

TEST REPORT

Test Report No. : UL-RPT-RP14614878JD04A

Customer	:	Apple Inc.
Model No.	:	A2874
FCC ID	:	BCGA2874
Technology	:	NB-FHSS
Test Standard(s)	:	FCC Parts 15.209(a) & 15.407

- **Test Laboratory** : UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom
- 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. Version 1.0

Date of Issue:

17 April 2023

Checked by:

WELDERS.

Sarah Williams RF Operations Leader, Radio Laboratory

Company Signatory:

PAllece

Ben Mercer Lead Project Engineer, Radio Laboratory

Customer Information

Company Name:	Apple Inc.
Address:	One Apple Park Way Cupertino, California 95014 U.S.A.
Contact Name:	Stuart Thomas

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	17/04/2023	Initial Version	Sarah Williams

Table of Contents

Customer Information	2
Report Revision History	2
 1 Attestation of Test Results. 1.1 Description of EUT 1.2 General Information 1.3 Summary of Test Results 1.4 Deviations from the Test Specification 	4 4 4 5 5
 2 Summary of Testing. 2.1 Facilities and Accreditation 2.2 Methods and Procedures 2.3 Calibration and Uncertainty 2.4 Test and Measurement Equipment 	6 6 7 8
 3 Equipment Under Test (EUT) 3.1 Identification of Equipment Under Test (EUT) 3.2 Modifications Incorporated in the EUT 3.3 Additional Information Related to Testing 3.4 Description of Available Antennas 3.5 Description of Test Setup 	10 10 10 11 12 13
 4 Antenna Port Test Results	19 19 21 22 42 62 83 105 127 127 132
 5 Radiated Test Results. 5.1 Transmitter Out of Band Radiated Emissions <1 GHz 5.2 Transmitter Out of Band Radiated Emissions >1 GHz 5.2.1 5.15-5.25 GHz band 5.2.2 5.725-5.85 GHz band 5.3 Transmitter Band Edge Radiated Emissions 5.3.1 5.15-5.25 GHz band 5.3.2 5.725-5.85 GHz band 	137 139 139 142 145 145 145 161

1 Attestation of Test Results

1.1 Description of EUT

The equipment under test was an Apple desktop computer with Bluetooth® Low Energy, Thread and IEEE 802.11 a/b/g/n/ac/ax Wi-Fi capabilities in the 2.4 GHz, 5 GHz and 6 GHz bands.

1.2 General Information

Specification Reference:	47CFR15.407 and 47CFR15.403	
Specification Title:	n Title: Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart E (Unlicensed National Information Infrastructure Devices) – Sections 15.403 and 15.407	
Specification Reference:	47CFR15.209	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.209	
Site Registration:	685609	
Lab. Designation No.:	UK2011	
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom	
Test Dates:	17 January 2023 to 13 March 2023	

FCC Reference (47CFR)	Measurement	Result
Part 15.35(c)	Transmitter Duty Cycle	Note 1
Part 15.403	Transmitter 26 dB Emission Bandwidth	Complied
Part 15.407(e)	Transmitter Minimum 6 dB Bandwidth (5.725-5.85 GHz band)	Complied
Part 15.407(a)(1)(iv)	Transmitter Maximum Conducted Output Power (5.15-5.25 GHz band)	Complied
Part 15.407(a)(3)(i)	Transmitter Maximum Conducted Output Power (5.725-5.85 GHz band)	Complied
Part 15.407(a)(1)(iv)	Transmitter Maximum Power Spectral Density (5.15-5.25 GHz band)	Complied
Part 15.407(a)(3)(i)	Transmitter Maximum Power Spectral Density (5.725-5.85 GHz band)	Complied
Part 15.407(b) & 15.209(a)	Transmitter Out of Band Radiated Emissions	Complied
Part 15.407(b) & 15.209(a)	Transmitter Band Edge Radiated Emissions	Complied
Part 15.407(g)	Transmitter Frequency Stability (Temperature & Voltage Variation)	Note 2

1.3 Summary of Test Results

Note(s):

- 1. The measurement was performed to assist in the calculation of the level of average output power, power spectral density and emissions as the EUT employs pulsed operation.
- 2. Frequency stability is better than 20 ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specifications identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	Х
Site 2	-
Site 17	Х

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 December 14, 2017
Title:	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E)
Reference:	KDB 662911 D01 Multiple Transmitter Output v02r01 October 31, 2013
Title:	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Duty Cycle	5.15 GHz to 5.850 GHz	95%	±1.14 %
26 dB Emission Bandwidth	5.15 GHz to 5.850 GHz	95%	±4.59 %
Minimum 6 dB Emission Bandwidth	5.15 GHz to 5.850 GHz	95%	±4.59 %
Maximum Conducted Output Power	5.15 GHz to 5.850 GHz	95%	±1.13 dB
Maximum Power Spectral Density	5.15 GHz to 5.850 GHz	95%	±1.13 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.32 dB
Radiated Spurious Emissions	1 GHz to 40 GHz	95%	±3.30 dB
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	±3.16 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

