

TEST REPORT

Test Report No. : UL-RPT-RP14614873JD02C

Customer	:	Apple Inc.
Model No. / HVIN	:	A2786
PMN	:	Mac Pro
FCC ID	:	BCGA2786
ISED Certification No.	:	IC: 579C-A2786
Technology	:	Bluetooth – BDR & EDR (Low Power Mode)
Test Standard(s)	:	FCC Parts 15.209(a) & 15.247 Innovation, Science and Economic Development Canada RSS-247 Issue 2 February 2017 RSS-Gen Issue 5 February 2021
Test Laboratory	:	UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom

- 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. Version 1.0.

Date of Issue:

14 March 2023

Checked by:

Blang

Sarah Williams RF Operations Leader, Radio Laboratory

Company Signatory:

Ben Digitally signed by Ben Mercer Date: 2023.03.14 14:33:08 Z

Ben Mercer Lead Project Engineer, Radio Laboratory

The *Bluetooth*[®] word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL International (UK) Ltd is under licence. Other trademarks and trade names are those of their respective owners.

UL International (UK) LTD

Unit 1-3 Horizon, Kingsland Business Park, Wade Road, Basingstoke, Hampshire, RG24 8AH, UK Telephone: +44 (0)1256 312000

VERSION 1.0

ISSUE DATE: 14 MARCH 2023

Customer Information

Company Name:	Apple Inc.
Address:	One Apple Park Way Cupertino, California 95014 U.S.A.
Contact Name:	Stuart Thomas

Report Revision History

Version Number Issue Date		Revision Details	Revised By	
1.0	14/03/2023	Initial Version	Sarah Williams	

Table of Contents

Customer Information	3
Report Revision History	3
Table of Contents	4
 1 Attestation of Test Results 1.1 Description of EUT 1.2 General Information 1.3 Summary of Test Results 1.4 Deviations from the Test Specification 	5 5 5 6 6
2 Summary of Testing 2.1 Facilities and Accreditation 2.2 Methods and Procedures 2.3 Calibration and Uncertainty 2.4 Test and Measurement Equipment	7 7 7 8 9
 3 Equipment Under Test (EUT) 3.1 Identification of Equipment Under Test (EUT) 3.2 Modifications Incorporated in the EUT 3.3 Additional Information Related to Testing 3.4 Description of Available Antennas 3.5 Description of Test Setup 	12 12 12 13 13 13 14
 4 Antenna Port Test Results 4.1 Transmitter 99% Emission Bandwidth 4.2 Transmitter 20 dB Bandwidth 4.3 Transmitter Carrier Frequency Separation 4.4 Transmitter Number of Hopping Frequencies and Average Time of Occupancy 4.5 Transmitter Maximum Peak Output Power 	20 20 33 46 56 60
5 Radiated Test Results 5.1 Transmitter Radiated Emissions <1 GHz 5.2 Transmitter Radiated Emissions >1 GHz 5.3 Transmitter Band Edge Radiated Emissions	82 82 84 87
Appendix 1 FHSS Duty Cycle Correction Factor Calculation	136 136

<u>1 Attestation of Test Results</u>

1.1 Description of EUT

The equipment under test was a tower configuration Apple computer, with Bluetooth® and IEEE 802.11 a/b/g/n/ac/ax Wi-Fi capabilities in the 2.4 GHz, 5 GHz and 6 GHz bands.

1.2 General Information

Specification Reference:	47CFR15.247	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.247	
Specification Reference:	47CFR15.209	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.209	
Specification Reference:	RSS-Gen Issue 5 February 2021	
Specification Title:	General Requirements for Compliance of Radio Apparatus	
Specification Reference:	RSS-247 Issue 2 February 2017	
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices	
Site Registration:	FCC: 685609, ISEDC: 20903	
FCC Lab. Designation No.:	UK2011	
ISEDC CABID:	UK0001	
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, G24 8AH, United Kingdom	
Test Dates:	15 November 2022 to 08 March 2023	

1.3 Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
N/A	RSS-Gen 6.7	Transmitter 99% Occupied Bandwidth	Complied
Part 15.247(a)(1)	RSS-Gen 6.7 / RSS-247 5.1(a)	Transmitter 20 dB Bandwidth	Complied
Part 15.247(a)(1)	RSS-247 5.1(b)	Transmitter Carrier Frequency Separation	Complied
Part 15.247(a)(1)(iii)	RSS-247 5.1(d)	Transmitter Number of Hopping Frequencies and Average Time of Occupancy	Complied
Part 15.247(b)(1)	RSS-Gen 6.12 / RSS-247 5.4(b)	Transmitter Maximum Peak Output Power	Complied
Part 15.247(d) & 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Radiated Emissions	Complied
Part 15.247(d) & 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Band Edge Radiated Emissions	Complied

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	Х
Site 2	-
Site 17	Х

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013			
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019			
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules			
Reference:	KDB 662911 D01 Multiple Transmitter Output v02r01 October 31, 2013			
Title:	Emissions Testing of Transmitters with Multiple Outputs in the Same Band			

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
99% Occupied Bandwidth	2.4 GHz to 2.4835 GHz	95%	±3.92 %
20 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Carrier Frequency Separation	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Average Time of Occupancy	2.4 GHz to 2.4835 GHz	95%	±3.53 ns
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	±5.32 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±3.30 dB
Radiated Spurious Emissions	1 GHz to 25 GHz	95%	±3.16 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

VERSION 1.0

2.4 Test and Measurement Equipment

Test Equipment Used for Transmitter Conducted Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2001	Thermohygrometer	Testo	608-H1	45041824	09 Dec 2023	12
A2507	Attenuator	AtlanTecRF	AN18-10	821846#2	Calibrated before use	-
M1996	Signal Analyser	Rohde & Schwarz	FSV13	100975	17 Mar 2023	12
A214336	Attenuator	Atlantic Microwave	ATT06KXP- 483082-S4S5	#1	Calibrated before use	-
A214341	Attenuator	Atlantic Microwave	ATT06KXP- 483082-S4S5	#6	Calibrated before use	-
A214343	Attenuator	Atlantic Microwave	ATT06KXP- 483082-S4S5	#8	Calibrated before use	-
A222203	Switch Box	UL	UK version #10010	#2	Calibrated before use	-
G0614	Signal Generator	Rohde & Schwarz	SMB100A	177687	19 May 2023	36
M2072	Thermohygrometer	Testo	608-H1	45257961	08 Dec 2023	12
G0628	Signal Generator	Rohde & Schwarz	SMBV100A	261847	08 Oct 2023	36

Test and Measurement Equipment (continued)

Test Equipment Used for Transmitter Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	09 Dec 2023	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	05 Sep 2023	12
M2077	Test Receiver	Rohde & Schwarz	ESW44	102026	15 Feb 2023	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	19 May 2023	12
A3154	Pre-Amplifier	Com Power	PAM-103	18020012	18 Aug 2023	12
A222867	Pre-Amplifier	Atlantic Microwave	A-LNAKX- 380116-S5S5	210865001	26 Aug 2023	12
A3265	Pre-Amplifier	Schwarzbeck	BBV 9721	9721-069	31 Oct 2023	12
A3165	Magnetic Loop Antenna	ETS-Lindgren	6502	00224383	05 May 2023	12
A3161	Antenna	Teseq	CBL6111D	50859	03 May 2023	12
A3139	Antenna	Schwarzbeck	HWRD 750	00027	22 Aug 2023	12
A2892	Antenna	Schwarzbeck	BBHA 9170	9170-727	31 Oct 2023	12
A3113	Attenuator	AtlanTecRF	AN18-06	219706#3	03 May 2023	12
A3085	Low Pass Filter	AtlanTecRF	AFL-02000	18051600014	27 Jan 2023	12
A3093	High Pass Filter	AtlanTecRF	AFH-03000	18051600077	27 Jan 2023	12
A3095	High Pass Filter	AtlanTecRF	AFH-07000	18051600012	27 Jan 2023	12
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2023	12
K0017	3m RSE Chamber	Rainford EMC	N/A	N/A	08 Nov 2023	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	02 Nov 2023	12
A2863	Pre-Amplifier	Agilent	8449B	3008A02100	07 Nov 2023	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	00653	02 Nov 2023	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#2	25 Jan 2024	12

Test and Measurement Equipment (continued)

Test Equipment Used for Transmitter Band Edge Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	09 Dec 2023	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	05 Sep 2023	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	29 Apr 2023	12
A3179	Pre-Amplifier	Agilent	8449B	3008A00934	14 Sep 2023	12
A3138	Antenna	Hewlett Packard	BBHA 9120 B	00702	22 Aug 2023	12
A2523	Attenuator	AtlanTecRF	AN18W5-10	832827#1	27 Jan 2023	12
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2023	12
K0017	3m RSE Chamber	Rainford EMC	N/A	N/A	08 Nov 2023	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	02 Nov 2023	12
A2863	Pre-Amplifier	Agilent	8449B	3008A02100	07 Nov 2023	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	00653	02 Nov 2023	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#2	25 Jan 2024	12

VERSION 1.0

3 Equipment Under Test (EUT)

3.1 Identification of Equipment Under Test (EUT)

Brand Name:	Apple
Model Name or Number / HVIN:	A2786
PMN:	Mac Pro
Test Sample Serial Number:	CG66NP726G (Conducted sample #1)
Hardware Version:	REV 1.0
Software Version:	22E51010k
FCC ID:	BCGA2786
ISED Canada Certification Number:	IC: 579C-A2786
Date of Receipt:	11 January 2023

Brand Name:	Apple
Model Name or Number / HVIN:	A2786
PMN:	Mac Pro
Test Sample Serial Number:	HP4WQ0NY7K (Radiated sample #1)
Hardware Version:	REV 1.0
Software Version:	22E51010k
FCC ID:	BCGA2786
ISED Canada Certification Number:	IC: 579C-A2786
Date of Receipt:	11 November 2022

Brand Name:	Apple
Model Name or Number / HVIN:	A2786
PMN:	Mac Pro
Test Sample Serial Number:	D07J73TQJY (Radiated sample #2)
Hardware Version:	REV 1.0
Software Version:	22E71580u
FCC ID:	BCGA2786
ISED Canada Certification Number:	IC: 579C-A2786
Date of Receipt:	11 January 2023

3.2 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3 Additional Information Related to Testing

Technology Tested:	Bluetooth		
Type of Unit:	Transceiver		
Channel Spacing:	1 MHz		
Mode:	Basic Rate Enhanced Data Rate		•
Modulation:	GFSK	π/4-DQPSK	8DPSK
Packet Type: (Maximum Payload)	DH5	2DH5	3DH5
Data Rate (Mbps):	1	2	3
Power Supply Requirement:	Nominal 12.0 VDC via 120 VAC 60 Hz adaptor		
Maximum Conducted Output Power:	16.0 dBm		
Transmit Frequency Range:	2400 MHz to 2483.5 MHz		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	0	2402
	Middle	39	2441
	Тор	78	2480

3.4 Description of Available Antennas

The radio utilizes three integrated antennas, with the following maximum gains:

Antenna Port	Frequency Range (MHz)	Antenna Gain (dBi)
Core 0	2400 to 2480	3.0
Core 1	2400 to 2480	3.8
Dedicated Core	2400 to 2480	5.1

The EUT also supports TxBF with unequal gains and equal transmit powers. Calculations for directional gain were in accordance with KDB 662911 D01 v02r01 Section F)2)d)(i). Directional gain of Core 0 & Core 1 was calculated as:

 N_{ANT} = 2, G_{Core0} = 3.0 dBi, G_{Core1} = 3.8 dBi

Directional Gain =
$$10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} + \dots + 10^{\frac{G_N}{20}} \right)^2}{N_{ANT}} \right] = 10 \log \left[\frac{\left(10^{\frac{G_1}{20}} + 10^{\frac{G_2}{20}} \right)^2}{2} \right]$$

= $10 \log \left[\frac{\left(10^{\frac{3.0}{20}} + 10^{\frac{3.8}{20}} \right)^2}{2} \right] = 6.4 \text{ dBi}$

3.5 Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Test Laptop	
Brand Name:	Apple	
Model Name or Number:	MacBook Pro	
Serial Number:	C02DJ0150H5F	
Description:	USB Diagnostic Cable	
Brand Name:	Apple	
Model Name or Number:	Chimp	
Serial Number:	30A99B	
Description:	USB/HDMI/Ethernet Termination Hub. Quantity 2.	
Brand Name:	Lemorele	
Model Name or Number:	TC19	
Serial Number:	Not marked or stated	
Description:	USB Hub. Quantity 2.	
Brand Name:	Hama	
Model Name or Number:	Alu Mini 1:4	
Serial Number:	Not marked or stated	
Description:	Personal Hands Free (PHF)	
Brand Name:	Not marked or stated	
Model Name or Number:	MD827ZM/A	
Serial Number:	Not marked or stated	
Description		
Description:	HDMI Cable. Quantity 2. Length 3m.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description	Ethernet Coble, Quentity 2, Longth 2m	
Description:	Ethernet Cable. Quantity 2. Length 3m.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	

Not marked or stated

Serial Number:

Serial Number:

Support Equipment (continued)

Description:	USB-C to A Adaptor. Quantity 3.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB-C Cable. Quantity 4. Length 3m.	
Brand Name:	Nimaso	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB-A Cable. Quantity 5. Length 3m.	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB Diagnostic Cable	
Brand Name:	Apple	
Model Name or Number:	Chimp	
Serial Number:	304708	
Description:	Test Laptop	
Brand Name:	Apple	
Model Name or Number:	MacBook Pro	

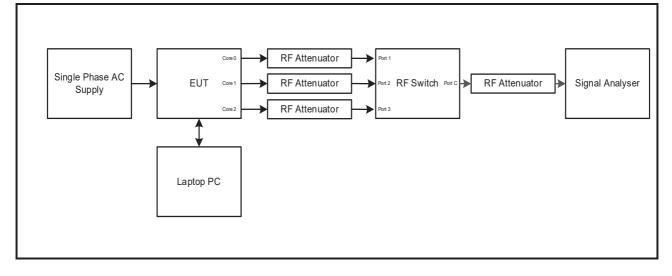
C02C8009P22C

Operating Modes

The EUT was tested in the following operating mode(s):

- Continuously transmitting at maximum power on bottom, middle and top channels in BDR (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.
- Continuously transmitting at maximum power in hopping mode on all channels in BDR (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.

