



Plot 7-90. Conducted Spurious Plot (NR Band n48 - 40MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 62 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 62 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



# 7.4 Band Edge Emissions at Antenna Terminal §2.1051 §96.41(e)(ii)

#### Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation and all ports were investigated and the worst case configuration results are reported in this section.

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

#### Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

#### **Test Settings**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW  $\geq$  3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

#### Test Notes

None

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 62 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Faye 03 01 233                    |
|                     |                       |                            | V/2 2 09/07/2023                  |



## LTE Band 48

|                     |                       |                  |       |                             |       | <b></b>       |
|---------------------|-----------------------|------------------|-------|-----------------------------|-------|---------------|
| MultiView           | Spectrum              |                  |       |                             |       | •             |
| Ref Level 25.       | .00 dBm • RBW         | 1 MHz            |       |                             |       |               |
| Att<br>TDE "CABLES" | 26 dB • SWT 1 s • VBW | 3 MHz Mode Sweep |       |                             |       | Count 10/10   |
| 1 Frequency S       | weep                  |                  |       |                             |       | ●1Rm View     |
| 20 dBm              |                       |                  |       |                             | M1[1] | -51.24 dBm    |
| 20.0011             |                       |                  |       |                             |       | 3.5295000 GHz |
| 10 dBm-             |                       |                  |       |                             |       |               |
| 0 dBm               |                       |                  |       |                             |       |               |
| -10 dBm             |                       |                  |       |                             |       |               |
| -20 dBm             |                       |                  |       |                             |       |               |
| -30 dBm             |                       |                  |       |                             |       |               |
| -48 dBm             |                       |                  |       |                             |       |               |
| -\$0 dBm            |                       |                  |       |                             |       | M1            |
|                     |                       |                  |       |                             |       |               |
| -60 dBm             |                       |                  |       |                             |       |               |
| <b>5</b> 70 dBm     |                       |                  |       |                             |       | 52            |
| 3.49 GHz            | 1                     | 1001 pts         | 4.0 N | Hz/                         |       | 3.53 GHz      |
| 2 Marker Peak       | < List                |                  |       |                             |       |               |
| No                  | X-Value               | Y-Value          | No    | X-Value                     | Y-Va  | lue           |
| Ĩ                   | 3.329500 GHZ          | -51.244 dbm      |       |                             |       |               |
|                     |                       |                  |       |                             |       | 22.01.2024    |
|                     | Ť                     |                  |       | <ul> <li>Measuri</li> </ul> | ng    | 00:04:28      |

00:04:29 23.01.2024





00:04:52 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 64 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 04 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                                          |                                         |                              |                                                                                                                |                          | <b>\$</b>              |
|------------------------------------------|-----------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|
| MultiView 🖿                              | Spectrum                                |                              |                                                                                                                |                          | -                      |
| Ref Level 25.00<br>Att 2<br>TDF "CABLES" | dBm ● RBW 11<br>26 dB ● SWT 1s ● VBW 31 | MHz<br>MHz <b>Mode</b> Sweep |                                                                                                                |                          | Count 10/10            |
| 1 Frequency Swe                          | ер                                      |                              |                                                                                                                |                          | O1Rm View              |
| 20. dBm                                  |                                         |                              |                                                                                                                | M1[1]                    | -25.91 dBm             |
| 20 ubm                                   |                                         |                              |                                                                                                                | 3.                       | 54849200 GHz           |
| 10 dBm                                   |                                         |                              |                                                                                                                |                          |                        |
| TO OPIU                                  |                                         |                              |                                                                                                                |                          |                        |
| 0.48.00                                  |                                         |                              |                                                                                                                |                          |                        |
| U UDITI                                  |                                         |                              |                                                                                                                |                          |                        |
| 10 dBm                                   |                                         |                              |                                                                                                                |                          |                        |
| 10 0011                                  |                                         |                              |                                                                                                                |                          |                        |
| an dam                                   |                                         |                              |                                                                                                                |                          |                        |
| -20 ubiii-                               |                                         |                              |                                                                                                                |                          | M1                     |
| an dam                                   |                                         |                              |                                                                                                                |                          | H                      |
| -50 ubili                                |                                         |                              | 1 And In                                                                                                       | Hundharthuble Mulanthant | and Person             |
| -40 dBm-                                 |                                         |                              | and a second |                          |                        |
|                                          |                                         |                              |                                                                                                                |                          |                        |
| -50 dBm-                                 |                                         |                              |                                                                                                                |                          |                        |
|                                          |                                         |                              |                                                                                                                |                          |                        |
| -60 dBm-                                 |                                         |                              |                                                                                                                |                          |                        |
|                                          |                                         |                              |                                                                                                                |                          |                        |
| -70 dBm <mark>s1</mark>                  |                                         |                              |                                                                                                                |                          |                        |
| 3.54 GHz                                 |                                         | 1001 pts                     | 900.0 kHz/                                                                                                     |                          | 3.549 GHz              |
| 2 Marker Peak Lis                        | st                                      |                              |                                                                                                                |                          |                        |
| No                                       | X-Value                                 | Y-Value                      | No X-Valu                                                                                                      | e Y-Va                   | lue                    |
| 1                                        | 3.548492 GHz                            | -25.913 dBm                  |                                                                                                                |                          |                        |
|                                          |                                         |                              |                                                                                                                |                          |                        |
|                                          |                                         |                              |                                                                                                                |                          |                        |
|                                          |                                         |                              |                                                                                                                | _                        |                        |
| v                                        |                                         |                              | ~                                                                                                              | Measuring                | 23.01.2024<br>00:05:15 |

00:05:15 23.01.2024





00:05:39 23.01.2024

Plot 7-94. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Daga 65 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 05 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |





00:06:02 23.01.2024





00:06:25 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 66 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 00 01 233                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                      |                 |             |             |   |    |          |           |       | (*)          |
|----------------------|-----------------|-------------|-------------|---|----|----------|-----------|-------|--------------|
| MultiView            | Spectrum        |             |             |   |    |          |           |       |              |
| Ref Level 25.        | 00 dBm          | • RBW 1 MHz |             |   |    |          |           |       |              |
| Att     TDE "CABLES" | 26 dB • SWT 1 s | • VBW 3 MHz | Mode Sweep  |   |    |          |           |       | Count 10/10  |
| 1 Frequency S        | weep            |             |             |   |    |          |           |       | o1Rm View    |
| 00.40m               |                 |             |             |   |    |          |           | M1[1] | -49.12 dBm   |
| 20 0611              |                 |             |             |   |    |          |           |       | 3.570520 GHz |
| 10 dBm               |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
| 0 dBm                |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
| -10 dBm              |                 |             |             |   |    |          |           |       |              |
| -20 dBm              |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
| -30 dBm              |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
| -40 dBm              |                 |             |             |   |    |          |           |       |              |
| SED dBm              |                 |             |             |   |    |          |           |       |              |
| S- UBIT              |                 |             |             |   |    |          |           |       |              |
| -60 dBm              |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
| s 70 dBm             |                 |             |             |   |    |          |           |       | 52           |
| 3.57 GHz             |                 |             | 1001 pts    |   | 1  | 5.0 MHz/ |           |       | 3.72 GHz     |
| 2 Marker Peak        | List            |             |             |   |    |          |           |       |              |
| No                   | X-Value         |             | Y-Value     |   | No | X-Value  | ;         | Y-Va  | lue          |
| 1                    | 3.570520 GHz    |             | -49.119 dBr | n |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       |              |
|                      |                 |             |             |   |    |          |           |       | 23.01.2024   |
|                      | Ň.              |             |             |   |    | ~        | Measuring |       | 00:06:48     |

00:06:48 23.01.2024





00:07:12 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 67 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 07 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView         Spectrum         RBW 1 MHz           • Att         26 db • SWT 1s • VBW 3 MHz         Mode Sweep         Count 10/10           TDF"CALLS'         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBm View           0 dm         • IBm View         • IBm View         • IBM View         • IBM View           0 dm         • IBM View         • IBM View         • IBM View         • IBM View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |             |               |                 |     |      |          |           |        | (*)            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|---------------|-----------------|-----|------|----------|-----------|--------|----------------|
| Ref Level 25:00 dBm       • RBW 1 MHz         • Att       2 6 dt • SWT 1s • VBW 3 MHz       Mode Sweep       Count 10/10         DF"calls"       • IRm View         I Frequency Sweep       • IRm View         0 dBm       · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MultiView      | Spectrum    |               |                 |     |      |          |           |        | -              |
| • Att       26 dB • SWT 1s • VBW 3 MHz       Mode Sweep       Count 10/10         TDF "CABLES"       • IRm View       • IRm View         IP requency Sweep       • IRm View       • M1(1)       • S28.83 dBm         0 dbm       • IRm View       • IRm View       • IRm View         0 dbm       • IRm View       • IRm View       • IRm View         0 dbm       • IRm View       • IRm View       • IRm View         0 dbm       • IRm View       • IRm View       • IRm View         0 dbm       • IRm View       • IRm View       • IRm View         0 dbm       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm View         • IRm View       • IRm View       • IRm View       • IRm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref Level 25.  | 00 dBm      | • RBW 1 N     | 1Hz             |     |      |          |           |        |                |
| TDF"CARLES"  I Frequency Sweep  Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Att            | 26 dB 单 SWT | 1 s • VBW 3 M | 1Hz Mode Swe    | ep  |      |          |           |        | Count 10/10    |
| 1 Prequency sweep       0 Infinition         a0 dam       M1[1]       -52.879 dBm         a0 dam       M1[1]       -52.879 dBm         a0 dam       M1[1]       -52.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDF "CABLES"   |             |               |                 |     |      |          |           |        |                |
| a) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 Frequency Sv | weep        |               |                 |     |      |          |           | MILLIT | 50 00 dpm      |
| 10 dBm       10 dBm       10 dBm       10 dBm         -10 dBm       10 dBm       10 dBm       10 dBm         -20 dBm       1001 pts       4.0 MHz/       3.53 GHz         2 Marker Peak List       Y-Value       Y-Value       Y-Value         1       3.493 d57 GHz       -52.879 dBm       No       X-Value       Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 dBm         |             |               |                 |     |      |          |           | MILI   | 2 4924570 CHz  |
| 10 dBm       10 dBm       10 dBm       10 dBm       10 dBm         20 dBm       10 dBm       10 dBm       10 dBm       10 dBm         20 dBm       10 dBm       10 dBm       10 dBm       10 dBm         20 dBm       10 dBm       10 dBm       10 dBm       10 dBm         20 dBm       11 -40.000 dBm       10 dBm       10 dBm       10 dBm         30 dBm       10 dBm       10 dBm       10 dBm       10 dBm         20 dBm       1001 pts       4.0 MHz/       3.53 GHz         2 Marker Peak List       Y-Value       No       X-Value       Y-Value         1       3.493457 GHz       -52.879 dBm       No       X-Value       Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |               |                 |     |      |          |           |        | 5.4934370 0112 |
| 0 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 dBm         |             |               |                 |     |      |          |           |        |                |
| 0 dbm     -0 dbm     -0 dbm     -0 dbm       -0 dbm     -0 dbm     -0 dbm     -0 dbm       -0 dbm     -11 -40.000 dbm     -0 dbm       -0 dbm     -1 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |               |                 |     |      |          |           |        |                |
| -10 dm       -10 dm       -10 dm       -10 dm       -10 dm         -20 dm       -10 dm       -10 dm       -10 dm       -10 dm         -30 dm       -11 -40.000 dm       -10 dm       -10 dm       -10 dm         -50 dm       -11 -40.000 dm       -10 dm       -10 dm       -10 dm         -50 dm       -11 -40.000 dm       -10 dm       -10 dm       -10 dm         -50 dm       -11 -40.000 dm       -10 dm       -10 dm       -10 dm         -50 dm       -11 -40.000 dm       -10 dm       -10 dm       -10 dm         -50 dm       -10 dm       -10 dm       -10 dm       -10 dm         -50 dm       -1001 pts       -1.0 MHz/       3.53 GHz         2 Marker Peak List       -52.879 dBm       No       X-Value       Y-Value         1       3.493457 GHz       -52.879 dBm       -52.879 dBm       -10 dm       -10 dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 dBm          |             |               |                 |     |      |          |           |        |                |
| 20       dBm       40       dBm       40 <td< td=""><td>10 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 dBm         |             |               |                 |     |      |          |           |        |                |
| 20 dBm       H1 - 40.000 dBm         30 dBm       H1 - 40.000 dBm         3.49 GHz       1001 pts         4.0 MHz/       3.53 GHz         Marker Peak List       Y-Value         1       3.493457 GHz         - 52.879 dBm       Y-Value         1       3.493457 GHz         - 52.879 dBm       Y-Value         Y-Value       Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10 UBII       |             |               |                 |     |      |          |           |        |                |
| 0 dbm       H1 =40.000 dbm         0 dbm       H1 =40.000 dbm         0 dbm       M1         1 3.493457 GHz       -52.879 dBm         0 dbm       M1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20 dBm-       |             |               |                 |     |      |          |           |        |                |
| -0 dbm       H1 -40.000 dbm         +0 dbm       H1 -40.000 dbm         +0 dbm       H1 -40.000 dbm         +0 dbm       M1         +1 3,493457 GHz       -52.879 dBm         +1 3,493457 GHz       -52.879 dBm         +1 3,493457 GHz       -52.879 dBm         +1 4,493457 GHz       -52.879 dBm         +1 4,494 dbm       M1         +1 4,494 dbm       M1         +1 4,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |               |                 |     |      |          |           |        |                |
| 40 dbm         H1 +40.000 dbm           50 dbm         M1           60 dbm         M1           80 dbm         M1           80 dbm         M1           80 dbm         M1           90 dbm         M1           3.49 GHz         1001 pts           90 dbm         M1           1         3.493457 GHz           90 dbm         Statistic           90 dbm         V-Value           1         3.493457 GHz           90 dbm         Statistic           90 dbm         M1           90 dbm         M1           90 dbm         M1           90 dbm         M1           90 dbm         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30 dBm        |             |               |                 |     |      |          |           |        |                |
| All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |               |                 |     |      |          |           |        |                |
| S0 dbm       M1         S0 dbm       M1         S0 dbm       S2         3.49 GHz       1001 pts         4.0 MHz/       3.53 GHz         2 Marker Peak List       V=Value         No       X=Value       Y=Value         1       3.493457 GHz       -52.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -40 dBm        |             |               |                 |     |      |          |           |        |                |
| to dam M1<br>e0 dam<br>sto dam<br>st |                |             |               |                 |     |      |          |           |        |                |
| 0 d0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50 dBm        |             |               |                 |     |      |          |           |        |                |
| 3.49 GHz     1001 pts     4.0 MHz/     3.53 GHz       2 Marker Peak List     No     X-Value     Y-Value       1     3.493457 GHz     -52.879 dBm     No     X-Value     Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             |               |                 |     |      |          |           |        |                |
| 3.49 GHz 1001 pts 4.0 MHz/ 3.53 GHz<br>2 Marker Peak List<br>No X-Value V-Value No X-Value V-Value<br>1 3.493457 GHz -52.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -60 dBm-       |             |               |                 |     |      |          |           |        |                |
| 3.49 GHz 1001 pts 4.0 MHz/ 3.53 GHz<br>Marker Peak List<br>No X-Value Y-Value No X-Value Y-Value<br>1 3.493457 GHz -52.879 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20 -10        |             |               |                 |     |      |          |           |        | 52             |
| 3.49 GHz         1001 pts         4.0 MHz/         3.53 GHz           2 Marker Peak List         No         X-Value         V           1         3.493457 GHz         -52.879 dBm         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STO OBIL       |             |               |                 |     |      |          |           |        |                |
| 2 Marker Peak List         Volue         V         Value         V         Value         V         V         Value         V         V         Value         V         V         Value         V         Value         V         Value         V         Value         V         Value         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.49 GHz       |             |               | 1001 pt         | S   | 4    | 1.0 MHz/ |           |        | 3.53 GHz       |
| No x-value r-value vo x-value r-value r-value vo x-value r-value r-value vo x-value r-value r-                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Marker Peak  | List        | -             |                 |     | N 1- | V V-1    |           |        |                |
| <ul> <li>Measuring</li> <li>Measuring</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | 3.493457 C  | e<br>GHz      | v-va<br>-52.879 | dBm | INO  | x-value  | 2         | y-va   | lue            |
| ✓ Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             |               |                 |     |      |          |           |        |                |
| ✓ Measuring ■ Measuring ■ 23.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |             |               |                 |     |      |          |           |        |                |
| <ul> <li>Measuring</li> <li>Measuring</li> <li>Measuring</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |             |               |                 |     |      |          |           |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | •           |               |                 |     |      |          | Measuring |        | 23.01.2024     |