<u>Test Equipment Used for Transmitter Duty Cycle, Minimum 6 dB Bandwidth (5.725-5.85 GHz band), Maximum Conducted Output Power and Power Spectral Density</u>

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2037	Thermohygrometer	Testo	608-H1	45124925	08 Dec 2023	12
M2018	Signal Analyser	Rohde & Schwarz	FSV7	102699	05 Oct 2023	12
G0614	Signal Geneator	Rohde & Schwarz	SMB100A	177687	19 May 2023	36
A213953	Attenuator	Atlantic Microwave	ATT10KXP- 483082-N4N5	21415050	Calibrated before use	-

Test Equipment Used for Transmitter 26 dB Emission Bandwidth

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2037	Thermohygrometer	Testo	608-H1	45124925	08 Dec 2023	12
M231905	Signal Analyser	Keysight	N9020B	MY63430222	25 Dec 2023	12
G0614	Signal Geneator	Rohde & Schwarz	SMB100A	177687	19 May 2023	36
A213953	Attenuator	Atlantic Microwave	ATT10KXP- 483082-N4N5	21415050	Calibrated before use	-

Test and Measurement Equipment (continued)

Test Equipment Used for Transmitter Radiated Emissions

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	09 Dec 2023	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	05 Sep 2023	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	19 May 2023	12
A3154	Pre-Amplifier	Com Power	PAM-103	18020012	18 Aug 2023	12
A3161	Antenna	Teseq	CBL6111D	50859	03 May 2023	12
A3113	Attenuator	AtlanTecRF	AN18-06	219706#3	03 May 2023	12
A3085	Low Pass Filter	AtlanTecRF	AFL-02000	18051600014	26 Jan 2024	12
A3165	Magnetic Loop Antenna	ETS-Lindgren	6502	00224383	05 May 2023	12
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2023	12
K0017	3m RSE Chamber	Rainford	N/A	N/A	08 Nov 2023	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	02 Nov 2023	12
A2863	Pre Amplifier	Agilent	8449B	3008A02100	07 Nov 2023	12
A223628	Pre Amplifier	Atlantic Microwave	A-LNAKX- 380116-S5S5	210837001	02 Nov 2023	12
A3265	Pre Amplifier	Schwarzbeck	BBV 9721	9721-069	31 Oct 2023	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	00653	02 Nov 2023	12
A2890	Antenna	Schwarzbeck	HWRD 750	014	02 Nov 2023	12
A2892	Antenna	Schwarzbeck	BBHA 9170	9170-727	31 Oct 2023	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	25 Jan 2024	12
A212038	High Pass Filter	Micro-Tronics	HPS20723	004	25 Jan 2024	12
A2947	High Pass Filter	AtlanTecRF	AFH-07000	1601900001	25 Jan 2024	12

Test Equipment Used for Transmitter Band Edge Radiated Emissions

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2023	12
K0017	3m RSE Chamber	Rainford	N/A	N/A	08 Nov 2023	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	02 Nov 2023	12
A2863	Pre Amplifier	Agilent	8449B	3008A02100	07 Nov 2023	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	25 Jan 2024	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	B653	02 Nov 2023	12

<u>3 Equipment Under Test (EUT)</u>

3.1 Identification of Equipment Under Test (EUT)

Brand Name:	Apple
Model Name or Number:	A2874
Test Sample Serial Number:	RHKHHQ9YHK (Conducted sample)
Hardware Version:	REV 1.0
Software Version:	22E31551a
FCC ID:	BCGA2874
Date of Receipt:	21 February 2023

Brand Name:	Apple
Model Name or Number:	A2874
Test Sample Serial Number:	NQHHW969D9 (Radiated sample)
Hardware Version:	REV 1.0
Software Version:	22E31550w
FCC ID:	BCGA2874
Date of Receipt:	10 January 2023

3.2 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3 Additional Information Related to Testing

Technology Tested:	NarrowBand FHSS	6		
Type of Unit:	Transceiver			
Mode:	Basic Rate	High Data Rate		
Modulation:	GFSK	π/4-DQPSK		
Packet Type (Maximum Payload):	DH5	4DH5 8DH5		8DH5
Data Rate (Mbit/s):	1	4	4 8	
Power Supply Requirement:	Nominal	12 VDC via	120 VAC	60 Hz adaptor
Maximum Conducted Output Power:	DH5	12.4 dBm		
	4DH5	16.8 dBm		
	8DH5	15.3 dBm		
Channel Bandwidth(s):	1, 2 & 4 MHz			
Transmit Frequency Range:	5150 MHz to 5250 MHz			
Transmit Channels Tested:	Channel ID		Channel Frequency (MHz)	
	Bottom	ı		5162
	Middle	•		5203
	Тор			5245
Transmit Frequency Range:	5725 MHz to 5850 MHz			
Transmit Channels Tested:	Channel ID		Channel Frequency (MHz)	
	Bottom	ı		5733
	Middle	5788		5788
	Тор		5844	

3.4 Description of Available Antennas

The radio utilizes two integrated antennas, with the following maximum gains:

