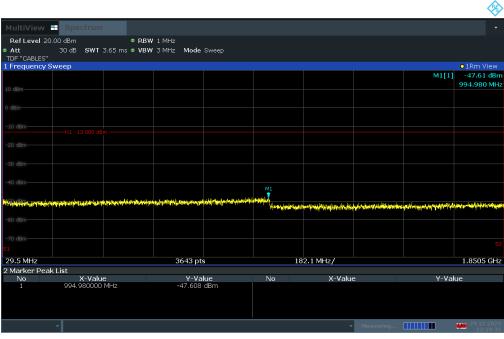

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 49 of 217
			\/2 2 09/07/2023

LTE Band 25/2

Plot 7-66. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

22:18:44 29.12.2023

Plot 7-67. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 50 01 217
			V2.2 09/07/2023

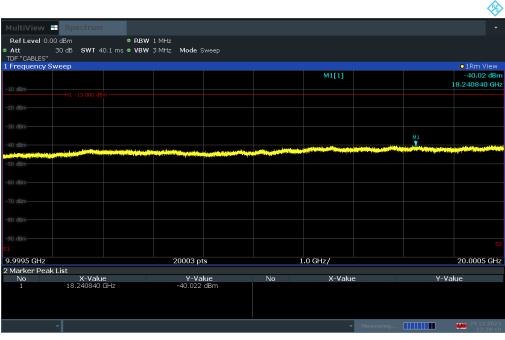
									(*)
MultiView	Spectrum								•
Ref Level 0.0	00 dBm	• RBW :	1 MHz						
 Att TDF "CABLES" 	30 dB SWT 40.	1 ms 🗢 VBW 🤇	3 MHz Mode S	Sweep					
1 Frequency S	weep								o1Rm View
-10 dBm								M1[1]	-39.65 dBm 19.686770 GHz
-10 dBm-	H1 -13.000 dBm								
-20 dBm									
-30 dBm									
-40 dBm			at an ann an Albandar an t-st		and a second state				M1
And public damages of the party		Contraction of the local division of the loc	and the second	the second state of second states and	I STATE AND A DESCRIPTION OF THE OWNER				
-50 dBm									
-60 dBm									
-70 dBm-									
-80 dBm									
-90 dBm									
S1									
9.9995 GHz			20003 pt	ts		1.0 GHz/			20.0005 GHz
2 Marker Peal									
No 1	X-Value 19.686770 G		Y-Va -39.654	lue dBm	No	X-Valu	2	Y-Va	ue
	*					~	Measuring		29.12.2023 22:19:02

22:19:02 29.12.2023

Plot 7-68. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

22:19:35 29.12.2023

Plot 7-69. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 51 01 217
	·	•	V2.2 09/07/2023

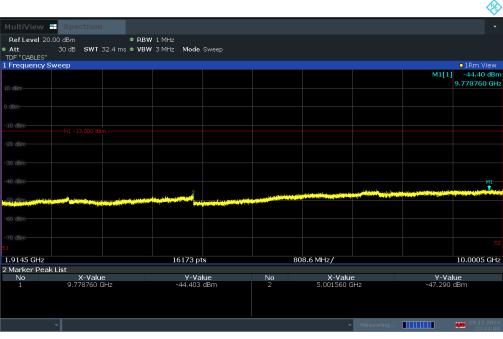
									\$
MultiView	Spectrum								
Ref Level 20	.00 dBm	• RBW	1 MHz						
Att	30 dB SWT :	32.4 ms 🗢 VBW	3 MHz Mode	Sweep					
TDF "CABLES"									
1 Frequency S	weep								●1Rm View
								M1[1]	-44.08 dBm 9.749770 GHz
10 dBm									9.749770 GH2
0 dBm									
-10 dBm									
00.10									
-20 dBm									
-30 dBm-									
-30 ubm-									
-40 dBm									M1
							and the second state of the second state		
-SB dBm			a destaurantes a series a s				Statement Statements and statements and	-	The Lotter I and an and the Contraction
And Association of the local division of the	THE R. LEWIS CO., LANSING MICH.	And in case of the local data		Contrast of the second s					
-60 dBm									
-70 dBm									e 9
S1									52
1.9145 GHz			16173 p	ts	80	08.6 MHz/			10.0005 GHz
2 Marker Peak	List								
No	X-Valu	e	Y-Va	lue	No	X-Valu		Y-Va	
1	9.749770 0	iHz	-44.076	dBm		4.969560 0	iHz	-47.461	dBm
					I				29.12.2023
						*	Measuring		22:19:52

