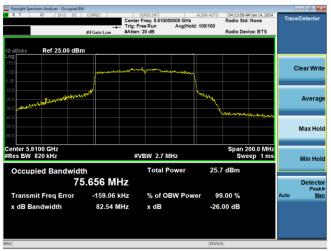

Plot 7-144. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 58, MCS2)

Plot 7-145. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 58, MCS2)

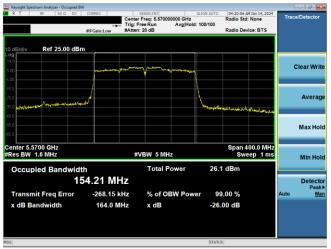
Plot 7-146. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 116, MCS2)

Plot 7-147. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 116, MCS2)


Plot 7-148. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 110, MCS2)

Plot 7-149. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) – Ch. 110, MCS2)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 54 of 595

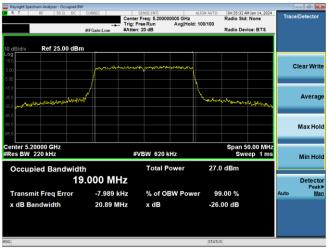


Plot 7-150. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 122, MCS2)

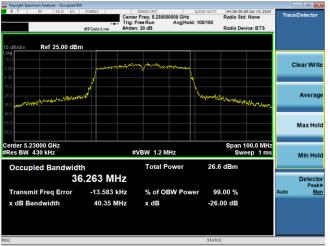
Plot 7-151. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 122, MCS2)

Plot 7-152. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS2)

Keysight Spectrum Analyzer - Occupied B R T RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	04:19:04 AM		Tours	Detector
	Trig:	r Freq: 5.570000000 Free Run A n: 20 dB	GHz vg Hold: 100/100	Radio Std: N		Trace	Detector
10 dB/div Ref 25.00 dB	m						
- og							
5.00	the state of the s	ودروني المحمد المراوان	mun			С	lear Wri
5.00		ľ					
15.0	1						
25.0	f		N.				Avera
35 O menerolatika manana kolan intara	and the same		hurren.				Avera
45.0			4-740	Control of the Contro	- Annahigh		
55.0							
65.0							Max Ho
Center 5.5700 GHz Res BW 1.6 MHz		VBW 5 MHz		Span 40	0.0 MHz p 1 ms		
Res DW 1.0 WIDZ	7	VDW 3 WINZ		SWee	p mis		Min Ho
Occupied Bandwid	th	Total Pow	er 26.	3 dBm			
1	56.33 MHz						Detect
Transmit Freg Error	-120.03 kHz	% of OBW	Power 90	9.00 %		Auto	Pea M
							-
x dB Bandwidth	165.1 MHz	x dB	-26.	00 dB			


Plot 7-153. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS2)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 55 OI 595



Plot 7-154. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 40, MCS4)

Plot 7-155. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 40, MCS4)

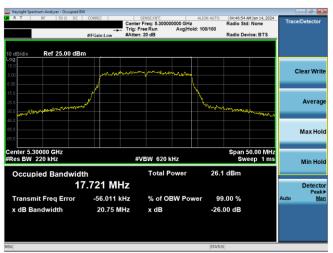

Plot 7-156. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 46, MCS4)

Plot 7-157. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) – Ch. 46, MCS4)

Plot 7-158. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 42, MCS4)

Plot 7-159. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 42,

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 50 01 595

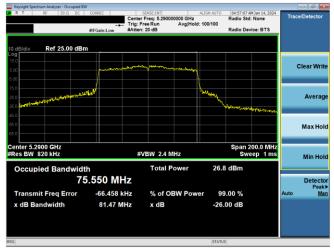



Plot 7-160. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 50, MCS4)

Plot 7-161. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 50, MCS4)