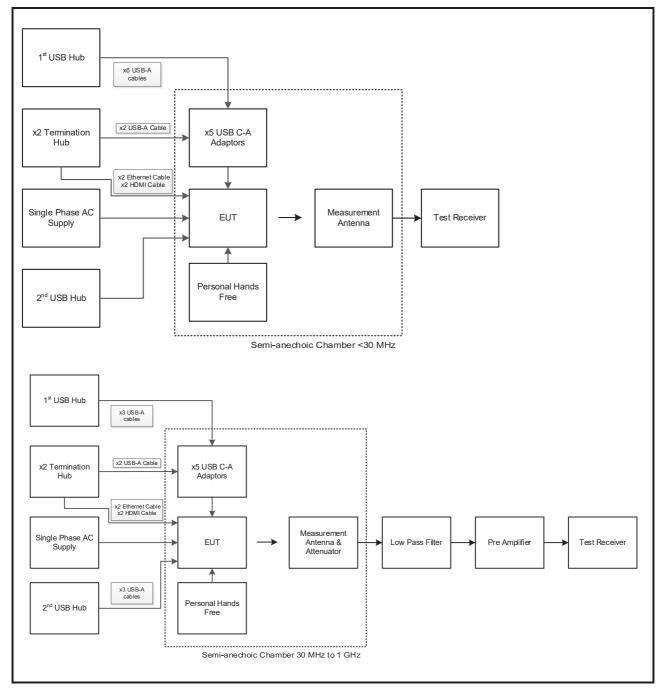
Configuration and Peripherals


The EUT was tested in the following configuration(s):

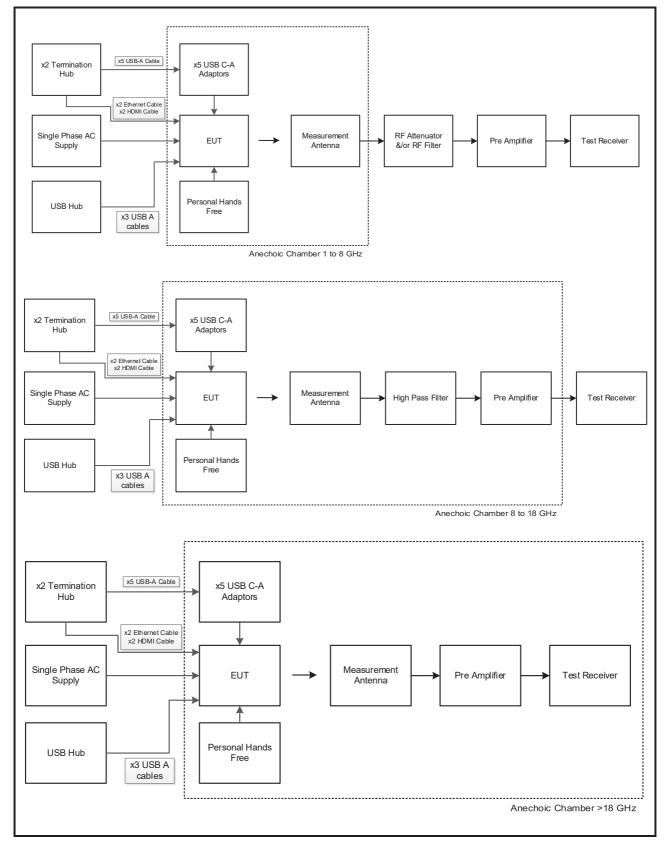
- Controlled in test mode using a set of commands entered into a terminal application on the EUT supplied by the customer. The commands were used to enable a continuous transmission and to select the test channels as required. The customer supplied a document containing the setup instructions.
- The EUT has a dedicated core (core 2), which operates in SISO mode only, in addition to two cores which operate in both SISO and TxBF modes. Core 0 & Core 1 are identical but have unequal gains therefore conducted tests have been performed on the Core with the highest antenna gain. Modes tested were:
 - DH5 / SISO / Core 1
 - 2DH5 / SISO / Core 1
 - 3DH5 / SISO / Core 1
 - DH5 / SISO / Core 2
 - 2DH5 / SISO / Core 2
 - 3DH5 / SISO / Core 2
 - DH5 / Beamforming / Core 0 + Core 1
 - 2DH5 / Beamforming / Core 0 + Core 1
 - 3DH5 / Beamforming / Core 0 + Core 1
- The customer supplied U.FL RF cables with the EUT in order to perform conducted measurements. This measured additional path loss was included in any path loss calculations.
- The EUT was powered from a 120 VAC 60 Hz single phase mains supply.
- Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 Beamforming Core 0 + Core 1 mode, as this mode was found to transmit the highest power.
- Radiated spurious emissions were performed with the EUT in the position that produced worst case with respect to emissions. All ports were terminated into suitable terminations and placed under the turntable.
- Transmitter radiated band edge measurements were performed with the EUT in the Y orientation / position as declared by the customer.

Test Setup Diagrams

Conducted Tests:


Test Setup for Transmitter Conducted Tests

Test Setup Diagrams (continued)


Radiated Tests:

Test Setup for Transmitter Radiated Emissions

Test Setup Diagrams (continued)

Test Setup for Transmitter Radiated Emissions (continued)

4 Antenna Port Test Results

4.1 Transmitter 99% Emission Bandwidth

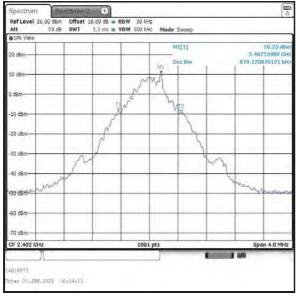
Test Summary:

Test Engineers:	Miriam Thompson & Raghavendra Katti	Test Dates:	31 January 2023 & 01 February 2023
Test Sample Serial Number:	CG66NP726G		

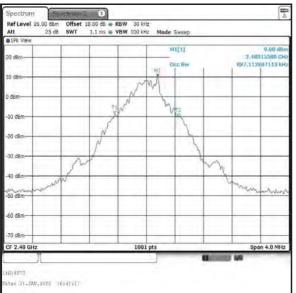
FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	RSS-Gen 6.7 and Notes below

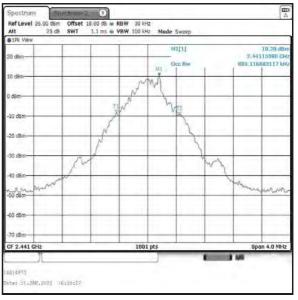
Environmental Conditions:

Temperature (°C):	20
Relative Humidity (%):	40 to 41


Note(s):

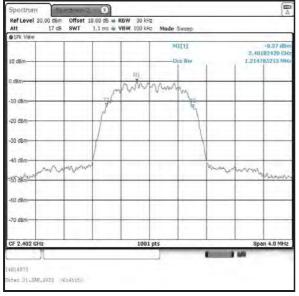
- 1. The 99% emission bandwidth was measured using the signal analyser occupied bandwidth function. The resolution bandwidth was set in the range of 1% to 5% of the occupied bandwidth and the video bandwidth set to 3 times the resolution bandwidth. The span was set to capture all products of the modulation process including emission skirts.
- 2. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 4 MHz. The signal analyser function set the measurements to be made at 99% of the emission bandwidth. The results are given in the tables below.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.


Transmitter 99% Emission Bandwidth (continued)

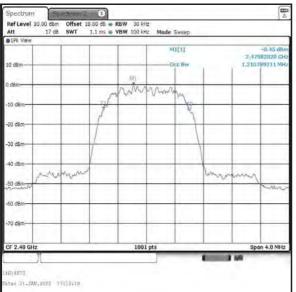

Results: DH5 / SISO / Core 1

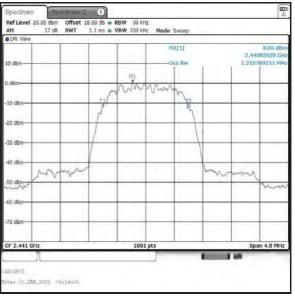
Channel	99% Emission Bandwidth (kHz)
Bottom	879.121
Middle	883.117
Тор	887.113

Bottom Channel



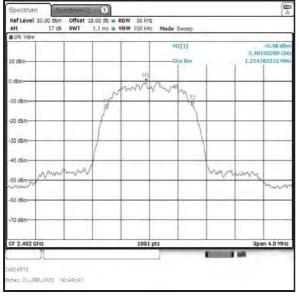
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

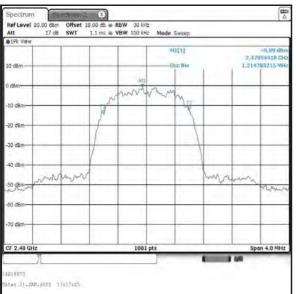

Results: 2DH5 / SISO / Core 1

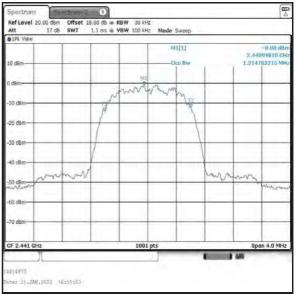
Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1210.789
Тор	1210.789

Bottom Channel



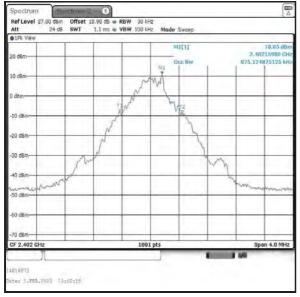
Middle Channel


Transmitter 99% Emission Bandwidth (continued)


Results: 3DH5 / SISO / Core 1

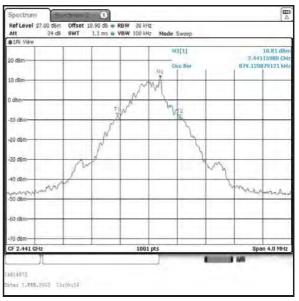
Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1214.785
Тор	1214.785

Bottom Channel



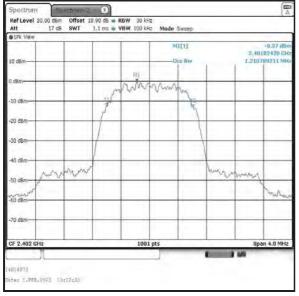
Middle Channel

Transmitter 99% Emission Bandwidth (continued)

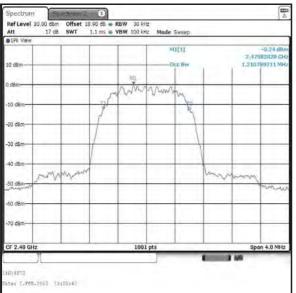

Results: DH5 / SISO / Core 2

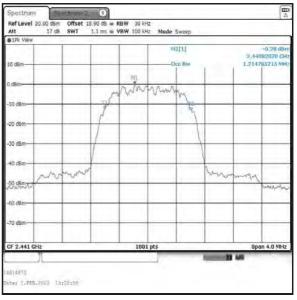
Channel	99% Emission Bandwidth (kHz)
Bottom	875.125
Middle	879.121
Тор	883.117

Bottom Channel



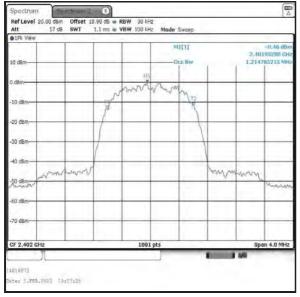
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