22:19:53 29.12.2023

Plot 7-70. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

22:20:10 29.12.2023

Plot 7-71. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 52 01 217
			V2.2 09/07/2023

				*
MultiView 🕂 Spectrum				
Ref Level 20.00 dBm • F	RBW 1 MHz			
● Att 30 dB SWT 3.65 ms ● N TDF "CABLES"	/BW 3 MHz Mode Sweep			
1 Frequency Sweep				●1Rm View
				M1[1] -47.82 dBm
10 dBm				944.500 MHz
0 dBm				
-10 dBm				
-20 dBm-				
00 10				
-30 dBm-				
-40 dBm-				
		M1		
NATION CONTRACTOR AND A CO	internal all the formation of the second	and the second sec	والماران والمحمد ومناد والمناطر المساولة المراجع والمارين	الجمورة فيرديه فأكالها الإسكامة فيرادان بتله فسيته أطارها ألاعتها ولتوال عاط والعاد والمعاديا
		or back filling off a	concerning an official hand the second second	
-60 dBm-				
-70 dBm-				
51				
29.5 MHz	26.42			1.8505 GHz
29.5 MHZ 2 Marker Peak List	3643 pts	16	32.1 MHz/	1.8505 GHZ
No X-Value	Y-Value	No	X-Value	Y-Value
1 944.500000 MHz	-47.819 dBm	110	in raido	, raido
*			✓ Measuri	ng 29.12.2023 22:20:43

22:20:43 29.12.2023

Plot 7-72. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

22:21:01 29.12.2023

Plot 7-73. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 55 01 217
			V2.2 09/07/2023

MultiView	Spectrum							•
Ref Level 0.0	00 dBm	RBW 1 MHz						
 Att 	30 dB SWT 40.1 ms 🕯	VBW 3 MHz Mode 3	Sweep					
TDF "CABLES" 1 Frequency S								•1Rm View
1 Frequency S	weep						M1[1]	-39.73 dBm
								19.308280 GHz
-10 dBm								
-20 dBm								
-30 dBm								
								M1
-40 dBm-	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PRO	and a second state of the state of the second state of the	a station of the second station of the second state of the second			in an in the second states in		
-50 dBm	a service with a service with the service of the se			and the second				
-50 ubin								
-60 dBm								
-70 dBm								
-80 dBm-								
-90 dBm-								
51								52
9.9995 GHz		20003 pi			1.0 GHz/			20.0005 GHz
2 Marker Peak	< List	20000 p						
No	X-Value	Y-Va		No	X-Value	:	Y-Va	lue
1	19.308280 GHz	-39.728	dBm					
	•				~	Measurinq		29.12.2023
								22:21:18

22:21:18 29.12.2023

Plot 7-74. Conducted Spurious Plot (LTE Band 25/2 - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 54 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 54 of 217
		·	V2 2 09/07/2023

NR Band n25/n2

Plot 7-75. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-76. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 55 01 217
		-	V2 2 09/07/2023

Plot 7-77. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-78. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 56 01 217
			V2.2 09/07/2023

Plot 7-79. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-80. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - Mid Channel)

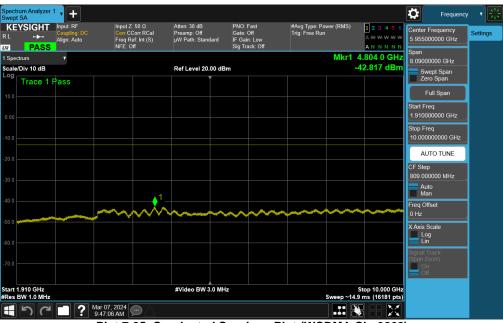
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 57 of 217
			V2.2 09/07/2023

Plot 7-81. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)

Plot 7-82. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 56 01 217
	-		V2.2 09/07/2023

Plot 7-83. Conducted Spurious Plot (NR Band n25/n2 - 40.0MHz - RB Size 1, RB Offset 0 - High Channel)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 217
1C2311270066-08.BCG	6-08.BCG 10/01/2023 - 03/07/2024 Tablet Device		Fage 59 01 217
			V2.2 09/07/2023