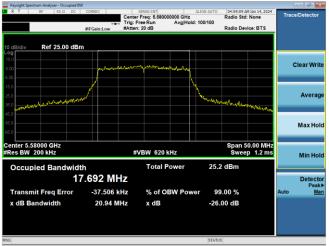
Plot 7-162. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 60, MCS4)

Plot 7-163. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) – Ch. 60, MCS4)


Plot 7-164. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 54, MCS4)

Plot 7-165. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) - Ch. 54, MCS4)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 57 01 595



Plot 7-166. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 58, MCS4)


Plot 7-167. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 58, MCS4)

Plot 7-168. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 116, MCS4)

Plot 7-169. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 116, MCS4


Plot 7-170. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 110, MCS4)

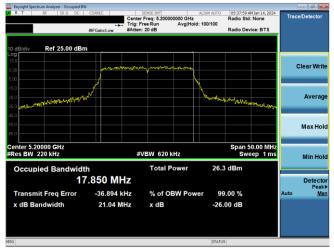
Plot 7-171. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) - Ch. 110, MCS4)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 56 01 595



Plot 7-172. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 122, MCS4)

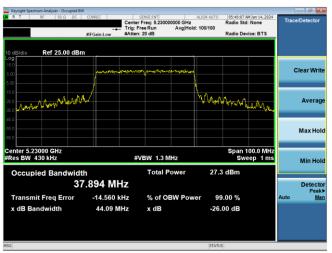
Plot 7-173. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 122, MCS4)


Plot 7-174. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS4)

Keysight Spectrum Analyzer - Occupied B R T RF 50 Ω DC	CORREC	SENSE:INT	ALIGN ALITO	05:35:40 40	11an 14, 2024		o Ø
K 1 Kr 3032 DC	Cente	er Freq: 5.570000000 G		Radio Std: Radio Devi	None	Trace	e/Detector
0 dB/div Ref 25.00 dBr	n						
5.00	in processor whom	see massements week	Mark I			c	lear Wri
500 150 250 250			a Maraly 1871-1914	gaphyre Marine	**velacrosset		Avera
55.0 55.0							Max Ho
Center 5.5700 GHz Res BW 1.6 MHz	#	VBW 5 MHz			00.0 MHz ep 1 ms		Min Ho
Occupied Bandwid	th 56.22 MHz	Total Power	r 27.0) dBm			Detect
Transmit Freq Error	-179.37 kHz	% of OBW F	ower 99	.00 %		Auto	Pea <u>N</u>
x dB Bandwidth	164.4 MHz	x dB	-26.	00 dB			
sg			STATUS				

Plot 7-175. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS4)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 59 01 595


Plot 7-176. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 40, MCS7)

Plot 7-177. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 40, MCS11)

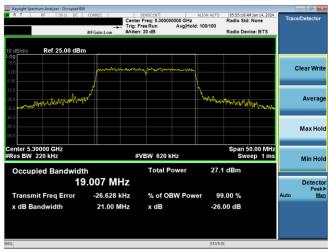
Plot 7-178. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 46, MCS7)

Plot 7-179. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) – Ch. 46, MCS11)

Plot 7-180. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 42, MCS9)

Plot 7-181. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 42,

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 60 01 595

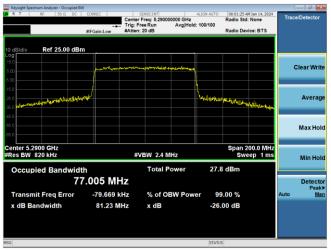

Plot 7-182. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 50, MCS9)


Plot 7-183. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 50, MCS11)

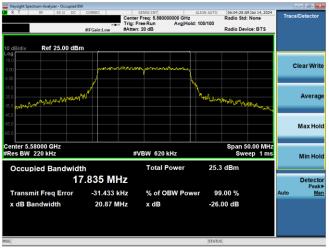

Plot 7-184. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 60, MCS7)

Plot 7-185. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 60, MCS11)

Plot 7-186. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 54, MCS7)