Antenna Port	Frequency Range (MHz)	Antenna Gain (dBi)
Core 0	5150 to 5250	4.9
Cole 0	5725 to 5850	4.4
Core 1	5150 to 5250	6.0
Core I	5725 to 5850	5.9

The EUT also supports TxBF with unequal gains and equal transmit powers. Calculations for directional gain were in accordance with KDB 662911 D01 v02r01 Section F)2)d)(i). Directional gain of Core 0 & Core 1 was calculated as:

Frequency Band 5150-5250 MHz

Nss=1, NANT=2, $G_1 = G_{Core 0} = 4.9 \text{ dBi}$, $G_2 = G_{Core 1} = 6.0 \text{ dBi}$:

Directional Gain =
$$10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} + \dots + 10^{\frac{G_N}{20}} \right)^2}{N_{ANT}} \right] = 10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} \right)^2}{2} \right]$$

= $10 \log \left[\frac{\left(10^{\frac{4.9}{20}} + 10^{\frac{6.0}{20}} \right)^2}{2} \right] = 8.5 \text{ dBi}$

Frequency Band 5725-5850 MHz

N_{SS}=1, N_{ANT}=2, $G_1 = G_{ANTENNA Core 0} = 4.4 \text{ dBi}$, $G_2 = G_{ANTENNA Core 1} = 5.9 \text{ dBi}$:

Directional Gain =
$$10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} + \dots + 10^{\frac{G_N}{20}} \right)^2}{N_{ANT}} \right] = 10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} \right)^2}{2} \right]$$

= $10 \log \left[\frac{\left(10^{\frac{4.4}{20}} + 10^{\frac{5.9}{20}} \right)^2}{2} \right] = 8.2 \text{ dBi}$

3.5 Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Test Laptop	
Brand Name:	Apple	
Model Name or Number:	MacBook Pro	
Serial Number: C02YK003L59F		
Description:	USB Diagnostic Cable	
Brand Name:	Apple	
Model Name or Number:	Chimp	
Serial Number:	428A84	
	•	
Description:	4 port USB Termination Hub	
Brand Name:	Uni	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB-A Cable. Quantity 2. Length 3m.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB-C to A Adaptor. Quantity 2. Length 10 cm.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	

Description:	Personal Hands Free (PHF)
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

Description:	Power Adaptor
Brand Name:	Apple
Model Name or Number:	A2290
Serial Number:	Not marked or stated

Support Equipment (continued)

Description:	Test Laptop
Brand Name:	Apple
Model Name or Number:	MacBook Pro
Serial Number:	C02DJ05D0HDF

Description:	USB Diagnostic Cable
Brand Name:	Apple
Model Name or Number:	Chimp
Serial Number:	30ACBB

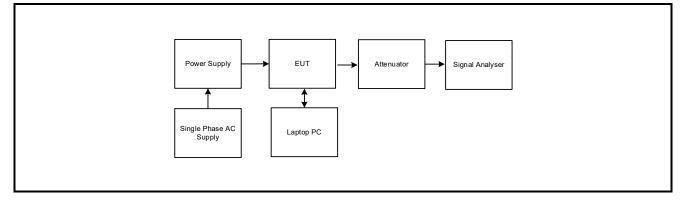
Operating Modes

The EUT was tested in the following operating mode(s):

- Continuously transmitting with a modulated carrier at maximum power on the bottom, middle and top channels as required using the supported packet types.
- Transmitting on Core 0 or Core 1 in SISO configuration or Core 0 + Core 1 in Transmitter Beamforming configuration, on either the iPA or ePA path.

Configuration and Peripherals

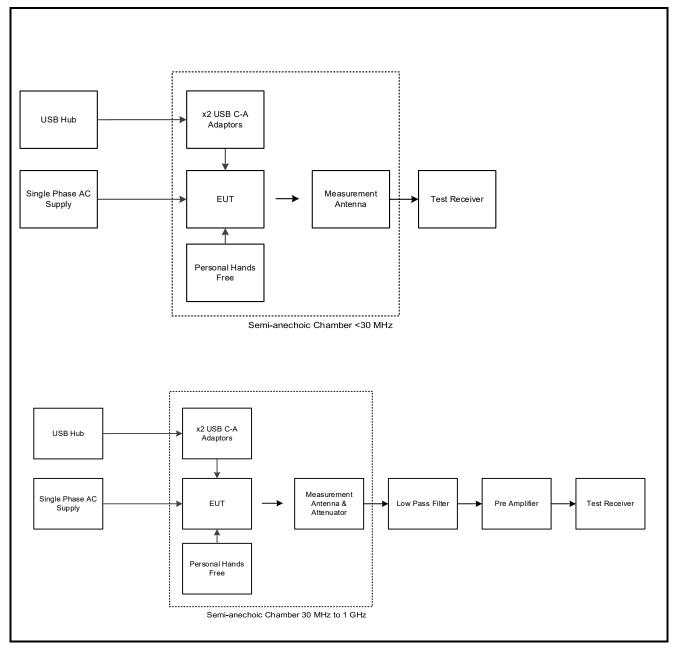
The EUT was tested in the following configuration(s):