WCDMA PCS

EYSIGHT Coupling: DC Align: Auto PASS	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS) Trig: Free Run	1 2 3 4 5 6 A \two transformed with transformed and transforme	Center Frequency 937.500000 MHz Span	Settin
ectrum v le/Div 10 dB		Ref Level 20.00 dBr	n		1.841 5 GHz 48.847 dBm	1.81500000 GHz	
Trace 1 Pass						Zero Span Full Span	
						Start Freq 30.000000 MHz	
						Stop Freq 1.845000000 GHz	
,						AUTO TUNE	
						CF Step 181.500000 MHz	
						Auto Man	
)					1	Freq Offset 0 Hz	
) 	ىرىدىرە بولىرىمىرىمىيە بەرەتلەك مەدەپىرە يەرەتلەر بەرەتلەر بەرەتلەر بەرەتلەر بەرەتلەر بەرەتلەر بەرەتلەر بەرەتلە		and a second			X Axis Scale Log Lin	
						Signal Track (Span Zoom) On Off	
t 0.0300 GHz s BW 1.0 MHz		#Video BW 3.0 MH:	2		Stop 1.8450 GHz 43 ms (3641 pts)		

Plot 7-84. Conducted Spurious Plot (WCDMA Ch. 9262)

Plot 7-85. Conducted Spurious Plot (WCDMA Ch. 9262)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 60 01 217
			V2.2 09/07/2023

Spectrum Analyzer Swept SA							Frequency	، ا
RL PASS	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 10 dB Preamp: Off µW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS) Trig: Free Run	1 2 3 4 5 6 A \times \ times \times \titmes \times \times \times \times \times \times \times	Center Frequency 15.000000000 GHz	Settings
1 Spectrum Scale/Div 10 dB Log	•		Ref Level 0.00 dE	3m		9.752 0 GHz 58.960 dBm	Span 10.0000000 GHz Swept Span	
-10.0 Trace 1	Pass						Zero Span Full Span	
							Start Freq 10.000000000 GHz	
							Stop Freq 20.000000000 GHz	
							AUTO TUNE CF Step	
						1	1.00000000 GHz Auto Man	
-60.0	·~~~						Freq Offset 0 Hz	
-80.0							X Axis Scale Log Lin	
							Signal Track (Span Zoom) On	
Start 10.000 GHz #Res BW 1.0 MHz			#Video BW 3.0 M	Hz		Stop 20.000 GHz ms (20001 pts)	Off	
ی ا		Mar 07, 2024 9:47:35 AM						

Plot 7-86. Conducted Spurious Plot (WCDMA Ch. 9262)

Spectr Swept	um Analyzer SA	1 • +									Frequenc	, , 😤
KE` RL I∭	YSIGHT • • •• PASS	Input: RF Coupling: DC Align: Auto		Corr RCal af: Int (S)	Atten: 30 dB Preamp: Off μW Path: Stand	ard If	PNO: Fast Sate: Off F Gain: Low Sig Track: Off	#Avg Type: Powe Trig: Free Run		1 2 3 4 5 6 A W W W W A N N N N N	Center Frequency 940.000000 MHz Span	Settings
	trum Div 10 dB	T			Ref Level 20.	00 dBm				1.849 5 GHz -39.053 dBm	1.82000000 GHz	
Log	Trace 1	Pass									Zero Span	
10.0 -											Full Span Start Freq	
0.00 -											30.000000 MHz Stop Freq	
-10.0											1.85000000 GHz	
-20.0 -											AUTO TUNE CF Step	
-30.0 -										4	182.000000 MHz	
-40.0 -											Man Freq Offset	
-50.0 -			a submedia barbarbarbarbarb		all the strategies of	alay indonesia ana sala ha	*****		and the second	الاستيدان والمحافظ والمسو المطير معتول مادوده	0 Hz X Axis Scale	
-60.0											Log Lin	
-70.0											Signal Track (Span Zoom) On	
											Off	_
	0.0300 GHz BW 1.0 MHz				#Video BW 3	.0 MHz			Sweep 2	Stop 1.8500 GHz .43 ms (3641 pts)		
	って	2	Mar 07, 2024 9:48:02 AM	$\square \triangle$								

Plot 7-87. Conducted Spurious Plot (WCDMA Ch. 9400)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 61 01 217
-			V2.2 09/07/2023

Plot 7-88. Conducted Spurious Plot (WCDMA Ch. 9400)

