

Element Materials Technology Morgan Hill 18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.381.1520

http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 / ISED RSS-247 Bluetooth

Applicant Name:	Date of Testing:
Apple Inc.	11/04/2022-01/16/2023
One Apple Park Way	Test Site/Location:
Cupertino, CA 95014	Element Materials Technology, Morgan Hill, CA,USA
United States	Test Report Serial No.:
	1C2211040068-01.BCG

FCC ID:	BCGA2872
IC:	579C-A2872
APPLICANT:	Apple Inc.

Apple Inc.

Certification

Application Type: Model/HVIN: EUT Type: Max. RF Output Power: **Frequency Range:** Type of Modulation: FCC Classification: FCC Rule Part(s): **ISED Specification:** Test Procedure(s):

A2872 Wireless Earbud 32.961 mW (15.18 dBm) Peak Conducted 2402 - 2480MHz GFSK, π/4-DQPSK, 8DPSK FCC Part 15 Spread Spectrum Transmitter (DSS) Part 15 Subpart C (15.247) RSS-247 Issue 2 ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

R] Ortanez **Executive Vice President**

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 1 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 1 of 57
	•		V 10 5 12/15/2021

TABLE OF CONTENTS

1.0	Introduction	3
	1.1 Scope	3
	1.2 Element Materials Technology Morgan Hill Test Location	3
	1.3 Test Facility / Accreditations	3
2.0	PRODUCT INFORMATION	4
	2.1 Equipment Description	4
	2.2 Device Capabilities	4
	2.3 Antenna Description	5
	2.4 Test Support Equipment	5
	2.5 Test Configuration	6
	2.6 Software and Firmware	6
	2.7 EMI Suppression Device(s)/Modifications	6
3.0	DESCRIPTION OF TESTS	7
	3.1 Evaluation Procedure	7
	3.2 AC Line Conducted Emissions	7
	3.3 Radiated Emissions	8
	3.4 Environmental Conditions	8
4.0	ANTENNA REQUIREMENTS	9
5.0	MEASUREMENT UNCERTAINTY	10
6.0	TEST EQUIPMENT CALIBRATION DATA	11
7.0	TEST RESULTS	12
	7.1 Summary	.12
	7.2 Bandwidth Measurement	.13
	7.3 Output Power Measurement	.19
	7.3.1 Peak Output Power Measurement	.20
	7.3.2 Average Output Power Measurement	.21
	7.4 Conducted Authorized Band Edge	.22
	7.5 Carrier Frequency Separation	.27
	7.6 Time of Occupancy	.30
	7.7 Number of Hopping Channels	.33
	7.8 Conducted Spurious Emissions	.36
	7.9 Radiated Spurious Emissions – Above 1GHz	.40
	7.9.1 Radiated Restricted Band Edge Measurements	.47
	7.10 Radiated Spurious Emissions – Below 1GHz	.49
	7.11 AC Line-Conducted Emissions Measurement	.53
8.0	CONCLUSION	57

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 2 of 57
			V/ 10 E 10/1E/2021

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Materials Technology Morgan Hill Test Location

These measurement tests were conducted at the Element Materials Technology Morgan Hill facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology located in Morgan Hill, CA 95037, U.S.A.

- Element Materials Technology Morgan Hill is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Materials Technology Morgan Hill facility is a registered (22831) test laboratory with the site description on file with ISED.
- Element Materials Technology Morgan Hill is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs)

FCC ID: BCGA2872 IC: 579C-A2872	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 3 of 57
			V 10 5 12/15/2021

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Apple Wireless Left Earbud FCC ID: BCGA2872 and IC: 579C-A2872**. The test data contained in this report pertains only to the emissions due to the EUT's Bluetooth transmitter.

- This Bluetooth module has been tested by manufacturer and the following were confirmed:
 - A) The hopping sequence is pseudorandom
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.
- 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices
 operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the
 number of test channels from 79 channels to a minimum number of 20 channels.

Test Device Serial No.: FL6JL0CX24FJ, FL6JL0CA24FJ, FL6JQ01324FJ, FL6JN0QV24FJ

2.2 Device Capabilities

This device contains the following capabilities:

Bluetooth (1x, EDR, LE1M, LE2M)

Cł	า.	Frequency (MHz)
0	C	2402
:		:
39	9	2441
:		:
78	В	2480

Table 2-1. Bluetooth Frequency/ Channel Operations

Note: This device is capable of operating in hopping and non-hopping mode. The EUT can hop between 79 different channels in the 2400 – 2483.5MHz band. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of KDB 558074 D01 v05r02 and ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Measured Duty Cycles			
BLE Mode Duty Cycle (%)			
GFSK	76.7		
8DPSK	76.8		

Table 2-2. Measured Duty Cycles

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 4 of 57
			V 10 5 12/15/2021

2.3 Antenna Description

Following antenna gain provided by manufacturer was used for testing.

Frequency [GHz]	Antenna Gain (dBi)
2.4	-6.59

Table 2-3. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook Pro	Model:	A2141	S/N:	C02DV7VKMD6T
	w/ AC/DC Adapter	Model:	A2166	S/N:	N/A
2	HAM UART Cable	Model:	N/A	S/N:	A670206HW00026316
	w/ USB-C Adapter	Model:	N/A	S/N:	N/A
3	Beats Charging Case	Model:	N/A	S/N:	FL6JQ00X24FJ
4	Apple USB-C Cable	Model:	N/A	S/N:	N/A
	w/ AC/DC Adapter	Model:	A2305	S/N:	C4H0106004QPF4FAD

Table 2-4. Test Support Equipment List

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo E of EZ
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 5 of 57
		-	V 10 5 12/15/2021

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was also used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 for antenna port conducted emissions test setups.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power and the worst case channel.

The EUT was manipulated through four orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), Z up-orientation (portrait-up), and Z down-orientation (portrait-down) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated and the worst case was reported.

- EUT charged by charging case and powered by AC/DC adapter with USB-C cable
- EUT charged by charging case and powered by host PC with USB-C cable

2.6 Software and Firmware

The test was conducted with firmware version 2A81 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 6 of 57
			V/ 10 5 12/15/2021

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that the cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.11. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.50.40.