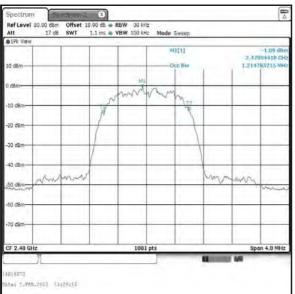

Results: 2DH5 / SISO / Core 2

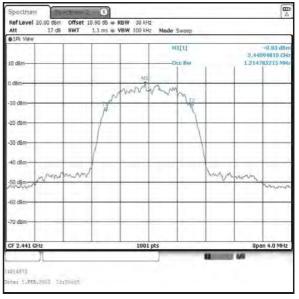
Channel	99% Emission Bandwidth (kHz)
Bottom	1210.789
Middle	1214.785
Тор	1210.789

Bottom Channel



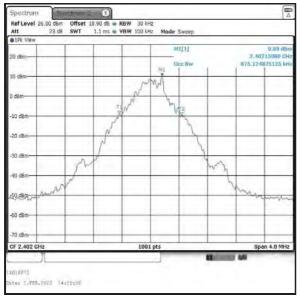
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

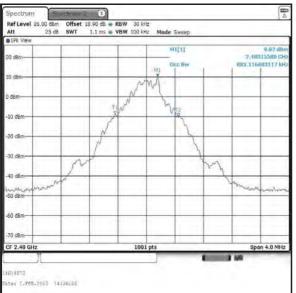

Results: 3DH5 / SISO / Core 2

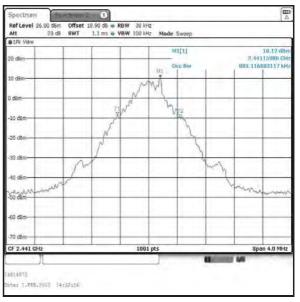
Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1214.785
Тор	1214.785

Bottom Channel



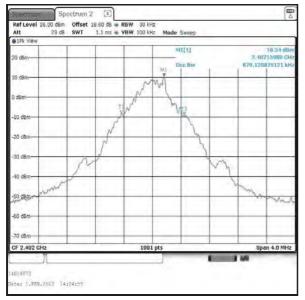
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

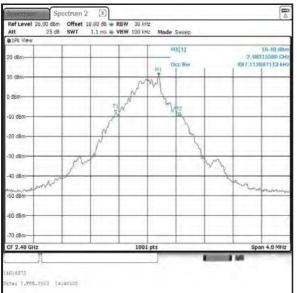

Results: DH5 / Beamforming / Core 0

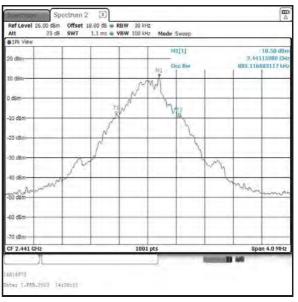
Channel	99% Emission Bandwidth (kHz)
Bottom	875.125
Middle	883.117
Тор	883.117

Bottom Channel



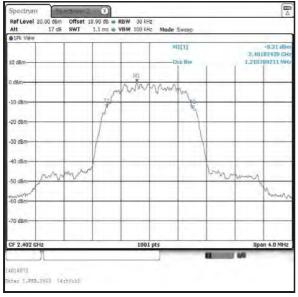
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

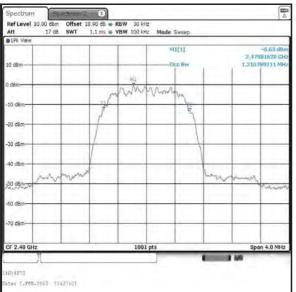

Results: DH5 / Beamforming / Core 1

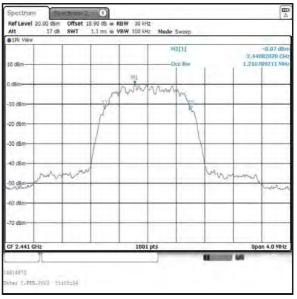
Channel	99% Emission Bandwidth (kHz)
Bottom	879.121
Middle	883.117
Тор	887.113

Bottom Channel



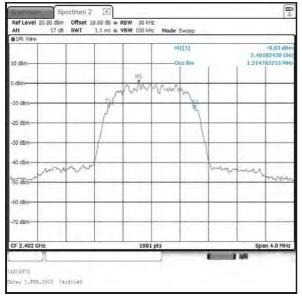
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

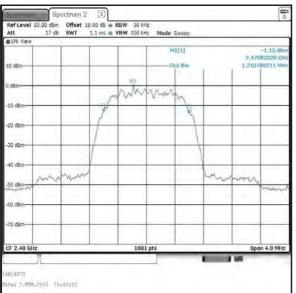

Results: 2DH5 / Beamforming / Core 0

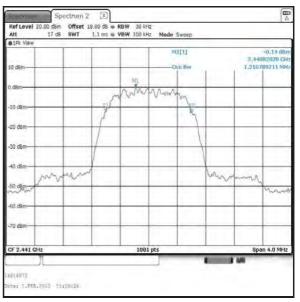
Channel	99% Emission Bandwidth (kHz)
Bottom	1210.789
Middle	1210.789
Тор	1210.789

Bottom Channel



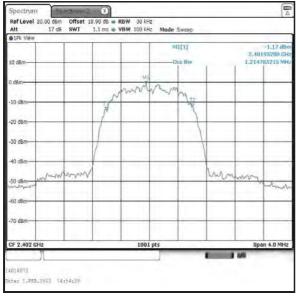
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

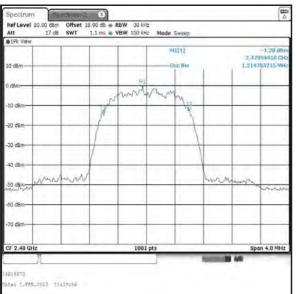

Results: 2DH5 / Beamforming / Core 1

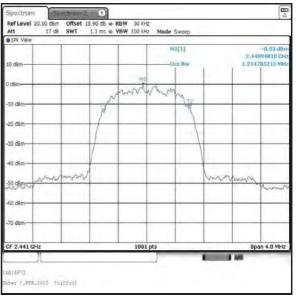
Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1210.789
Тор	1210.789

Bottom Channel



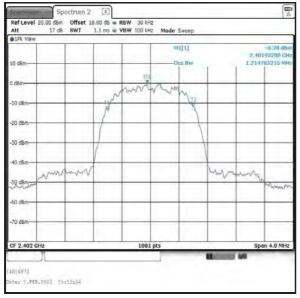
Middle Channel


Transmitter 99% Emission Bandwidth (continued)

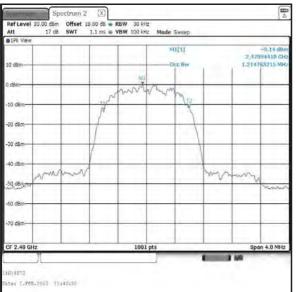

Results: 3DH5 / Beamforming / Core 0

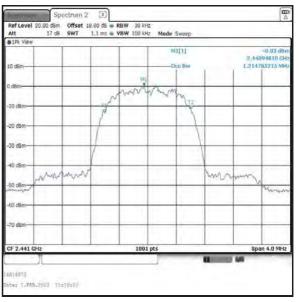
Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1214.785
Тор	1214.785

Bottom Channel



Middle Channel


Transmitter 99% Emission Bandwidth (continued)


Results: 3DH5 / Beamforming / Core 1

Channel	99% Emission Bandwidth (kHz)
Bottom	1214.785
Middle	1214.785
Тор	1214.785

Bottom Channel

Middle Channel

4.2 Transmitter 20 dB Bandwidth

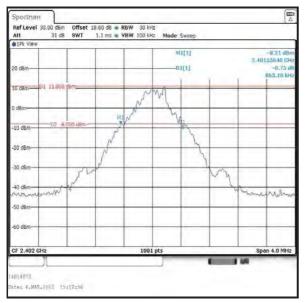
Test Summary:

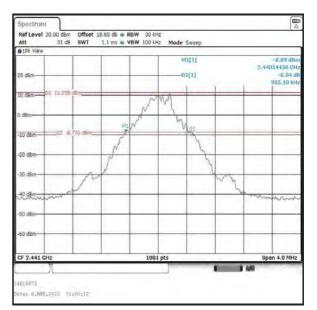
Test Engineers:	Miriam Thompson & Matthew Botfield	Test Dates:	06 March 2023 & 07 March 2023
Test Sample Serial Number:	CG66NP726G		

FCC Reference:	Part 15.247(a)(1)
ISED Canada Reference:	RSS-Gen 6.7 / RSS-247 5.1(a)
Test Method Used:	ANSI C63.10 Section 6.9.2

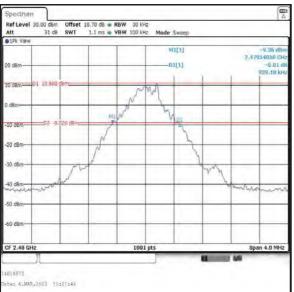
Environmental Conditions:

Temperature (°C):	21
Relative Humidity (%):	39 to 40


Note(s):

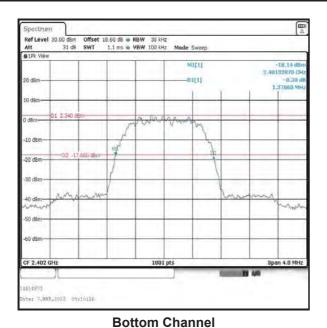

- 1. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 4 MHz. Normal and delta markers were placed 20 dB down from the peak of the carrier.
- 2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

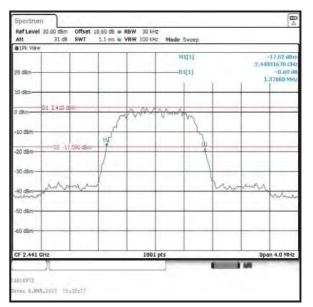
Transmitter 20 dB Bandwidth (continued)


Results: DH5 / SISO / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	863.100
Middle	935.100
Тор	939.100

Bottom Channel

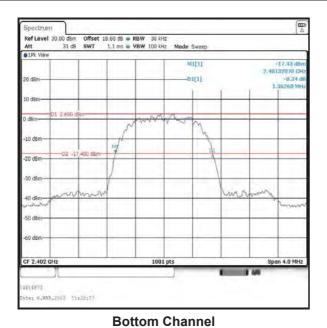


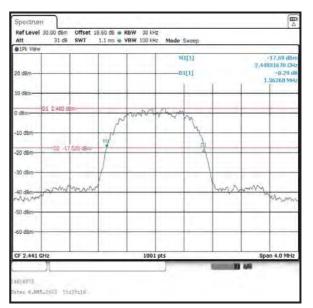


Transmitter 20 dB Bandwidth (continued)

Results: 2DH5 / SISO / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	1378.600
Middle	1378.600
Тор	1378.600

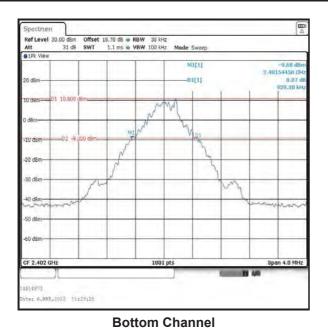

Middle Channel

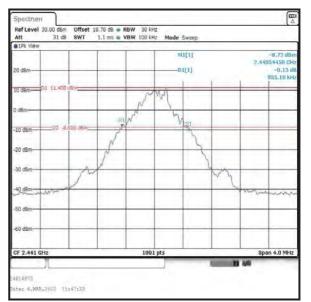

Att	31 d8	SWT	1,1 ms 🖷 🕯	/BW 100 kH	Mode	Sweep			_	
1Pk View 20 dBm										
20 d8m				_	M1[1]			-17,45 dBn 2,47931270 GHz 0,20 dB 1,37860 MHz		
						1	1 1	1	37860 MH	
10 d8m-		-	-				-	1	-	
	01 2.840 d	500-		a 10 0	A A . A				_	
0 d8m	1.		m	Anna	Arrest	64	-			
	1		N							
-10 d8m-			me			2				
-20 d8m	-02 -13	150 dBn	1			4	-	-	-	
*20 0bii	1000)							
-30 dBm-			1		_		1	-		
0.000	A.A.		1				1	June 1		
-40 dBm	1 v	what					NPP	head	h	
at real them.	-						1		moun	
-50 d8m-							-	-	-	
-60 d8m	-				-		-		-	
						1.1				
CF 2.48 G	1z.		-	1001	pts		-	Spa	n 4.0 MHz	
	1						·	1 4/6		

Transmitter 20 dB Bandwidth (continued)

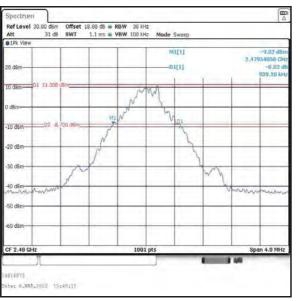
Results: 3DH5 / SISO / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	1362.600
Middle	1362.600
Тор	1362.600