00:08:24 23.01.2024





00:08:47 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 69 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage to 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                         |                      |                    |            |           |                           | - <b>~</b> |
|-------------------------|----------------------|--------------------|------------|-----------|---------------------------|------------|
| MultiView               | Spectrum             |                    |            |           |                           | •          |
| Ref Level 25.           | 00 dBm • RB          | SW 1 MHz           |            |           |                           |            |
| <ul> <li>Att</li> </ul> | 26 dB • SWT 1 s • VB | W 3 MHz Mode Sweep |            |           | Coun                      | t 10/10    |
| 1 Erequency St          | ween                 |                    |            |           | 0.1R                      | m View     |
| Thequency o             |                      |                    |            |           | M1[1] -37                 | 7.29 dBm   |
| 20 dBm                  |                      |                    |            |           | 3.61843                   | 810 GHz    |
| 10 40 10                |                      |                    |            |           |                           |            |
| TO UBIN                 |                      |                    |            |           |                           |            |
| 0 dBm                   |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           |            |
| -10 dBm-                |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           |            |
| -20 dBm-                |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           |            |
| -30 dBm-                |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           | Monthmet   |
| -40 dBm-                |                      |                    |            |           | must matter aller and the |            |
| 170 - 10-10             | *****                |                    |            |           |                           |            |
| -50 UBM-                |                      |                    |            |           |                           |            |
| -60 dBm-                |                      |                    |            |           |                           |            |
| 00 0011                 |                      |                    |            |           |                           |            |
| -70 dBm <mark>s1</mark> |                      |                    |            |           |                           | 52<br>1    |
| 2 61 CHz                |                      | 1001 ptc           |            |           | 2.                        | 610 CH7    |
| 2 Marker Peak           | list                 | 1001 513           | 50010 KH27 |           |                           | 017 0112   |
| No                      | X-Value              | Y-Value            | No X-      | Value     | Y-Value                   |            |
| 1                       | 3.618438 GHz         | -37.288 dBm        |            |           |                           |            |
|                         |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           |            |
|                         |                      |                    |            |           |                           | 2.01.2024  |
|                         | *                    |                    |            | Measuring |                           |            |

00:09:10 23.01.2024





00:09:33 23.01.2024

Plot 7-102. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Daga 60 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 09 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |





00:09:57 23.01.2024





00:10:20 23.01.2024

Plot 7-104. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 70 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 70 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                     |                     |                   |      |    |         |       | (*)           |
|---------------------|---------------------|-------------------|------|----|---------|-------|---------------|
| MultiView           | Spectrum            |                   |      |    |         |       | -             |
| Ref Level 25.0      | 00 dBm 🔍 🖣          | RBW 1 MHz         |      |    |         |       |               |
| Att<br>TDE "CABLES" | 26 dB • SWT 1 s • \ | /BW 3 MHz Mode Sv | reep |    |         |       | Count 10/10   |
| 1 Frequency Sv      | veep                |                   |      |    |         |       | ●1Rm View     |
| 00.40.0             |                     |                   |      |    |         | M1[1] | -48.33 dBm    |
| 2U dBm              |                     |                   |      |    |         |       | 3.6405990 GHz |
| 10 dBm              |                     |                   |      |    |         |       |               |
| to dom              |                     |                   |      |    |         |       |               |
| 0 dBm-              |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
| -10 dBm             |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
| -20 dBm             |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
| -30 dBm             |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
| -40 dBm             |                     |                   |      |    |         |       |               |
| M1                  |                     |                   |      |    |         |       |               |
| 50 dBm              |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
| -60 dBm             |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       | S2            |
| s 1/0 dBm           |                     |                   |      |    |         |       |               |
| 3.64 GHz            |                     | 1001 p            | ts   | 8  | .0 MHz/ |       | 3.72 GHz      |
| 2 Marker Peak       | List                |                   |      |    |         |       |               |
| No                  | X-Value             | Y-V               | alue | No | X-Value | Y-Va  | lue           |
| 1                   | 3.040399 GHZ        | -40.33            |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       |               |
|                     |                     |                   |      |    |         |       | 23.01.2024    |
|                     | ×                   |                   |      |    | *       |       | 00:10:43      |

00:10:43 23.01.2024





00:11:07 23.01.2024

Plot 7-106. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 71 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 71 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView              | Spectrum                               |                               |           | •                 |
|------------------------|----------------------------------------|-------------------------------|-----------|-------------------|
| Ref Level 25.<br>• Att | .00 dBm ● RB₩<br>26 dB ● SWT 1 s ● VB₩ | / 1 MHz<br>/ 3 MHz Mode Sweep |           | Count 10/10       |
| 1 Erequency S          | weep                                   |                               |           | •1Rm View         |
|                        |                                        |                               |           | M1[1] -52.88 dBm  |
| 20 dBm                 |                                        |                               |           | 3.5077220 GHz     |
| 10 40 10               |                                        |                               |           |                   |
| 10 UBIII               |                                        |                               |           |                   |
| D dBm                  |                                        |                               |           |                   |
| o ubm                  |                                        |                               |           |                   |
| -10 dBm                |                                        |                               |           |                   |
|                        |                                        |                               |           |                   |
| -20 dBm                |                                        |                               |           |                   |
|                        |                                        |                               |           |                   |
| -30 dBm                |                                        |                               |           |                   |
|                        |                                        |                               |           |                   |
| 40 dBm                 |                                        |                               |           |                   |
|                        |                                        |                               |           |                   |
| -50 dBm                |                                        | M1                            |           |                   |
|                        |                                        |                               |           |                   |
| -60 dBm                |                                        |                               |           |                   |
|                        |                                        |                               |           | 52                |
| sło dBm-               |                                        |                               |           |                   |
| 3.49 GHz               |                                        | 1001 pts                      | 4.0 MHz/  | 3.53 GHz          |
| 2 Marker Peak          | List                                   |                               |           |                   |
| No                     | X-Value                                | Y-Value                       | No X-Valu | ie Y-Value        |
| ±                      | 3.307722 GHZ                           | -32.675 QBIII                 |           |                   |
|                        |                                        |                               |           |                   |
|                        |                                        |                               |           |                   |
|                        | _                                      |                               |           | Manual 23.01.2024 |
|                        |                                        |                               |           | 00:11:44          |

00:11:45 23.01.2024





00:12:08 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 72 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 72 01 233                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView                             | Spectrum                             |                                  |            |                     |
|---------------------------------------|--------------------------------------|----------------------------------|------------|---------------------|
| Ref Level 25.0<br>Att<br>TDF "CABLES" | 00 dBm ● RBW<br>26 dB ● SWT is ● VBW | 1 MHz<br>3 MHz <b>Mode</b> Sweep |            | Count 10/10         |
| 1 Frequency Sv                        | veep                                 |                                  |            | •1Rm View           |
| 20 dBm                                |                                      |                                  |            | M1[1] -42.33 dBn    |
| 20 0011                               |                                      |                                  |            | 3.68841110 GH       |
| 10 dBm-                               |                                      |                                  |            |                     |
| 10 dom                                |                                      |                                  |            |                     |
| 0 dBm                                 |                                      |                                  |            |                     |
| o abiii                               |                                      |                                  |            |                     |
| -10 dBm-                              |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
| -20 dBm-                              |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
| -30 dBm-                              |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
| -40 dBm-                              |                                      |                                  |            | M1                  |
|                                       |                                      |                                  |            |                     |
| -50 dBm-                              |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
| -60 dBm-                              |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
| -70 dBm <mark>s1</mark>               |                                      |                                  |            |                     |
| 3.68 GHz                              |                                      | 1001 pts                         | 900.0 kHz/ | 3.689 GHz           |
| 2 Marker Peak                         | List                                 |                                  |            |                     |
| No                                    | X-Value                              | Y-Value                          | No X-Valu  | e Y-Value           |
| 1                                     | 3.688411 GHz                         | -42.333 dBm                      |            |                     |
|                                       |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
|                                       |                                      |                                  |            |                     |
|                                       | *                                    |                                  | ~          | Measuring Measuring |

00:12:31 23.01.2024





00:12:54 23.01.2024

Plot 7-110. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 72 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 75 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |





00:13:18 23.01.2024





00:13:41 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 74 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 74 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                     |                      |                     |           |           | <b>\$</b>      |
|---------------------|----------------------|---------------------|-----------|-----------|----------------|
| MultiView           | Spectrum             |                     |           |           |                |
| Ref Level 25        | .00 dBm • RE         | 3W 1 MHz            |           |           |                |
| • Att               | 26 dB • SWT 1 s • VE | SW 3 MHz Mode Sweep |           |           | Count 10/10    |
| TDF "CABLES"        | ween                 |                     |           |           | 0 1 Pm Viow    |
| Thequency a         | Weep                 |                     |           | MIEII     | -45.08 dBm     |
| 20 dBm-             |                      |                     |           |           | 3.71063400 GHz |
| 10 dBm              |                      |                     |           |           |                |
| 10 dbm              |                      |                     |           |           |                |
| 0 dBm               |                      |                     |           |           |                |
|                     |                      |                     |           |           |                |
| -10 dBm             |                      |                     |           |           |                |
|                     |                      |                     |           |           |                |
| -20 dBm             |                      |                     |           |           |                |
| -30 dBm             | H1 -25.000 dBm       |                     |           |           |                |
| 50 0bm              |                      |                     |           |           |                |
| -40 dBm             |                      |                     |           |           |                |
| ~~~~~ <b>`</b> ~~~~ |                      |                     |           |           |                |
| -50 dBm             |                      |                     |           |           |                |
|                     |                      |                     |           |           |                |
| -60 dBm             |                      |                     |           |           |                |
| -70 dBra            |                      |                     |           |           | S2             |
|                     |                      |                     |           |           |                |
| 3.71 GHz            |                      | 1001 pts            | 1.0 MHz/  |           | 3.72 GHz       |
| Z Marker Pea        | X-Value              | V-Value             | No X-Valu | ie V-V    | alue           |
| 1                   | 3.710634 GHz         | -45.080 dBm         |           |           |                |
|                     |                      |                     |           |           |                |
|                     |                      |                     |           |           |                |
|                     |                      |                     |           |           | 22.01.2024     |
|                     | *                    |                     | ~ ~       | Measuring | 00:14:04       |

00:14:04 23.01.2024





00:14:28 23.01.2024

Plot 7-114. Channel Edge Plot (LTE Band 48 - 5MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 75 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 75 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView                             | Spectrum                             |                                  |            | •                                    |
|---------------------------------------|--------------------------------------|----------------------------------|------------|--------------------------------------|
| Ref Level 25.0<br>Att<br>TDF "CABLES" | 0 dBm ● RBW<br>26 dB ● SWT 1 s ● VBW | 1 MHz<br>3 MHz <b>Mode</b> Sweep |            | Count 10/10                          |
| 1 Frequency Sw                        | еер                                  |                                  |            | ●1Rm View                            |
| 00.40m                                |                                      |                                  |            | M1[1] -47.84 dBm                     |
| 20 ubm                                |                                      |                                  |            | 3.5294210 GHz                        |
| 18 dBm                                |                                      |                                  |            |                                      |
| 10 UBIII                              |                                      |                                  |            |                                      |
| 0 dam                                 |                                      |                                  |            |                                      |
| o dom                                 |                                      |                                  |            |                                      |
| -10 dBm                               |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
| -20 dBm                               |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
| -30 dBm                               |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
| 40 dBm                                |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            | M1                                   |
| -50 dBm                               |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
| -60 dBm                               |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
| si0 dBm                               |                                      |                                  |            | S2                                   |
| 3 40 CH5                              |                                      | 1001 pto                         | 4.0 MH7/   | 2.52.04-                             |
| 2 Markor Doald                        | int                                  | 1001 pts                         | 4.0 MH2/   | 5.55 GHZ                             |
|                                       | X-Value                              | Y-Value                          | No X-Value | Y-Value                              |
| 1                                     | 3.529421 GHz                         | -47.844 dBm                      |            | 1 1 1 1 1 1 1                        |
|                                       |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
|                                       |                                      |                                  |            |                                      |
|                                       | ·                                    |                                  |            | Measuring 442 23.01.2024<br>00:15:09 |

00:15:09 23.01.2024





00:15:33 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dago 76 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 70 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView                  | Spectrum              |                                                      |                                                                                                                |                                |                                |            |                    |                    |        | •                                                                                                                |
|----------------------------|-----------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------|--------------------|--------------------|--------|------------------------------------------------------------------------------------------------------------------|
| Ref Level 25.<br>• Att     | 00 dBm<br>26 dB • SWT | <ul> <li>RBW 1 MH</li> <li>1 s • VBW 3 MH</li> </ul> | Hz<br>Hz <b>Mode</b> Swe                                                                                       | ер                             |                                |            |                    |                    | Count  | 10/10                                                                                                            |
| TDF "CABLES"               | ween                  |                                                      |                                                                                                                |                                |                                |            |                    |                    | 01Pr   | n View                                                                                                           |
| Threquency 5               | weep                  |                                                      |                                                                                                                |                                |                                |            |                    | M1E11              | -25    | 75 dBm                                                                                                           |
| 20 dBm                     |                       |                                                      |                                                                                                                |                                |                                |            |                    | 3.                 | 54849  | 200 GHz                                                                                                          |
|                            |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| 10 dBm                     |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| O dDm                      |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| U UBIN                     |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| -10 dBm-                   |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
|                            |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| -20 dBm-                   |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
|                            |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        | and a start and a start and a start a st |
| -30 dBm-                   |                       |                                                      |                                                                                                                |                                |                                |            |                    | 0 1 - Aunter       | Junior |                                                                                                                  |
|                            |                       |                                                      | n 5 6 8                                                                                                        | A K A                          | A & A                          | Munhandren | Consultan Manufana | J hourself and the |        |                                                                                                                  |
| -40 dBm-                   | and WWWWWWW           | AMAAAAMMM maana kaa                                  | a martine and the second s | الهديبية القيمسياليجورين الدرد | where having the second second |            |                    |                    |        |                                                                                                                  |
| -to-open and a second days |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| -50 dBm-                   |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| 40 d0m                     |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| -ou ubm-                   |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
| -70 dBmc                   |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        | 2                                                                                                                |
|                            |                       |                                                      | 1001                                                                                                           |                                |                                |            |                    |                    |        | 10.011                                                                                                           |
| 3.54 GHz                   | 1 2-4                 |                                                      | 1001 pts                                                                                                       | 8                              | 90                             | JU.U KHZ/  |                    |                    | 3.5    | 49 GHZ                                                                                                           |
| 2 Marker Peak              | LIST<br>X-Value       | 2                                                    | V-Va                                                                                                           | ue                             | No                             | X-Value    | <b>`</b>           | V-Va               | lue    | -                                                                                                                |
| 1                          | 3.548492 0            | ə<br>ƏHz                                             | -25.747                                                                                                        | dBm                            | 110                            | A 400      | -                  | 1 10               | ac     |                                                                                                                  |
|                            |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
|                            |                       |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
|                            | _                     |                                                      |                                                                                                                |                                |                                |            |                    |                    |        |                                                                                                                  |
|                            | *                     |                                                      |                                                                                                                |                                |                                | ~          | Measuring          |                    | 23     |                                                                                                                  |

00:15:57 23.01.2024





00:16:20 23.01.2024

Plot 7-118. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 77 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 77 of 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |





00:16:44 23.01.2024





00:17:07 23.01.2024

Plot 7-120. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 79 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 78 of 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                     |                 |                    |                   |     |    |          |   |      | <b>\$</b>    |
|---------------------|-----------------|--------------------|-------------------|-----|----|----------|---|------|--------------|
| MultiView           | Spectrum        |                    |                   |     |    |          |   |      | -            |
| Ref Level 25.0      | 00 dBm          | ● RBW 1 MH         | z .               |     |    |          |   |      |              |
| Att<br>TDE "CABLES" | 26 dB • SWT 1 s | а <b>∘ ∨в₩</b> ЗМН | z <b>Mode</b> Swe | ер  |    |          |   |      | Count 10/10  |
| 1 Frequency Sv      | veep            |                    |                   |     |    |          |   |      | o1Rm View    |
| 00. dDw             |                 |                    |                   |     |    |          |   | M1[1 | -43.68 dBm   |
| 20 dBm              |                 |                    |                   |     |    |          |   |      | 3.573370 GHz |
| 10. dBm             |                 |                    |                   |     |    |          |   |      |              |
| 10 dbm              |                 |                    |                   |     |    |          |   |      |              |
| 0 dBm               |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -10 dBm-            |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -20 dBm             |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -30 dBm             |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -40 Bm-             |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -50 dBm             |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
| -60 dBm             |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      | 52           |
| s 70 dBm            |                 |                    |                   |     |    |          |   |      |              |
| 3.57 GHz            |                 |                    | 1001 pt           | 5   | 1  | 5.0 MHz/ |   |      | 3.72 GHz     |
| 2 Marker Peak       | List            |                    |                   |     |    |          |   |      |              |
| No                  | X-Value         |                    | Y-Va              | lue | No | X-Value  | : | Y-Va | ilue         |
|                     | 3.5/33/0 GHZ    |                    | -43.679           | abm |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      |              |
|                     |                 |                    |                   |     |    |          |   |      | 23.01.2024   |
|                     | Ť.              |                    |                   |     |    |          |   |      | 00:17:30     |