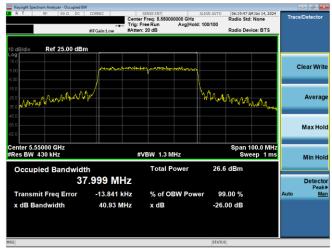

Plot 7-187. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) - Ch. 54,

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 61 01 595



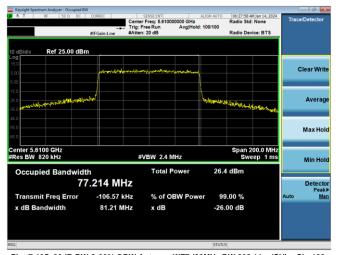
Plot 7-188. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 58, MCS9)

Plot 7-189. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) - Ch. 58, MCS11)


Plot 7-190. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11n - Ch. 116, MCS7)

Plot 7-191. 26dB BW & 99% OBW Antenna WF7 (20MHz BW 802.11ax(SU) - Ch. 116, MCS11)

Plot 7-192. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11n - Ch. 110) , MCS7)


Plot 7-193. 26dB BW & 99% OBW Antenna WF7 (40MHz BW 802.11ax(SU) - Ch. 110,

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 62 01 595

Plot 7-194. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ac - Ch. 122, MCS9)

Plot 7-195. 26dB BW & 99% OBW Antenna WF7 (80MHz BW 802.11ax(SU) – Ch. 122, MCS11)

Plot 7-196. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS9)

Plot 7-197. 26dB BW & 99% OBW Antenna WF7 (160MHz BW 802.11ac - Ch. 114, MCS11)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of EDE
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 63 of 595

7.3 6dB & 99% Bandwidth Measurement – 802.11a/n/ac/ax(SU)

§2.1049; §15.407 (e); RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. $VBW > 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

- 1. All antenna configurations and data rates were investigated and only the worst case are reported.
- The data rates have been classified into three different groups; Low Data Rate, middle rate, and High Data Rate. All three data rate groups of data rate have been investigated and only the worst case data rate per group is reported.
- 3. Low, mid, and high channels were tested and tabular data has been reported. Only mid channel bandwidth plots have been reported.

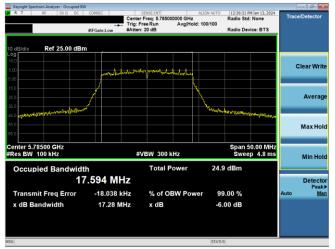
FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 04 01 595

7.3.1 Antenna WF5b 6dB & 99% Bandwidth Measurements

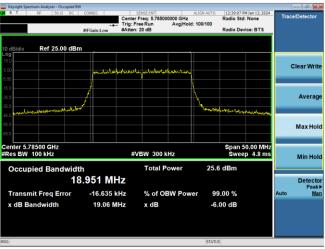
	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	19.5/21.7 (MCS2)	17.61	17.26	0.50
	5785	157	n (20MHz)	19.5/21.7 (MCS2)	17.59	17.28	0.50
	5825	165	n (20MHz)	19.5/21.7 (MCS2)	17.61	16.98	0.50
	5745	149	ax (SU) (20MHz)	24/25.8 (MCS2)	18.91	18.95	0.50
က	5785	157	ax (SU) (20MHz)	24/25.8 (MCS2)	18.95	19.06	0.50
<u>ğ</u>	5825	165	ax (SU) (20MHz)	24/25.8 (MCS2)	18.92	18.90	0.50
Band	5755	151	n (40MHz)	40/40.5 (MCS2)	35.97	35.50	0.50
_	5795	159	n (40MHz)	40/40.5 (MCS2)	36.03	35.62	0.50
	5755	151	ax (SU) (40MHz)	49/51.6 (MCS2)	37.81	38.09	0.50
	5795	159	ax (SU) (40MHz)	49/51.6 (MCS2)	37.85	38.16	0.50
	5775	155	ac (80MHz)	87.8/97.5 (MCS2)	75.34	75.57	0.50
	5775	155	ax (SU) (80MHz)	102/108.1 (MCS2)	76.92	77.67	0.50