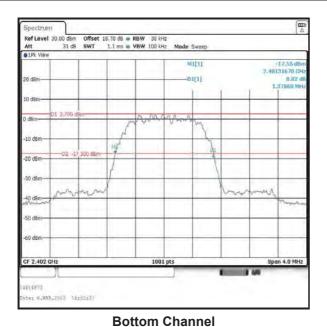

Middle Channel

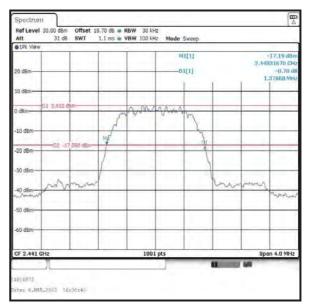

E A Spectrum Ref Level 30.00 dBm Offset 19.70 dB RBW 30 kHz Att 31 dB SWT 1.1 ms VBW 100 kHz Mode Sweep @1Pk Vie +17.08 dB 2.47931670 G -01[1] -0.51 1,36260 5 1 2.970 -10 dB -20 dB 30 dBr n marian mon 50 dB 60 d8 Span 4.0 MHz CF 2.48 GH 1001 pts 1 44 4614973 ter 6.MAR.2023 15:27:23

Transmitter 20 dB Bandwidth (continued)


Results: DH5 / SISO / Core 2

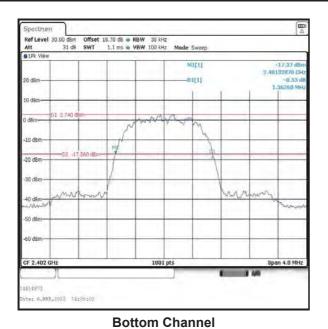
Channel	20 dB Bandwidth (kHz)
Bottom	939.100
Middle	935.100
Тор	939.100




Middle Channel

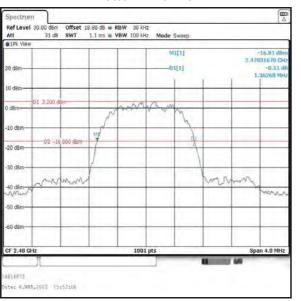
Results: 2DH5 / SISO / Core 2

Channel	20 dB Bandwidth (kHz)
Bottom	1378.600
Middle	1378.600
Тор	1378.600


Middle Channel

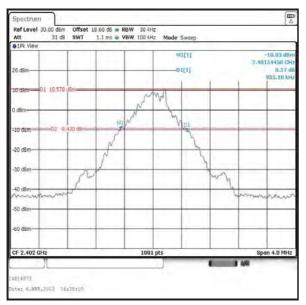
Att	31 d8 SW	T 1,1 ms 🖷 🕅	VBW 100 kHz	Mode Sy	reep			_
@1Pk View				wit				17.18 dBm 11270 GHz
20 d8m-				-01[1]		1.5	0.04 dB
10 d8m-				-	_	-		
	01 3.130 dBm							
0 d8m	P4 2400 5000	m	anna	many	M		_	-
		5			1			
-10 dBm-		M			1			
-20 dBm-	D2 -16,870				E1		-	-
-20 abm-		1			1			
-30 dBm-			-	-	1		_	
	anter maria	non			1	han	in	
-40 dBm	1 an Allow				_		1	man
						-		a free de
-50 d8m-				-	-	-		-
-60 d8m-								
CF 2.48 G	Hz		1001 p	ts			Spar	4.0 MHz
	1			-			M8	

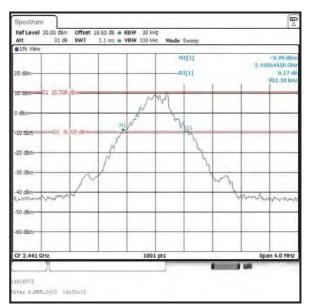
Transmitter 20 dB Bandwidth (continued)


Results: 3DH5 / SISO / Core 2

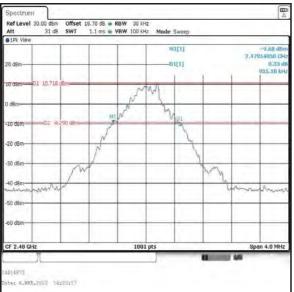
Channel	20 dB Bandwidth (kHz)
Bottom	1362.600
Middle	1362.600
Тор	1362.600

Spectrum Ref Level 30.00 dBm Offset 18.70 dB RBW 30 kHz Att 31 dB SWT 1.1 ms VBW 100 kHz Mode Sws @1Pk Vie M1[1] -17.26 2.44031670 G -01[1] 20 46 -0.28 1.36260 M 2.970 -10 dBm hj D2 -20 dBm 30 dB A N 40 dB Long man --50 dBr 60 da n 4.0 MHz CF 2.441 G 1001 pts 46(4973 ter 6.MAR.2023 15:57:54


Middle Channel

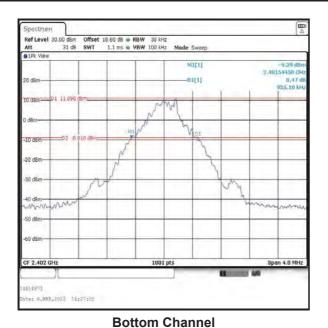


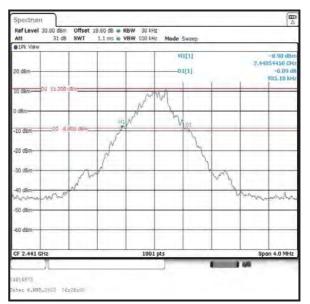
Transmitter 20 dB Bandwidth (continued)


Results: DH5 / Beamforming / Core 0

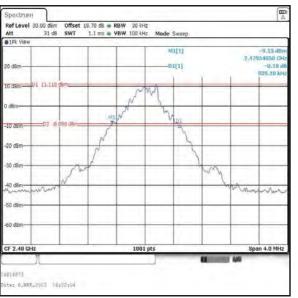
Channel	20 dB Bandwidth (kHz)
Bottom	935.100
Middle	931.100
Тор	935.100

Bottom Channel

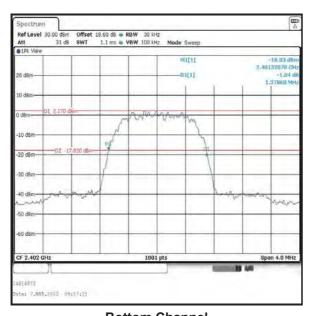

Top Channel

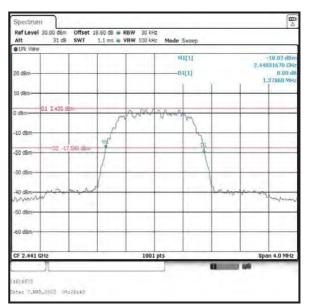

Middle Channel

Transmitter 20 dB Bandwidth (continued)


Results: DH5 / Beamforming / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	935.100
Middle	935.100
Тор	939.100

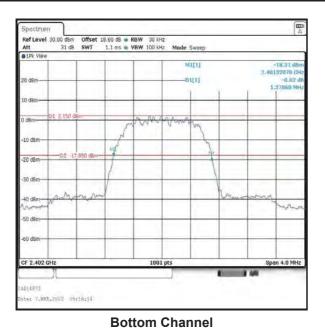


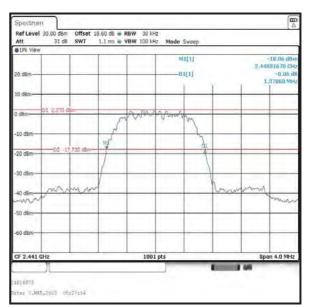

Middle Channel

Results: 2DH5 / Beamforming / Core 0

Channel	20 dB Bandwidth (kHz)
Bottom	1378.600
Middle	1378.600
Тор	1382.600

Middle Channel

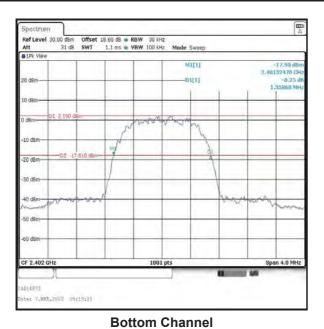

E A Spectrum Ref Level 30.00 dBm Offset 18.70 dB RBW 30 kHz Att 31 dB SWT 1,1 ms VBW 100 kHz Mode Sweep @1Pk View -17.31 d8 2.47931270 G -0.58 -01[1] 1,38260 5 1 3,240 -10 dB 14 -02 -16 60 dB -20 dBr 30 dBr 0 dBmn al 50 dB 60 d8 Span 4.0 MHz CF 2.48 GH 1001 pts 1 44 14614973 te: 7.MAR.2021 09:31:24

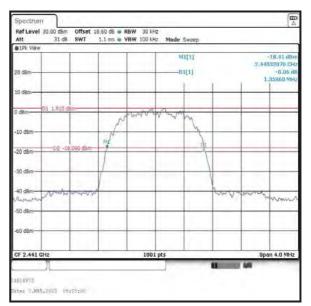

Top Channel

Bottom Channel

Results: 2DH5 / Beamforming / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	1378.600
Middle	1378.600
Тор	1382.600

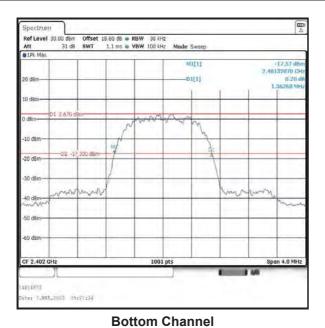


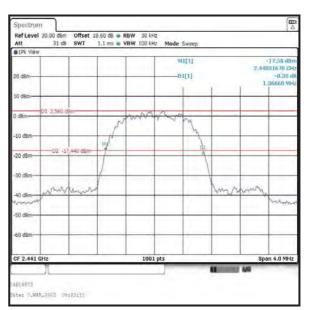

Middle Channel

E A Spectrum Ref Level 30.00 dBm Offset 18.70 dB RBW 30 kHz Att 31 dB SWT 1,1 ms VBW 100 kHz Mode Sweep @1Pk Vie -17.87 df 2.47931270 C -0.85 -01[1] 1,38260 4 1 2.530 -10 dB 10F 02 -20 dB 30 dBr J. M 1mm 50 d£ 60 d8 Span 4.0 MHz CF 2.48 GH 1001 pts - M 14614973 te: 7.MAR.2023 09:29:57

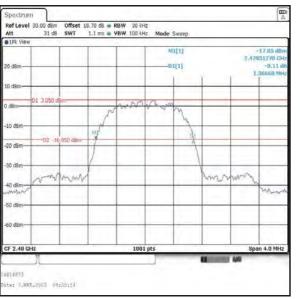
Results: 3DH5 / Beamforming / Core 0

Channel	20 dB Bandwidth (kHz)
Bottom	1358.600
Middle	1358.600
Тор	1362.600




Middle Channel

E A Spectrum Ref Level 30.00 dBm Offset 18.70 dB RBW 30 kHz Att 31 dB SWT 1,1 ms VBW 100 kHz Mode Sweep @1Pk Vie +17,45 dl 2,47931670 d -0.17 -01[1] 1.36260 2,610 -10 dB M -02 -20 dB 30 dBr Normi 50 d£ 60 d8 Span 4.0 MHz CF 2.48 GH 1001 pts 1 44 14614973 te: 7.MAR.2023 09:33:5)


Results: 3DH5 / Beamforming / Core 1

Channel	20 dB Bandwidth (kHz)
Bottom	1362.600
Middle	1366.600
Тор	1366.600

Middle Channel

4.3 Transmitter Carrier Frequency Separation

Test Summary:

Test Engineers:	Miriam Thompson & Raghavendra Katti	Test Date:	01 February 2023
Test Sample Serial Number:	CG66NP726G		

FCC Reference:	Part 15.247(a)(1)
ISED Canada Reference:	RSS-247 5.1(b)
Test Method Used:	ANSI C63.10 Section 7.8.2

Environmental Conditions:

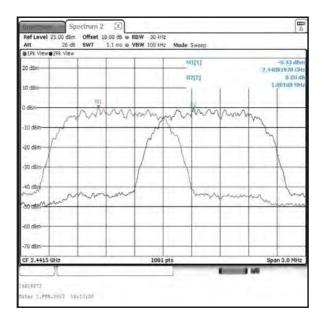
Temperature (°C):	20
Relative Humidity (%):	40

Note(s):

- 1. The 20 dB bandwidth measured for the middle channel operating at 2441 MHz was used to calculate the limit.
- 2. The signal analyser resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 3 MHz. A marker was placed at the centre of one signal and then a delta marker was placed in the same place on the second signal.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

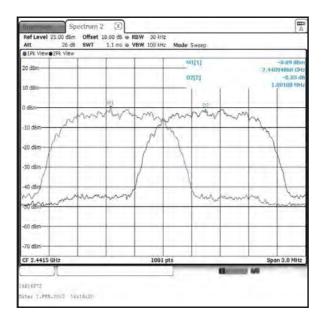
Transmitter Carrier Frequency Separation (continued)

Results: DH5 / SISO / Core 1


Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
1001.000	623.400	377.600	Complied

Transmitter Carrier Frequency Separation (continued)