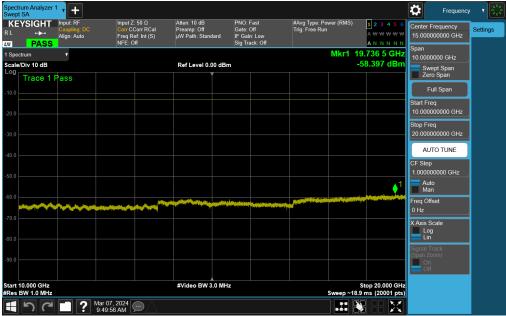
Spectrum Analyzer 1						Frequency	- 7 景
KEYSIGHT Input: RF R L		Atten: 10 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS) Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 15.00000000 GHz Span	Settings
1 Spectrum v Scale/Div 10 dB		Ref Level 0.00 dBm			9.870 0 GHz -58.770 dBm	10.0000000 GHz	
Log Trace 1 Pass			n		-30.770 uBill	Swept Span Zero Span	
-10.0						Full Span	
-20.0						Start Freq 10.000000000 GHz	
-30.0						Stop Freq 20.000000000 GHz	
-40.0						AUTO TUNE	
-50.0						CF Step 1.000000000 GHz	
-60.0					Ş	Auto Man	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Freq Offset 0 Hz	
-70.0						X Axis Scale Log Lin	
-90.0						Signal Track (Span Zoom) On	
						Off Off	
Start 10.000 GHz #Res BW 1.0 MHz		#Video BW 3.0 MHz	2	Sweep ~18	Stop 20.000 GHz .9 ms (20001 pts)		
	Mar 07, 2024 9:48:47 AM						

Plot 7-89. Conducted Spurious Plot (WCDMA Ch. 9400)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 62 of 217
<b>1</b>	· · · · · · · · · · · · · · · · · · ·		V2.2 09/07/2023



EPT SA	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 30 dB Preamp: Off μW Path: Standard	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS) Trig: Free Run	1 2 3 4 5 6 A₩₩₩₩₩ A N N N N N	Center Frequency 940.000000 MHz	Setting
pectrum v ale/Div 10 dB		Ref Level 20.00 dB	m		1.850 0 GHz 30.504 dBm	Span 1.82000000 GHz	
Trace 1 Pass						Zero Span Full Span	
						Start Freq 30.000000 MHz	
						Stop Freq 1.850000000 GHz	
						AUTO TUNE	
					1	182.000000 MHz Auto Man	
					<u></u>	Freq Offset 0 Hz	
) } }		96-97-97-97-97-97-97-97-97-97-97-97-97-97-	antra ant	ny ny defending and a statistic dig a data a statistic dig a data a statistic digana data a statistic di statis		X Axis Scale Log Lin	
						Signal Track (Span Zoom) On Off	
t 0.0300 GHz s BW 1.0 MHz		#Video BW 3.0 MH	z		Stop 1.8500 GHz I3 ms (3641 pts)		


Plot 7-90. Conducted Spurious Plot (WCDMA Ch. 9538)



Plot 7-91. Conducted Spurious Plot (WCDMA Ch. 9538)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Page 63 01 217
<b>-</b>			V2.2 09/07/2023





Plot 7-92. Conducted Spurious Plot (WCDMA Ch. 9538)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 04 01 217
			V2.2 09/07/2023



### 7.4 Band Edge Emissions at Antenna Terminal

<u>§2.1051, §24.238(a)</u>

### Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. All ports were tested and only the worst case data was reported.

# The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$ , where P is the transmitter power in Watts.

### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

### Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW  $\geq$  3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

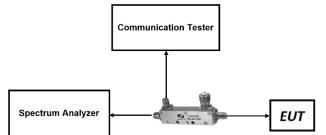



Figure 7-3. Test Instrument & Measurement Setup

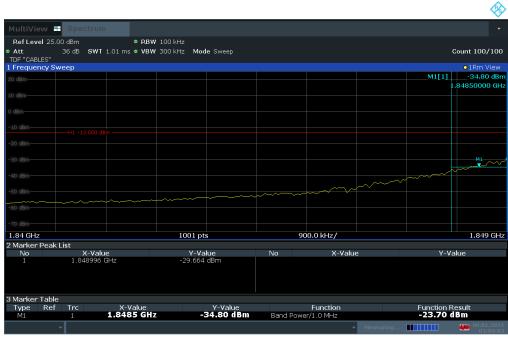
FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 05 01 217
			V2.2 09/07/2023



### Test Notes

- 1. Per 24.238(a), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 66 01 217
			\/2 2 09/07/2023