00:17:31 23.01.2024





00:17:55 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 70 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 79 of 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                     |               |                      |             |     |    |         |           |       | (*)           |
|---------------------|---------------|----------------------|-------------|-----|----|---------|-----------|-------|---------------|
| MultiView           | Spectrum      |                      |             |     |    |         |           |       | •             |
| Ref Level 25.       | 00 dBm        | ● RBW 1 M            | Hz          |     |    |         |           |       |               |
| Att<br>TDE "CABLES" | 26 dB • SWT : | 1 s 🗢 <b>VBW</b> 3 M | Hz Mode Swe | ep  |    |         |           |       | Count 10/10   |
| 1 Frequency Sy      | weep          |                      |             |     |    |         |           |       | ●1Rm View     |
|                     |               |                      |             |     |    |         |           | M1[1] | -52.88 dBm    |
| 20 dBm-             |               |                      |             |     |    |         |           |       | 3.4912190 GHz |
| 10.10.0             |               |                      |             |     |    |         |           |       |               |
| IU dBm-             |               |                      |             |     |    |         |           |       |               |
| 0 10 11             |               |                      |             |     |    |         |           |       |               |
| U aBm               |               |                      |             |     |    |         |           |       |               |
| to dow              |               |                      |             |     |    |         |           |       |               |
| 10 dbm              |               |                      |             |     |    |         |           |       |               |
| -20 dBm             |               |                      |             |     |    |         |           |       |               |
| 20 0011             |               |                      |             |     |    |         |           |       |               |
| -20 d8m             |               |                      |             |     |    |         |           |       |               |
| oo abiii            |               |                      |             |     |    |         |           |       |               |
| -40 dBm             |               |                      |             |     |    |         |           |       |               |
| i o dom             |               |                      |             |     |    |         |           |       |               |
| -50 Mim             |               |                      |             |     |    |         |           |       |               |
|                     |               |                      |             |     |    | •••••   |           |       |               |
| -60 dBm-            |               |                      |             |     |    |         |           |       |               |
| oo aom              |               |                      |             |     |    |         |           |       |               |
| =70 dBm             |               |                      |             |     |    |         |           |       | sż            |
|                     |               |                      |             |     |    |         |           |       |               |
| 3.49 GHz            |               |                      | 1001 pt     | s   | 4  | FU MHZ/ |           |       | 3.53 GHZ      |
| 2 Marker Peak       | List          |                      | V_V_        | luo | No | V-Value |           | ¥_V-  | aluo          |
| 1                   | 3,491219 G    | Ηz                   | -52,882     | dBm | NO | A-value |           | 1-96  | lue           |
|                     |               |                      |             |     |    |         |           |       |               |
|                     |               |                      |             |     |    |         |           |       |               |
|                     |               |                      |             |     |    |         |           |       |               |
|                     |               |                      |             |     |    |         | Measuring |       | 23.01.2024    |
|                     |               |                      |             |     |    | · ·     |           |       | 00:18:33      |

00:18:33 23.01.2024





00:18:57 23.01.2024

Plot 7-124. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Daga 90 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 60 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



| MultiView            | Spectrum            |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •              |
|----------------------|---------------------|-------------|--------------|----------------|---------------|------------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Ref Level 25         | .00 dBm             | ● RBW 1 N   | 1Hz          |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Att     TDE "CABLES" | 26 dB 🔍 SWT         | 1s • VBW 3N | 1Hz Mode Swe | ep             |               |            |           |               | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/10          |
| 1 Frequency S        | weep                |             |              |                |               |            |           |               | O1Rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n View         |
| 00.40.0              |                     |             |              |                |               |            |           | M1[1]         | -26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .49 dBm        |
| 20 asm               |                     |             |              |                |               |            |           | 3.            | 51849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200 GHz        |
| 10 dBm-              |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 0 dBm                |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -10 dBm-             |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 20 0.5.11            |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -20 dBm-             |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |                     |             |              |                |               |            |           |               | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second |
| -30 dBm-             |                     |             |              |                |               |            |           | H D maker Mun | and the second s |                |
| -40 dBm-             |                     | mommun      | mbrokentand  | woodnesselwood | and and maker | hundundund | hanlanhar | Mummu         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      | and had been bridge |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -50 dBm-             |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -60 dBm-             |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -70 dBms1            |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2              |
| 3.61 GHz             |                     |             | 1001 pt      | s              | 90            | 00.0 kHz/  |           |               | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 GHz         |
| 2 Marker Peal        | list                |             |              |                |               | ,          |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| No                   | X-Valu              | e           | Y-Va         | lue            | No            | X-Value    | •         | Y-Va          | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 1                    | 3.618492 (          | GHz         | -26.491      | dBm            |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      |                     |             |              |                |               |            |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      | _                   |             |              |                |               |            |           |               | <b>100</b> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .01.2024       |
|                      |                     |             |              |                |               |            | measuring |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00:19:20       |

00:19:20 23.01.2024





00:19:44 23.01.2024

Plot 7-126. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 91 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 81 of 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |





00:20:08 23.01.2024





00:20:31 23.01.2024

Plot 7-128. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 92 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 62 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                  |                                    |                               |      |    |          |    |       | (*)            |
|------------------|------------------------------------|-------------------------------|------|----|----------|----|-------|----------------|
| MultiView        | Spectrum                           |                               |      |    |          |    |       | -              |
| Ref Level 25.0   | 00 dBm ● RI<br>26 dB ● SWT 1 s ● W | 3W 1 MHz<br>3W 3 MHz Mode Swe | en.  |    |          |    |       | Count 10/10    |
| TDF "CABLES"     | 20 00 - 000 10 - 0                 |                               | -P   |    |          |    |       | 0001112 10, 10 |
| 1 Frequency Sv   | weep                               |                               |      |    |          |    |       | O1Rm View      |
| 20. dBm          |                                    |                               |      |    |          |    | M1[1] | -44.41 dBm     |
|                  |                                    |                               |      |    |          |    |       | 3.6444360 GHz  |
| 10 dBm           |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| 0 dBm-           |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -10 dBm          |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -20 dBm          |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -30 dBm          |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -40 dBm M1       |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -50 dBm          |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
| -60 dBm          |                                    |                               |      |    |          |    |       |                |
| 70 10            |                                    |                               |      |    |          |    |       | <br>           |
| <b>51</b> /U aBm |                                    |                               |      |    |          |    |       |                |
| 3.64 GHz         |                                    | 1001 pt                       | s    | 8  | 3.0 MHz/ |    |       | 3.72 GHz       |
| 2 Marker Peak    | List                               |                               |      |    |          |    |       |                |
| No               | X-Value                            | Y-Va                          | lue  | No | X-Value  |    | Y-V∂  | ilue           |
| 1                | 3.044430 GHZ                       | -44.400                       | donn |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
|                  |                                    |                               |      |    |          |    |       |                |
|                  | _                                  |                               |      | ·  |          | 54 |       | 23.01.2024     |
|                  |                                    |                               |      |    | *        |    |       | 00:20:54       |

00:20:55 23.01.2024





00:21:19 23.01.2024

Plot 7-130. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 92 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 03 01 233                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                                      |                              |                            |                            |            |    |          |           |       | *             |
|--------------------------------------|------------------------------|----------------------------|----------------------------|------------|----|----------|-----------|-------|---------------|
| MultiView                            | Spectrum                     |                            |                            |            |    |          |           |       |               |
| Ref Level 25.<br>Att<br>TDE "CABLES" | 00 dBm<br>26 dB <b>SWT</b> : | ● RBW 1 M<br>1 s ● VBW 3 M | 1Hz<br>1Hz <b>Mode</b> Swe | ep         |    |          |           |       | Count 10/10   |
| 1 Frequency S                        | weep                         |                            |                            |            |    |          |           |       | o1Rm View     |
| an daw                               |                              |                            |                            |            |    |          |           | M1[1] | -52.90 dBm    |
| 20 06/11                             |                              |                            |                            |            |    |          |           |       | 3.4955340 GHz |
| 10 dBm                               |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| 0 dBm                                |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -10 dBm                              |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -20 dBm                              |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -30 dBm                              |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -40 dBm                              |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -\$0 dBm                             | 1<br>1                       |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
| -60 dBm-                             |                              |                            |                            |            |    |          |           |       |               |
| -30 d0m                              |                              |                            |                            |            |    |          |           |       | 52            |
| STO OPIU.                            |                              |                            |                            |            |    |          |           |       |               |
| 3.49 GHz                             |                              |                            | 1001 pt                    | S          | 4  | 1.0 MHz/ |           |       | 3.53 GHz      |
| 2 Marker Peak                        | List                         |                            |                            |            |    |          |           |       |               |
| No                                   | X-Value                      | 47                         | -52 005                    | lue<br>dBm | No | X-Value  | 2         | Y-V8  | lue           |
| ±                                    | 3.493334 0                   | 12                         | 52.905                     | dbin       |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    |          |           |       |               |
|                                      |                              |                            |                            |            |    | _        | Moneuring |       | 23.01.2024    |
|                                      |                              |                            |                            |            |    | v        |           |       | 00:21:56      |

00:21:57 23.01.2024





00:22:21 23.01.2024

Plot 7-132. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 94 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 84 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               | Sector 1       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|--------|---------------------|---------------|----------------|
| MultiView                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spectrum              |                                                                                                                  |        |                     |               | •              |
| Ref Level 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .00 dBm • RBW         | / 1 MHz                                                                                                          |        |                     |               |                |
| <ul> <li>Att</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 dB • SWT 1 s • VBW | 3 MHz Mode Sweep                                                                                                 |        |                     |               | Count 10/10    |
| TDF "CABLES"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WAAD                  |                                                                                                                  |        |                     |               | 0 1 Pro Viow   |
| Thequency 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weep                  |                                                                                                                  |        |                     | M             | -26 17 dBm     |
| 20 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                  |        |                     |               | 3.68846500 GHz |
| 10 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                  |        |                     |               |                |
| 10 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                  |        |                     |               |                |
| 0 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                  |        |                     |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               |                |
| -10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H1 -13 000 dBm        |                                                                                                                  |        |                     |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               |                |
| -20 aBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                  |        |                     |               | M              |
| -30 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                  |        |                     |               | 1 Wanter Marth |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        | 1 a k 1 k           | 1 1 Mullimlun | Rule           |
| -40 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | for the second | mandun | -Mm Marshan Marshan |               |                |
| and the second sec |                       |                                                                                                                  |        |                     |               |                |
| -50 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                  |        |                     |               |                |
| -60 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                  |        |                     |               |                |
| 00 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                  |        |                     |               |                |
| -70 dBm <mark>s1</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                  |        |                     |               |                |
| 3.68 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 1001 pts                                                                                                         | 9      | 00.0 kHz/           |               | 3.689 GHz      |
| 2 Marker Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | list                  |                                                                                                                  |        | · · · · · ·         |               |                |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X-Value               | Y-Value                                                                                                          | No     | X-Value             |               | Y-Value        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.688465 GHz          | -26.175 dBm                                                                                                      | 2      | 3.685462 GHz        | -3            | 3.793 dBm      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                  |        |                     |               | 22.01.2024     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                     |                                                                                                                  |        | * M                 | leasuring     | 00:22:43       |

00:22:44 23.01.2024





00:23:08 23.01.2024

Plot 7-134. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 95 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 65 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |





00:23:31 23.01.2024





00:23:55 23.01.2024

Plot 7-136. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 96 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 86 01 233                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                                      |                                                                                                                |                                  |          |           |       | (*)          |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|----------|-----------|-------|--------------|
| MultiView                            | Spectrum                                                                                                       |                                  |          |           |       |              |
| Ref Level 25.<br>Att<br>TDE "CABLES" | 00 dBm ● RBW<br>26 dB ● SWT 1 s ● VBW 3                                                                        | 1 MHz<br>3 MHz <b>Mode</b> Sweep |          |           |       | Count 10/10  |
| 1 Frequency S                        | weep                                                                                                           |                                  |          |           |       | O1Rm View    |
| 00.40m                               |                                                                                                                |                                  |          |           | M1[1] | -43.81 dBm   |
| 20 ubm                               |                                                                                                                |                                  |          |           | 3.    | 71355100 GHz |
| 10 dBm-                              |                                                                                                                |                                  |          |           |       |              |
| 20 0.011                             |                                                                                                                |                                  |          |           |       |              |
| 0 dBm                                |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -10 dBm                              |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -20 dBm                              |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -30 dBm                              |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -40 dBm                              |                                                                                                                | M1                               |          |           |       |              |
|                                      | el en ante alle de la construction |                                  |          |           |       |              |
| -50 dBm                              |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -60 dBm                              |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
| -70 dBrg1                            |                                                                                                                |                                  |          |           |       |              |
| 3.71 GHz                             |                                                                                                                | 1001 pts                         | 1.0 MHz/ |           |       | 3.72 GHz     |
| 2 Marker Peak                        | List                                                                                                           |                                  |          |           |       |              |
| No                                   | X-Value                                                                                                        | Y-Value                          | No X-    | -Value    | Y-Val | ue           |
|                                      | 3.713331 GHZ                                                                                                   | -40.000 dBIII                    |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
|                                      |                                                                                                                |                                  |          |           |       |              |
|                                      | _                                                                                                              |                                  |          |           |       | 23.01.2024   |
|                                      |                                                                                                                |                                  |          | weasuring |       | 00:24:18     |

00:24:18 23.01.2024





00:24:42 23.01.2024

Plot 7-138. Channel Edge Plot (LTE Band 48 - 10MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 97 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 87 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView                             | Spectrum                             |                                  |           | •                  |
|---------------------------------------|--------------------------------------|----------------------------------|-----------|--------------------|
| Ref Level 25.0<br>Att<br>TDF "CABLES" | 0 dBm ● RBW<br>26 dB ● SWT 1 s ● VBW | 1 MHz<br>3 MHz <b>Mode</b> Sweep |           | Count 10/10        |
| 1 Frequency Sw                        | eep                                  |                                  |           | •1Rm View          |
| 20 dBm                                |                                      |                                  |           | M1[1] -43.18 dBm   |
| 20 0011                               |                                      |                                  |           | 3.5293410 GHz      |
| 10 dBm                                |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| 0 dBm                                 |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| -10 dBm-                              |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| -20 dBm                               |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| -30 dBm                               |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| 40 dBm                                |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| -50 dBm                               |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
| -60 dBm                               |                                      |                                  |           |                    |
|                                       |                                      |                                  |           | S2                 |
| S10 dBm                               |                                      |                                  |           |                    |
| 3.49 GHz                              |                                      | 1001 pts                         | 4.0 MHz/  | 3.53 GHz           |
| 2 Marker Peak                         | _ist                                 |                                  |           |                    |
| No                                    | X-Value                              | Y-Value                          | No X-Valu | e Y-Value          |
| 1                                     | 3.529341 GHz                         | -43.175 dBm                      |           |                    |
|                                       |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
|                                       |                                      |                                  |           |                    |
|                                       |                                      |                                  |           | Measuring 00:25:26 |

00:25:27 23.01.2024





00:25:51 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 99 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 88 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView       | Spectrum        |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        | •                                                                                                               |
|-----------------|-----------------|---------------|-----------|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 25.   | 00 dBm          | • RBW 1 MHz   |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| • Att           | 26 dB • SWT 1 s | s • VBW 3 MHz | Mode Swee | ∋p                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Count  | 10/10                                                                                                           |
| 1 Frequency Sv  | weep            |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | o 1 Rr | n View                                                                                                          |
| an daw          |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                                                                                                            | -31    | .33 dBm                                                                                                         |
| 20 ubm          |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.                                                                                                               | 548384 | 410 GHz                                                                                                         |
| 10 dBm-         |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| 0 dBm           |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -10 dBm-        |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -20 dBm-        |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -20 dam-        |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | M1     |                                                                                                                 |
| oo dam          |                 |               |           |                          | 6 N 0                    | hand mental me | and the second s | and the second |        | al and the second se |
| herekan humbler | Anthonthouttout | mthullmuth    | Mullud    | unther the second second | Mart Martine Constrained |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -50 dBm-        |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -60 dBm-        |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| -70 d0m         |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        | 2                                                                                                               |
| -70 ubilig1     |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
| 3.54 GHz        |                 |               | 1001 pts  |                          | 90                       | 00.0 kHz/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 3.5    | 49 GHz                                                                                                          |
| 2 Marker Peak   | List<br>V-Value |               | V-V-1     | 10                       | No                       | V-V-lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V-V-2                                                                                                            |        |                                                                                                                 |
| 1               | 3.548384 GHz    |               | -31.326 ( | dBm                      | INU                      | ∧-vaiue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t-va                                                                                                             | ue     |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 |                 |               |           |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |        |                                                                                                                 |
|                 | *               |               |           |                          |                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 23     |                                                                                                                 |