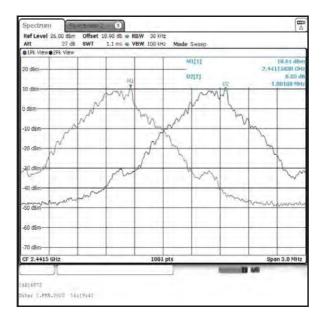
Results: 2DH5 / SISO / Core 1


Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1001.000	919.067	81.933	Complied

Transmitter Carrier Frequency Separation (continued)

Results: 3DH5 / SISO / Core 1

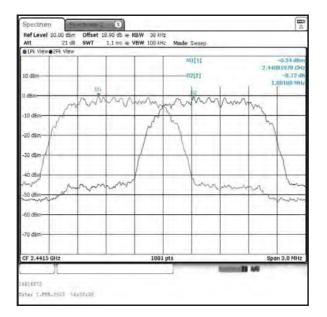
Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
1001.000	908.400	92.600	Complied



ISSUE DATE: 14 MARCH 2023

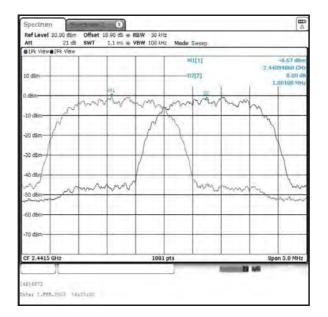
Transmitter Carrier Frequency Separation (continued)

Results: DH5 / SISO / Core 2


Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
1001.000	620.733	380.267	Complied

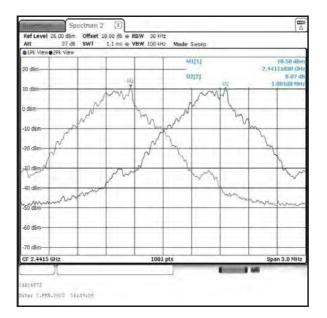
Transmitter Carrier Frequency Separation (continued)

Results: 2DH5 / SISO / Core 2


Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1001.000	919.067	81.933	Complied

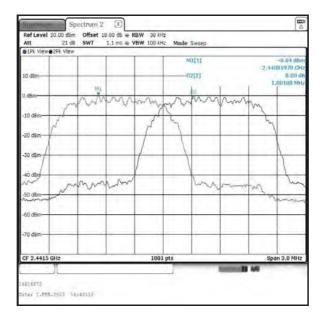
Transmitter Carrier Frequency Separation (continued)

Results: 3DH5 / SISO / Core 2


Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1001.000	905.733	95.267	Complied

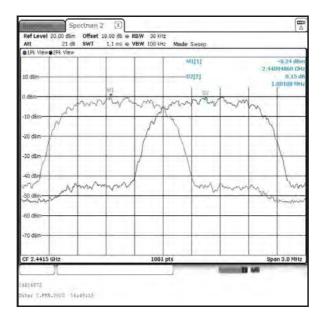
Transmitter Carrier Frequency Separation (continued)

Results: DH5 / Beamforming / Core 1


Carrier Frequency Separation (kHz)	Limit (²/₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
1001.000	626.067	374.933	Complied

Transmitter Carrier Frequency Separation (continued)

Results: 2DH5 / Beamforming / Core 1


Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1001.000	919.067	81.933	Complied

Transmitter Carrier Frequency Separation (continued)

Results: 3DH5 / Beamforming / Core 1

Carrier Frequency	Limit (²/₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1001.000	908.400	92.600	Complied

4.4 Transmitter Number of Hopping Frequencies and Average Time of Occupancy

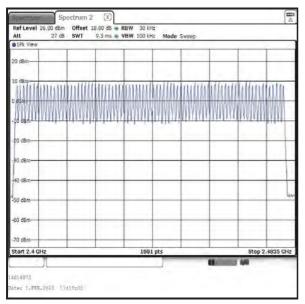
Test Summary:

Test Engineers:	Miriam Thompson & Raghavendra Katti	Test Dates:	01 February 2023 & 02 February 2023
Test Sample Serial Number:	CG66NP726G		

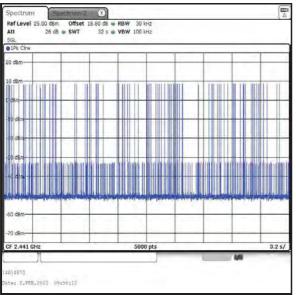
FCC Reference:	Part 15.247(a)(1)(iii)
ISED Canada Reference:	RSS-247 5.1(d)
Test Method Used:	ANSI C63.10 Sections 7.8.3 & 7.8.4

Environmental Conditions:

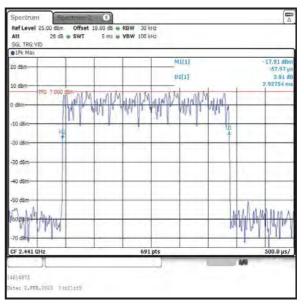
Temperature (°C):	20 to 21
Relative Humidity (%):	40


Note(s):

- 1. Tests were performed to identify the average time of occupancy in number of channels (79) x 0.4 seconds. The calculated period is 31.6 seconds.
- 2. The signal analyser was set up for the Number of Hopping Frequencies measurement as follows: the resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 83.5 MHz.
- 3. The signal analyser was set up for the Emission Width measurement as follows: the resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used and sweep time was set to auto with a span of zero Hz. The signal analyser was set to trigger at 1 ms, with a marker placed at the start of the emission and a delta marked place at the end of the emission. The emission width is recorded in the table below
- 4. The signal analyser was set up for the Number of Hopping Frequencies in 32 seconds measurement as follows: the resolution bandwidth was set to 30 kHz and video bandwidth of 100 kHz. A peak detector was used and sweep time was set to 32 seconds. The EUT was set to transmit in a hopping frequency mode with zero span. The total number of hopping frequencies were recorded in the table below.
- 5. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.

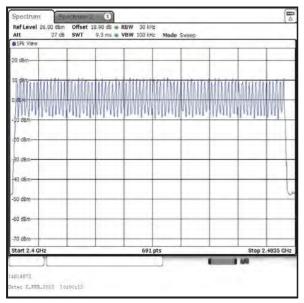

Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)

Results: SISO / Core 1

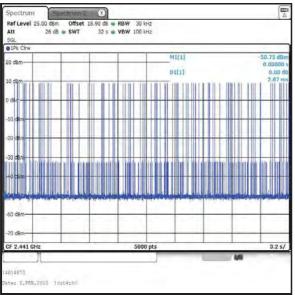

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2927.540	93	0.272	0.4	0.128	Complied

Number of Hopping Frequencies

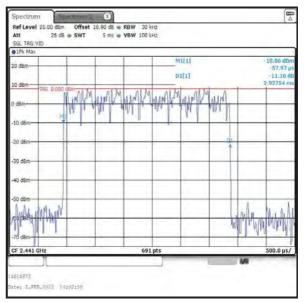
Number of Hopping Frequencies in 32 s



Emission Width

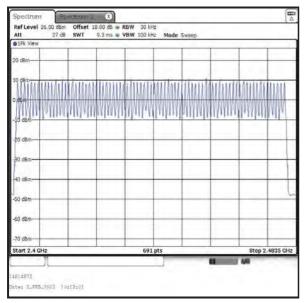

Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)

Results: SISO / Core 2

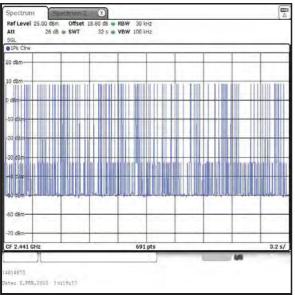

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2927.540	97	0.284	0.4	0.116	Complied

Number of Hopping Frequencies

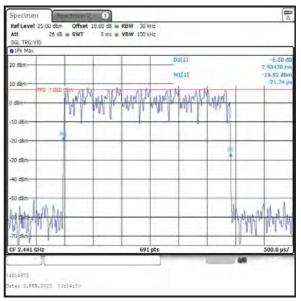
Number of Hopping Frequencies in 32 s



Emission Width


Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)

Results: Beamforming / Core 1


Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2934.780	97	0.285	0.4	0.115	Complied

Number of Hopping Frequencies

Number of Hopping Frequencies in 32 s

Emission Width

4.5 Transmitter Maximum Peak Output Power

Test Summary:

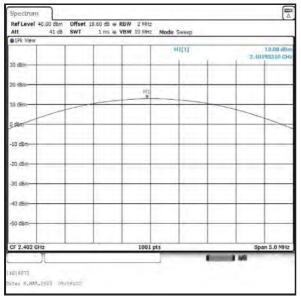
Test Engineers:	Miriam Thompson & Matthew Botfield	Test Date:	08 March 2023
Test Sample Serial Number:	CG66NP726G		

FCC Reference:	Part 15.247(b)(1)
ISED Canada Reference:	RSS-Gen 6.12 / RSS-247 5.4(b)
Test Method Used:	ANSI C63.10 Section 7.8.5

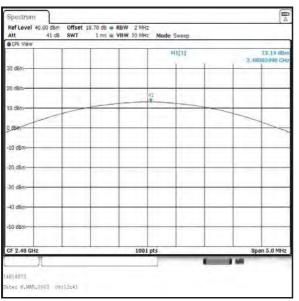
Environmental Conditions:

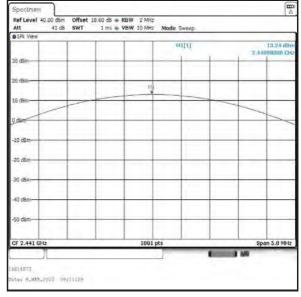
Temperature (°C):	18
Relative Humidity (%):	40

Note(s):


- 1. For BDR, the signal analyser resolution bandwidth was set to 2 MHz (>20 dB bandwidth) and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
- 2. For EDR, the signal analyser resolution bandwidth was set to 2 MHz (>20 dB bandwidth) and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 7 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
- 3. For beamforming modes, conducted power was measured on Core 0 & Core 1 and then combined using the measure-and-sum technique stated in FCC KDB 662911 D01 Section E)1). For EIRP, the directional antenna gain was added to the conducted output power.
- 4. For beamforming modes, the limit for conducted output power has been reduced by the same amount in dB that the directional gain of the antenna exceeds 6 dBi, in accordance with 15.247(b)(4).
- 5. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.

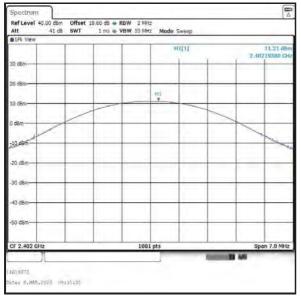
Results: DH5 / SISO / Core 1


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	13.1	21.0	7.9	Complied
Middle	13.2	21.0	7.8	Complied
Тор	13.1	21.0	7.9	Complied

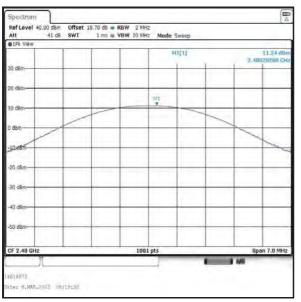

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	13.1	3.8	16.9	36.0	19.1	Complied
Middle	13.2	3.8	17.0	36.0	19.0	Complied
Тор	13.1	3.8	16.9	36.0	19.1	Complied

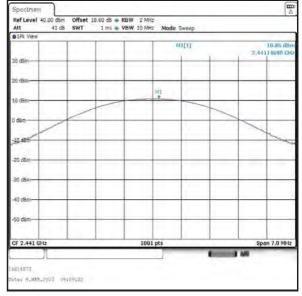
Results: DH5 / SISO / Core 1

Bottom Channel


Middle Channel

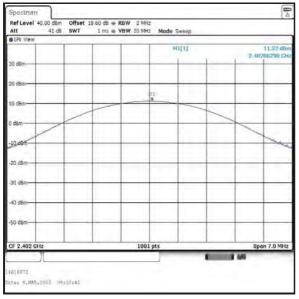
Results: 2DH5 / SISO / Core 1


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	11.2	21.0	9.8	Complied
Middle	10.9	21.0	10.1	Complied
Тор	11.2	21.0	9.8	Complied

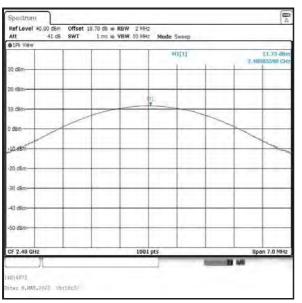

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	11.2	3.8	15.0	36.0	21.0	Complied
Middle	10.9	3.8	14.7	36.0	21.3	Complied
Тор	11.2	3.8	15.0	36.0	21.0	Complied