Table 7-11. Conducted Bandwidth Measurements Antenna WF5b (Low Data Rate)

	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	39/43.3 (MCS4)	17.62	17.66	0.50
	5785	157	n (20MHz)	39/43.3 (MCS4)	17.60	17.67	0.50
	5825	165	n (20MHz)	39/43.3 (MCS4)	17.61	17.64	0.50
	5745	149	ax (SU) (20MHz)	49/51.6 (MCS4)	18.95	19.06	0.50
က	5785	157	ax (SU) (20MHz)	49/51.6 (MCS4)	18.95	19.09	0.50
	5825	165	ax (SU) (20MHz)	49/51.6 (MCS4)	18.94	19.05	0.50
Band	5755	151	n (40MHz)	81/90 (MCS4)	36.14	36.44	0.50
_	5795	159	n (40MHz)	81/90 (MCS4)	36.00	35.87	0.50
	5755	151	ax (SU) (40MHz)	98/103.2 (MCS4)	37.87	38.17	0.50
	5795	159	ax (SU) (40MHz)	98/103.2 (MCS4)	37.82	38.16	0.50
	5775	155	ac (80MHz)	175.5/195 (MCS4)	75.36	75.72	0.50
	5775	155	ax (SU) (80MHz)	204/216.2 (MCS4)	77.01	77.87	0.50

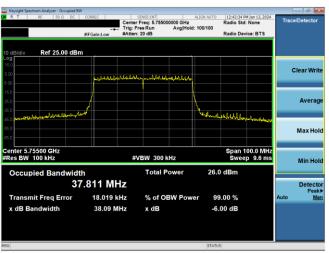

Table 7-12. Conducted Bandwidth Measurements Antenna WF5b (Mid Data Rate)

	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	65/72.2 (MCS7)	17.67	17.73	0.50
	5785	157	n (20MHz)	65/72.2 (MCS7)	17.67	17.71	0.50
	5825	165	n (20MHz)	65/72.2 (MCS7)	17.69	17.73	0.50
	5745	149	ax (SU) (20MHz)	135/143.4 (MCS11)	18.97	19.08	0.50
က	5785	157	ax (SU) (20MHz)	135/143.4 (MCS11)	18.94	19.05	0.50
ğ	5825	165	ax (SU) (20MHz)	135/143.4 (MCS11)	18.98	19.09	0.50
Band	5755	151	n (40MHz)	135/150 (MCS7)	36.25	36.53	0.50
_	5795	159	n (40MHz)	135/150 (MCS7)	36.23	36.49	0.50
	5755	151	ax (SU) (40MHz)	271/286 (MCS11)	37.79	38.12	0.50
	5795	159	ax (SU) (40MHz)	271/286 (MCS11)	37.85	38.19	0.50
	5775	155	ac (80MHz)	390/433.3 (MCS9)	75.65	76.48	0.50
	5775	155	ax (SU) (80MHz)	567/600.5 (MCS11)	76.91	77.38	0.50

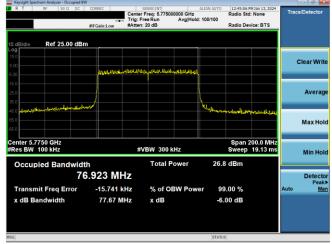

Table 7-13. Conducted Bandwidth Measurements Antenna WF5b (High Data Rate)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 65 01 595




Plot 7-198. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11n - Ch. 157, MCS2)


Plot 7-199. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11ax(SU) - Ch. 157, MCS2)


Plot 7-200. 6dB BW & 99% OBW Antenna WF5b (40MHz BW 802.11n - Ch. 151, MCS2)

Plot 7-201. 6dB BW & 99% OBW Antenna WF5b (40MHz BW 802.11ax(SU) - Ch. 151, MCS2)