00:26:16 23.01.2024





00:26:40 23.01.2024

Plot 7-142. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 90 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 69 0f 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                                        |                       |                  |         |                                                                                                                 |                             |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|----------------------------------------|-----------------------|------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-----------------------------------------|
| MultiView                              | Spectrum              |                  |         |                                                                                                                 |                             |                 | •                                       |
| Ref Level 25.0                         | 00 dBm 🔍 RBW          | 200 kHz          |         |                                                                                                                 |                             |                 |                                         |
| Att     TDE "CABLES"                   | 26 dB • SWT 1 s • VBW | 1 MHz Mode Sweep |         |                                                                                                                 |                             |                 | Count 10/10                             |
| 1 Frequency Sv                         | veep                  |                  |         |                                                                                                                 |                             |                 | ●1Rm View                               |
| 28. dBm                                |                       |                  |         |                                                                                                                 |                             | M1[1]           | -42.11 dBm                              |
| 20 0011                                |                       |                  |         |                                                                                                                 |                             |                 | 3.5705210 GHz                           |
| 10 dBm                                 |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| 0 dBm                                  |                       |                  | $\land$ |                                                                                                                 |                             |                 |                                         |
|                                        |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -10 dBm-                               |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -20 dBm-                               |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| 20 0011                                |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -30 dBm-                               |                       |                  |         |                                                                                                                 |                             |                 |                                         |
|                                        |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -40 dBm                                |                       |                  | ~       | - marine and the start of the                                                                                   | erest and the second second | and motion of a | MI                                      |
|                                        |                       |                  |         |                                                                                                                 |                             | Contraction (   | - manusbardhardhardh                    |
| -50 dBm-                               |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -60 dBm                                |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| oo abiii                               |                       |                  |         |                                                                                                                 |                             |                 |                                         |
| -70 dBm-                               |                       |                  |         |                                                                                                                 |                             |                 | S1 S2                                   |
| 3.5575 GHz                             |                       | 1001 pts         | 1       | 35 MHz /                                                                                                        |                             |                 | 3.571 GHz                               |
| 2 Marker Peak                          | l ist                 |                  |         | ,                                                                                                               |                             |                 |                                         |
| No                                     | X-Value               | Y-Value          | No      | X-Value                                                                                                         |                             | Y-Va            | lue                                     |
| 1                                      | 3.570521 GHz          | -42.114 dBm      |         |                                                                                                                 |                             |                 |                                         |
|                                        |                       |                  |         |                                                                                                                 |                             |                 |                                         |
|                                        |                       |                  |         |                                                                                                                 |                             |                 |                                         |
|                                        |                       |                  |         |                                                                                                                 | Measuring                   |                 | 23.01.2024                              |
|                                        |                       |                  |         | The second se |                             |                 | 00:27:03                                |

00:27:04 23.01.2024





00:27:29 23.01.2024

Plot 7-144. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 00 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 90 01 233                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                     |                |              |             |       |    |          |    |       | (*)          |
|---------------------|----------------|--------------|-------------|-------|----|----------|----|-------|--------------|
| MultiView           | Spectrum       |              |             |       |    |          |    |       | -            |
| Ref Level 25.0      | 00 dBm         | ● RBW 1 MH   | tz          |       |    |          |    |       |              |
| Att<br>TDE "CABLES" | 26 dB • SWT 1: | s 🗢 VBW 3 MH | Hz Mode Swe | ep    |    |          |    |       | Count 10/10  |
| 1 Frequency Sv      | veep           |              |             |       |    |          |    |       | o1Rm View    |
| 00. d0              |                |              |             |       |    |          |    | M1[1] | -46.75 dBm   |
| 20 dBm-             |                |              |             |       |    |          |    |       | 3.590450 GHz |
| 10 dBm              |                |              |             |       |    |          |    |       |              |
| 10 0011             |                |              |             |       |    |          |    |       |              |
| 0 dBm-              |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -10 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -20 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -30 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -40 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -50 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
| -60 dBm             |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       | S2           |
| s 70 dBm            |                |              |             |       |    |          |    |       |              |
| 3.59 GHz            |                |              | 1001 pt     | 5     | 1: | 3.0 MHz/ |    |       | 3.72 GHz     |
| 2 Marker Peak       | List           |              |             |       |    |          |    |       |              |
| No                  | X-Value        |              | Y-Va        | lue   | No | X-Value  | :  | Y-Va  | lue          |
| 1                   | 3.390430 GH    | 2            | -40.749     | adini |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
|                     |                |              |             |       |    |          |    |       |              |
|                     | -              |              |             |       |    | _        | 54 |       | 23.01.2024   |
|                     |                |              |             |       |    | , v      |    |       | 00:27:52     |

00:27:53 23.01.2024





00:28:17 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Page 91 of 233                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              |                                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                         |                         |                   |            |    |         |       | (*)                    |
|-------------------------|-------------------------|-------------------|------------|----|---------|-------|------------------------|
| MultiView               | Spectrum                |                   |            |    |         |       |                        |
| Ref Level 25.0          | odBm ● RI               | 3W 1 MHz          |            |    |         |       |                        |
| Att     The "conductor" | 26 dB • SWT 1 s • VE    | 3W 3 MHz Mode Swe | ep         |    |         |       | Count 10/10            |
| 1 Frequency Sw          | /eep                    |                   |            |    |         |       | o1Rm View              |
|                         |                         |                   |            |    |         | M1[1] | -52.82 dBm             |
| 20 dBm-                 |                         |                   | i .        |    |         | :     | 3.4924580 GHz          |
| 10 dBm                  |                         |                   |            |    |         |       |                        |
| 10 dbm                  |                         |                   |            |    |         |       |                        |
| 0 dBm                   |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
| -10 dBm                 |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
| -20 dBm                 |                         |                   |            |    |         |       |                        |
| 20 10.0                 |                         |                   |            |    |         |       |                        |
| -30 UBIII-              |                         |                   |            |    |         |       |                        |
| 40 dBm                  |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
| -50 dBm M1              |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         | <br>  |                        |
| -60 dBm                 |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
| SIU dem-                |                         |                   | i .        |    |         |       |                        |
| 3.49 GHz                |                         | 1001 pt           | s          | 4  | .0 MHz/ |       | 3.53 GHz               |
| 2 Marker Peak I         | List                    |                   |            |    |         | <br>  |                        |
| INO 1                   | X-Value<br>3 492458 GHz | -52,820           | lue<br>dBm | No | X-Value | Y-Vа  | lue                    |
| ÷                       | 3.432430 GHZ            | 52.620            | Gern       |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    |         |       |                        |
|                         |                         |                   |            |    | ~       |       | 23.01.2024<br>00:28:56 |

00:28:57 23.01.2024





00:29:21 23.01.2024

Plot 7-148. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dago 02 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 92 01 255                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  | <b>\$</b>        |
|-------------------|------------------------------|----------------------------------------|----------------------------|--------------------------|-----------|--------|-----------------|------------------------------|----------------------------------|------------------|
| Mu                | ltiView                      | Spectrum                               |                            |                          |           |        |                 |                              |                                  | -                |
| Re<br>• At<br>TDF | f Level 25.<br>t<br>"CABLES" | 00 dBm<br>26 dB • SWT                  | ● RBW 1 M<br>1 s ● VBW 3 M | Hz<br>Hz <b>Mode</b> Swe | ер        |        |                 |                              |                                  | Count 10/10      |
| 1 Fre             | equency S                    | weep                                   |                            |                          |           |        |                 |                              |                                  | O1Rm View        |
| 20.4              |                              |                                        |                            |                          |           |        |                 |                              | M1[1]                            | -36.63 dBm       |
| 20 0              |                              |                                        |                            |                          |           |        |                 |                              |                                  | 3.6133830 GHz    |
| 10 de             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| 10 0              |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| n de              |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| -10 0             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| -20 0             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| -30 0             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  | 1 <b>1</b>       |
| -40 c             |                              |                                        |                            |                          |           | munnin | moundmakershaph | edertradioendrine/terradioad | han han der han der seine bester | hall hall warmen |
|                   |                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                            |                          |           |        |                 |                              |                                  |                  |
| -50 c             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| -60 0             |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| 70                |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| -765              |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
| 3.59              | 95 GHz                       |                                        |                            | 1001 pts                 | 6         | 1      | .9 MHz/         |                              |                                  | 3.614 GHz        |
| 2 Ma              | arker Peak                   | List                                   |                            |                          |           |        |                 |                              |                                  |                  |
| ]                 | No                           | X-Value                                |                            | Y-Val                    | ue<br>dBm | No     | X-Value         | 2                            | Y-Va                             | lue              |
|                   |                              | 5.015505 G                             | F12                        | -30.029                  | ddin      |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 |                              |                                  |                  |
|                   |                              |                                        |                            |                          |           |        |                 | Moacuring                    |                                  | 23.01.2024       |
|                   |                              |                                        |                            |                          |           |        | , v             | meusanny                     |                                  | 00:29:44         |

00:29:45 23.01.2024





00:30:09 23.01.2024

Plot 7-150. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 02 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 95 01 255                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                |                       |                  |                                                                                                                 | (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|-----------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiView      | Spectrum              |                  |                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ref Level 25.0 | 00 dBm • RBW          | 200 kHz          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Att            | 26 dB • SWT 1 s • VBW | 1 MHz Mode Sweep |                                                                                                                 | Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 Frequency Sw | veep                  |                  |                                                                                                                 | •1Rm View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                       |                  |                                                                                                                 | M1[1] -40.46 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 dBm-        |                       |                  |                                                                                                                 | 3.6350930 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 dBm-        |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm          |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm-       |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00 -10-00      |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 uBm-       |                       |                  | <u> </u>                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm        |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  | The second se | - M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -40 dBm        |                       |                  |                                                                                                                 | the second and the second seco |
|                |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm        |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 d0m        |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 400 UBIT       |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm        |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 625 GHz      |                       | 1001 pts         | 1 1 MHz/                                                                                                        | 3 636 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 Marker Peak  | List                  | 1001 pts         | 111 111 12,                                                                                                     | CICCO CITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No             | X-Value               | Y-Value          | No X-Value                                                                                                      | e Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1              | 3.635093 GHz          | -40.456 dBm      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                       |                  |                                                                                                                 | 23.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | ř.                    |                  | · · · · · · · · · · · · · · · · · · ·                                                                           | Measuring 00:30:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

00:30:34 23.01.2024





00:30:58 23.01.2024

Plot 7-152. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 04 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 94 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                     |                   |             |           |            |    |          |    |       | (*)           |
|---------------------|-------------------|-------------|-----------|------------|----|----------|----|-------|---------------|
| MultiView           | Spectrum          |             |           |            |    |          |    |       | -             |
| Ref Level 25.0      | D0 dBm 🔍          | RBW 1 MHz   |           |            |    |          |    |       |               |
| Att<br>TDE "CAPLES" | 26 dB • SWT 1 s • | • VBW 3 MHz | Mode Swee | p          |    |          |    |       | Count 10/10   |
| 1 Frequency Sv      | veep              |             |           |            |    |          |    |       | ●1Rm View     |
|                     |                   |             |           |            |    |          |    | M1[1] | -46.72 dBm    |
| 2U dBm              |                   |             |           |            |    |          |    |       | 3.6565260 GHz |
| 10 dBm              |                   |             |           |            |    |          |    |       |               |
| 10 dbill            |                   |             |           |            |    |          |    |       |               |
| ft dBm              |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
| -10 dBm             |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
| -20 dBm             |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
| -30 dBm             |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
| -40 dBm             |                   |             |           |            |    |          |    |       |               |
| - The second        |                   |             |           |            |    |          |    |       |               |
| -50 dBm-            |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
| -60 dBm             |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       | 52            |
| s 70 dBm            |                   |             |           |            |    |          |    |       |               |
| 3.655 GHz           |                   |             | 1001 pts  |            |    | 5.5 MHz/ |    |       | 3.72 GHz      |
| 2 Marker Peak       | List              |             |           |            |    |          |    |       |               |
| No                  | X-Value           |             | Y-Valu    | le<br>IPro | No | X-Value  | :  | Y-Vá  | alue          |
| 1                   | 3.030320 GHZ      |             | -40.722 0 | ып         |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
|                     |                   |             |           |            |    |          |    |       |               |
|                     | -                 |             |           |            |    | _        | 84 |       | 23.01.2024    |
|                     |                   |             |           |            |    | *        |    |       | 00:31:21      |

00:31:22 23.01.2024





00:31:47 23.01.2024

Plot 7-154. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 05 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 95 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                         |                 |               |              |     |    |          |          |       | (*)                    |
|-------------------------|-----------------|---------------|--------------|-----|----|----------|----------|-------|------------------------|
| MultiView               | Spectrum        |               |              |     |    |          |          |       | •                      |
| Ref Level 25.           | .00 dBm         | • RBW 11      | 1Hz          |     |    |          |          |       |                        |
| <ul> <li>Att</li> </ul> | 26 dB 🔹 SWT     | 1 s • VBW 3 M | 1Hz Mode Swe | ер  |    |          |          |       | Count 10/10            |
| TDF "CABLES"            | weep            |               |              |     |    |          |          |       | 0 1 Pm View            |
| Thequency 5             | Heep            |               |              |     |    |          |          | M1[1] | -52.86 dBm             |
| 20 dBm                  |                 |               |              |     |    |          |          |       | 3.5072830 GHz          |
|                         |                 |               |              |     |    |          |          |       |                        |
| 10 dBm                  |                 |               |              |     |    |          |          |       |                        |
| O dBm                   |                 |               |              |     |    |          |          |       |                        |
| U UDITI                 |                 |               |              |     |    |          |          |       |                        |
| -10 dBm-                |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              |     |    |          |          |       |                        |
| -20 dBm                 |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              |     |    |          |          |       |                        |
| -30 dBm                 |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              |     |    |          |          |       |                        |
| -40 dBm                 |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              | 441 |    |          |          |       |                        |
| -50 dBm-                |                 |               |              | Ť   |    |          |          |       |                        |
| 10.10                   |                 |               |              |     |    |          |          |       |                        |
| -60 GRW                 |                 |               |              |     |    |          |          |       |                        |
| a 30 dBm                |                 |               |              |     |    |          |          |       | s2                     |
| 310 0011                |                 |               |              |     |    |          |          |       |                        |
| 3.49 GHz                |                 |               | 1001 pt      | 5   |    | 4.0 MHz/ |          |       | 3.53 GHz               |
| 2 Marker Peak           | List<br>X-Value | 2             | V_Va         | lue | No | X-Value  | <b>`</b> | V_V.  | مىلاد                  |
| 1                       | 3.507283 0      | -<br>Hz       | -52.859      | dBm | NO | X ¥816C  |          | 1 40  | liac                   |
|                         |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              |     |    |          |          |       |                        |
|                         |                 |               |              |     |    |          |          |       |                        |
|                         | *               |               |              |     |    |          |          |       | 23.01.2024<br>00:32:25 |

00:32:26 23.01.2024





00:32:50 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 06 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 96 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     | •           |      |
|-----------------------|-----------------------|------------------------------|----------------------------|----------------------------|-----|-----|-----------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-------------|------|
| Mult                  | iView                 | Spectrum                     |                            |                            |     |     |                                                                                                                 |                      |                     |             | -    |
| Ref<br>• Att<br>TDF " | Level 25.0<br>CABLES" | 00 dBm<br>26 dB <b>SWT</b> : | ● RBW 1 M<br>1 s ● VBW 3 M | 1Hz<br>1Hz <b>Mode</b> Swe | ер  |     |                                                                                                                 |                      |                     | Count 10,   | /10  |
| 1 Free                | quency Sv             | veep                         |                            |                            |     |     |                                                                                                                 |                      |                     | 01Rm Vi     |      |
| 20 49                 |                       |                              |                            |                            |     |     |                                                                                                                 |                      | M1[1]               | -38.06      | dBm  |
| 20 001                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     | 3.6765990   | GHz  |
| 10 dBm                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| 0 dBm-                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| -10 dB                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| -20 dB)               |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| -30 dB)               |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      | M1                  |             |      |
| -40 dBi               |                       |                              |                            |                            |     |     | ودي دري الجميد ور                                                                                               | www.anatesseeweenaha | wanterprophylly the | should have | Ind  |
|                       |                       |                              |                            |                            |     |     | and and the second s |                      |                     |             |      |
| -50 dBi               |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| 100 10                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| -60 aBI               |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| -70-dB                |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     | , s         | 52   |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
| 3.66                  | GHz                   |                              |                            | 1001 pt                    | S   |     | 1.9 MHz/                                                                                                        |                      |                     | 3.679       | GHz  |
| 2 Mar                 | ker Peak              | List                         |                            |                            | h   | N1- | V 11-1                                                                                                          |                      |                     |             |      |
|                       | 0                     | 3.676599 GF                  | -17                        | -38.064                    | dBm | INO | X-Value                                                                                                         | 2                    | y-Va                | lue         |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     |             |      |
|                       |                       | *                            |                            |                            |     |     | ~                                                                                                               | Measuring            |                     | 23.01.2     | 2024 |
|                       |                       |                              |                            |                            |     |     |                                                                                                                 |                      |                     | 00:3        | 3:14 |