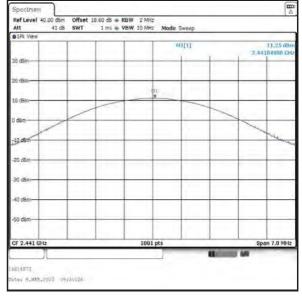
Results: 2DH5 / SISO / Core 1

Bottom Channel


Middle Channel

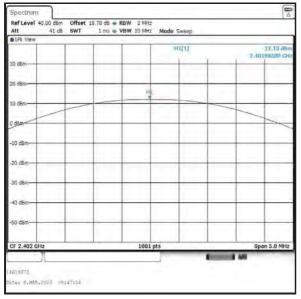
Results: 3DH5 / SISO / Core 1


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	11.3	21.0	9.7	Complied
Middle	11.3	21.0	9.7	Complied
Тор	11.7	21.0	9.3	Complied

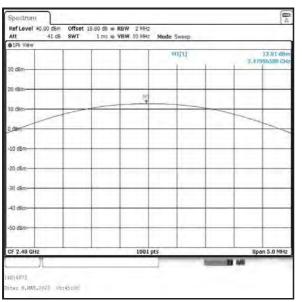

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	11.3	3.8	15.1	36.0	20.9	Complied
Middle	11.3	3.8	15.1	36.0	20.9	Complied
Тор	11.7	3.8	15.5	36.0	20.5	Complied

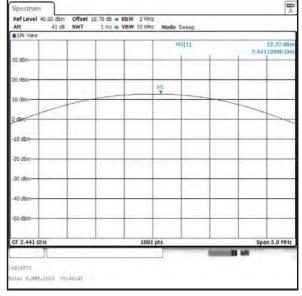
Results: 3DH5 / SISO / Core 1

Bottom Channel


Middle Channel

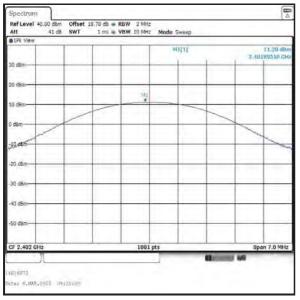
Results: DH5 / SISO / Core 2


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	12.1	21.0	8.9	Complied
Middle	12.7	21.0	8.3	Complied
Тор	12.8	21.0	8.2	Complied

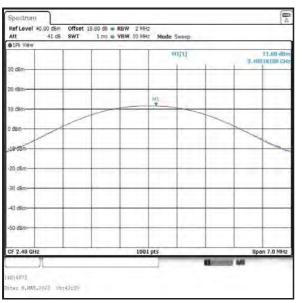

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	12.1	5.1	17.2	36.0	18.8	Complied
Middle	12.7	5.1	17.8	36.0	18.2	Complied
Тор	12.8	5.1	17.9	36.0	18.1	Complied

Results: DH5 / SISO / Core 2

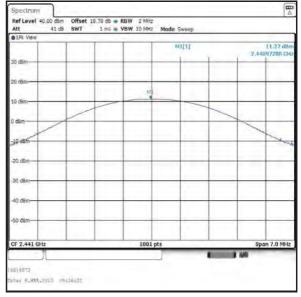
Bottom Channel


Middle Channel

Results: 2DH5 / SISO / Core 2

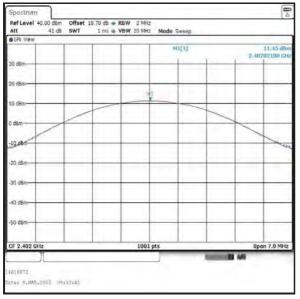

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	11.2	21.0	9.8	Complied
Middle	11.3	21.0	9.7	Complied
Тор	11.6	21.0	9.4	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	11.2	5.1	16.3	36.0	19.7	Complied
Middle	11.3	5.1	16.4	36.0	19.6	Complied
Тор	11.6	5.1	16.7	36.0	19.3	Complied

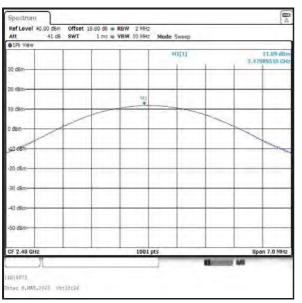

Results: 2DH5 / SISO / Core 2

Bottom Channel

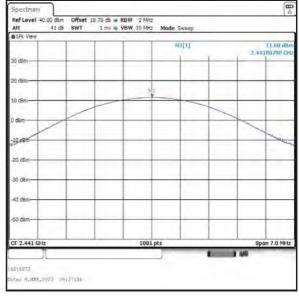
Top Channel


Middle Channel

Results: 3DH5 / SISO / Core 2

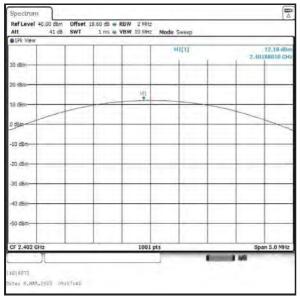

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	11.5	21.0	9.5	Complied
Middle	11.6	21.0	9.4	Complied
Тор	11.9	21.0	9.1	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	11.5	5.1	16.6	36.0	19.4	Complied
Middle	11.6	5.1	16.7	36.0	19.3	Complied
Тор	11.9	5.1	17.0	36.0	19.0	Complied

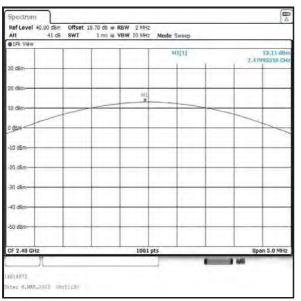

Results: 3DH5 / SISO / Core 2

Bottom Channel

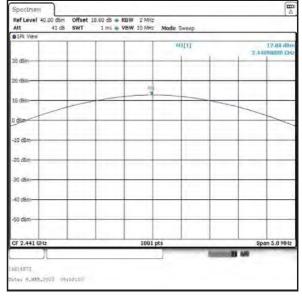
Top Channel


Middle Channel

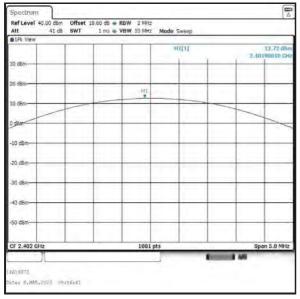
Results: DH5 / Beamforming


Channel	Conducted Peak Power Core 0 (dBm)	Conducted Peak Power Core 1 (dBm)	Combined Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	12.2	12.7	15.5	20.6	5.1	Complied
Middle	12.9	13.0	16.0	20.6	4.6	Complied
Тор	13.1	12.9	16.0	20.6	4.6	Complied

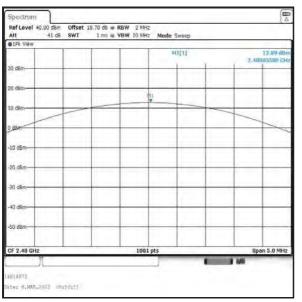
Channel	Combined Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	15.5	6.4	21.9	36.0	14.1	Complied
Middle	16.0	6.4	22.4	36.0	13.6	Complied
Тор	16.0	6.4	22.4	36.0	13.6	Complied


Results: DH5 / Beamforming / Core 0

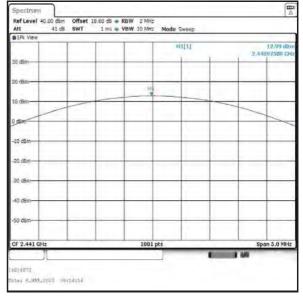
Bottom Channel



Top Channel

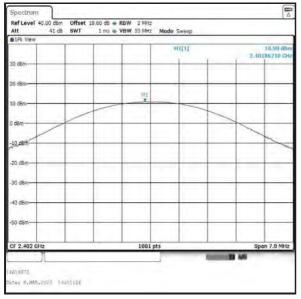


Middle Channel

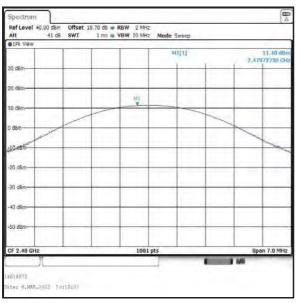

Results: DH5 / Beamforming / Core 1

Bottom Channel

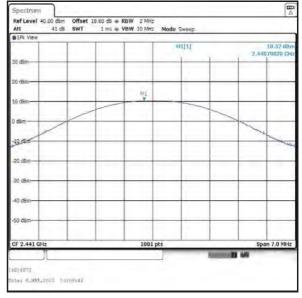
Top Channel


Middle Channel

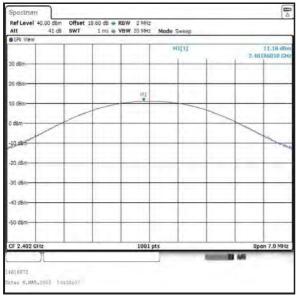
Results: 2DH5 / Beamforming


Channel	Conducted Peak Power Core 0 (dBm)	Conducted Peak Power Core 1 (dBm)	Combined Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	10.9	11.2	14.1	20.6	6.5	Complied
Middle	10.5	11.3	13.9	20.6	6.7	Complied
Тор	11.4	11.5	14.5	20.6	6.1	Complied

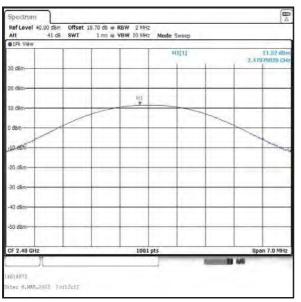
Channel	Combined Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	14.1	6.4	20.5	36.0	15.5	Complied
Middle	13.9	6.4	20.3	36.0	15.7	Complied
Тор	14.5	6.4	20.9	36.0	15.1	Complied


Results: 2DH5 / Beamforming / Core 0

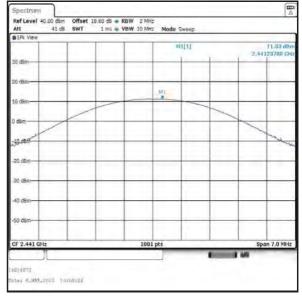
Bottom Channel



Top Channel

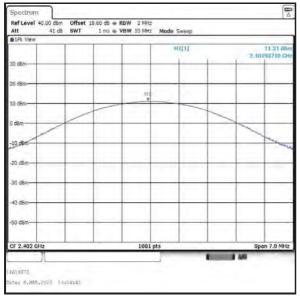


Middle Channel

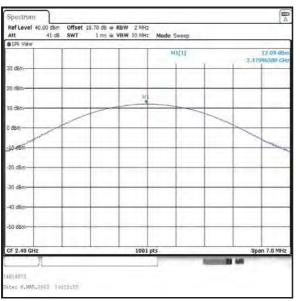

Results: 2DH5 / Beamforming / Core 1

Bottom Channel

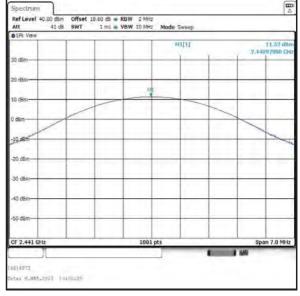
Top Channel


Middle Channel

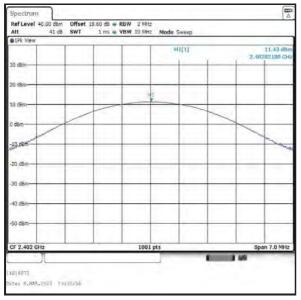
Results: 3DH5 / Beamforming


Channel	Conducted Peak Power Core 0 (dBm)	Conducted Peak Power Core 1 (dBm)	Combined Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	11.2	11.4	14.3	20.6	6.3	Complied
Middle	11.5	11.4	14.5	20.6	6.1	Complied
Тор	12.1	11.4	14.8	20.6	5.8	Complied

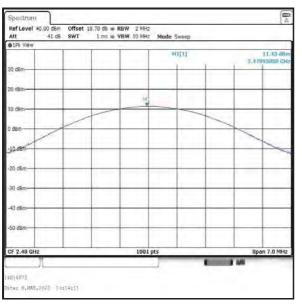
Channel	Combined Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	14.3	6.4	20.7	36.0	15.3	Complied
Middle	14.5	6.4	20.9	36.0	15.1	Complied
Тор	14.8	6.4	21.2	36.0	14.8	Complied


Results: 3DH5 / Beamforming / Core 0

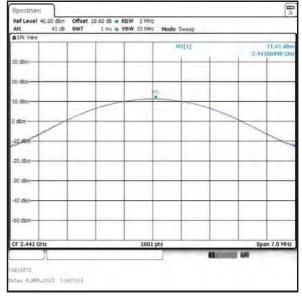
Bottom Channel



Top Channel



Middle Channel


Results: 3DH5 / Beamforming / Core 1

Bottom Channel

Top Channel

Middle Channel

5 Radiated Test Results

5.1 Transmitter Radiated Emissions <1 GHz

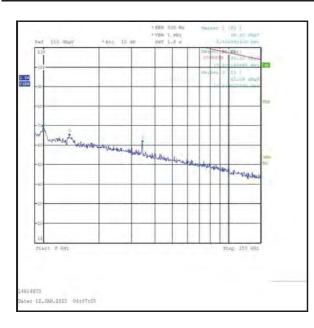
Test Summary:

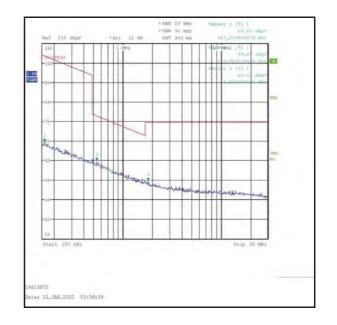
Test Engineers:	Robert English & Nick Steele	Test Dates:	11 January 2023 & 12 January 2023
Test Sample Serial Number:	HP4WQ0NY7K		

FCC Reference:	Parts 15.247(d) & 15.209(a)	
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5	
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4 and 6.5	
Frequency Range	9 kHz to 1000 MHz	

Environmental Conditions:

Temperature (°C):	22
Relative Humidity (%):	43


Note(s):


- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- 3. All emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number K0001) at 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. The limit was extrapolated to 3 metres in accordance with ANSI C63.10 clause 6.4.3 using the method described in clause 6.4.4.2. ANSI C63.10 clause 5.2 states an alternative test site that can demonstrate equivalence to an open area test site may be used for measurements below 30 MHz. Therefore, measurements were performed in a semi-anechoic chamber. The correlation data between semi-anechoic chamber and an open field test site is available upon request.
- 5. Measurements from 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 6. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.