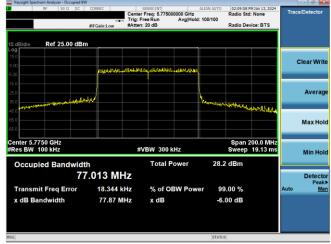

Plot 7-202. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ac - Ch. 155, MCS2)

Plot 7-203. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ax(SU) - Ch. 155, MCS2)

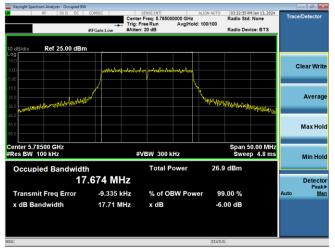
FCC ID: BCGA2836 IC: 579C-A2836	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 66 of E0E
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Page 66 of 595

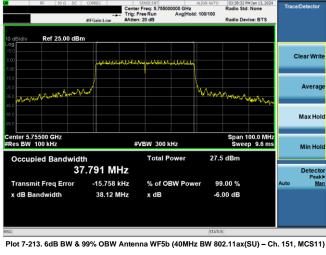

Plot 7-204. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11n - Ch. 157, MCS4)

Plot 7-205. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11ax(SU) - Ch. 157, MCS4)

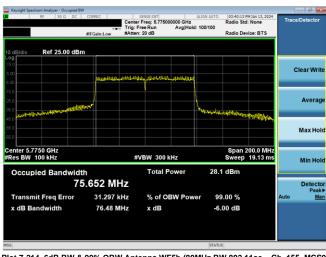

Plot 7-206. 6dB BW & 99% OBW Antenna WF5b (40MHz BW 802.11n - Ch. 151, MCS4)

Plot 7-207. 6dB BW & 99% OBW Antenna WF5b (40MHz BW 802.11ax(SU) - Ch. 151, MCS4)

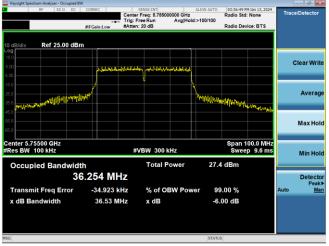

Plot 7-208. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ac - Ch. 155, MCS4)

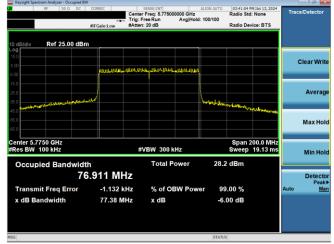

Plot 7-209. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ax(SU) - Ch. 155, MCS4)

FCC ID: BCGA2836 IC: 579C-A2836	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	Fage 07 01 595



Plot 7-210. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11n - Ch. 157, MCS7)




Plot 7-211. 6dB BW & 99% OBW Antenna WF5b (20MHz BW 802.11ax(SU) - Ch. 157, MCS11)

Plot 7-214. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ac - Ch. 155, MCS9)

Plot 7-212. 6dB BW & 99% OBW Antenna WF5b (40MHz BW 802.11n - Ch. 151, MCS7)

Plot 7-215. 6dB BW & 99% OBW Antenna WF5b (80MHz BW 802.11ax(SU) - Ch. 155, MCS11)

FCC ID: BCGA2836 IC: 579C-A2836	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	rage oo oi 595