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 7 of 57
	•	•	\/ 10 5 12/15/2021

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788 D01 v01r01, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was rotated about its vertical axis while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through four orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 9 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 8 of 57
		·	V 10 5 12/15/2021

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 9 of 57
			V 10 5 12/15/2021

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.23-2012. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.77
Line Conducted Disturbance	2.70
Radiated Disturbance (<30MHz)	4.38
Radiated Disturbance (30MHz - 1GHz)	4.75
Radiated Disturbance (1 - 18GHz)	5.20
Radiated Disturbance (>18GHz)	4.72

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 10 of 57	
		·	V 10 5 12/15/2021	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial #
Agilent	N9020A	MXA Signal Analyzer	4/26/2022	Annual	4/26/2023	MY56470202
Keysight Technologies	N9030A	PXA Signal Analyzer	6/10/2022	Annual	6/10/2023	MY49430244
Keysight Technologies	N9040B	UXA Spectrum Analyzer	2/2/2022	Annual	2/2/2023	US57212289
Anritsu	MA2411B	Pulse Power Sensor	8/1/2022	Annual	8/1/2023	1027293
Anritsu	MA2411B	Pulse Power Sensor	5/19/2022	Annual	5/19/2023	1911106
Anritsu	ML2496A	Power Meter	10/17/2022	Annual	10/17/2023	2002005
ETS-Lindgren	3117	Double Ridged Guide Horn Antenna (1-18 GHz)	5/24/2022	Annual	5/24/2023	240049
Schwarzbeck	VULB9162	Biconilog Antenna - (30MHz-6GHz)	10/21/2021	Annual	7/27/2023	00358
Rohde & Schwarz	HFH-2Z2	9kHz - 30MHz Loop Antenna	4/13/2022	Annual	4/13/2023	100546
Rohde & Schwarz	ENV216	Two-Line V-Network	1/14/2022	Annual	1/14/2023	101364
Rohde & Schwarz	FSVA3044	Signal Analyzer 44GHz	5/12/2022	Annual	5/12/2023	101098
Rohde & Schwarz	FSV40	Signal Analyzer 40GHz	3/4/2022	Annual	3/4/2023	101619
Rohde & Schwarz	FSW43	Signal and Spectrum Analyzer 2Hz to 43GHz	5/19/2022	Annual	5/19/2023	104093
Rohde & Schwarz	FSW67	Signal and Spectrum Analyzer (2Hz-67GHz)	4/21/2022	Annual	4/21/2023	101366
Rohde & Schwarz	TS-PR18	Pre Amplifier 1-18GHz	1/6/2022	Annual	1/6/2023	101639
Rohde & Schwarz	TS-PR1	Preamplifier - Antenna System; 30MHz - 1GHz	4/18/2022	Annual	4/18/2023	102081
Rohde & Schwarz	180-442A-KF	Horn (Small)	1/19/2022	Annual	1/19/2023	T058701-2
Rohde & Schwarz	TS-PR1840	Pre Amplifier 18-40GHz	4/18/2022	Annual	4/18/2023	100050

Table 6-1. Test Equipment List

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 11 of 57
		-	V 10.5 12/15/2021

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA2872
IC:	579C-A2872
Method/System:	Frequency Hopping Spread Spectrum (FHSS)
Number of Channels:	79

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)	RSS-247 [5.1(a)]	20dB Bandwidth	N/A		N/A	Section 7.2
2.1049	RSS-Gen [6.7]	Occupied Bandwidth	N/A		N/A	Section 7.2
15.247(b)(1)	RSS-247 [5.4(b)]	Peak Transmitter Output Power	< 1 Watt if <u>></u> 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	RSS-247 [5.1(b)]	Channel Separation	Min. of 25kHz or the 20dB BW of the hopping channel, whichever is greater	CONDUCTED	PASS	Section 7.5
15.247(a)(1)(iii)	RSS-247 [5.1(d)]	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.6
15.247(a)(1)(iii)	RSS-247 [5.1(d)]	Number of Channels > 15 Channels		PASS	Section 7.7	
15.247(d)	RSS-247 [5.5]	Band Edge / Out-of-Band Emissions	> 20dBc		PASS	Section 7.4 Section 7.8
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-247 limits)	RADIATED	PASS	Section 7.9, Section 7.9.1, Section 7.10
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8] limits)	LINE CONDUCTED	PASS	Section 7.11

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "BT Auto," Version 4.0.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.2.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 12 of 57
		·	V 10 5 12/15/2021

7.2 Bandwidth Measurement §2.1049; §15.247 (a.1); RSS-247 [5.1(a)]; RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 20dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.10-2013 – Subclause 6.9.2 RSS-Gen [6.7]

Test Settings

- The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 99% occupied bandwidth and the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% OBW
- 3. VBW \geq 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize
- If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 5% of the 99% occupied bandwidth observed in Step 7

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 13 of 57
			V/ 10 5 12/15/2021

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

All supported modulation have been tested on the unit and only worst-case configuration is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 14 of 57
			V 10 5 12/15/2021

Frequency [MHz]	Data Rate [Mbps]	Mod.	Channel No.	Measured 99% Occupied Bandwidth [kHz]	Measured 20dB Bandwidth [kHz]
2402	1.0	GFSK	0	886.23	942.30
2441	1.0	GFSK	39	884.62	921.70
2480	1.0	GFSK	78	884.20	941.60
2402	3.0	8DPSK	0	1194.40	1251.00
2441	3.0	8DPSK	39	1208.40	1308.00
2480	3.0	8DPSK	78	1189.30	1249.00

Table 7-2. 20dB BW and 99% OBW Measurements

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 15 of 57	
		·	V 10 5 12/15/2021	



FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 16 of 57	
			V 10.5 12/15/2021	

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 17 of 57	
	-	·	V 10.5 12/15/2021	

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 18 of 57	
			V 10.5 12/15/2021	

7.3 Output Power Measurement §15.247 (b.1); RSS-247 [5.4(b)]

Test Overview and Limits

Measurement is made while the EUT is operating in non-hopping transmission mode. Peak and Average power measurements are performed using a broadband power meter with a pulse sensor.

The maximum peak conducted output power of frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels is 1 watt

The conducted output power limit on paragraph above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For FHSS operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels. The e.i.r.p. shall not exceed 4 W.

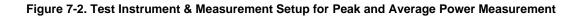
Test Procedure Used

ANSI C63.10-2013 – Section 7.8.5 ANSI C63.10-2013 – Section 11.9.2.3.2 method AVGPM-G

Test Settings

Peak Power Measurement

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than the occupied bandwidth.


Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

<u>Note</u>

All supported modulations have been tested and π /4-DQPSK was found not as the worst case modulation so only GFSK and 8DPSK is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 19 of 57
		·	V 10 5 12/15/2021

Peak Output Power Measurement

Frequency	Data Rate Mod.	Mod	Mod	Channel		onducted wer	Conducted Power Limit	Conducted Power	Ant. Gain	EIRP	EIRP Limit	EIRP Margin
[MHz]	[Mbps]		No.	[dBm]	[mW]	[dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]	
2402	1.0	GFSK	0	15.18	32.961	30.00	-14.82	-6.59	8.59	36.02	-27.43	
2441	1.0	GFSK	39	15.10	32.359	30.00	-14.90	-6.59	8.51	36.02	-27.51	
2480	1.0	GFSK	78	14.91	30.974	30.00	-15.09	-6.59	8.32	36.02	-27.70	
2402	3.0	8DPSK	0	12.42	17.458	30.00	-17.58	-6.59	5.83	36.02	-30.19	
2441	3.0	8DPSK	39	12.63	18.323	30.00	-17.37	-6.59	6.04	36.02	-29.98	
2480	3.0	8DPSK	78	12.31	17.022	30.00	-17.69	-6.59	5.72	36.02	-30.30	

Table 7-3. Peak Conducted Output Power Measurements

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 20 01 57
			V 10 5 12/15/2021