00:33:15 23.01.2024





00:33:39 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 07 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 97 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView      | Spectrum              |                  |            | •                                                                                                               |
|----------------|-----------------------|------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 25.0 | 00 dBm • RBW :        | 200 kHz          |            |                                                                                                                 |
| Att            | 26 dB • SWT 1 s • VBW | 1 MHz Mode Sweep |            | Count 10/10                                                                                                     |
| TDF "CABLES"   |                       |                  |            | a 1 Pm View                                                                                                     |
| 1 Frequency St | veep                  |                  |            |                                                                                                                 |
| 20 dBm         |                       |                  |            | 3.70007870 GHz                                                                                                  |
|                |                       |                  |            |                                                                                                                 |
| 10 dBm-        |                       |                  |            |                                                                                                                 |
| 0 dBm          |                       |                  |            |                                                                                                                 |
| o dom          |                       |                  |            |                                                                                                                 |
| -10 dBm-       |                       |                  |            |                                                                                                                 |
|                |                       |                  |            |                                                                                                                 |
| -20 dBm-       |                       |                  |            |                                                                                                                 |
|                |                       |                  |            | l l l l l l l l l l l l l l l l l l l                                                                           |
| -30 dBm        |                       |                  |            | The second se |
| -40 dBm        |                       |                  |            | Mar Marine Ma |
| -40 UBM-       |                       |                  |            |                                                                                                                 |
| -50 dBm        |                       |                  |            |                                                                                                                 |
|                |                       |                  |            |                                                                                                                 |
| -60 dBm        |                       |                  |            |                                                                                                                 |
|                |                       |                  |            |                                                                                                                 |
| -70 dBm        |                       |                  |            | si                                                                                                              |
| 3.6925 GHz     |                       | 1001 pts         | 850.0 kHz/ | 3.701 GHz                                                                                                       |
| 2 Marker Peak  | List                  |                  |            |                                                                                                                 |
| No             | X-Value               | Y-Value          | No X-Valu  | e Y-Value                                                                                                       |
| 1              | 3.700079 GHz          | -33.278 dBm      |            |                                                                                                                 |
|                |                       |                  |            |                                                                                                                 |
|                |                       |                  |            |                                                                                                                 |
|                |                       |                  |            | 0.0.0.000                                                                                                       |
|                | *                     |                  |            | Measuring 23.01.2024<br>00:34:02                                                                                |

00:34:03 23.01.2024





00:34:28 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 08 of 222                    |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 96 01 233                    |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| Multiview = Spectrum       RBW 1 MHz       Count 10/10         Att       26.68 SWIT 15 VBW 3 MHz       Mode Sweep         DB* count 10/10       0       1         DB* count 10/10       0       0         DB* count 10/10       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                 |                |            |             |        | (*)         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------|-------------|--------|-------------|
| Ref Level 25.00 dBm       • RBW 1 MHz         • Att       26 db • SWT 1s • VBW 3 MHz       Mode Sweep       Count 10/10         DFF'CALLS'       • IRm View       • IIRm View       • IIRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View         0 dm       • IRm View       • IRm View       • IRm View       • IRm View         0 dm       • IRm View         0 dm       • IRm View         0 dm       • IRm View       • IRm View       • IRm View       • IRm View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MultiView                | Spectrum                                                                                                        |                |            |             |        | -           |
| Att       26 dB SWT is SVBW 3 MHz       Mode Sweep       Count 10/10         TDF "CABLES"       O IRm View       MI[1]       -41.76 dBm         10 dBm       Image: SWT is SUBW 3 MHz       Mode Sweep       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Mode Sweep       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Mode Sweep       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Mode Sweep       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz       Image: SWT is SUBW 3 MHz         10 dBm       Image: SWT is SUBW 3 MHz <td>Ref Level 25.0</td> <td>00 dBm <b>≎ RBW</b> 1 l</td> <td>MHz</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref Level 25.0           | 00 dBm <b>≎ RBW</b> 1 l                                                                                         | MHz            |            |             |        |             |
| TDF requency Sweep       • 1Rm View         0 dm       M1[1]       -41.76 dBm         10 dm       0       M1[1]       -41.76 dBm         10 dm       0       0       0       0         0 dm       0       0       0       0       0         0 dm       0       0       0       0       0       0         10 dm       0       0       0       0       0       0       0         10 dm       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td><ul> <li>Att</li> </ul></td> <td>26 dB • SWT 1 s • VBW 31</td> <td>MHz Mode Sweep</td> <td></td> <td></td> <td></td> <td>Count 10/10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Att</li> </ul>  | 26 dB • SWT 1 s • VBW 31                                                                                        | MHz Mode Sweep |            |             |        | Count 10/10 |
| 1 Frequency Sweep       0 Imm View         0 Imm View       M1[1]       -41.765 dBm         0 Imm View       M1[1]       -41.765 dBm         1 Other View       V-Value       V-Value         1 Other View       V-Value       V-Value         1 Other View       No       X-Value       V-Value         1 Other View       V-Value       V-Value       V-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDF "CABLES"             |                                                                                                                 |                |            |             |        |             |
| a0 dBm       3.71090400 GHz         0 dBm       3.71090400 GHz         0 dBm       3.71090400 GHz         10 dBm       10 dBm         1 3.710904 GHz       -41.765 dBm         1 3.710904 GHz       -41.765 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Frequency Sw           | veep                                                                                                            |                | 1          |             |        | 01Rm View   |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 dBm                   |                                                                                                                 |                |            |             | M1[1]  | -41.76 dBm  |
| 10 dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                 |                |            |             | 3.7    | 1090400 GHz |
| 0 dbm       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>10 dBm-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 dBm-                  |                                                                                                                 |                |            |             |        |             |
| 0 dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                 |                |            |             |        |             |
| 10 dbm       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>0 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 dBm                    |                                                                                                                 |                |            |             |        |             |
| 10 dBm<br>11 -25.000 dBm<br>11 -25.000 dBm<br>10 dBm |                          |                                                                                                                 |                |            |             |        |             |
| 20 dBm     H1 -25.000 dBm       -30 dBm     H1 -25.000 dBm <td>-10 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -10 dBm                  |                                                                                                                 |                |            |             |        |             |
| 20 dBm     H1 -25.000 dBm       30 dBm     H1 -25.000 dBm       30 dBm     H1 -25.000 dBm       40 dBm     H1 -25.000 dBm       50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                 |                |            |             |        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -20 dBm                  |                                                                                                                 |                |            |             |        |             |
| 30 dBm     Mining     Mining <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                                                                 |                |            |             |        |             |
| Ministry     Ministry       So data     Ministry <t< td=""><td>-30 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30 dBm                  |                                                                                                                 |                |            |             |        |             |
| 1     3.71 GHz     1001 pts     1.0 MHz/     3.72 GHz       2     Marker Peak List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                                                                                 |                |            |             |        |             |
| Ministry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140 dBm                  |                                                                                                                 |                |            |             |        |             |
| 50 dBm<br>60 dBm<br>70 dBa<br>3.71 GHz 1001 pts 1.0 MHz/ 3.72 GHz<br>3.71 GHz 3.710904 GHz -41.765 dBm<br>1 3.71000 GHZ -41.765 dBm<br>1 3.710000 GHZ -41.765 dBm<br>1 3.71000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                            | Montheathantten          | eren an an an all the test and a second to a second |                |            |             |        |             |
| 3.71 GHz 1001 pts 1.0 MHz/ 3.72 GHz<br>2 Marker Peak List<br>No X-Value Y-Value V-Value V-Value Y-Value 2.01 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -50 dBm                  |                                                                                                                 |                |            |             |        |             |
| S0         All         S2           3.71 GHz         1001 pts         1.0 MHz/         3.72 GHz           2 Marker Peak List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                 |                |            |             |        |             |
| No         X-Value         V-Value         No         X-Value         Y-Value           1         3.710904 GHz         -41.765 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -60 dBm                  |                                                                                                                 |                |            |             |        |             |
| 1001 pts         1.0 MHz/         3.72 GHz           3.71 GHz         1001 pts         1.0 MHz/         3.72 GHz           2 Marker Peak List         Y-Value         No         X-Value         Y-Value           1         3.710904 GHz         -41.765 dBm         Vertice         Y-Value         Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                                 |                |            |             |        |             |
| 3.71 GHz         1001 pts         1.0 MHz/         3.72 GHz           2 Marker Peak List         No         X-Value         Y-Value         Y-Value           1         3.710904 GHz         -41.765 dBm         Y-Value         Y-Value         Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -70 dBr <mark>g 1</mark> |                                                                                                                 |                |            |             |        |             |
| 2 Marker Peak List Or Pail (Nor Michael Control of Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.71 GHz                 |                                                                                                                 | 1001 pts       | 1.0 MHz/   |             |        | 3.72 GHz    |
| No         X-Value         Y-Value         No         X-Value         Y-Value           1         3.710904 GHz         -41.765 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Marker Deak            | liet                                                                                                            | 1001 pts       | 110 11112/ |             |        | OT L OT L   |
| 1 3.710904 GHz -41.765 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                       | X-Value                                                                                                         | Y-Value        | No X-Va    | alue        | Y-Valı | Je          |
| • Mesurine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                        | 3.710904 GHz                                                                                                    | -41.765 dBm    |            |             |        |             |
| - Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                                 |                |            |             |        |             |
| • Masuring 23.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                                                                                                 |                |            |             |        |             |
| • Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                                 |                |            |             |        |             |
| 00:34:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | •                                                                                                               |                |            | • Measuring |        | 23.01.2024  |

00:34:52 23.01.2024





00:35:16 23.01.2024

Plot 7-162. Channel Edge Plot (LTE Band 48 - 15MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dage 00 of 222                    |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 99 01 255                    |
|                     |                       |                            | V2.2 09/07/2023                   |



|                         |             |               |              |          |    |          |   |       | (*)           |
|-------------------------|-------------|---------------|--------------|----------|----|----------|---|-------|---------------|
| MultiView               | Spectrum    |               |              |          |    |          |   |       | -             |
| Ref Level 25.           | 00 dBm      | ● RBW 11      | ИНz          |          |    |          |   |       |               |
| <ul> <li>Att</li> </ul> | 26 dB 🔹 SWT | 1 s • VBW 3 M | MHZ Mode Swe | ер       |    |          |   |       | Count 10/10   |
| TDF "CABLES"            | ween        |               |              |          |    |          |   |       | • 1 Rm View   |
| Threquency 5            | - CCP       |               |              |          |    |          |   | M1[1] | -42 53 dBm    |
| 20 dBm                  |             |               |              |          |    |          |   |       | 3.5228670 GHz |
|                         |             |               |              |          |    |          |   |       |               |
| 10 dBm-                 |             |               |              |          |    |          |   |       |               |
| o dow                   |             |               |              |          |    |          |   |       |               |
| Gabin                   |             |               |              |          |    |          |   |       |               |
| -10 dBm-                |             |               |              |          |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       |               |
| -20 dBm                 |             |               |              |          |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       |               |
| -30 dBm                 |             |               |              |          |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       |               |
| 40 dBm                  |             |               |              |          |    |          |   | MI.   |               |
|                         |             |               |              |          |    |          |   |       |               |
| -50 dBm                 |             |               |              |          |    |          |   |       |               |
| -60 d8m                 |             |               |              |          |    |          |   |       |               |
| oo abiii                |             |               |              |          |    |          |   |       |               |
| si0 dBm                 |             |               |              |          |    |          |   |       | S2            |
| 2, 40, CU =             |             |               | 1001         |          | L  |          |   |       | 2 52 611-     |
| 2 Markor Doak           | Liet        |               | 1001 pt      | <b>`</b> |    | 1.0 MHZ/ |   |       | 3.33 GHZ      |
| No                      | X-Value     | e             | Y-Va         | lue      | No | X-Value  | : | Y-Vá  | alue          |
| 1                       | 3.522867 0  | GHz           | -42.526      | dBm      |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       |               |
|                         |             |               |              |          |    |          |   |       | 00.01.0001    |
|                         | *           |               |              |          |    | ~        |   |       | 00:36:00      |

00:36:01 23.01.2024





00:36:26 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dago 100 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 100 01 233                   |  |
|                     |                       |                            | 1/2 2 09/07/2023                  |  |



| MultiView 🖿             | Spectrum                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     | -                   |
|-------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|-------------------------------------|---------------------|
| Ref Level 25.00         | )dBm ● RBW 1                              | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                  |                                     |                     |
| • Att                   | 26 dB • SWT 1 s • VBW 3                   | MHz Mode Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                  | Co                                  | unt 10/10           |
| 1 Erequency Swi         | een                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  | 0                                   | 1Rm View            |
| 00.45                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  | M1[1]                               | 32.63 dBm           |
| 20 dBm                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  | 3.548                               | 46500 GHz           |
| 10 dBm-                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| 0 dBm                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -10 dBm-                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -20 dBm-                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| LO GDIT                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -30 dBm-                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     | M1                  |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 1. And March 18 | Hannahmannandara | for the second second second second | - and a harring the |
| headfillige Amerikan    | enderse have not a stand we have here the | whether all and a second and the sec |                     |                  |                                     |                     |
| 100 days                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -SU UBM-                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -60 dBm-                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| -70 dBm <mark>s1</mark> |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     | 52                  |
| 3.54 GHz                |                                           | 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900.0 k             | Hz/              |                                     | 3.549 GHz           |
| 2 Marker Peak L         | ist                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| No                      | X-Value                                   | Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                  | X-Value          | Y-Value                             |                     |
| 1                       | 3.346403 GHZ                              | -32.032 dBill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                  |                                     |                     |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
|                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |                                     |                     |
| *                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ▼ Measuring      | •••                                 |                     |

00:36:50 23.01.2024





00:37:15 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 101 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 101 01 235                   |  |
|                     |                       |                            | 1/2 2 09/07/2023                  |  |



| MultiView            | Spectrum              |                  |            | •                   |  |  |  |  |  |
|----------------------|-----------------------|------------------|------------|---------------------|--|--|--|--|--|
| Ref Level 25.0       | 00 dBm • RBW 2        | 200 kHz          |            |                     |  |  |  |  |  |
| Att     TDE "CABLES" | 26 dB • SWT 1 s • VBW | 1 MHz Mode Sweep |            | Count 10/10         |  |  |  |  |  |
| 1 Frequency Sy       | veep                  |                  |            | •1Rm View           |  |  |  |  |  |
| 00.40                |                       |                  |            | M1[1] -35.35 dBm    |  |  |  |  |  |
| 20 dBm-              |                       |                  |            | 3.5701040 GHz       |  |  |  |  |  |
| 10 dBm               |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            |                     |  |  |  |  |  |
| 0 dBm                |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            |                     |  |  |  |  |  |
| -10 dBm-             |                       |                  |            |                     |  |  |  |  |  |
| -20 dam-             |                       |                  |            |                     |  |  |  |  |  |
| 20 0011              |                       |                  |            | Villan.             |  |  |  |  |  |
| -30 dBm              |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            | Market Contraction  |  |  |  |  |  |
| -40 dBm              |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            |                     |  |  |  |  |  |
| -50 dBm              |                       |                  |            |                     |  |  |  |  |  |
| -60 dBm              |                       |                  |            |                     |  |  |  |  |  |
| 00 0011              |                       |                  |            |                     |  |  |  |  |  |
| -70 dBm-             |                       |                  |            |                     |  |  |  |  |  |
| 3.56 GHz             |                       | 1001 pts         | 1.1 MHz/   | 3.571 GHz           |  |  |  |  |  |
| 2 Marker Peak        | 2 Marker Daak List    |                  |            |                     |  |  |  |  |  |
| No                   | X-Value               | Y-Value          | No X-Value | e Y-Value           |  |  |  |  |  |
| 1                    | 3.570104 GHz          | -35.351 dBm      |            |                     |  |  |  |  |  |
|                      |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            |                     |  |  |  |  |  |
|                      |                       |                  |            | 22.04.2024          |  |  |  |  |  |
|                      | *                     |                  | *          | Measuring Measuring |  |  |  |  |  |