- A test laptop with the customer's test application was used to place the EUT into NarrowBand test mode. The application was used to enable continuous transmission and to select the test channels & packet types as required. The customer supplied instructions to configure the EUT into test mode.
- The customer supplied U.FL RF cables with the EUT in order to perform conducted measurements. The measured additional path loss was included in any path loss calculations.
- RF cables and attenuators connecting the test equipment to the EUT were calibrated before use and the calibration data incorporated into the conducted measurement results.
- The EUT was powered from an AC to DC Power Supply. The input was connected to a 120 VAC 60 Hz single phase mains supply.
- Transmitter radiated spurious emissions tests were performed with the EUT transmitting in 4DH5 / SISO / Core 1 / ePA, as this mode was found to transmit the highest output power.
- Radiated spurious emissions were performed with the EUT in the position that produced worst case with respect to emissions. All ports were terminated into suitable terminations and placed under the turntable.
- Transmitter radiated band edge measurement were performed with the EUT Y orientation/position as declared by the customer.

ISSUE DATE: 17 APRIL 2023

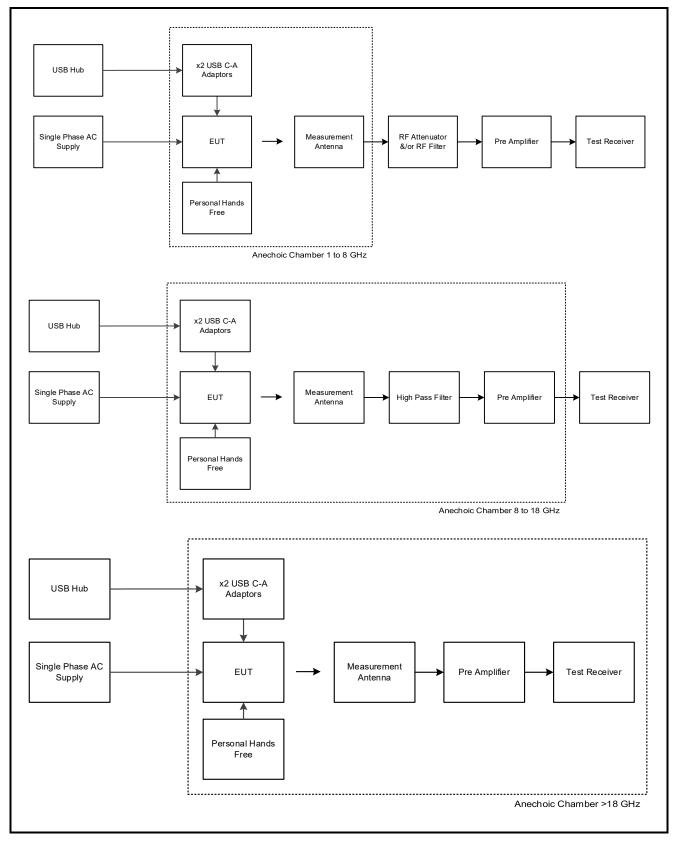
Test Setup Diagrams

Conducted Tests:


Test Setup for Transmitter Conducted Tests

Test Setup Diagrams (continued)

Radiated Tests:


Test Setup for Transmitter Radiated Emissions

ISSUE DATE: 17 APRIL 2023

Test Setup Diagrams (continued)

Test Setup for Transmitter Radiated Emissions (continued)

4 Antenna Port Test Results

4.1 Transmitter Duty Cycle

Test Summary:

Test Engineers:	Luis Pazos Perez & Jose Bayona	Test Date:	08 March 2023
Test Sample Serial Number:	RHKHHQ9YHK		

FCC Reference:	Part 15.35(c)
Test Method Used:	KDB 789033 D02 Section II.B.2.b)

Environmental Conditions:

Temperature (°C):	22
Relative Humidity (%):	32

Note(s):

1. In order to assist with the determination of the average level of fundamental and spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

10 log 1 / (On Time / [Period or 100ms whichever is the lesser]).

DH5 duty cycle: 10 log (1 / (2.900/3.760)) = 1.1 dB

- 2. 4DH5 and 8DH5 modes duty cycle were measured and found to be greater than 98%. No duty cycle correction is required to assist with calculating the average emission levels.
- 3. The signal analyser was connected to the RF port on the EUT using an RF switch, suitable attenuation and RF cables. An RF level offset was entered on the signal analyser to compensate for the loss of the switch, attenuators and RF cables.