7.3.1 Average Output Power Measurement

Frequency	Data Rate Mod.	Mod.	Mod.	Channel	Avg Condu	cted Power	Conducted Power Limit	Conducted Power	Ant. Gain	EIRP	EIRP Limit	EIRP Margin
[MHz]	[Mbps]		No.	[dBm]	[mW]	[dBm]	Margin [dB]	[dBi]	[dBm]	[dBm]	[dB]	
2402	1.0	GFSK	0	13.92	24.660	30.00	-16.08	-6.59	7.33	36.02	-28.69	
2441	1.0	GFSK	39	13.83	24.155	30.00	-16.17	-6.59	7.24	36.02	-28.78	
2480	1.0	GFSK	78	13.67	23.281	30.00	-16.33	-6.59	7.08	36.02	-28.94	
2402	3.0	8DPSK	0	8.71	7.430	30.00	-21.29	-6.59	2.12	36.02	-33.90	
2441	3.0	8DPSK	39	8.95	7.852	30.00	-21.05	-6.59	2.36	36.02	-33.66	
2480	3.0	8DPSK	78	8.65	7.328	30.00	-21.35	-6.59	2.06	36.02	-33.96	

Table 7-4. Average Conducted Output Power Measurements

Sample e.i.r.p. Calculation:

At 2402MHz, the average conducted output power was calculated to be 13.92 dBm with directional gain of -6.59 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

13.92 dBm + (-6.59) dBi = 7.33 dBm

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 01 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 21 of 57
		·	V 10.5 12/15/2021

7.4 Conducted Authorized Band Edge §15.247 (d); RSS-247 [5.5]

Test Overview and Limits

EUT operates in hopping and non-hopping transmission mode. Measurement is taken at the highest point located outside of the emission bandwidth. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 - Section 6.10.4

Test Settings

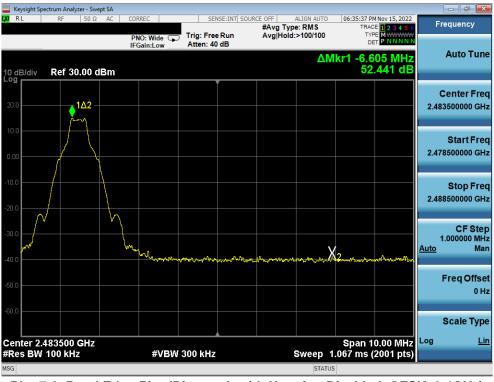
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Detector = Peak
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

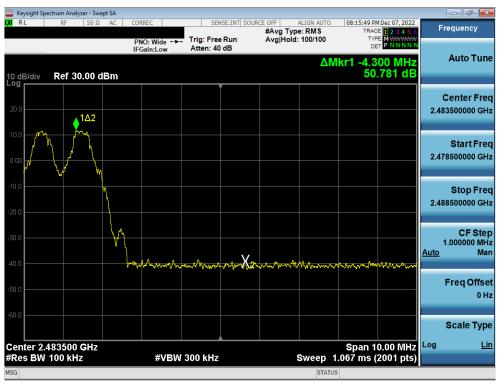
Figure 7-3. Test Instrument & Measurement Setup


Test Notes


- Out of band conducted spurious emissions at the band edge were investigated for all data rates in hopping and non-hopping modes. The worst-case emissions were found with eh EUT transmitting at 3Mbps. Band edge emissions were also investigated with the EUT transmitting in all data rates. Plots of the worst-case emissions are shown below.
- 2. All supported modulation have been tested on the unit and only worst case configuration is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 22 of 57
	•		V 10.5 12/15/2021

	ctrum Analyze												
LXI RL	RF	50 Ω	AC	CORREC		SEN	ISE:INT SOUR	CE OFF	ALIGN AUTO		MNov 15, 2022	F	requency
					/ide 🖵	Trig: Free Atten: 40		Avg Hold		TYP			
				IFGain:	Low	Atten: 40	aв						Auto Tune
10 dB/div	Ref 30.	00 A	Bm						Δn	53	00 MHz .097 dB		
	Ker 50.	oo u											
													Center Freq
20.0									1∆2 ——			2.40	0000000 GHz
10.0								l ř					
10.0													Start Freq
0.00												2.39	5000000 GHz
								ſ					
-10.0								⊢/	<u> </u>				Stop Freq
												2.40	5000000 GHz
-20.0											\vdash		
								V	V				CF Step
-30.0							/			1			1.000000 MHz
	Χ.						1 Astronorth			man		<u>Auto</u>	Man
-40.0 Jerry	A State of the sta	Charles of the second s	/hage/gen/iit	And the second second	er and the second s	**************	week.				Hardwark - 1		
-50.0													Freq Offset
													0 Hz
-60.0													
													Scale Type
Center 2.4	00000.0	H7								Snan_1	0.00 MHz	Log	Lin
#Res BW		712			#VBW	300 kHz			Sweep 1	.067 m <u>s (</u>	2001 pts)		
MSG									STATUS				


Plot 7-8. Band Edge Plot (Bluetooth with Hopping Disabled, GFSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 23 of 57
	•		V 10.5 12/15/2021

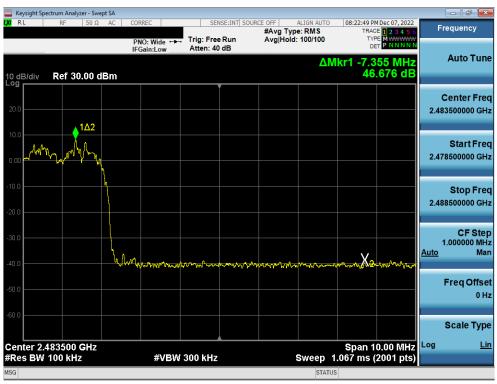
	ctrum Analyzer - Swep									_	×
LXI RL	RF 50 Ω	AC COR	REC	SEN	ISE:INT SOUR	CE OFF	ALIGN AUTO e: RMS		4 Dec 07, 2022 E 1 2 3 4 5 6	F	requency
10 dB/div	Ref 30.00 df	IFG	O: Wide ↔ ain:Low	Atten: 40		Avg Hold:		TYF DE /kr1 4.6			Auto Tune
20.0							1∆2				Center Freq 0000000 GHz
0.00										2.39	Start Freq 5000000 GHz
-10.0										2.40	Stop Freq 5000000 GHz
-30.0	Mannacharthamart	X2	ᠬ᠋ᡔ᠕᠆ᢣᡶᠰᠵᢌᠰ	hourshad	nontroffic of	₩				<u>Auto</u>	CF Step 1.000000 MHz Man
-50.0											Freq Offset 0 Hz
-60.0	100000 GHz							Snan 1	0.00 MHz		Scale Type <u>Lin</u>
#Res BW			#VBW	300 kHz			Sweep 1	.067 ms (2001 pts)		
MSG							STATUS	5			