00:37:39 23.01.2024





00:38:04 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 102 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 102 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                     |                 |             |          |       |    |          |    |      | (*)          |
|---------------------|-----------------|-------------|----------|-------|----|----------|----|------|--------------|
| MultiView           | Spectrum        |             |          |       |    |          |    |      | -            |
| Ref Level 25.0      | DO dBm          | • RBW 1 MHz |          |       |    |          |    |      |              |
| Att<br>TDE "CARLES" | 26 dB • SWT 1 s | • VBW 3 MHz | Mode Swe | ep    |    |          |    |      | Count 10/10  |
| 1 Frequency Sv      | weep            |             |          |       |    |          |    |      | ●1Rm View    |
| 00.40.0             |                 |             |          |       |    |          |    | M1[1 | -45.92 dBm   |
| 20 dBm-             |                 |             |          |       |    |          |    |      | 3.597080 GHz |
| 10 dBm              |                 |             |          |       |    |          |    |      |              |
| to dom              |                 |             |          |       |    |          |    |      |              |
| 0 dBm-              |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
| -10 dBm             |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
| -20 dBm             |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
| -30 dBm             |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
| -40 dBm             |                 |             |          |       |    |          |    |      |              |
| 1 million           |                 |             |          |       |    |          |    |      |              |
| -50 dBm             |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
| -60 dBm             |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      | S2           |
| s1/0 dBm            |                 |             |          |       |    |          |    |      |              |
| 3.59 GHz            |                 |             | 1001 pts | 6     | 1: | 3.0 MHz/ |    |      | 3.72 GHz     |
| 2 Marker Peak       | List            |             |          |       |    |          |    |      |              |
| No                  | X-Value         |             | Y-Val    | lue   | No | X-Value  | :  | Y-Va | ilue         |
| 1                   | 3.397060 GHZ    |             | -43.921  | ODITI |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
|                     |                 |             |          |       |    |          |    |      |              |
|                     | _               |             |          |       |    |          | 84 |      | 23.01.2024   |
|                     |                 |             |          |       |    | ~        |    |      | 00:38:28     |

00:38:29 23.01.2024





00:38:53 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 102 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 103 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|               |             |                     |              |      |    |          |           |       | <b>\$</b>     |
|---------------|-------------|---------------------|--------------|------|----|----------|-----------|-------|---------------|
| MultiView     | Spectrum    |                     |              |      |    |          |           |       | •             |
| Ref Level 25  | .00 dBm     | ● RBW 1 M           | ìHz          |      |    |          |           |       |               |
| Att           | 26 dB 单 SWT | 1s ● <b>VBW</b> 3 № | IHz Mode Swe | ep   |    |          |           |       | Count 10/10   |
| 1 Erequency S | ween        |                     |              |      |    |          |           |       | o 1 Rm View   |
|               |             |                     |              |      |    |          |           | M1[1] | -52.83 dBm    |
| 20 dBm-       |             |                     |              |      |    |          |           |       | 3.5263840 GHz |
| 10.10.0       |             |                     |              |      |    |          |           |       |               |
| 10 dBm-       |             |                     |              |      |    |          |           |       |               |
| O dBw         |             |                     |              |      |    |          |           |       |               |
| 0 ubm         |             |                     |              |      |    |          |           |       |               |
| -10 dBm       |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
| -20 dBm       |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
| -30 dBm       |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
| -40 dBm       |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
| -50 dBm       |             |                     |              |      |    |          |           |       | M1            |
|               |             |                     |              |      |    |          |           |       |               |
| -60 dBm       |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
| si0 dBm       |             |                     |              |      |    |          |           |       | Ī             |
| 3.49 GHz      |             |                     | 1001 pt      | ŝ    | 4  | 1.0 MHz/ |           |       | 3.53 GHz      |
| 2 Marker Peal | < List      |                     |              |      |    |          |           |       |               |
| No            | X-Valu      | e                   | Y-Va         | lue  | No | X-Value  | 3         | Y-Va  | lue           |
| 1             | 3.320364 (  | 302                 | -32.632      | adin |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       |               |
|               |             |                     |              |      |    |          |           |       | 23.01.2024    |
|               | <u> </u>    |                     |              |      |    | ~        | Measuring |       | 00:39:32      |

00:39:32 23.01.2024





00:39:57 23.01.2024

Plot 7-172. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 104 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 104 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                | •               | <b>\$</b> |
|----------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-----|-----------------------------------------------------------------------------------------------------------------|----------------|--------------------|----------------|-----------------|-----------|
| Mu             | ItiView                          | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                           |     |                                                                                                                 |                |                    |                |                 | ÷         |
|                | ef Level 25.<br>It<br>F "CABLES" | 00 dBm<br>26 dB • SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • RBW 1 M<br>1 s • VBW 3 M | Hz<br>Hz <b>Mode</b> Swee | ep  |                                                                                                                 |                |                    |                | Count 10,       | /10       |
| $1 \ {\rm Fr}$ | equency S                        | weep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |     |                                                                                                                 |                |                    |                | 01Rm Vi         |           |
| 20.4           | 8m-                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    | M1[1]          | -35.55          | dBm       |
| 20 0           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                | 3.6131360       | GHz       |
| 10 d           | 8m                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| 0 dB           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -10            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -20            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -30            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                | American        | m         |
| -40            |                                  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |     | and a second and a second as a second a | formthatabilit | لللبالية فالمراطبة | hardenthattent |                 |           |
| ~~~~           | *****                            | and the second se |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -50            | dBm                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| 60             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -60            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| -70-           | dßm                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 | 2         |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
| 3.5            | 95 GHz                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1001 pts                  |     |                                                                                                                 | .9 MHZ/        |                    |                | 3.614           | GHz       |
| 2 M            | arker Peak<br>No                 | LIST<br>X-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | þ                          | V-Val                     | ue  | No                                                                                                              | X-Value        | <b>`</b>           | V-Va           | ue              | -         |
|                | 1                                | 3.613136 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GHz                        | -35.546                   | dBm | 110                                                                                                             | 7 100          | 2                  | 1 44           | ac              |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                |                 |           |
|                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                           |     |                                                                                                                 |                |                    |                | 23.01.2<br>00:4 |           |

00:40:21 23.01.2024





00:40:46 23.01.2024

Plot 7-174. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 105 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 105 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView       | Spectrum                               |                                   |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|----------------------------------------|-----------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 25.0  | 0 dBm ● RBW 2<br>26 dB ● SWT 1 s ● VBW | 00 kHz<br>1 MHz <b>Mode</b> Sweep |            | Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Frequency Sw  | еер                                    |                                   |            | •1Rm View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00 d0m          |                                        |                                   |            | M1[1] -35.36 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 0611         |                                        |                                   |            | 3.6351040 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 dBm-         |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 dBm-          |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -10 dBm-        |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -20 dBm-        |                                        |                                   |            | <u>w.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| an dam          |                                        |                                   |            | Thursday and the second s |
| -SU UBIII       |                                        |                                   |            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -40 dBm-        |                                        |                                   |            | To Maria Maria Maria Maria M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -50 dBm         |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -60 dBm         |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -70 dBm-        |                                        |                                   |            | S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.625 GHz       |                                        | 1001 pts                          | 1.1 MHz/   | 3.636 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 Marker Peak L | list                                   |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No              | X-Value                                | Y-Value                           | No X-Value | e Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1               | 5.055104 0112                          | 55.565 dBm                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                        |                                   | *          | Measuring 23.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |                                        |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

00:41:10 23.01.2024





00:41:35 23.01.2024

Plot 7-176. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 106 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 106 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView                             | Spectrum                              |                                  |            | •                |
|---------------------------------------|---------------------------------------|----------------------------------|------------|------------------|
| Ref Level 25.0<br>Att<br>TDF "CABLES" | 00 dBm ● RBW<br>26 dB ● SWT 1 s ● VBW | 1 MHz<br>3 MHz <b>Mode</b> Sweep |            | Count 10/10      |
| 1 Frequency Sv                        | weep                                  |                                  |            | •1Rm View        |
| 00.45.0                               |                                       |                                  |            | M1[1] -46.62 dBm |
| 20 dBm                                |                                       |                                  |            | 3.6623700 GHz    |
| 10 40 10                              |                                       |                                  |            |                  |
| 10 0011                               |                                       |                                  |            |                  |
| 0 dpm                                 |                                       |                                  |            |                  |
| o ubm                                 |                                       |                                  |            |                  |
| -10 dBm                               |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
| -20 dBm                               |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
| -30 dBm                               |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
| -40 dBm                               |                                       |                                  |            |                  |
|                                       | M1                                    |                                  |            |                  |
| -50 dBm                               |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
| -60 dBm                               |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
| s 70 dBm                              |                                       |                                  |            | S2               |
| 2 655 CHz                             |                                       | 1001 pts                         | 6 5 MHz/   | 3 72 CHz         |
| 2 Markor Doald                        | Liet                                  | 1001 pts                         | 0.5 Min27  | 5.72 612         |
|                                       | X-Value                               | Y-Value                          | No X-Value | > V-Value        |
| 1                                     | 3.662370 GHz                          | -46.618 dBm                      | in raid    | 1 1 4140         |
|                                       |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
|                                       |                                       |                                  |            |                  |
|                                       |                                       |                                  |            | Measuring        |

00:41:59 23.01.2024





00:42:24 23.01.2024

Plot 7-178. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 107 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 107 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                      |                  |               |             |      |         |   |       | <b>\$</b>     |
|----------------------|------------------|---------------|-------------|------|---------|---|-------|---------------|
| MultiView            | Spectrum         |               |             |      |         |   |       | -             |
| Ref Level 25         | .00 dBm          | • RBW 1 MHz   |             |      |         |   |       |               |
| Att     TDE "CARLES" | 26 dB 🗢 SWT 1 :  | s • VBW 3 MHz | Mode Sweep  |      |         |   |       | Count 10/10   |
| 1 Erequency S        | ween             |               |             |      |         |   |       | •1Rm View     |
|                      |                  |               |             |      |         |   | M1[1] | -52.85 dBm    |
| 20 dBm-              |                  |               |             |      |         |   |       | 3.5140360 GHz |
|                      |                  |               |             |      |         |   |       |               |
| 10 dBm-              |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| 0 dBm-               |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| -10 dBm-             |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| -20 dBm-             |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| -30 dBm              |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| 40 abm               | H1 -40.000 dBm - |               |             |      |         |   |       |               |
| 100 10               |                  |               |             | N    | 11      |   |       |               |
| -SU dBm              |                  |               |             | <br> | 7       |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
| -60 anu-             |                  |               |             |      |         |   |       |               |
| -70 d0m              |                  |               |             |      |         |   |       | S2            |
| SVn nem-             |                  |               |             |      |         |   |       |               |
| 3.49 GHz             |                  |               | 1001 pts    | 4    | .0 MHz/ |   |       | 3.53 GHz      |
| 2 Marker Peak        | < List           |               |             |      |         |   |       |               |
| No                   | X-Value          |               | Y-Value     | No   | X-Value | : | Y-Va  | lue           |
|                      | 3,314036 GH2     |               | -32.847 dBm |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       |               |
|                      |                  |               |             |      |         |   |       | 22.01.2024    |
|                      | *                |               |             |      | ~       |   |       | 00:43:02      |

00:43:03 23.01.2024





00:43:28 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 109 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 106 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|              |                                    |                                 |                                        |                          |     |                       |             |             |                      | •               | <b>%</b> |
|--------------|------------------------------------|---------------------------------|----------------------------------------|--------------------------|-----|-----------------------|-------------|-------------|----------------------|-----------------|----------|
| М            | ultiView                           | Spectrum                        |                                        |                          |     |                       |             |             |                      |                 | -        |
| R<br>A<br>TD | .ef Level 25.<br>.tt<br>F "CABLES" | .00 dBm<br>26 dB <b>• SWT</b> : | ● RBW 1 MH<br>1 s ● VBW 3 MH           | Hz<br>Hz <b>Mode</b> Swe | ер  |                       |             |             |                      | Count 10,       | /10      |
| 1 F          | requency S <sup>.</sup>            | weep                            |                                        |                          |     |                       |             |             |                      | 01Rm Vi         | ew       |
| 20.          |                                    |                                 |                                        |                          |     |                       |             |             | M1[1]                | -34.35          | dBm      |
| 201          |                                    |                                 |                                        |                          |     |                       |             |             |                      | 3.6784400       | GHz      |
| 10 0         | Bm                                 |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| 0 di         |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -10          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -20          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -30          |                                    |                                 |                                        |                          |     |                       |             |             |                      | M               |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             | 1 1 marther has      | Mahmuluner      | hum      |
| -40          |                                    | - warming                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                          |     | hadrenderstanderstand | mbalalahili | سلسلسللسلسا | Jendly rough and the |                 |          |
|              | ****                               |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -50          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -60          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -00          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
| -70          |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 | 2        |
|              |                                    |                                 |                                        | 1001                     |     |                       |             |             |                      | 0.670           |          |
| 3.0          | oo GHZ                             |                                 |                                        | 1001 pts                 | ŝ   | 1                     | .9 MHZ/     |             |                      | 3.6791          | SHZ      |
| 210          | No<br>No                           | CLIST<br>X-Value                |                                        | V-Va                     | ue  | No                    | X-Value     | <b>&gt;</b> | V-Va                 | ue              | -        |
|              | 1                                  | 3.678440 G                      | Ηz                                     | -34.348                  | dBm | 110                   | 7 100       | -           | 1 14                 |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      |                 |          |
|              |                                    |                                 |                                        |                          |     |                       |             |             |                      | 23.01.2<br>00:4 |          |

00:43:52 23.01.2024





00:44:16 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 100 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 109 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



| MultiView                             | Spectrum                                |                                        |            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|-----------------------------------------|----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level 25.0<br>Att<br>TDE "CABLES" | 0 dBm ● RBW 20<br>26 dB ● SWT 1 s ● VBW | 00 kHz<br>1 MHz <b>Mode</b> Sweep      |            | Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 Frequency Sw                        | reep                                    |                                        |            | ●1Rm View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 dBm-                               |                                         |                                        |            | M1[1] -34.80 dBm<br>3 7001260 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10 dBm                                |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D dBm                                 |                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 100                                |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 10 dBm                              | —H1 -13.000 dBm ————                    |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -20 dBm                               |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -30 dBm                               |                                         |                                        |            | Multi MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -40 dBm                               |                                         |                                        |            | and the second sec |
| ro. 10                                |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -50 UBM-                              |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -60 dBm                               |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -70 dBm                               |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.69 GHz                              |                                         | 1001 pts                               | 1.1 MHz/   | 3.701 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 Marker Peak I                       | _ist                                    |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No                                    | X-Value                                 | Y-Value                                | No X-Value | e Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                     | 3.700126 GHz                            | -34.798 dBm                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                         |                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | <i>y</i>                                |                                        | *          | Measuring 23.01.2024<br>00:44:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

00:44:41 23.01.2024





00:45:05 23.01.2024

Plot 7-184. Channel Edge Plot (LTE Band 48 - 20MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 110 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 110 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|                     |                          |                                                                                                                |                                  |             |       | <b>\$</b>    |
|---------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------|--------------|
| MultiView 🖶         | Spectrum                 |                                                                                                                |                                  |             |       | •            |
| Ref Level 25.00     | )dBm ● RBW 11            | MHz                                                                                                            |                                  |             |       |              |
| • Att               | 26 dB • SWT 1 s • VBW 31 | MHz Mode Sweep                                                                                                 |                                  |             |       | Count 10/10  |
| 1 Erequency Swi     | een                      |                                                                                                                |                                  |             |       | o1Rm View    |
| Thequency of        |                          |                                                                                                                |                                  |             | M1[1] | -39.27 dBm   |
| 20 dBm              |                          |                                                                                                                |                                  |             | 3.    | 71077400 GHz |
| 10 dBm-             |                          |                                                                                                                |                                  |             |       |              |
| 10 0011             |                          |                                                                                                                |                                  |             |       |              |
| 0 dBm               |                          |                                                                                                                |                                  |             |       |              |
|                     |                          |                                                                                                                |                                  |             |       |              |
| -10 dBm             |                          |                                                                                                                |                                  |             |       |              |
|                     |                          |                                                                                                                |                                  |             |       |              |
| -20 dBm             |                          |                                                                                                                |                                  |             |       |              |
| -20 dbm             |                          |                                                                                                                |                                  |             |       |              |
| M1                  |                          |                                                                                                                |                                  |             |       |              |
| 140 Bm              |                          |                                                                                                                |                                  |             |       |              |
| man with with which |                          | und marken all and a second and a second | mont good from the manual second |             |       |              |
| -50 dBm             |                          |                                                                                                                |                                  |             |       |              |
|                     |                          |                                                                                                                |                                  |             |       |              |
| -60 dBm             |                          |                                                                                                                |                                  |             |       |              |
| -70 d0m             |                          |                                                                                                                |                                  |             |       | s2           |
| - TO UBIET          |                          |                                                                                                                |                                  |             |       |              |
| 3.71 GHz            |                          | 1001 pts                                                                                                       | 1.0 MHz/                         |             |       | 3.72 GHz     |
| 2 Marker Peak L     | ist<br>X-Value           | V-Value                                                                                                        | No X-V                           | alue        | V-V-1 | 110          |
| 1                   | 3.710774 GHz             | -39.270 dBm                                                                                                    |                                  | alde        | 1 ¥01 | ac           |
|                     |                          |                                                                                                                |                                  |             |       |              |
|                     |                          |                                                                                                                |                                  |             |       |              |
|                     |                          |                                                                                                                |                                  |             |       |              |
| ~                   |                          |                                                                                                                |                                  | • Measuring |       | 00:45:30     |