Transmitter Duty Cycle (continued)

Results: DH5 / Core 0

Pulse Duration	Period	Duty Cycle
(ms)	(ms)	(dB)
2.900	3.760	1.1

Att	ver a	0.00 dBi 35 d	B SWT	20 ms	RBW 3 MHz VBW 3 MHz				
SGL		00 0	0.000	20 110	TON COMP				
⊖1Pk Cl	rw								
						м	1[1]		9.52 dB 4.6600 m
20 dBm	-					D:	2[1]		4.0000 n
10 dBm			M1	D	2 D <u>3</u>				2.9000 n
TO UBIII					· 1				
0 dBm-	-					_			
-10 c Brr									
-20 cBm	+-י								
Bride Ste			Jupy		inter	havebel		hand	lande
-40 dBr	+-י								
-50 dBm									
-60 dBrr	<u>ו</u> וי								
CF 5.7	22 CL	2			1001 p	te.			2.0 ms/
Marker	JU GI				1001				2.0 1137
Type	Ref	Trc	X-value		Y-value	Fund	tion	Function F	Result
M1		1		66 ms	9.52 dBm				
D2 D3	M1 M1	1		.9 ms 76 ms	1.29 dB 0.75 dB				
03	1011	1		10113	0.73 00	-	_	-8.5/2	08.03.2023
								100	

4.2 Transmitter 26 dB Emission Bandwidth

Test Summary:

Test Engineers:	Luis Pazos Perez & Jose Bayona	Test Dates:	07 March 2023 & 08 March 2023
Test Sample Serial Number:	RHKHHQ9YHK		

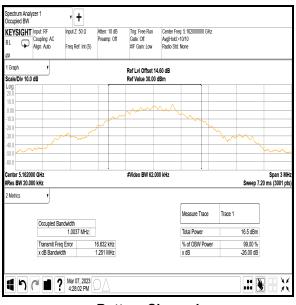
FCC Reference:	Part 15.403
Test Method Used:	KDB 789033 D02 Section II.C.1.

Environmental Conditions:

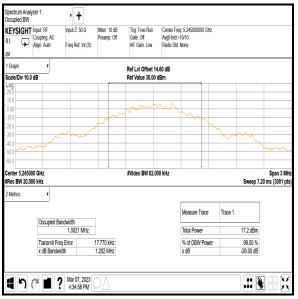
Temperatures (°C):	21 to 22
Relative Humidity (%):	32 to 34

Note(s):

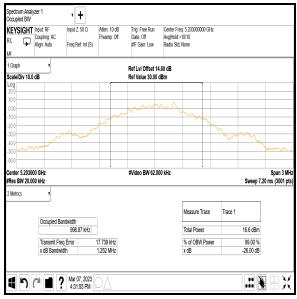
- 1. The signal analyser's resolution bandwidth was set to approximately 1% of the measured 26 dB emission bandwidth.
- 2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.


ISSUE DATE: 17 APRIL 2023

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

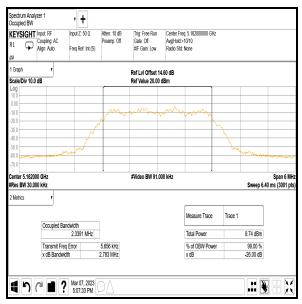

4.2.1 5.15-5.25 GHz band

Results: DH5 / SISO / Core 0 / iPA

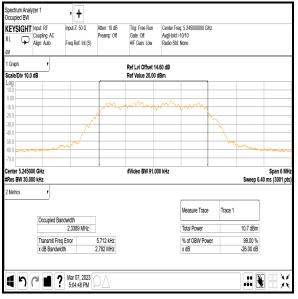

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	1.251
Middle	5203	1.252
Тор	5245	1.252

Bottom Channel

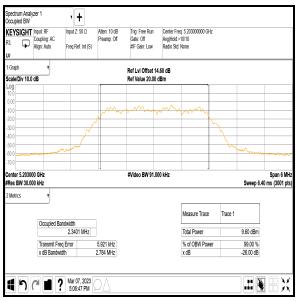
Top Channel



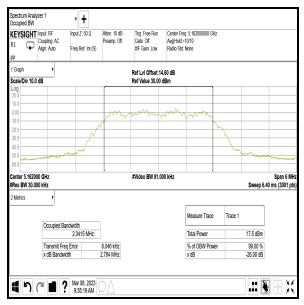
Middle Channel

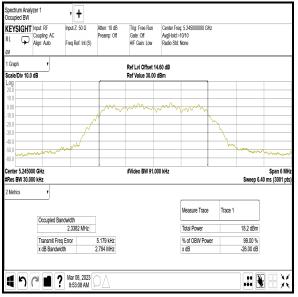

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 4DH5 / SISO / Core 0 / iPA

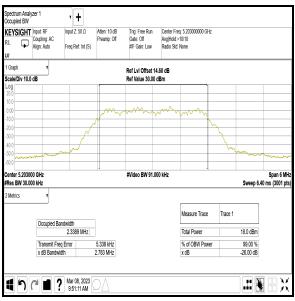

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	2.783
Middle	5203	2.784
Тор	5245	2.782

Bottom Channel

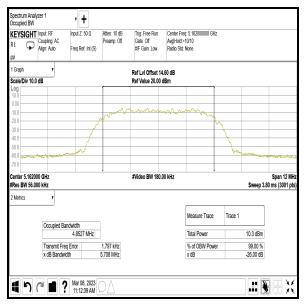

Top Channel

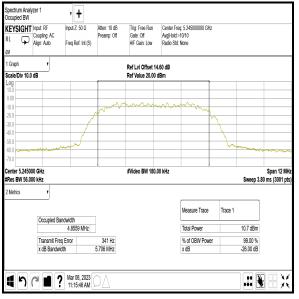

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 4DH5 / SISO / Core 0 / ePA

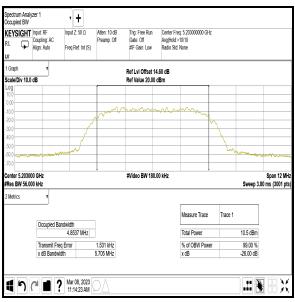

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	2.784
Middle	5203	2.783
Тор	5245	2.784