Plot 7-10. Band Edge Plot (Bluetooth with Hopping Enabled, GFSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 24 of 57	
	•		V 10 5 12/15/2021	

	ectrum Analyzer - Sw										
LXI RL	RF 50 Ω	AC CO	RREC	SEN	ISE:INT SOUR	E OFF	ALIGN AUTO		Nov 15, 2022	F	requency
		IF	NO: Wide 🕞 Gain:Low	Trig: Free Atten: 40		Avg Hold:	:>100/100	TYF DE / kr1 4.4	10 MHz .617 dB		Auto Tune
10 dB/div Log	Ref 30.00 (dBm						52	.017 aB		
20.0							1 <u>Δ2</u>				Center Freq 0000000 GHz
0.00										2.39	Start Freq 5000000 GHz
-10.0					Δ.Δ					2.40	Stop Freq 5000000 GHz
-30.0		X		0.1. AAA+					Marco and a	<u>Auto</u>	CF Step 1.000000 MHz Man
-50.0	an a way to be a way and a			W "LV" Y							Freq Offset 0 Hz
-60.0											Scale Type
	100000 GHz						_	Span 1	0.00 MHz	Log	<u>Lin</u>
#Res BW	100 kHz		#VBW	300 kHz			Sweep 1	.067 ms (2001 pts)		
MSG							STATUS				

Plot 7-11. Band Edge Plot (Bluetooth with Hopping Disabled, 8DPSK, 2.4GHz)


Plot 7-12. Band Edge Plot (Bluetooth with Hopping Disabled, 8DPSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 25 of 57	
	-	-	V 10.5 12/15/2021	

	ctrum Analyzer										
LXI RL	RF	50Ω AC	CORREC	SE	NSE:INT SOUR	CE OFF #Avg Typ	ALIGN AUTO		M Dec 07, 2022	Fr	equency
			PNO: Wide + IFGain:Low	Trig: Fre		Avg Hold		TY			
			IFGall:LOW_	Atten: 4	U GB		٨	Mkr1 7.7	50 MHz		Auto Tune
10 dB/div Log	Ref 30.0)0 dBm						48	.481 dB		
					Ĭ						Center Freq
20.0											0000000 GHz
								∧ `	Δ2		
10.0						Ĵa	6-6 A	im Å	Δ. Λ		Start Freq
0.00						MAN	how	my my	" how "	2.39	5000000 GHz
0.00											
-10.0											Stop Freq
										2.40	5000000 GHz
-20.0											
-30.0											CF Step
-30.0					Λ A	V				1 Auto	000000 MHz. Man
-40.0 -40.0	ww.Xamo	mannon	when any many	want and the way	mont						marr
											Freq Offset
-50.0											0 Hz
-60.0											
											Scale Type
Contor 2	00000 0	<u> </u>						- Cnord		Log	Lin
Center 2.4 #Res BW		nz	#VB	W 300 kHz			Sweep	span 1 1.067 m <u>s (</u>	0.00 MHz 2001 pts)	-	<u></u>
MSG							STATU				

Plot 7-14. Band Edge Plot (Bluetooth with Hopping Enabled, 8DPSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element 🕞	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 26 of 57
			V 10 5 12/15/2021

7.5 Carrier Frequency Separation §15.247 (a.1); RSS-247 [5.1(b)]

Test Overview and Limit

Measurement is made with EUT operating in hopping mode. The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

Test Settings

- 1. Span = Wide enough to capture peaks of two adjacent channels
- 2. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
- 3. VBW ≥ RBW
- 4. Sweep = Auto
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize.
- 8. Marker-delta function used to determine separation between peaks of the adjacent channels

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

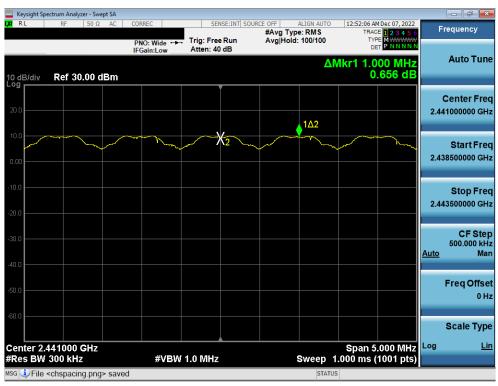
Figure 7-4. Test Instrument & Measurement Setup

Test Notes

- 1. The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels.
- 2. All supported modulation have been tested on the unit and only worst case configuration is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 07 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 27 of 57	
			V 10.5 12/15/2021	

Frequency [MHz]	Data Rate [Mbps]	Mod.	Channel No.	Measured Channel Separation [MHz]	Min. Channel Separation [MHz]	Pass / Fail
2441	1.0	GFSK	39	1.000	0.614	Pass
2441	3.0	8DPSK	39	1.000	0.872	Pass


Table 7-5. Minimum Channel Separation

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 28 of 57	
			V 10 5 12/15/2021	

Plot 7-15. Channel Spacing Plot (Bluetooth, GFSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 29 of 57	
		·	V 10.5 12/15/2021	

7.6 Time of Occupancy §15.247 (a.1.iii); RSS-247 [5.1(d)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode with the spectrum analyzer set to zero span. The maximum permissible time of occupancy is 400 ms within a period of 400ms multiplied by the number of hopping channels employed.

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.4

Test Settings

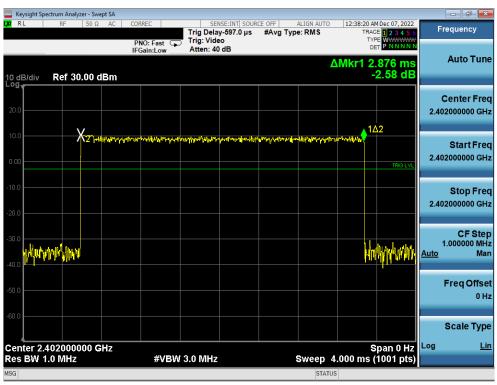
- 1. Span = zero span, centered on a hopping channel
- 2. RBW \leq channel spacing and >> 1/T, where T is expected dwell time per channel
- 3. Sweep = as necessary to capture entire dwell time. Second plot may be required to demonstrate two successive hops on a channel
- 4. Trigger is set with appropriate trigger delay to place pulse near the center of the plot
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Marker-delta function used to determine transmit time per hop

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-5. Test Instrument & Measurement Setup

Test Notes


All supported modulation have been tested on the unit and only worst case configuration is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 20 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 30 of 57	
	•		V 10 5 12/15/2021	

Keysight Spe											_	
X/RL	RF	50 Ω	AC	PNO: F	ast 😱		CE OFF	ALIGN AUTO pe: RMS	TRAC TYP	I Dec 06, 2022 E 1 2 3 4 5 6 E WWWWWW T P N N N N N	F	requency
10 dB/div Log	Ref 30).00 d	Bm	ii Guilli				Δ	Mkr1 2.	872 ms 0.23 dB		Auto Tune
20.0	X	, .2					 		1Δ2			Center Freq 02000000 GHz
0.00										TRIG LVL	2.40	Start Freq 2000000 GHz
-10.0											2.40	Stop Freq 2000000 GHz
-30.0	, nu ji tiya								YM I N	MMM	<u>Auto</u>	CF Step 1.000000 MHz Man
-50.0												Freq Offset 0 Hz
	020000										Log	Scale Type
Center 2.4 Res BW 1		100 G	ΠZ		#VBW	3.0 MHz		Sweep 4	s.000 ms (pan 0 Hz 1001 pts)	209	<u></u>
MSG								STATUS				

Plot 7-17. Time of Occupancy Plot (Bluetooth, GFSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 31 of 57
		·	V 10 5 12/15/2021

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s. Since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600 / 6 = 266.67 hops/s/slot