Transmitter Radiated Emissions (continued)

Results: Peak / Middle Channel / DH5 / Beamforming / Core 0 + Core 1

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
989.535	Vertical	37.6	54.0	16.4	Complied

4614873				0
NultiView * Receiver	X Spectrum X			1
Ref Level 80.00 db// Offset	0.10 dB # RBW (CISPR) 120 kHz			
		lode Auto Sweep	Frequency 173.2	050808 MH
1 Frequency Sweep				LER Mon
	100 MH2		MI[1]	21.48 dBj//
2 8.0				21,955 Mit
			M2[1]	24.35 dBul 58:368 MH
90 d8/V				28,353 495
50 d8yV				
				i lat
a a a a a a a a a a a a a a a a a a a				sample
starting with	10		and a second and a s	
stop monuting	an existence	White and and and the set	and a second and a s	
nate can be	A CALLER AND			
10 div/				
5 diyir				
-10 dBµV				
30.0 MHz		1001 pts		1.0 GHz
2 Marker Table				
Type Ref Ten	31.955 MHz 31.48 d		on Euroton R	(Sull
M2 5 - 1	58.368 MHz 24.35 d	BµV		
	22.231 MHz 24.52 d	BµV		
Ma 1 9	952.13 MHz 37.29 d 89.535 MHz 37.55 d	BuV		
	J.J.J.			1 101
		and a state of the		0
3:31:52 11.01.2023				

ISSUE DATE: 14 MARCH 2023

5.2 Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineers:	John Ferdinand & Vi Van	Test Dates:	23 December 2022 to 14 January 2023	
Test Sample Serial Numbers:	D07J73TQJY & HP4WQ0NY7K			

FCC Reference:	Parts 15.247(d) & 15.209(a)		
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5		
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6 & FCC KDB 5889074 Section 9. b)		
Frequency Range	1 GHz to 25 GHz		

Environmental Conditions:

Temperature (°C):	21 to 23
Relative Humidity (%):	32 to 42

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system.
- 3. The emission shown on the 1 GHz to 3 GHz plot at approximately 2441 MHz is the EUT fundamental.
- 4. In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 5. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0001/K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
- 6. Final measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001/K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 7. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their own appropriate detectors during the pre-scan measurements.
- 8. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto, with a span wide enough to see the whole emission.

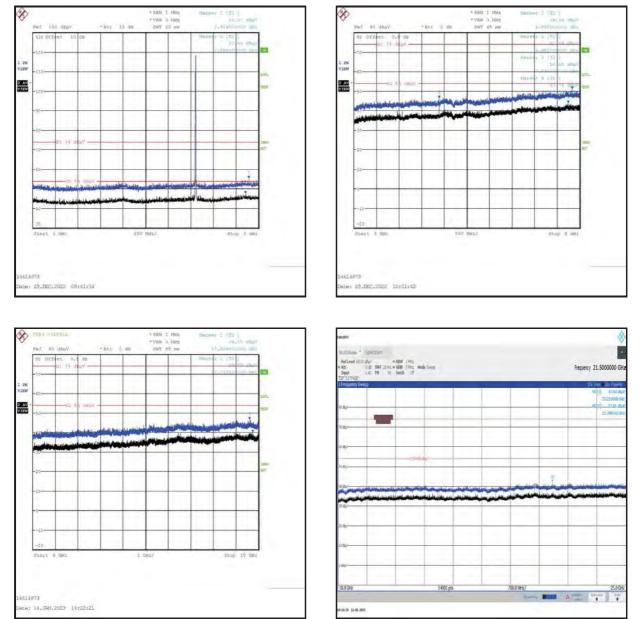
Transmitter Radiated Emissions (continued)

Results: Bottom Channel / DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
4803.840	Vertical	48.3	54.0	5.7	Complied
22769.217	Horizontal	42.7	54.0	11.3	Complied

Results: Middle Channel / DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
4881.888	Vertical	48.9	54.0	5.1	Complied
22769.217	Horizontal	42.7	54.0	11.3	Complied


Results: Top Channel / DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBμV/m)	Margin (dB)	Result
4960.192	Vertical	48.0	54.0	6.0	Complied
22769.217	Horizontal	42.7	54.0	11.3	Complied

Results: Hopping Mode / DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
4880.128	Vertical	47.9	54.0	6.1	Complied
22769.217	Horizontal	42.7	54.0	11.3	Complied

Transmitter Radiated Emissions (continued)

Note: The above plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

5.3 Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineers:	Nick Steele & Vi Van	Test Dates:	15 November 2022 to 27 January 2023
Test Sample Serial Number:	HP4WQ0NY7K		

FCC Reference:	Parts 15.247(d) & 15.209(a)		
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5		
Test Method Used:	ANSI C63.10 Section 6.10 & FCC KDB 5889074 Section 9. b)		

Environmental Conditions:

Temperature (°C):	21 to 24
Relative Humidity (%):	44 to 50

Note(s):

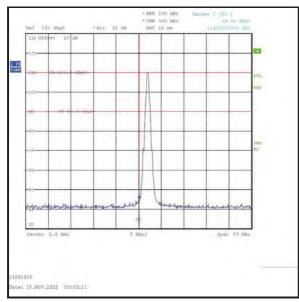
- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The lower band edge is adjacent to a non-restricted band. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 3. The upper band edge is adjacent to a restricted band. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. Peak and average measurements were performed with their respective detectors, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 4. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 5. * -20 dBc limit.
- 6. **For the upper band edge average measurements, the corrected average level has been obtained by subtracting the calculated duty cycle correction factor from the measured peak level for any restricted band emissions related to the fundamental. See Appendix 1 for further information.

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	45.0	89.9*	44.9	Complied
2483.5	Horizontal	52.0	74.0	22.0	Complied
2489.269	Horizontal	53.2	74.0	20.8	Complied

Results: Static Mode / DH5 / SISO / Core 0

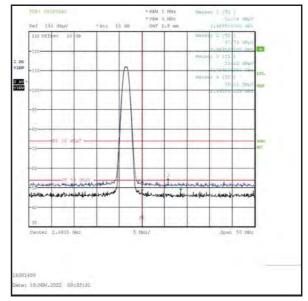
Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	33.0**	54.0	21.0	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2383.040	Horizontal	44.9	74.0	29.1	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2374.480	Horizontal	37.1	54.0	16.9	Complied

Transmitter Band Edge Radiated Emissions (continued)


Results: Static Mode / DH5 / SISO / Core 0

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

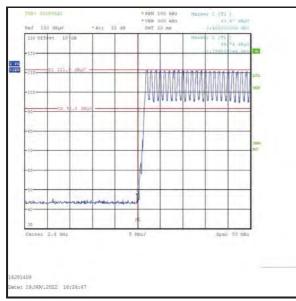
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.840	Horizontal	46.8	91.5*	44.7	Complied
2400.0	Horizontal	43.8	91.5*	47.7	Complied
2483.5	Horizontal	52.0	74.0	22.0	Complied
2488.100	Horizontal	53.3	74.0	20.7	Complied

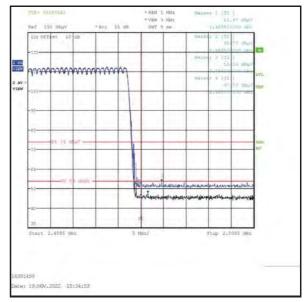
Results: Hopping Mode / DH5 / SISO / Core 0

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.0**	54.0	21.0	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2350.000	Horizontal	51.9	74.0	22.1	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2311.360	Horizontal	45.5	54.0	8.5	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / DH5 / SISO / Core 0

2310 MHz to 2390 MHz Restricted Band

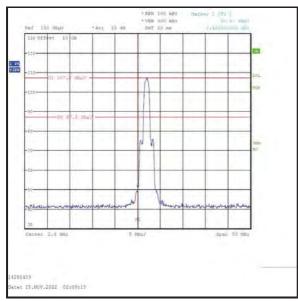
Upper Band Edge

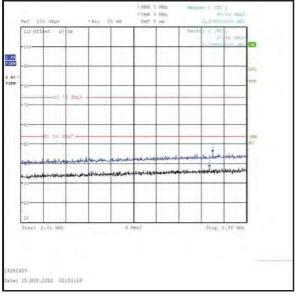
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	50.9	87.2*	36.3	Complied
2483.5	Horizontal	52.7	74.0	21.3	Complied
2485.984	Horizontal	54.1	74.0	19.9	Complied

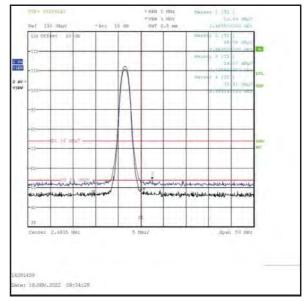
Results: Static Mode / 2DH5 / SISO / Core 0

Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	33.7**	54.0	20.3	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2378.000	Horizontal	45.5	74.0	28.5	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2376.800	Horizontal	37.9	54.0	16.1	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 2DH5 / SISO / Core 0

2310 MHz to 2390 MHz Restricted Band

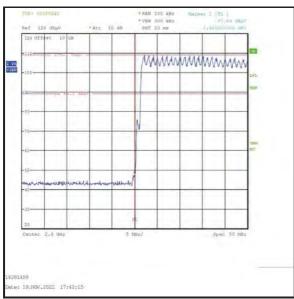
Upper Band Edge

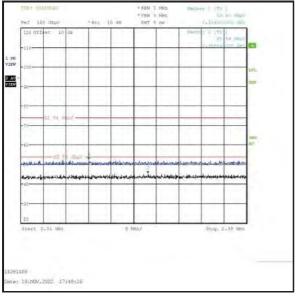
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	47.9	89.1*	41.2	Complied
2483.5	Horizontal	51.4	74.0	22.6	Complied
2484.141	Horizontal	53.0	74.0	21.0	Complied

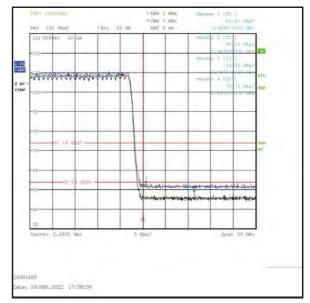
Results: Hopping Mode / 2DH5 / SISO / Core 0

Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	32.4**	54.0	21.6	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2334.000	Horizontal	52.4	74.0	21.6	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2355.040	Horizontal	45.4	54.0	8.6	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 2DH5 / SISO / Core 0

2310 MHz to 2390 MHz Restricted Band

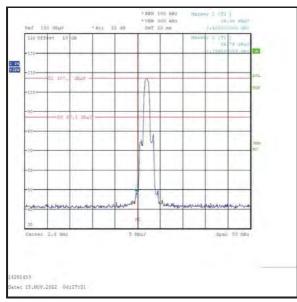
Upper Band Edge

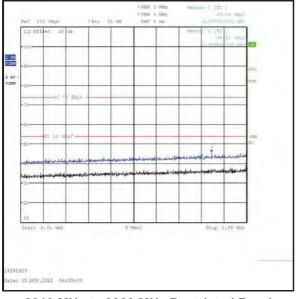
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.599	Horizontal	48.8	87.1*	38.3	Complied
2400.0	Horizontal	48.4	87.1*	38.7	Complied
2483.5	Horizontal	53.6	74.0	20.4	Complied
2483.550	Horizontal	53.8	74.0	20.2	Complied

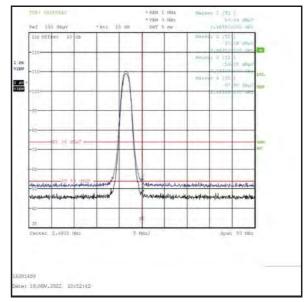
Results: Static Mode / 3DH5 / SISO / Core 0