Bottom Channel

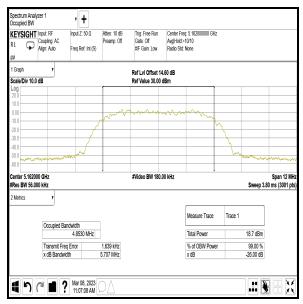

Top Channel

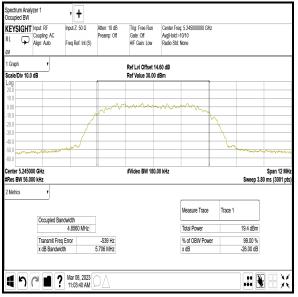

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 8DH5 / SISO / Core 0 / iPA

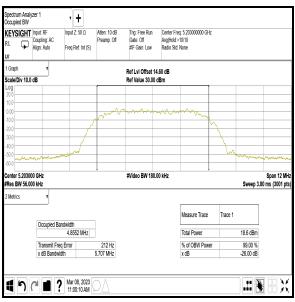

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	5.708
Middle	5203	5.705
Тор	5245	5.706

Bottom Channel

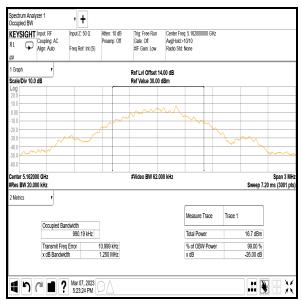

Top Channel

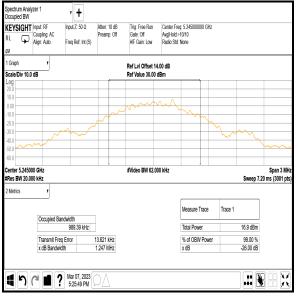

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 8DH5 / SISO / Core 0 / ePA

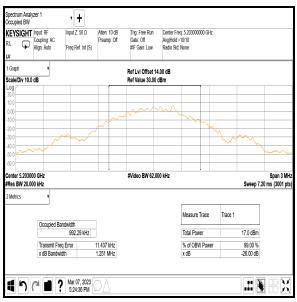

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	5.707
Middle	5203	5.707
Тор	5245	5.706

Bottom Channel

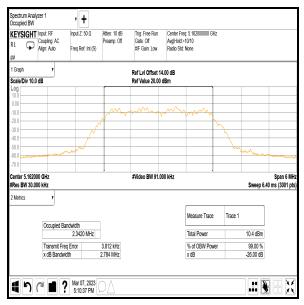

Top Channel

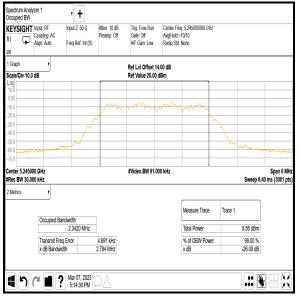

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: DH5 / SISO / Core 1 / iPA

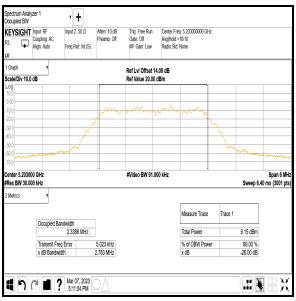

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	1.250
Middle	5203	1.251
Тор	5245	1.247

Bottom Channel

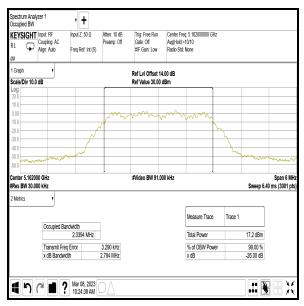

Top Channel

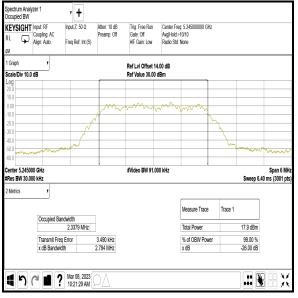

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 4DH5 / SISO / Core 1 / iPA

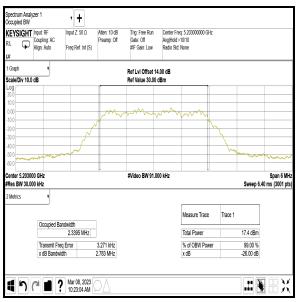

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	2.784
Middle	5203	2.783
Тор	5245	2.784