## LTE Band 25

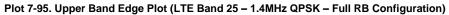
		RBW 20 kHz				
Att DF "CABLES"		VBW 100 kHz Mode Sweep			Count 1	00/10
Frequency S	Sweep					tm Viev
						4.24 dI
					1.84998	3930 G
0 dBm						
			M1			
			1			
) dBm						
) dBm						
849 GHz		1001 pts	170	).0 kHz/	1.8	507 G
Marker Pea						
No 1	X-Value 1.849989 GHz	Y-Value -24,239 dBm	No	X-Value	Y-Value	
	1.049909 GHZ	-24.259 dbiii				

03:09:21 06.01.2024

#### Plot 7-93. Lower Band Edge Plot (LTE Band 25 – 1.4MHz QPSK – Full RB Configuration)



03:09:03 06.01.2024




FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage of 01217
			V2.2 09/07/2023

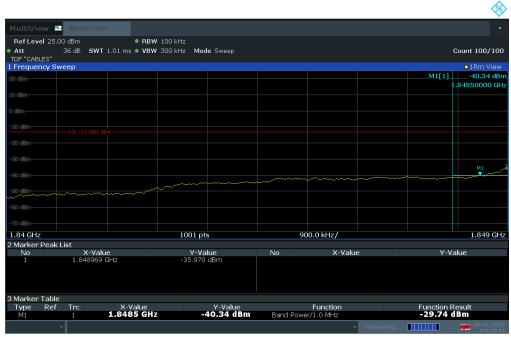


MultiView 🖶	Spectrum						
Ref Level 25.00	OdBm 4	RBW 20 kHz					
Att TDF "CABLES"	36 dB <b>SWT</b> 1.01 ms (	VBW 100 kHz M	ode Sweep				Count 100/100
Frequency Sw	еер						•1Rm View
20 dBm						N	11[1] -24.67 dB
							1.91501070 G
0 dBm							
	~~~~						
			M1				
				·			
50 dBm							
50 dBm							
.9143 GHz		1001	ate		170.0 kHz/		1.916 Gł
Marker Peak L	ist	1001			1701010112/		11710 0
No	X-Value		/alue	No	X-Value		Y-Value
	1.915011 GHz	-24.67	'4 dBm				

03:09:53 06.01.2024

03:10:10 06.01.2024

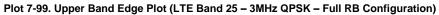
Plot 7-96. Extended Upper Band Edge Plot (LTE Band 25 – 1.4MHz QPSK – Full RB Configuration)

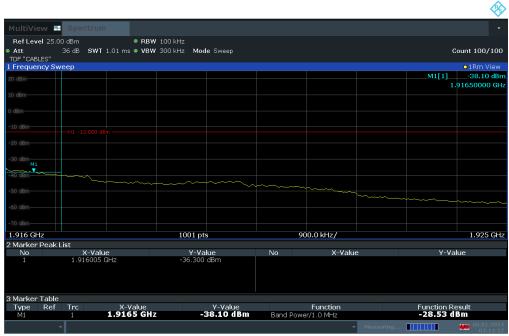

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage to UI 217
	·		V2.2 09/07/2023

MultiView 📒	Spectrum				
Ref Level 25.		RBW 30 kHz			
Att TDF "CABLES"	36 dB SWT 1.06 ms 🖷	VBW 100 kHz Mode Sweep			Count 100/100
Frequency Sv	weep				●1Rm View
20 dBm					M1[1] -25.09 dB
					1.84998530 G
0 dBm					
			~~~~		
		MI			
		*			
	~~~~~				
48 d8m					
1.849 GHz		1001 pts		250.0 kHz/	1.8515 G
Marker Peak					
No	X-Value 1.849985 GHz	Y-Value -25.088 dBm	No	X-Value	Y-Value
	1.649965 GHZ	-23.088 dBm			
					ing 06.01.202
	Ť			👻 Measuri	ing ••••••••••••••••••••••••••••••••••

03:11:02 06.01.2024

03:10:45 06.01.2024


Plot 7-98. Extended Lower Band Edge Plot (LTE Band 25 – 3MHz QPSK – Full RB Configuration)

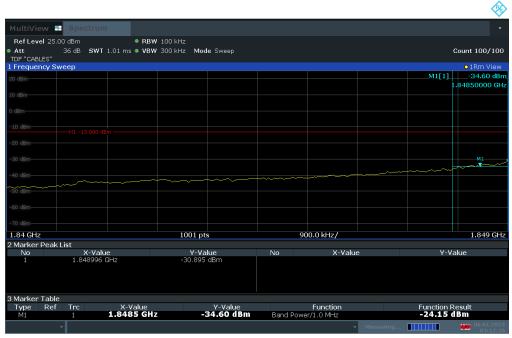

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 09 01 217
<u></u>		·	V2.2 09/07/2023

MultiView 📕	Spectrum							
Ref Level 25.0	0 dBm	• RBW 30 kHz						
Att TDF "CABLES"	36 dB SWT 1.06 ms	• VBW 100 kHz Mod	sweep				C	Count 100/100
Frequency Sw	/eep							•1Rm View
20 dBm							M1[1]	-25.82 dB
							1.	.91501470 GI
		~~~~						
20 dBm								
					1			
						~~~		
50 dBm								
.9135 GHz		1001 pts		25(0.0 kHz/			1.916 G
Marker Peak L	_ist				,			
No	X-Value	Y-Val	ue	No	X-Value	:	Y-Va	lue
	1.915015 GHz	-25.819	IDITI-					
					~	Measuring		06.01.202