7.3.1 Antenna WF8 6dB & 99% Bandwidth Measurements

	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	19.5/21.7 (MCS2)	17.62	16.86	0.50
	5785	157	n (20MHz)	19.5/21.7 (MCS2)	17.60	17.31	0.50
	5825	165	n (20MHz)	19.5/21.7 (MCS2)	17.60	16.98	0.50
	5745	149	ax (SU) (20MHz)	24/25.8 (MCS2)	18.93	18.99	0.50
က	5785	157	ax (SU) (20MHz)	24/25.8 (MCS2)	18.92	18.93	0.50
	5825	165	ax (SU) (20MHz)	24/25.8 (MCS2)	18.95	19.01	0.50
Band	5755	151	n (40MHz)	40/40.5 (MCS2)	36.02	35.30	0.50
_	5795	159	n (40MHz)	40/40.5 (MCS2)	35.97	35.53	0.50
	5755	151	ax (SU) (40MHz)	49/51.6 (MCS2)	37.75	38.04	0.50
	5795	159	ax (SU) (40MHz)	49/51.6 (MCS2)	37.77	38.03	0.50
	5775	155	ac (80MHz)	87.8/97.5 (MCS2)	75.31	75.65	0.50
	5775	155	ax (SU) (80MHz)	102/108.1 (MCS2)	76.95	77.58	0.50

Table 7-14. Conducted Bandwidth Measurements Antenna WF8 (Low Data Rate)

	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	39/43.3 (MCS4)	17.61	17.66	0.50
	5785	157	n (20MHz)	39/43.3 (MCS4)	17.61	17.65	0.50
	5825	165	n (20MHz)	39/43.3 (MCS4)	17.60	17.65	0.50
	5745	149	ax (SU) (20MHz)	49/51.6 (MCS4)	18.96	19.06	0.50
က	5785	157	ax (SU) (20MHz)	49/51.6 (MCS4)	18.96	19.06	0.50
	5825	165	ax (SU) (20MHz)	49/51.6 (MCS4)	18.95	19.06	0.50
Band	5755	151	n (40MHz)	81/90 (MCS4)	36.03	36.12	0.50
_	5795	159	n (40MHz)	81/90 (MCS4)	36.02	36.03	0.50
	5755	151	ax (SU) (40MHz)	98/103.2 (MCS4)	37.80	38.15	0.50
	5795	159	ax (SU) (40MHz)	98/103.2 (MCS4)	37.79	38.13	0.50
	5775	155	ac (80MHz)	175.5/195 (MCS4)	75.36	75.99	0.50
	5775	155	ax (SU) (80MHz)	204/216.2 (MCS4)	76.95	77.54	0.50

Table 7-15. Conducted Bandwidth Measurements Antenna WF8 (Mid Data Rate)

	Frequency [MHz]	Channel	802.11 MODE	Data Rate [Mbps]	Measured 99% Occupied Bandwidth [MHz]	Measured 6dB Bandwidth [MHz]	Minimum 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	65/72.2 (MCS7)	17.71	17.77	0.50
	5785	157	n (20MHz)	65/72.2 (MCS7)	17.69	17.76	0.50
	5825	165	n (20MHz)	65/72.2 (MCS7)	17.67	17.74	0.50
	5745	149	ax (SU) (20MHz)	135/143.4 (MCS11)	18.94	19.06	0.50
က	5785	157	ax (SU) (20MHz)	135/143.4 (MCS11)	18.95	19.07	0.50
ğ	5825	165	ax (SU) (20MHz)	135/143.4 (MCS11)	18.95	19.06	0.50
Band	5755	151	n (40MHz)	135/150 (MCS7)	36.22	36.53	0.50
_	5795	159	n (40MHz)	135/150 (MCS7)	36.24	36.49	0.50
	5755	151	ax (SU) (40MHz)	271/286 (MCS11)	37.77	38.12	0.50
	5795	159	ax (SU) (40MHz)	271/286 (MCS11)	37.81	38.19	0.50
	5775	155	ac (80MHz)	390/433.3 (MCS9)	75.73	76.52	0.50
	5775	155	ax (SU) (80MHz)	567/600.5 (MCS11)	77.08	78.04	0.50

Table 7-16. Conducted Bandwidth Measurements Antenna WF8 (High Data Rate)

FCC ID: BCGA2836 IC: 579C-A2836	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 595
1C2311270067-11-R1.BCG	12/06/202 - 02/20/2024	Tablet Device	raye 09 01 595