- 400ms x 79 hopping channels = 31.6 sec (Time of Occupancy Limit)
- Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)
- 266.67 hops/second / 79 channels = 3.38 hops/second (# of hops/second on one channel)
- 3.38 hops/second/channel x 31.6 seconds = 106.67 hops (# hops over a 31.6 second period)
- 106.67 hops x 2.876 ms/channel = 306.78 ms (worst case dwell time for one channel in 1x/EDR modes)

With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800 hops/s. AFH mode also uses 6 total slots so the Bluetooth transmitter hops at a rate of 800 / 6 = 133.3 hops/s/slot

- 400ms x 20 hopping channels = 8 sec (Time of Occupancy Limit)
- Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)
- o 133.3 hops/s / 20 channels = 6.67 hops/second (# of hops/second on one channel)
- 6.67 hops/s / channel x 8 seconds = 53.34 hops (# hops over a 8 second period)
- 53.34 hops x 2.876 ms/channel = 153.4 ms (worst case dwell time for one channel in AFH mode)

Test Result

The measured worst case dwell time is below the limit of 0.4s.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of EZ
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 32 of 57
			V 10 5 12/15/2021

7.7 Number of Hopping Channels §15.247 (a.1.iii); RSS-247 [5.1(d)]

Test Overview and Limit

Measurement is made while EUT is operating in hopping mode. *This frequency hopping system must employ a minimum of 15 hopping channels.*

Test Procedure Used

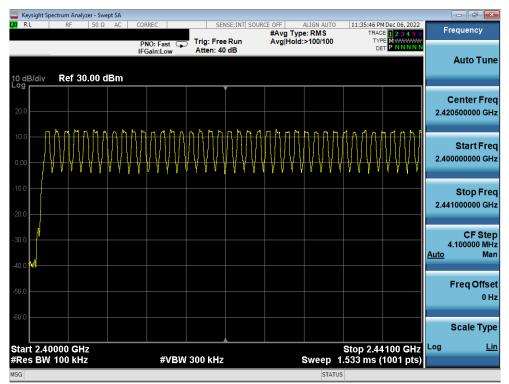
ANSI C63.10-2013 - Section 7.8.3

Test Settings

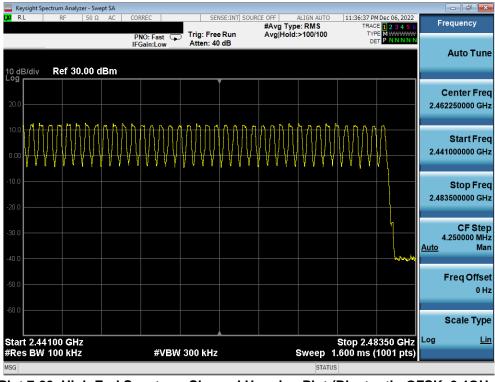
- 1. Span = frequency of band of operation (divided into two plots)
- 2. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Test Setup

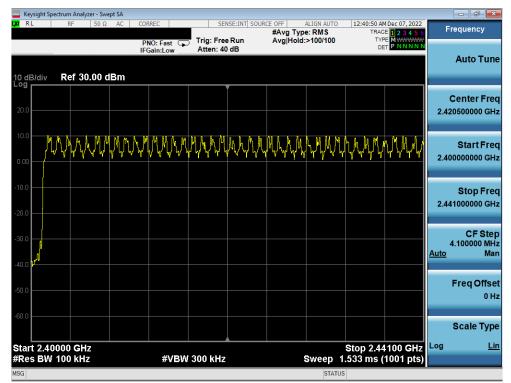
The EUT and measurement equipment were set up as shown in the diagram below.

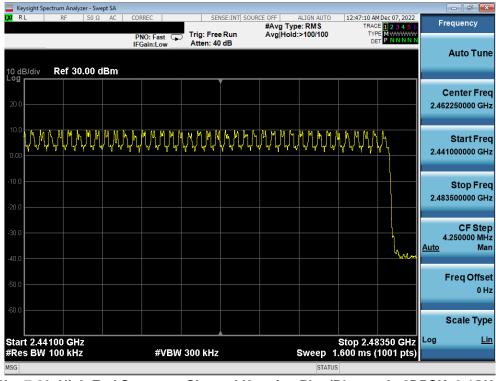

Figure 7-6. Test Instrument & Measurement Setup

Test Notes


- 1. The frequency spectrum was broken up into two sub-ranges to clearly show all of the hopping frequencies. In AFH mode, this device operates using 20 channels so the requirement for minimum number of hopping channels is satisfied.
- 2. All supported modulation have been tested on the unit and only worst case configuration is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 33 of 57
		·	V 10.5 12/15/2021




Plot 7-20. High End Spectrum Channel Hopping Plot (Bluetooth, GFSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 34 of 57	
	•	·	V 10.5 12/15/2021	

Plot 7-22. High End Spectrum Channel Hopping Plot (Bluetooth, 8DPSK, 2.4GHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 25 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 35 of 57	
	-	·	V 10.5 12/15/2021	

7.8 Conducted Spurious Emissions §15.247 (d); RSS-247 [5.5]

Test Overview and Limit

Conducted out-of-band spurious emissions were investigated from 30MHz up to 25GHz to include the 10th harmonic of the fundamental transmit frequency. *The maximum permissible out-of-band emission level is 20 dBc.*

Test Procedure Used

ANSI C63.10-2013 - Section 7.8.8

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 25GHz (separated into two plots per channel)
- 2. RBW = 1MHz* (See note below)
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-7. Test Instrument & Measurement Setup

Test Notes

- Out-of-band conducted spurious emissions were investigated for all data rates and the worst case emissions were found with the EUT transmitting at 1Mbps. The display line shown in the following plots is the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, the traces in the following plots are measured with a 1MHz RBW to reduce test time, so the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.
- 2. The unit was tested with all possible mode and only the highest emission is reported.

FCC ID: BCGA2872 IC: 579C-A2872	element	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 36 of 57
		·	V 10 5 12/15/2021

	ght Spectr	um Analyze		ot SA											- 5 🔀
X/RL		RF	50 Ω	AC	COR	REC		SEN	Run	#Avg Typ	ALIGN AU e: RMS	TO	TRAC TYP	MNov 15, 2022 E 1 2 3 4 5 6 E M	Frequency
10 dB/d Log	div	Ref 30.	.00 di	Зm		Gain:Lov		Atten: 40	dB			Mkr	1 3.15	9 6 GHz 76 dBm	Auto Tune
20.0 -															Center Fred 5.015000000 GHz
0.00														DL1 -4.79 dBm	Start Free 30.000000 MHz
-10.0						<u>1</u>									Stop Fred 10.000000000 GH2
-30.0		ang dag sa basa sa ba				d a ridova a								Witter () Second Second	CF Step 997.000000 MH2 <u>Auto</u> Mar
-50.0 —															Freq Offse 0 Ha
-60.0	20 ML												Stop 10	.000 GHz	Scale Type
		0 MHz				#V	/BW	3.0 MHz		s	weep	18.0	0 ms <u>(</u> 3	0000 GH2 0001 pts)	
MSG											ST	ATUS			

Plot 7-23. Conducted Spurious Plot (Bluetooth, GFSK - 2402MHz)



FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 27 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 37 of 57	
		-	V 10.5 12/15/2021	

	pectrum Analy		t SA									
XI RL	RF	50 Ω	AC	CORREC PNO: Fas		Trig: Free		CE OFF #Avg Typ	ALIGN AUT e: RMS		32 PM Nov 15, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
10 dB/div Log	Ref 3	0.00 dE	3m	IFGain:Lo		Atten: 40	dB			Vlkr1 3. -2	035 6 GHz 26.43 dBm	Auto Tur
20.0												Center Fre 5.015000000 GH
0.00											DL1 -4.91 dBm	Start Fre 30.000000 MH
20.0												Stop Fre 10.00000000 GH
30.0		and the state of the state				nang panang ang sang sang sang sang sang sang					g et brans providerer an av en brans av e	CF Ste 997.000000 MH <u>Auto</u> Ma
40.0 50.0												Freq Offs 0 F
.60.0												Scale Typ
Start 30 I #Res BW		z		#	VBW 3	.0 MHz		s	weep	Stop 18.00 ms	10.000 GHz s (30001 pts)	_
ISG									STA	TUS		

Plot 7-25. Conducted Spurious Plot (Bluetooth, GFSK – 2441MHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 38 of 57
		·	V 10.5 12/15/2021

	ectrum Analyz	er - Swept S	A								
XI RL	RF	50 Ω A		RREC	- · -	SE:INT SOUR	#Avg Typ	ALIGN AUTO e: RMS	TRAC	MNov 15, 2022 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dB/div Log	Ref 30.	.00 dBr	IF	NO: Fast 😱 Gain:Low	Atten: 40			N	DE 1kr1 3.68		Auto Tun
20.0											Center Fre 5.015000000 GH
0.00										DL1 -4.96 dBm	Start Fre 30.000000 M⊦
-10.0				1-							Stop Fre 10.000000000 GH
-30.0		Aproperty is a second second			and the second			tinettine illege res ^{til} ter titege		a na sana ana ang ang ang ang ang ang ang ang	CF Ste 997.000000 MH <u>Auto</u> Ma
-50.0											Freq Offse 0 H
-60.0									Stop 40	.000 GHz	Scale Typ
#Res BW				#VBW	3.0 MHz		s	weep 1	18.00 ms (3	.vvv GHZ	
ISG								STAT	บร		

Plot 7-27. Conducted Spurious Plot (Bluetooth, GFSK – 2480MHz)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 39 of 57	
	-	-	V 10.5 12/15/2021	

7.9 Radiated Spurious Emissions – Above 1GHz §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at maximum power and at the appropriate frequencies. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

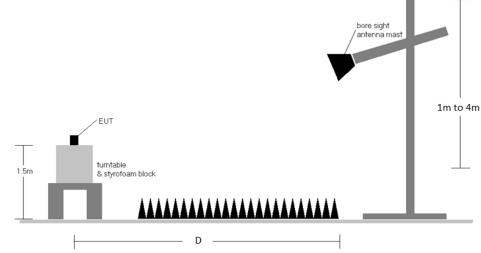
All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-6 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-6. Radiated Limits

Test Procedure Used

ANSI C63.10-2013 - Section 6.6.4.3


Test Settings

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 40 of 57
		-	V 10.5 12/15/2021

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-8. Radiated Test Setup >1GHz

Test Notes

1. All emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-6.

- 2. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.

5. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.

6. D is the measurement test distance and emissions 1-18GHz were measured at a 3 meters test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

- 7. All supported modulation have been tested on the unit and only worst case configuration is reported.
- 8. Average emissions were not reported since the duty cycle correction factor was greater than 20dB.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 57	
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 41 of 57	
		•	V 10 5 12/15/2021	

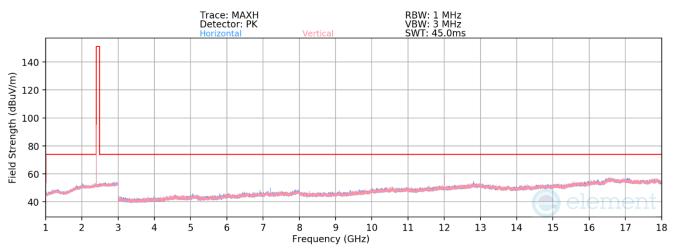
Sample Calculation

- \circ Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- o AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- $\circ \quad \text{Margin}_{[dB]} = \text{Field Strength Level}_{[dB\mu V/m]} \text{Limit}_{[dB\mu V/m]}$

Duty Cycle Correction Factor Calculation

- Channel hop rate = 800 hops/second (AFH Mode)
- Adjusted channel hop rate for DH5 mode = 133.33 hops/second
- Time per channel hop = 1 / 133.33 hops/second = 7.50 ms
- Time to cycle through all channels = 7.50×20 channels = 150 ms
- Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)
- Worst case dwell time = 7.5 ms

Duty cycle correction factor = $20\log_{10}(7.5\text{ms}/100\text{ms}) = -22.5 \text{ dB}$


Average Emission Calculation

Average Emission = Measured Peak Emissions [dBµV/m] – Duty Cycle Correction Factor [dB]

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 42 of 57
			V 10 5 12/15/2021

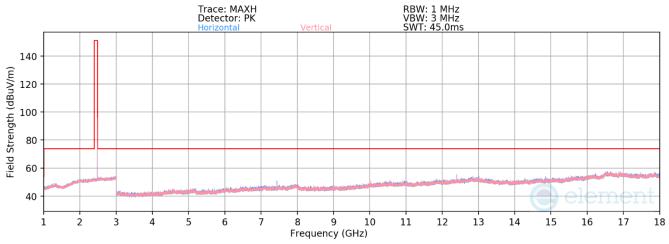
Radiated Spurious Emission Measurements (1 – 18GHz) §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Distance of measurements.	0 10101013
Operating Frequency:	2402MHz

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	Peak	V	104	76	-64.12	4.09	46.97	73.98	-27.01
12010.00	Peak	V	103	236	-55.60	17.34	68.74	73.98	-5.24

Table 7-7. Radiated Measurements

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 43 of 57
			V 10.5 12/15/2021


Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2441MHz

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4882.00	Peak	Н	124	317	-66.15	7.66	48.51	73.98	-25.47
7323.00	Peak	Н	110	335	-63.38	10.60	54.22	73.98	-19.76
12205.00	Peak	V	103	128	-61.60	17.84	63.24	73.98	-10.74

Table 7-8. Radiated Measurements

FCC ID: BCGA2872 IC: 579C-A2872	element 🕞	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 44 of 57
1	•	·	V 10.5 12/15/2021

Bluetooth Mode:	GFSK
Data Rate:	1Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	2480MHz