03:11:35 06.01.2024

03:11:52 06.01.2024

Plot 7-100. Extended Upper Band Edge Plot (LTE Band 25 – 3MHz QPSK – Full RB Configuration)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Fage 70 01 217
			V2.2 09/07/2023

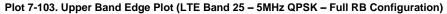
NultiView 🖬 Spe RefLevel 25.00 dBm	• P	BW 50 kHz						
Att 36 dB TDF "CABLES"	SWT 1.04 ms 🗢 V	BW 200 kHz Mo	de Sweep				C	Count 100/10
Frequency Sweep								o1Rm View
0 dBm							M1[1]	-25.77 dB
							1.	.84997380 GI
		· · · · · ·				~		
		1						
		\sim						
30 dBm	~~~							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
50 dBm								
70 dBm								
1.849 GHz		1001 p	ts		350.0 kHz/			1.8525 G
Marker Peak List No	X-Value	Y-V	2010	No	X-Value		Y-Va	lue
	49974 GHz	-25.76	7 dBm	NU	∧-¥aiut	;	. 1-Va	liue
1 1.8	49974 GHZ	-25.76.	/ aBm					

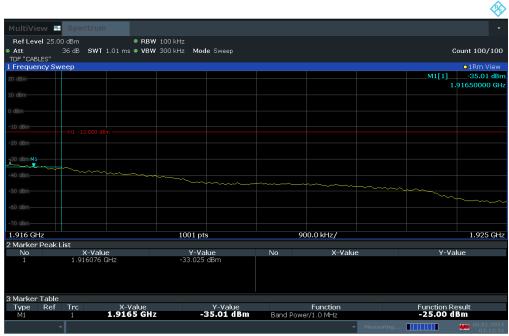
03:12:44 06.01.2024





03:12:27 06.01.2024


Plot 7-102. Extended Lower Band Edge Plot (LTE Band 25 – 5MHz QPSK – Full RB Configuration)


FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 217
1C2311270066-08.BCG	10/01/2023 - 03/07/2024 Tablet Device		Fage / 1 01 217
			V2.2 09/07/2023



MultiView	Spectrum							•
Ref Level 25.0	00 dBm	• RBW 50 kHz						
<ul> <li>Att TDF "CABLES"</li> </ul>	36 dB <b>SWT</b> 1.04	ms 🗢 VBW 200 kHz 🛛 Mo	de Sweep					Count 100/100
1 Frequency Sv	weep							•1Rm View
20 dBm-				M1[:	1]			-26.42 dBm
LO GDIII								1.91502620 GHz
10 dBm								
			+					
0 dBm								
-10 dBm								
10 000					+			
-20 dBm					+			
						× 1		
-30 dBm							· ,	
-40 dBm-								
i o dbiii								
-50 dBm								
-60 dBm								
-70 dBm-								
1.9125 GHz 2 Marker Peak	Liet	1001 p	ts	3	50.0 kHz/			1.916 GHz
No	X-Value		alue	No	X-Value	e	 Y-V	alue
1	1.915026 GHz	-26.41	7 dBm					
					~	Measuring		06.01.2024 03:13:17
								03:13:17

03:13:17 06.01.2024





03:13:34 06.01.2024

Plot 7-104. Extended Upper Band Edge Plot (LTE Band 25 – 5MHz QPSK – Full RB Configuration)

FCC ID: BCGA2899	element	PART 24 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 217	
1C2311270066-08.BCG	10/01/2023 - 03/07/2024	Tablet Device	Faye 12 01 217	
	·		V2.2 09/07/2023	