Bottom Channel

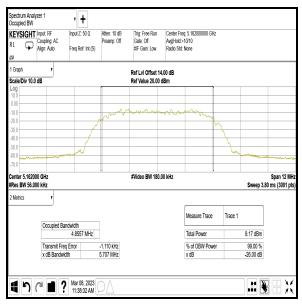

Top Channel

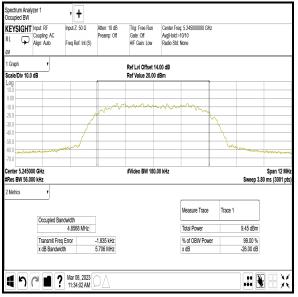

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 4DH5 / SISO / Core 1 / ePA

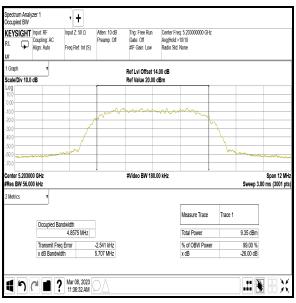

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	2.784
Middle	5203	2.783
Тор	5245	2.784

Bottom Channel

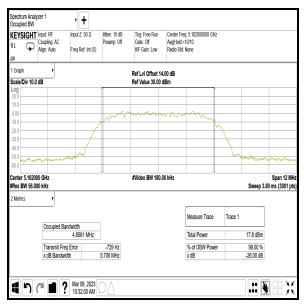

Top Channel

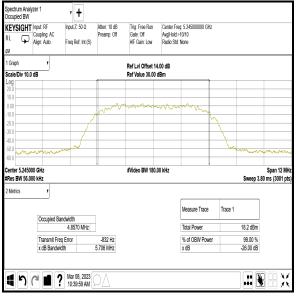

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 8DH5 / SISO / Core 1 / iPA

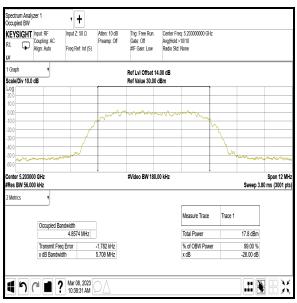

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	5.707
Middle	5203	5.707
Тор	5245	5.706

Bottom Channel


Top Channel

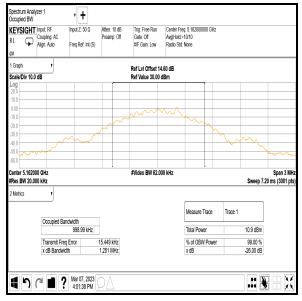

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

Results: 8DH5 / SISO / Core 1 / ePA

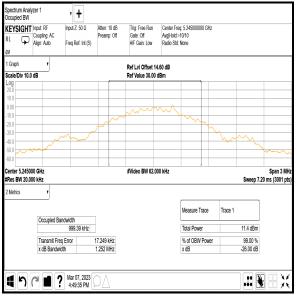

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
Bottom	5162	5.706
Middle	5203	5.708
Тор	5245	5.706

Bottom Channel

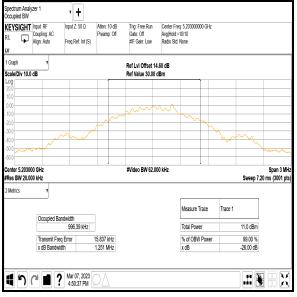
Top Channel



Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

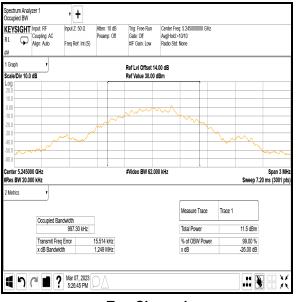

Results: DH5 / Beamforming / Core 0 + Core 1 / iPA

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	
		Core 0	Core 1
Bottom	5162	1.251	1.251
Middle	5203	1.251	1.248
Тор	5245	1.252	1.249

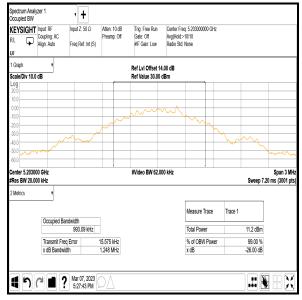

Results: Core 0

Bottom Channel

Top Channel

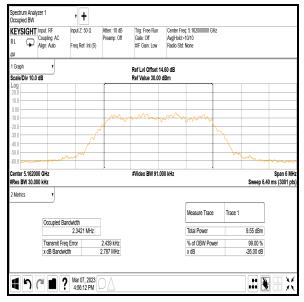


Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

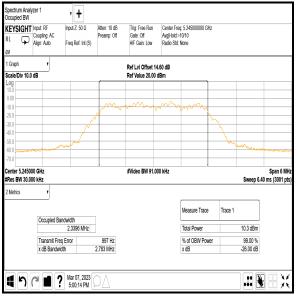

Results: Core 1

Bottom Channel

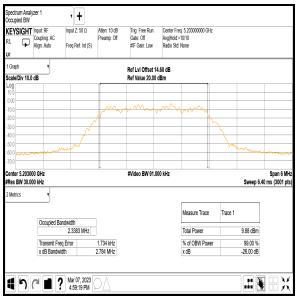
Top Channel


Middle Channel

Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

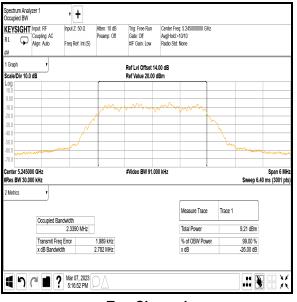

Results: 4DH5 / Beamforming / Core 0 + Core 1 / iPA

Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	
		Core 0	Core 1
Bottom	5162	2.787	2.784
Middle	5203	2.784	2.782
Тор	5245	2.783	2.782