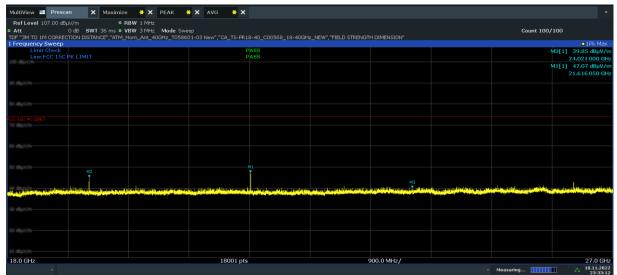
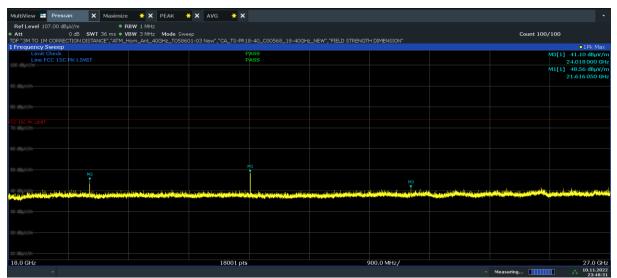

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	Peak	Н	369	4	-63.92	3.92	47.00	73.98	-26.98
7440.00	Peak	Н	302	17	-60.16	8.59	55.43	73.98	-18.55
12400.00	Peak	V	102	245	-65.60	17.60	59.00	73.98	-14.98

Table 7-9. Radiated Measurements


FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 45 of 57
1			V 10.5 12/15/2021

Radiated Spurious Emission Measurements (Above 18GHz) §15.209; RSS-Gen [8.9]

Plot 7-32. Radiated Spurious Emissions above 18GHz (BT GFSK – 2402MHz, Pol. H)

Plot 7-33. Radiated Spurious Emissions above 18GHz (BT GFSK – 2402MHz, Pol. V)

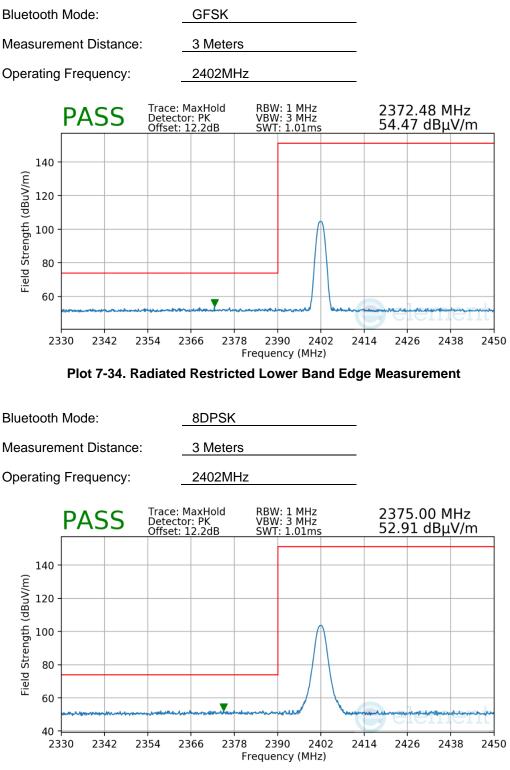
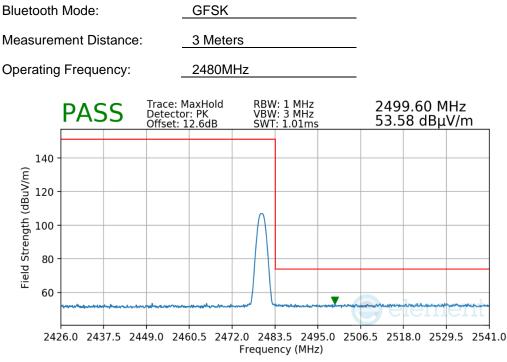
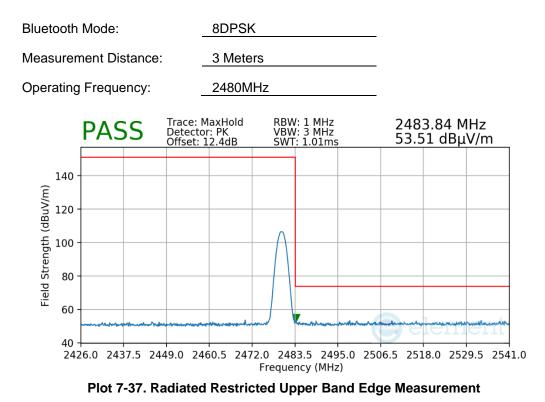

Frequency [GHz]	Detector	Ant. Pol. [H/V]	Positioner [degree]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Dist. Corr. Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
19.22	Peak	V	115	240	-45.83	-6.88	-9.54	44.75	73.98	-29.23
21.62	Peak	V	354	66	-41.16	-7.38	-9.54	48.92	73.98	-25.06
24.02	Peak	V	87	42	-48.71	-6.54	-9.54	42.21	73.98	-31.77

Table 7-10. Radiated Spurious Emissions Above 18GHz Measurements

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 46 of 57
	•		V 10.5 12/15/2021


7.9.1 Radiated Restricted Band Edge Measurements §15.205 §15.209 §15.247 (d); RSS-Gen [8.9]


Plot 7-35. Radiated Restricted Lower Band Edge Measurement

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 47 of 57
<u></u>	•		V 10.5 12/15/2021

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 48 of 57
			V 10.5 12/15/2021

7.10 Radiated Spurious Emissions – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 7 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-11 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-11. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. VBW = 300kHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 49 of 57
			V 10 5 12/15/2021

The EUT and measurement equipment were set up as shown in the diagrams below.

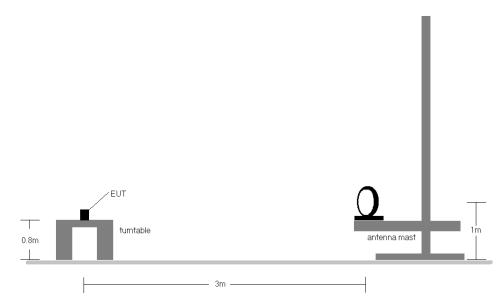
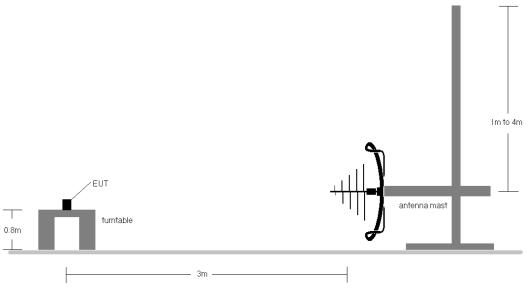



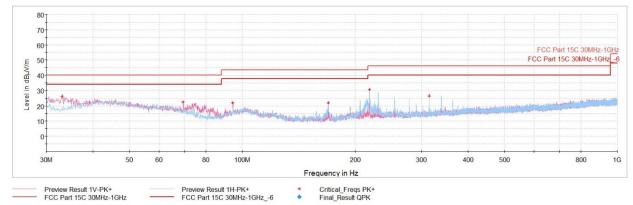
Figure 7-9. Radiated Test Setup < 30MHz

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 50 of 57
		·	V 10 5 12/15/2021

Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-11.
- The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes. For below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst case emissions.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR guasi peak detector on emissions that were within 6dB of the limit.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- 9. All supported modulation have been tested on the unit and only worst case configuration is reported.
- 10. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT charged by charging case and powered by AC/DC adaptor with USB-C cable.
 - b. EUT charged by charging case and powered by host PC with USB-C cable.