00:45:30 23.01.2024





00:45:54 23.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 111 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage III 01255                    |
|                     |                       |                            | 1/2 2 09/07/2023                  |



## ULCA LTE Band 48

|                |                 |                       |            |    |            |           |         | <b></b>       |
|----------------|-----------------|-----------------------|------------|----|------------|-----------|---------|---------------|
| MultiView      | Spectrum        |                       |            |    |            |           |         | •             |
| Ref Level 10.0 | 00 dBm          | • RBW 1 MHz           |            |    |            |           |         |               |
| • Att          | 26 dB 🗢 SWT 100 | ms ● VBW 3 MHz Mode . | Auto Sweep |    |            |           |         | Count 10/10   |
| TDF "CABLES"   | ween            |                       |            |    |            |           |         | • 1 Rm View   |
| Thequency of   | (CCP            |                       |            |    |            |           | M1[1]   | -49.41 dBm    |
|                |                 |                       |            |    |            |           | 3       | 3.5285010 GHz |
| 0 dBm          |                 |                       |            |    |            |           |         |               |
| 10 dBm         |                 |                       |            |    |            |           |         |               |
| -10 UBIN       |                 |                       |            |    |            |           |         |               |
| -20 dBm-       |                 |                       |            |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         |               |
| -30 dBm        |                 |                       |            |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         |               |
| -40 dBm        |                 |                       |            |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         | M1            |
| -50 dBm        |                 |                       |            |    |            |           | hourses |               |
|                |                 |                       |            |    |            |           |         |               |
| -60 dBm        |                 |                       |            |    |            |           |         |               |
| -70 d0m        |                 |                       |            |    |            |           |         |               |
| -YO UBIN       |                 |                       |            |    |            |           |         |               |
| -80 dBm        |                 |                       |            |    |            |           |         |               |
| 51             |                 |                       |            |    |            |           |         | 52            |
| 2.40 CHz       |                 | 1001 pte              |            |    | 4.0 MHz/   |           |         | 2 52 CHz      |
| 2 Marker Peak  | List            | 1001 pts              |            |    | 1.0 Mi 127 |           |         | 0.00 0112     |
| No             | X-Value         | Y-Val                 | ue         | No | X-Value    | :         | Y-Val   | lue           |
| 1              | 3.528501 GHz    | -49.412               | dBm        |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         |               |
|                |                 |                       |            |    |            |           |         | 24.01.2024    |
|                | *               |                       |            |    | ~          | Measuring |         | 22:32:36      |

22:32:37 24.01.2024

Plot 7-187. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)



22:33:07 24.01.2024



| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 112 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 112 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  | <b>\$</b>                    |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------|----|-----------|-----------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|
| MultiView                                       | Spectrum                                                                                                         |               |           |                                                                                                                 |    |           |                             |                                                                                                                  | •                            |
| Ref Level 10.                                   | .00 dBm                                                                                                          | • RBW 1       | MHz       |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| Att     The "conductor"                         | 26 dB • SWT 100                                                                                                  | ) ms • VBW 31 | MHz Mode  | Auto Sweep                                                                                                      |    |           |                             |                                                                                                                  | Count 10/10                  |
| 1 Frequency S                                   | weep                                                                                                             |               |           |                                                                                                                 |    |           |                             |                                                                                                                  | ●1Rm View                    |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             | M1[1]                                                                                                            | -44.67 dBm                   |
| O dBm                                           |                                                                                                                  |               |           |                                                                                                                 |    |           |                             | 3.                                                                                                               | 54797950 GHz                 |
| U UBIII                                         |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -10 dBm                                         |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -20 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -30 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -40 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             | M1                                                                                                               | . h d hu                     |
| -montes and | and the second |               |           | had a second and a second s |    | mmmm      | deres and the second second | and the second | and the second second second |
| -50 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -60 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| 00 0011                                         |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -70 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| -80 dBm-                                        |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| S1                                              |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  | 52                           |
| 3.54 GHz                                        |                                                                                                                  |               | 1001 pts  |                                                                                                                 | 9( | 00.0 kHz/ |                             |                                                                                                                  | 3.549 GHz                    |
| 2 Marker Peak                                   | List                                                                                                             |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
| No                                              | X-Value                                                                                                          |               | Y-Valu    | ue                                                                                                              | No | X-Value   |                             | Y-Val                                                                                                            | ue                           |
| 1                                               | 3.547979 GHZ                                                                                                     |               | -44.666 ( | звт                                                                                                             |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           |                             |                                                                                                                  |                              |
|                                                 | •                                                                                                                |               |           |                                                                                                                 |    |           | Measuring                   |                                                                                                                  | 24.01.2024                   |
|                                                 |                                                                                                                  |               |           |                                                                                                                 |    |           | incostanting                |                                                                                                                  | 22:33:37                     |

22:33:38 24.01.2024





22:34:08 24.01.2024

Plot 7-190. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 112 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 115 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       | Ì    |
|------------------------|---------------|----------------|---------|-----------------|-------|------------------------------------------------------------------------------------------------------------------|-----------|-------------------|----------|-------|------|
| MultiView              | Spectrum      |                |         |                 |       |                                                                                                                  |           |                   |          |       | ÷    |
| Ref Level 10.0         | 00 dBm        | ● RBW          | 500 kHz |                 |       |                                                                                                                  |           |                   |          |       |      |
| Att     The "contract" | 26 dB 🗢 SWT   | 100 ms 🗢 VBW   | 2 MHz I | Mode Auto Sweep |       |                                                                                                                  |           |                   | Count 1  | .0/1  | 10   |
| 1 Frequency Sv         | veep          |                |         |                 |       |                                                                                                                  |           |                   | o1Rm     | Vier  | w    |
|                        |               |                |         |                 |       |                                                                                                                  |           | M1[1]             | -43.0    | 7 di  | Вm   |
| 0 dBm                  |               |                |         |                 |       |                                                                                                                  |           |                   | 3.590138 | 30 G  | iHz  |
| mannaman               | en manaranter | monorman       | m       |                 | manus | and the second | manne     | monto approximate | uning    |       |      |
| -10 dBm                |               | └──── <b>\</b> |         |                 |       |                                                                                                                  |           |                   |          |       |      |
|                        |               | m ————         |         |                 |       |                                                                                                                  |           |                   |          |       |      |
| -20 dBm-               |               |                | -       |                 |       |                                                                                                                  |           |                   |          |       | 2    |
| an dam                 |               |                | V.      |                 |       |                                                                                                                  |           |                   |          |       |      |
| -so ubii               |               |                |         |                 |       |                                                                                                                  |           |                   |          | ۲     |      |
| -40 dBm                |               |                |         |                 |       |                                                                                                                  |           |                   |          | ), I  | 1    |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          | 7     | λ.   |
| -50 dBm                |               |                |         |                 |       |                                                                                                                  |           |                   |          |       | Two- |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
| -60 dBm-               |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
| -70 dBm                |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
| -80 dBm-               |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       | Ĩ    |
| 3.56 GHz               |               |                | 1001    | pts             | 3     | 3.08 MHz/                                                                                                        |           |                   | 3.590    | 8 G   | Hz   |
| 2 Marker Peak          | List          |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
| No                     | X-Valu        | e              | Y       | -Value          | No    | X-Value                                                                                                          |           | Y-Va              | lue      |       |      |
| 1                      | 3.590138 (    | JHZ            | -43.0   | Jes abm         |       |                                                                                                                  |           |                   |          |       |      |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
|                        |               |                |         |                 |       |                                                                                                                  |           |                   |          |       |      |
|                        | -             |                |         |                 |       |                                                                                                                  | Moncuring |                   | 24.0     | 1.20  | 124  |
|                        | Ť.            |                |         |                 |       | × ×                                                                                                              | measuring |                   | 22       | 2:34; | 38   |

22:34:39 24.01.2024





22:35:09 24.01.2024

Plot 7-192. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 114 of 222                   |  |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 114 of 233                   |  |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |  |



| MultiView               | Spectrum       |                                         |                                                                                                                  |               |    |           |   |       |                        |
|-------------------------|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|----|-----------|---|-------|------------------------|
| Ref Level 10.           | .00 dBm        | ● RB₩                                   | 1 MHz                                                                                                            |               |    |           |   |       |                        |
| <ul> <li>Att</li> </ul> | 26 dB 😐 SWT    | 100 ms 🗢 VBW                            | 3 MHz Mod                                                                                                        | e Auto Sweep  |    |           |   |       | Count 10/10            |
| TDF "CABLES"            | ween           |                                         |                                                                                                                  |               |    |           |   |       | 1 Rm View              |
| Threquency 5            | Heep           |                                         |                                                                                                                  |               |    |           |   | M1[1] | -56.82 dBm             |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       | 3.6440950 GHz          |
| D dBm-                  |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -10 dBm-                |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -20 dBm                 |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -30 dBm                 |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -40 dBm                 |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -50 dBm-                |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| CO GDIII                | M1             |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -60 dBm                 |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | and the second |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -70 dBm                 |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| -80 dBm                 |                |                                         |                                                                                                                  |               |    |           |   |       | S2                     |
| 51                      |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
| 3.6296 GHz              |                |                                         | 1001 p                                                                                                           | ts            |    | 9.04 MHz/ |   |       | 3.72 GHz               |
| 2 Marker Peak           | List<br>V-Volu | <u>_</u>                                | V_V                                                                                                              | alua          | No | V-Value   |   | ¥-V-  | luo.                   |
| 1                       | 3.644095 (     | e<br>GHz                                | -56.82                                                                                                           | alue<br>2 dBm | NU | ∧-¥aiue   | ; | t-va  | lue                    |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |
|                         | *              |                                         |                                                                                                                  |               |    |           |   |       | 24.01.2024<br>22:35:39 |
|                         |                |                                         |                                                                                                                  |               |    |           |   |       |                        |

22:35:40 24.01.2024





22:36:10 24.01.2024

Plot 7-194. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 115 of 222                   |  |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 115 of 233                   |  |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |  |



|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>\$</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|-------------|--------------|---------|----------------------------|----|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiView                              | Spectrum    |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ref Level 10.                          | .00 dBm     | ● RB₩        | / 1 MHz |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Att</li> </ul>                | 26 dB 单 SWT | 100 ms 🗢 VBW | 3 MHz M | ode Auto Sweep             |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TDF "CABLES"                           |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O 1 Drm Micra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 Frequency 5                          | weep        |              |         |                            |    |           |                                                                                                                 | M1E11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -49.74 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |             |              |         |                            |    |           |                                                                                                                 | , and the second s | 3.5284220 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 dBm                                  |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -10 dBm-                               |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -90 dpm-                               |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 0011                                |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm                                |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40 dBm                                 |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -50 dBm                                |             |              |         |                            |    |           | and a start and a start | and a standard and a standard and a standard and a standard a standard a standard a standard a standard a stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | And and the state of the state |
| -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |              |         | week and the second second |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBm                                |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - ru ubm-                              |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -80 dBm                                |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51                                     |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.40.045                               |             |              | 100     | Linto                      |    | 4.0 MH= / |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 52 CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 Markor Doald                         | List        |              | 100.    | i pis                      |    | 4.0 MHZ/  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.33 GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| No                                     | X-Valu      | e            | Ŷ       | -Value                     | No | X-Valu    | e                                                                                                               | Y-Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                      | 3.528422 (  | GHz          | -48.    | 740 dBm                    |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |             |              |         |                            |    |           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | *           |              |         |                            |    | ~         | Measuring                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22:37:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

22:37:57 24.01.2024





22:38:27 24.01.2024

Plot 7-196. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 116 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 110 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|                      |             |              |                                             |                |          |          |                                                                                                                  |         | <b>\$</b>             |
|----------------------|-------------|--------------|---------------------------------------------|----------------|----------|----------|------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
| MultiView            | Spectrum    |              |                                             |                |          |          |                                                                                                                  |         | •                     |
| Ref Level 10.0       | 00 dBm      | • RBW        | 1 MHz                                       |                |          |          |                                                                                                                  |         |                       |
| Att     TDE "CABLES" | 26 dB 🔍 SWT | 100 ms 🗢 VBW | 3 MHz Mod                                   | e Auto Sweep   |          |          |                                                                                                                  |         | Count 10/10           |
| 1 Frequency Sy       | veep        |              |                                             |                |          |          |                                                                                                                  |         | •1Rm View             |
|                      |             |              |                                             |                |          |          |                                                                                                                  | M1[1]   | -34.83 dBm            |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         | 3.5864050 GHz         |
| 0 dBm-               |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -1U dBm              |             | m            |                                             |                |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -20 dBm-             |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| 00 -ID-00            |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -30 aBm-             |             |              |                                             |                | M1       |          |                                                                                                                  |         |                       |
| 10 10                |             |              |                                             | as influences. | al Mhome | mound    | and the second and the | mannene | www.www.www.aw        |
|                      |             |              | han some some some some some some some some |                |          |          |                                                                                                                  |         |                       |
| - CO d0m             |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -so ubiii            |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -60 d0m              |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -70 d0m              |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| 10 ubiti             |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -90 d0m              |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| -eo dem              |             |              |                                             |                |          |          |                                                                                                                  |         | S2                    |
| 51                   |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
| 3.5653 GHz           |             |              | 1001 p                                      | ots            | 3.       | .88 MHz/ |                                                                                                                  |         | 3.6041 GHz            |
| 2 Marker Peak        | List        |              |                                             |                |          |          |                                                                                                                  |         |                       |
| No                   | X-Value     | 2            | Y-V<br>24.02                                | alue           | No       | X-Value  | 2                                                                                                                | Y-V∂    | ilue                  |
| 1                    | 3.360403 0  | 3112         | -34.03                                      | 1 abin         |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         |                       |
|                      |             |              |                                             |                |          |          |                                                                                                                  |         | <b>rrm</b> 24.01.2024 |
|                      | ×.          |              |                                             |                |          | *        | Measuring                                                                                                        |         | 22:38:57              |

22:38:58 24.01.2024





22:39:28 24.01.2024

Plot 7-198. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |
|---------------------|-----------------------|----------------------------|-----------------------------------|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 117 of 222                   |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 117 01 255                   |
|                     |                       |                            | V2.2 09/07/2023                   |



|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | $\geq$ |
|--------------------------------------|----------------------------------------|-----------------------|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|----------|--------|--------|
| MultiView                            | Spectrum                               | 1                     |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          | -      |        |
| Ref Level 10.<br>Att<br>TDF "CABLES" | 00 dBm<br>26 dB • SWT                  | • RBW<br>100 ms • VBW | 500 kH<br>2 MH      | z<br>z Mode | e Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 | Count 1  | 10/10  | þ      |
| 1 Frequency S                        | weep                                   |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 | o1Rm     |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | M1[1]           | -35.0    | 8 dBi  | m      |
| weekly and a second property         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mentioning            |                     | mon         | man the state of t |     | - marine and the second s | he-during the second | man Ana mar Mar | 3.645146 | 50 GH  | Iz     |
| o ubm                                |                                        |                       | - 1                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -10 dBm                              |                                        |                       | $\langle l \rangle$ |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| 10 0011                              |                                        |                       | + +                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -20 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| EO GBII                              |                                        |                       | w                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -30 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          | \      |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          | N.     |        |
| -40 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | ٣      |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -50 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -60 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | 4      |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -70 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | 4      |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
| -80 dBm                              |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | 4      |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        | 1      |
| 2 6151 CHz                           |                                        |                       | 1                   | 001 pte     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 09 MHz /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                 | 2.645    | 0 CH   |        |
| 2 Markor Doald                       | list                                   |                       |                     | oorpts      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1.00 141127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                 | 3.043    | 9 011  | ~      |
| No                                   | X-Valu                                 | ie.                   |                     | Y-Valı      | Je                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No  | X-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                    | Y-Va            | lue      |        |        |
| 1                                    | 3.645146                               | GHz                   | -                   | 35.078 (    | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 | 140      |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 |          |        |        |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 | 24.0     |        | 4      |
|                                      |                                        |                       |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                 | - 22     | 2:39:5 | a:     |