Results: Core 0

Bottom Channel

Top Channel

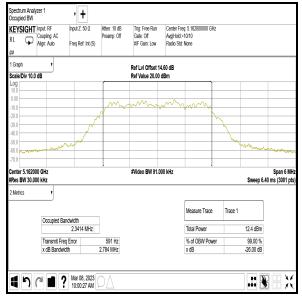


Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

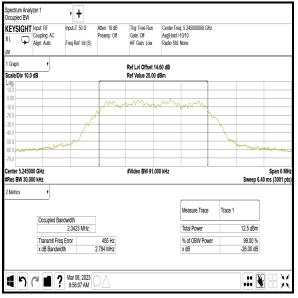

Results: Core 1

Bottom Channel

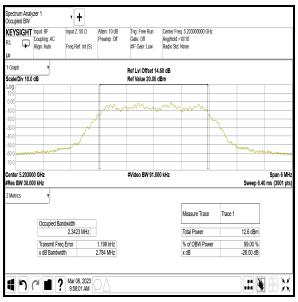
Top Channel


Middle Channel

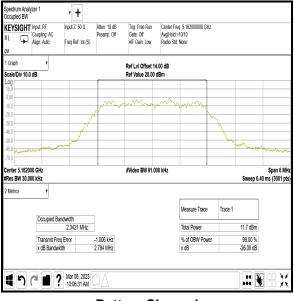
Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)


Results: 4DH5 / Beamforming / Core 0 + Core 1 / ePA

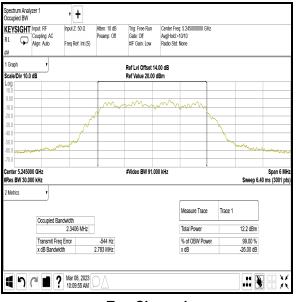
Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	
		Core 0	Core 1
Bottom	5162	2.784	2.784
Middle	5203	2.784	2.782
Тор	5245	2.784	2.783


Results: Core 0

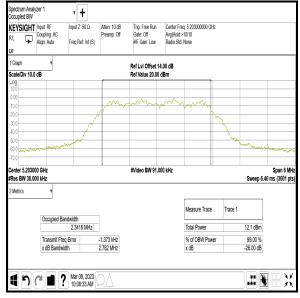
Bottom Channel



Top Channel

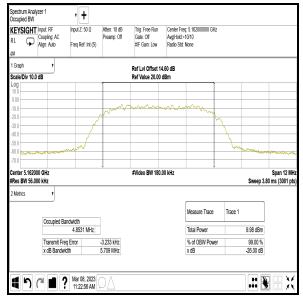


Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)

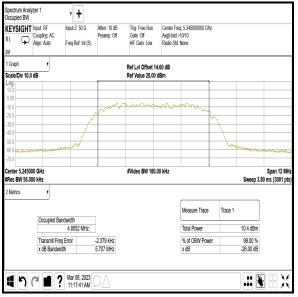

Results: Core 1

Bottom Channel

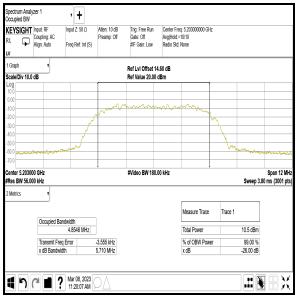
Top Channel


Middle Channel

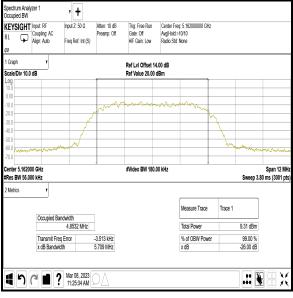
Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)


Results: 8DH5 / Beamforming / Core 0 + Core 1 / iPA

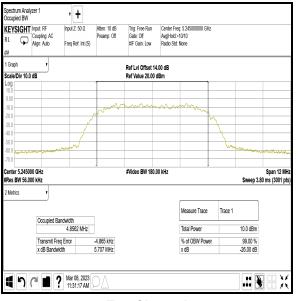
Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	
		Core 0	Core 1
Bottom	5162	5.709	5.709
Middle	5203	5.710	5.711
Тор	5245	5.707	5.707


Results: Core 0

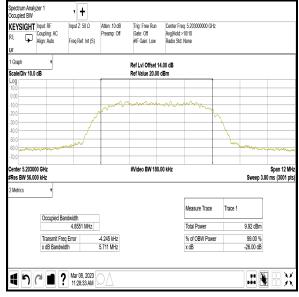
Bottom Channel



Top Channel



Transmitter 26 dB Emission Bandwidth (5.15-5.25 GHz band) (continued)


Results: Core 1

Bottom Channel

Top Channel

Middle Channel