Sample Calculations


Determining Spurious Emissions Levels

- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

FCC ID: BCGA2872 IC: 579C-A2872	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 51 of 57
		•	V 10 5 12/15/2021

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-38. Radiated Spurious Emissions Below 1GHz (GFSK – 2402MHz, with with AC/DC Adapter and USB-C cable)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
45.47	Max-Peak	V	100	283	-61.16	-19.58	26.26	40.00	-13.74
83.40	Max-Peak	V	100	283	-64.34	-20.15	22.51	40.00	-17.49
117.35	Max-Peak	н	200	231	-65.95	-19.06	21.99	43.52	-21.53
161.97	Max-Peak	V	100	357	-64.64	-20.26	22.10	43.52	-21.42
478.04	Max-Peak	Н	100	339	-58.79	-17.61	30.60	46.02	-15.42
952.42	Max-Peak	Н	100	40	-65.66	-14.80	26.54	46.02	-19.48

Table 7-12. Radiated Spurious Emissions Below 1GHz (GFSK – 2402MHz with with AC/DC Adapter and USB-C cable)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 52 of 57
		·	V 10.5 12/15/2021

7.11 AC Line-Conducted Emissions Measurement §15.207; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for AC Line conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30	60	50			

Table 7-13. Conducted Limits

*Decreases with the logarithm of the frequency.

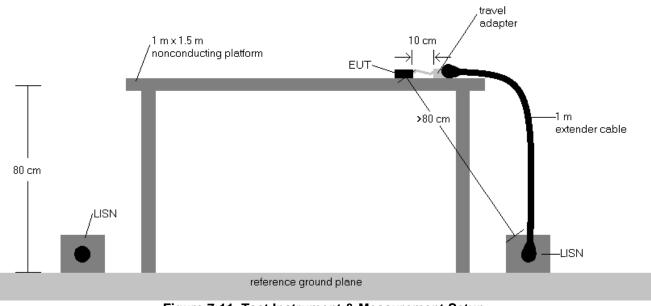
Test Procedures Used

ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Measurements

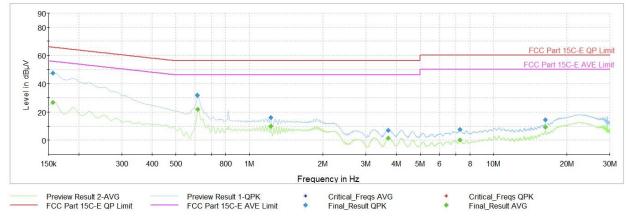
- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize


Average Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: BCGA2872 IC: 579C-A2872	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 53 of 57
			V/ 10 5 12/15/2021

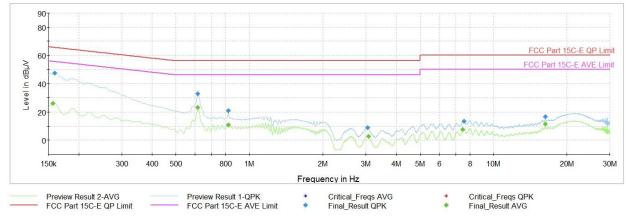
The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-11. Test Instrument & Measurement Setup

Test Notes

- 1. All modes of operation were investigated and the worst-case emissions are reported. The emissions found were not affected by the choice of channel used during testing.
- 2. Both configurations below were investigated, and the worst case has been reported.
 - a. EUT charged by charging case and powered by AC/DC adaptor with USB-C cable
 - b. EUT charged by charging case and powered by host PC with USB-C cable
- 3. The limit for an intentional radiator from 150kHz to 30MHz are specified in Part 15.207 and RSS-Gen (8.8).
- 4. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 5. QP/AV Level ($dB\mu V$) = QP/AV Analyzer/Receiver Level ($dB\mu V$) + Correction Factor (dB)
- 6. Margin (dB) = QP/AV Level (dB μ V) QP/AV Limit (dB μ V)
- 7. Traces shown in plot are made using a quasi peak and average detectors.
- 8. Deviations to the Specifications: None.

FCC ID: BCGA2872 IC: 579C-A2872	element	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of E7
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 54 of 57
		·	V 10 5 12/15/2021


Plot 7-39. AC Line-Conducted Test Plot (L1, GFSK – 2402MHz, with host PC and USB-C cable)

Frequency [MHz]	Process State	QuasiPeak [dBµV]	Averaqe [dBµV]	Limit [dB µ V]	Marqin [dB]	Line	PE
0.157	FINAL	—	26.79	55.63	-28.85	L1	GND
0.157	FINAL	47.3	-	65.63	-18.33	L1	GND
0.614	FINAL	31.6	_	56.00	-24.45	L1	GND
0.616	FINAL	—	21.84	46.00	-24.16	L1	GND
1.226	FINAL	16.0	_	56.00	-39.99	L1	GND
1.228	FINAL		10.03	46.00	-35.97	L1	GND
3.694	FINAL	7.1	_	56.00	-48.91	L1	GND
3.694	FINAL	_	1.39	46.00	-44.61	L1	GND
7.276	FINAL	7.5	_	60.00	-52.51	L1	GND
7.283	FINAL	_	0.05	50.00	-49.95	L1	GND
16.319	FINAL	_	9.20	50.00	-40.80	L1	GND
16.321	FINAL	14.3	_	60.00	-45.68	L1	GND

Table 7-14. AC Line-Conducted Test Data (L1, GFSK – 2402MHz, with host PC and USB-C cable)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage FE of FZ
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 55 of 57
			V 10 5 12/15/2021

Plot 7-40. AC Line-Conducted Test Plot (N, GFSK – 2402MHz, with host PC and USB-C cable)

Frequency [MHz]	Process State	QuasiPeak [dB µ V]	Averaqe [dBµV]	Limit [dB µ V]	Marqin [dB]	Line	PE
0.157	FINAL	_	26.07	55.63	-29.56	Ν	GND
0.159	FINAL	47.2	_	65.52	-18.29	Ν	GND
0.616	FINAL	—	23.12	46.00	-22.88	Ν	GND
0.616	FINAL	32.7	—	56.00	-23.32	N	GND
0.821	FINAL	—	10.92	46.00	-35.08	Ν	GND
0.821	FINAL	21.0	_	56.00	-35.02	N	GND
3.044	FINAL	8.9	-	56.00	-47.06	N	GND
3.068	FINAL	—	2.76	46.00	-43.24	N	GND
7.485	FINAL	_	7.44	50.00	-42.56	N	GND
7.559	FINAL	13.5	_	60.00	-46.46	N	GND
16.330	FINAL	_	11.59	50.00	-38.41	N	GND
16.330	FINAL	16.8		60.00	-43.20	N	GND

Table 7-15. AC Line-Conducted Test Data (N, GFSK – 2402MHz, with host PC and USB-C cable)

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EC of EZ
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	Page 56 of 57
			V 10 5 12/15/2021

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Apple Wireless Left Earbud FCC ID: BCGA2872 and IC: 579C-A2872** is in compliance with Part 15 Subpart C (15.247) of the FCC Rules and RSS-247 of the Innovation, Science and Economic Development Canada Rules.

FCC ID: BCGA2872 IC: 579C-A2872	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 57
1C2211040068-01.BCG	11/04/2022-01/16/2023	Wireless Earbud	
			V 10 5 12/15/2021