22:39:59 24.01.2024





Plot 7-200. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 119 of 222                   |  |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 118 Of 233                   |  |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |  |



|                         |                 |              |            |                         |                                                                                                                  |              |                           |      | Sector 1      |
|-------------------------|-----------------|--------------|------------|-------------------------|------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|------|---------------|
| MultiView               | Spectrum        |              |            |                         |                                                                                                                  |              |                           |      | •             |
| Ref Level 10            | .00 dBm         | ● RB₩        | 1 MHz      |                         |                                                                                                                  |              |                           |      |               |
| <ul> <li>Att</li> </ul> | 26 dB 单 SWT     | 100 ms 🗢 VBW | 3 MHz Mode | e Auto Sweep            |                                                                                                                  |              |                           |      | Count 10/10   |
| TDF "CABLES"            |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| 1 Frequency S           | weep            |              |            |                         |                                                                                                                  |              |                           |      | O I KM VIEW   |
|                         |                 |              |            |                         |                                                                                                                  |              |                           | MILI | -40.03 dBm    |
| 0 dBm                   |                 |              |            |                         |                                                                                                                  |              |                           |      | 3.6893370 GHz |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -10 dBm-                |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -20 dBm                 |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -30 dBm                 |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| QdBpo                   |                 |              | mangalan   | and an all and a second | and the second |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              | and an and a start of the |      |               |
| - <b>5</b> 0 dBm        |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -60 dBm                 |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -70 dBm                 |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| -80 dBm                 |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
| S1                      |                 |              |            |                         |                                                                                                                  |              |                           |      | 52            |
| 2.6047.60               |                 |              | 1001       |                         |                                                                                                                  | 2 52 141 - / |                           |      | 2 72 615      |
| 3.6847 GHZ              | . 1. 2          |              | 1001 p     | ls                      |                                                                                                                  | 3.33 MHZ/    |                           |      | 3.72 GHZ      |
| Z Marker Peak           | KLISU<br>X-Valu | ē            | V-V:       | alue                    | No                                                                                                               | X-Value      | <b>`</b>                  | V-Va | ue            |
| 1                       | 3.689337 (      | GHz          | -40.027    | ' dBm                   | NO                                                                                                               | 7 ¥8100      |                           | 1 🕫  |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              |                           |      |               |
|                         |                 |              |            |                         |                                                                                                                  |              | Measuring                 |      | 24.01.2024    |
|                         |                 |              |            |                         |                                                                                                                  |              | neusunng                  |      | 22:40:59      |

22:41:00 24.01.2024





22:41:30 24.01.2024

Plot 7-202. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 110 of 222                   |  |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 119 0f 233                   |  |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |  |



|                         |                       |              |           |                |    |          |           |       | Sector 1      |
|-------------------------|-----------------------|--------------|-----------|----------------|----|----------|-----------|-------|---------------|
| MultiView               | Spectrum              |              |           |                |    |          |           |       |               |
| Ref Level 10            | .00 dBm               | ● RB₩        | 1 MHz     |                |    |          |           |       |               |
| <ul> <li>Att</li> </ul> | 26 dB 单 SWT           | 100 ms 🗢 VBW | 3 MHz Mod | e Auto Sweep   |    |          |           |       | Count 10/10   |
| TDF "CABLES"            | ween                  |              |           |                |    |          |           |       | 0 1 Pm Viow   |
| Thequency 3             | Weep                  |              |           |                |    |          |           | M1[1] | -56 59 dBm    |
|                         |                       |              |           |                |    |          |           |       | 3.4912990 GHz |
| 0 dBm-                  |                       |              |           |                |    |          |           |       |               |
| -10 dBm-                |                       |              |           |                |    |          |           |       |               |
| LO GDIII                |                       |              |           |                |    |          |           |       |               |
| -20 dBm                 |                       |              |           |                |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
| -30 dBm                 |                       |              |           |                |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
| -40 dBm                 |                       |              |           |                |    |          |           |       |               |
| - 50 dBm                |                       |              |           |                |    |          |           |       |               |
| M1                      |                       |              |           |                |    |          |           |       |               |
| -60 dBm                 | *****                 |              |           |                |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
| -70 dBm                 |                       |              |           |                |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
| -80 dBm                 |                       |              |           |                |    |          |           |       | S2            |
| S1                      |                       |              |           |                |    |          |           |       |               |
| 3.49 GHz                |                       |              | 1001 թ    | ots            |    | 4.0 MHz/ |           |       | 3.53 GHz      |
| 2 Marker Peak           | < List                |              |           |                |    |          |           |       |               |
| NO 1                    | X-Valu<br>3 /01/200 / | e            | -56 50    | alue<br>14 dBm | NO | X-Value  | <u>,</u>  | Y-Va  | lue           |
| ±                       | 3.451255              | 5112         | 50.55     | GBIII          |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
|                         |                       |              |           |                |    |          |           |       |               |
|                         | *                     |              |           |                |    | ~        | Measuring |       | 24.01.2024    |
|                         |                       |              |           |                |    |          |           |       | 22:43:10      |

22:43:17 24.01.2024





22:43:47 24.01.2024

Plot 7-204. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 120 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 120 0f 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------|--------------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiView      | Spectrum    |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ref Level 10.  | 00 dBm      | ● RBW        | 1 MHz   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Att            | 26 dB 🗢 SWT | 100 ms 🗢 VBW | 3 MHz M | ode Auto Sweep |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | Count 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 Erequency Sy | weep        |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | 01Rm View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | M1[1]           | -48.27 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | 3.6582120 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U dBm-         |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 dBm         |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -10 060        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBm-       |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lo dom         |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -40 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -50 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | - marine marine | man and a second and the second and |
|                |             |              |         |                | and the second s |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -70 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -80 dBm        |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S1             |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.6204 GHz     |             |              | 100     | 1 pts          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.88 MHz/ |           |                 | 3.6592 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 Marker Peak  | List        |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No             | X-Value     | e            | \<br>\  | '-Value        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X-Value   |           | Y-Vá            | alue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1              | 3.658212 0  | BHZ          | -48.    | 269 dBm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |             |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                 | 24.01.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | Ň.          |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *         | Measuring |                 | 22:44:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

22:44:18 24.01.2024

Plot 7-205. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)



22:44:48 24.01.2024

Plot 7-206. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 121 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 121 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                                        |                      |                                                      |                  |                   |    |                                       |                  |                                          |                     | <b>\$</b>      |
|----------------------------------------|----------------------|------------------------------------------------------|------------------|-------------------|----|---------------------------------------|------------------|------------------------------------------|---------------------|----------------|
| MultiView 🔳                            | Spectrum             |                                                      |                  |                   |    |                                       |                  |                                          |                     | +              |
| Ref Level 10.00<br>Att<br>TDE "CABLES" | ) dBm<br>26 dB ● SWT | <ul> <li>RBW</li> <li>100 ms</li> <li>VBW</li> </ul> | 500 kHz<br>2 MHz | Mode Auto Sweep   |    |                                       |                  |                                          | Count 10            | 0/10           |
| 1 Frequency Sw                         | еер                  |                                                      |                  |                   |    |                                       |                  |                                          | o1Rm V              | liew           |
| 0 dBm-                                 |                      |                                                      |                  |                   |    |                                       |                  | M1[1]                                    | -45.62<br>3.7002770 | dBm<br>) GHz   |
| -10 dBm-                               |                      |                                                      | $- \int$         |                   |    | and a shine and a second day was a sh | you, Alasan Juan | an a |                     |                |
| -20 dBm                                |                      |                                                      | $\setminus / -$  |                   |    |                                       |                  |                                          |                     |                |
| -30 dBm                                |                      |                                                      | (um)             |                   |    |                                       |                  |                                          |                     |                |
| -40 dBm                                |                      |                                                      |                  |                   |    |                                       |                  |                                          |                     |                |
| -60 dBm                                |                      |                                                      |                  |                   |    |                                       |                  |                                          |                     |                |
| -70 dBm                                |                      |                                                      |                  |                   |    |                                       |                  |                                          |                     |                |
| -80 dBm-                               |                      |                                                      |                  |                   |    |                                       |                  |                                          |                     | S1 S2          |
| 3.6702 GHz                             |                      |                                                      | 100              | 1 pts             |    | 3.08 MHz/                             |                  |                                          | 3.701               | GHz            |
| 2 Marker Peak L                        | ist                  |                                                      |                  |                   |    |                                       |                  |                                          |                     |                |
| 1<br>1                                 | X-Valu<br>3.700277 ( | e<br>GHz                                             | γ<br>-45.        | -Value<br>623 dBm | No | X-Value                               |                  | Y-Va                                     | lue                 |                |
| ~                                      |                      |                                                      |                  |                   |    | ~                                     | Measuring        |                                          | 24.01.<br>22:       | .2024<br>45:18 |

22:45:19 24.01.2024





22:45:49 24.01.2024

Plot 7-208. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 122 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 122 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



|                |             |              |            |            |    |              |                                        |       | <b>\$</b>                                                                                                        |
|----------------|-------------|--------------|------------|------------|----|--------------|----------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| MultiView      | Spectrum    |              |            |            |    |              |                                        |       |                                                                                                                  |
| Ref Level 10.0 | DO dBm      | ● RBW        | 1 MHz      |            |    |              |                                        |       |                                                                                                                  |
| • Att          | 26 dB 单 SWT | 100 ms 🗢 VBW | 3 MHz Mode | Auto Sweep |    |              |                                        |       | Count 10/10                                                                                                      |
| TDF "CABLES"   | WOOD        |              |            |            |    |              |                                        |       | O 1 Dep View                                                                                                     |
| Thequency 3v   | veep        |              |            |            |    |              |                                        | M1[1] | -36 10 dBm                                                                                                       |
|                |             |              |            |            |    |              |                                        | 3.    | 71077400 GHz                                                                                                     |
| 0 dBm          |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| 10 10 10       |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -10 UBIN       |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -20 dBm        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -30 dBm        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -40 dBm        |             |              |            |            |    |              | · ************************************ | ***** | - Andrew Barry and a start a |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -50 dBm        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -60 dBm        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -70 d0m        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| PO UDIT        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| -80 dBm        |             |              |            |            |    |              |                                        |       |                                                                                                                  |
| 51             |             |              |            |            |    |              |                                        |       | S2                                                                                                               |
| 3 71 GHz       |             |              | 1001 pt    | e          |    | 1.0 MHz/     |                                        |       | 3 72 GHz                                                                                                         |
| 2 Marker Peak  | List        |              | Toorpa     |            |    | 110 1011 127 |                                        |       | 0172 0112                                                                                                        |
| No             | X-Value     | e            | Y-Vá       | ilue       | No | X-Value      | 2                                      | Y-Va  | lue                                                                                                              |
| 1              | 3.710774 C  | SHz          | -36.096    | dBm        |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       |                                                                                                                  |
|                |             |              |            |            |    |              |                                        |       | 24.01.2024                                                                                                       |
|                | ×           |              |            |            |    |              | Measuring                              |       | 22:46:19                                                                                                         |

22:46:20 24.01.2024

Plot 7-209. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)



22:46:50 24.01.2024

Plot 7-210. Channel Edge Plot (ULCA LTE Band 48 - 20+20MHz QPSK - High Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 122 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 123 of 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |



### NR Band n48



Plot 7-211. Channel Edge Plot (NR Band 146 - TOMEZ QPSR - Low Channel)





| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 124 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 124 01 255                   |  |
|                     |                       |                            | 1/2 2 00/07/2023                  |  |





Plot 7-213. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)



Plot 7-214. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 125 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 125 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |





Plot 7-215. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)

![](_page_64_Figure_3.jpeg)

Plot 7-216. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 126 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Page 126 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |

![](_page_65_Picture_0.jpeg)

| Spect<br>Swep      | rum Analyzer '<br>t SA    | <sup>1</sup> • +                         |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | Frequency                           | · <b>∙</b> ] ∰ |
|--------------------|---------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------------|----------------------------------|---------------|--------------------------------------|-------------------------------------|----------------|
| RL                 | YSIGHT<br>.≁·             | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z<br>Corr CC<br>Freq Ri<br>NFE: O | : 50 Ω<br>Corr RCal<br>af: Int (S)<br>ff | #Atten: 26 dB<br>Preamp: Off<br>μW Path: Stand | PNO<br>Gate<br>Iard IFG<br>Sig1 | l:Fast<br>∷Off<br>ain:Low<br>⊺rack:Off | Avg Type: Log-<br>Trig: Free Run | Power         | 1 2 3 4 5 6<br>A₩₩₩₩₩<br>A N N N N N | Center Frequency<br>3.585000000 GHz | Settings       |
| 1 Spe<br>Scale     | ctrum<br>/Div 10 dB       | T                                        |                                         |                                          | Ref Level 25.                                  | 00 dBm                          |                                        | I                                | Mkr1 3.       | 570 558 GHz<br>45.929 dBm            | 29.0000000 MHz                      |                |
| <b>Lод</b><br>15.0 |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | Zero Span<br>Full Span              |                |
| 5.00               |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | Start Freq<br>3.570500000 GHz       |                |
| -5.00              |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | 3.599500000 GHz                     |                |
| -15.0              |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               | DL1-25.00 dBm                        | CF Step<br>2.900000 MHz             |                |
| -25.0              |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | Auto<br>Man                         |                |
| -45.0              | 1                         |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | 0 Hz<br>X Axis Scale                |                |
| -55.0              |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | Log<br>Lin<br>Signal Track          |                |
| -65.0              |                           |                                          |                                         |                                          |                                                |                                 |                                        |                                  |               |                                      | (Span Zoom)<br>On<br>Off            | Local          |
| Start<br>#Res      | 3.57050 GHz<br>BW 1.0 MHz |                                          |                                         |                                          | #Video BW 3                                    | .0 MHz                          |                                        |                                  | S<br>#Sweep 5 | top 3.59950 GHz<br>00 ms (1001 pts)  |                                     |                |
|                    | 5                         | <b>?</b>                                 | eb 13, 2024<br>9:03:03 AM               | $\Box$                                   |                                                |                                 |                                        |                                  |               |                                      |                                     |                |

Plot 7-217. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)

| Spect<br>Swept | rum Analyzer 1<br>t SA | • +                                      |                                                                   |                                                   |                                                          |                                       |                                                       | Frequency                           | - <b>v</b> 🛞 |
|----------------|------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------|--------------|
| RL             | YSIGHT<br>.≁·          | Input: RF<br>Coupling: DC<br>Align: Auto | Input Ζ: 50 Ω<br>Corr CCorr RCal<br>Freq Ref: Int (S)<br>NFE: Off | #Atten: 26 dB<br>Preamp: Off<br>µW Path: Standard | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Avg Type: Log-Power<br>Trig: Free Run | 1 2 3 4 5 6<br>A \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Center Frequency<br>3.595000000 GHz | Settings     |
| 1 Spe<br>Scale | ctrum<br>/Div 10 dB    | v                                        |                                                                   | Ref Level 25.00 dE                                | Зm                                                       | Mkr1                                  | 3.608 775 GHz<br>-46.961 dBm                          | 29.0000000 MHz                      |              |
| 15.0           |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | Euli Span                           |              |
| 5.00           |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | Start Freq<br>3.580500000 GHz       |              |
| -5.00          |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | Stop Freq<br>3.609500000 GHz        |              |
| -15.0          |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | AUTO TUNE<br>CF Step                |              |
| -25.0          |                        |                                          |                                                                   |                                                   |                                                          |                                       | DL1 -25.00 dBm                                        | 2.900000 MHz<br>Auto<br>Man         |              |
| -35.0          |                        |                                          |                                                                   |                                                   |                                                          |                                       | 1                                                     | Freq Offset<br>0 Hz                 |              |
| -45.0          |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | X Axis Scale<br>Log<br>Lin          |              |
| -65.0          |                        |                                          |                                                                   |                                                   |                                                          |                                       |                                                       | Signal Track<br>(Span Zoom)<br>On   |              |
| Start          | 3.58050 GHz            |                                          |                                                                   | #Video BW 3.0 Mł                                  | Hz                                                       |                                       | Stop 3.60950 GHz                                      | Off Off                             | Local        |
| #Res           | BW 1.0 MHz             | Fet ? 11                                 | 0 13, 2024                                                        |                                                   |                                                          | #Swe                                  | eep 500 ms (1001 pts)                                 |                                     |              |

Plot 7-218. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 127 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Fage 127 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |

![](_page_66_Picture_0.jpeg)

![](_page_66_Figure_1.jpeg)

Plot 7-219. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Mid Channel)

![](_page_66_Figure_3.jpeg)

Plot 7-220. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Mid Channel)

| FCC ID: BCGA2837    | element               | PART 96 MEASUREMENT REPORT | Approved by:<br>Technical Manager |  |
|---------------------|-----------------------|----------------------------|-----------------------------------|--|
| Test Report S/N:    | Test Dates:           | EUT Type:                  | Dogo 129 of 222                   |  |
| 1C2311270068-13.BCG | 10/01/2023-03/29/2024 | Tablet Device              | Faye 120 01 233                   |  |
|                     |                       |                            | V2.2 09/07/2023                   |  |