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	34.6**	54.0	19.4	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2377.520	Horizontal	45.6	74.0	28.4	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2389.840	Horizontal	38.1	54.0	15.9	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 3DH5 / SISO / Core 0

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

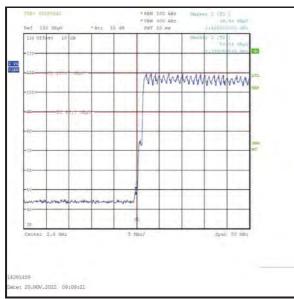
Transmitter Band Edge Radiated Emissions (continued)

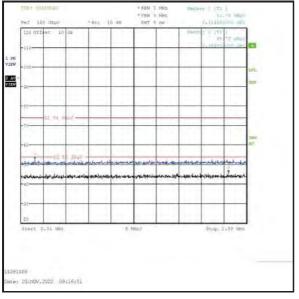
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.760	Horizontal	50.0	89.7*	39.7	Complied
2400.0	Horizontal	48.9	89.7*	40.8	Complied
2483.5	Horizontal	52.4	74.0	21.6	Complied
2489.750	Horizontal	53.6	74.0	20.4	Complied

Results: Hopping Mode / 3DH5 / SISO / Core 0

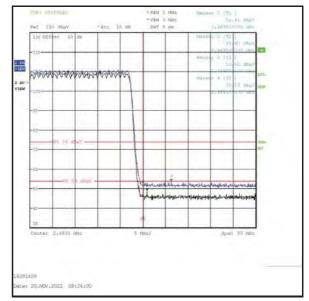
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.4**	54.0	20.6	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2314.880	Horizontal	52.8	74.0	21.2	Complied


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2383.600	Horizontal	45.7	54.0	8.3	Complied

ISSUE DATE: 14 MARCH 2023


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 3DH5 / SISO / Core 0

2310 MHz to 2390 MHz Restricted Band

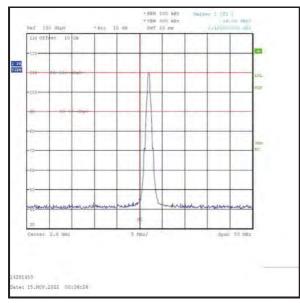
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

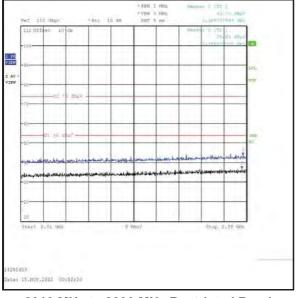
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	44.1	99.0*	54.9	Complied
2483.5	Horizontal	51.5	74.0	22.5	Complied
2489.590	Horizontal	53.1	74.0	20.9	Complied

Results: Static Mode / DH5 / SISO / Core 1

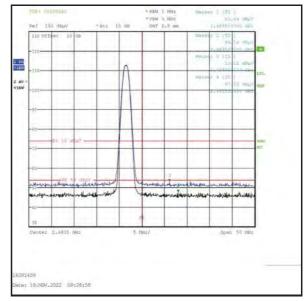
Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	32.5**	54.0	21.5	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2388.718	Horizontal	43.7	74.0	30.3	Complied


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2388.320	Horizontal	36.8	54.0	17.2	Complied

Transmitter Band Edge Radiated Emissions (continued)


Results: Static Mode / DH5 / SISO / Core 1

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

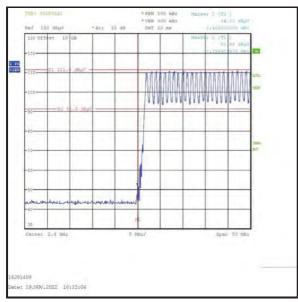
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.920	Horizontal	51.9	91.4*	39.5	Complied
2400.0	Horizontal	44.2	91.4*	47.2	Complied
2483.5	Horizontal	51.2	74.0	22.8	Complied
2483.660	Horizontal	52.7	74.0	21.3	Complied

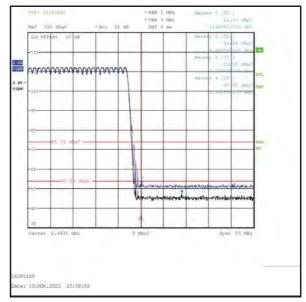
Results: Hopping Mode / DH5 / SISO / Core 1

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	32.2**	54.0	21.8	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2377.840	Horizontal	52.2	74.0	21.8	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2348.160	Horizontal	45.4	54.0	8.6	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / DH5 / SISO / Core 1

2310 MHz to 2390 MHz Restricted Band

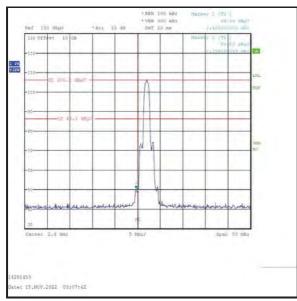
Upper Band Edge

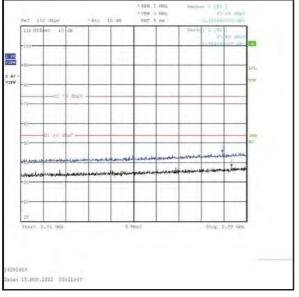
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.599	Horizontal	50.5	86.3*	35.8	Complied
2400.0	Horizontal	49.7	86.3*	36.6	Complied
2483.5	Horizontal	52.6	74.0	21.4	Complied
2484.622	Horizontal	54.0	74.0	20.0	Complied

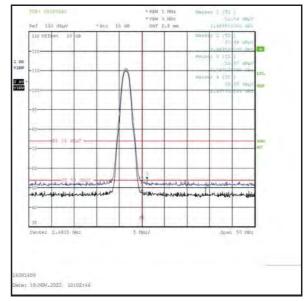
Results: Static Mode / 2DH5 / SISO / Core 1

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.6**	54.0	20.4	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2381.440	Horizontal	45.1	74.0	28.9	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2384.640	Horizontal	37.8	54.0	16.2	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 2DH5 / SISO / Core 1

2310 MHz to 2390 MHz Restricted Band

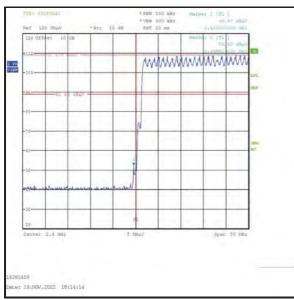
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.519	Horizontal	52.4	89.0*	36.6	Complied
2400.0	Horizontal	49.0	89.0*	40.0	Complied
2483.5	Horizontal	51.2	74.0	22.8	Complied
2485.516	Horizontal	53.0	74.0	21.0	Complied

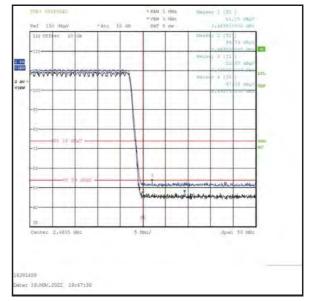
Results: Hopping Mode / 2DH5 / SISO / Core 1

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	32.2**	54.0	21.8	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2388.720	Horizontal	52.5	74.0	21.5	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2365.120	Horizontal	45.7	54.0	8.3	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 2DH5 / SISO / Core 1

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.800	Horizontal	50.6	86.8*	36.2	Complied
2400.0	Horizontal	47.9	86.8*	38.9	Complied
2483.5	Horizontal	52.6	74.0	21.4	Complied
2491.350	Horizontal	53.5	74.0	20.5	Complied

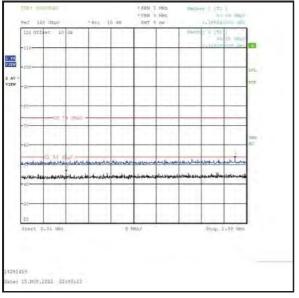
Results: Static Mode / 3DH5 / SISO / Core 1

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.6**	54.0	20.4	Complied

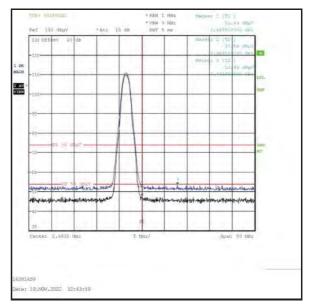
Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2385.840	Horizontal	53.1	74.0	20.9	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2326.000	Horizontal	46.2	54.0	7.8	Complied


ISSUE DATE: 14 MARCH 2023

Transmitter Band Edge Radiated Emissions (continued)


Results: Static Mode / 3DH5 / SISO / Core 1

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

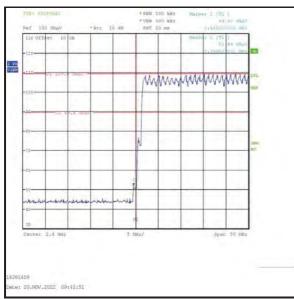
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.519	Horizontal	51.9	89.4*	37.5	Complied
2400.0	Horizontal	49.6	89.4*	39.8	Complied
2483.5	Horizontal	52.3	74.0	21.7	Complied
2492.750	Horizontal	52.9	74.0	21.1	Complied

Results: Hopping Mode / 3DH5 / SISO / Core 1

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.3**	54.0	20.7	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2375.520	Horizontal	52.4	74.0	21.6	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2340.160	Horizontal	46.1	54.0	7.9	Complied

Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 3DH5 / SISO / Core 1

2310 MHz to 2390 MHz Restricted Band

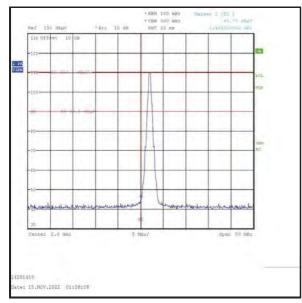
Upper Band Edge

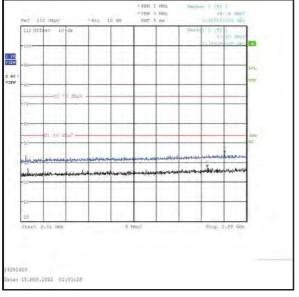
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	45.8	99.1*	53.3	Complied
2483.5	Horizontal	53.0	74.0	21.0	Complied
2483.580	Horizontal	53.4	74.0	20.6	Complied

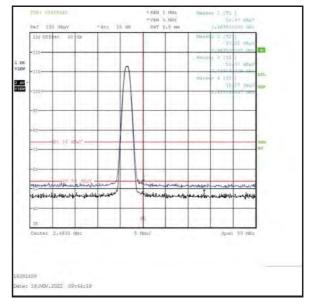
Results: Static Mode / DH5 / SISO / Core 2

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	34.0*	54.0	20.0	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2382.160	Horizontal	44.8	74.0	29.2	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2376.080	Horizontal	37.3	54.0	16.7	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / DH5 / SISO / Core 2

2310 MHz to 2390 MHz Restricted Band

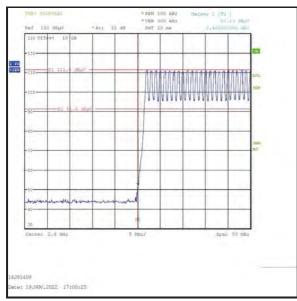
Upper Band Edge

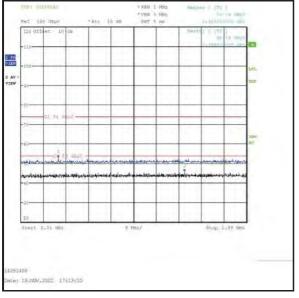
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	52.2	91.4*	39.2	Complied
2483.5	Horizontal	51.0	74.0	23.0	Complied
2497.646	Horizontal	53.0	74.0	21.0	Complied

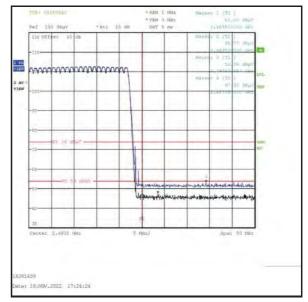
Results: Hopping Mode / DH5 / SISO / Core 2

Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	32.0**	54.0	22.0	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2323.200	Horizontal	52.8	74.0	21.2	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2368.000	Horizontal	45.8	54.0	8.2	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / DH5 / SISO / Core 2

2310 MHz to 2390 MHz Restricted Band

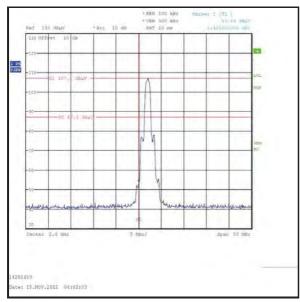
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

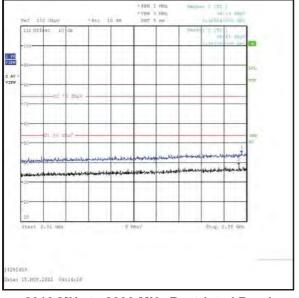
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	53.7	87.1*	33.4	Complied
2483.5	Horizontal	52.6	74.0	21.4	Complied
2493.516	Horizontal	54.4	74.0	19.6	Complied

Results: Static Mode / 2DH5 / SISO / Core 2

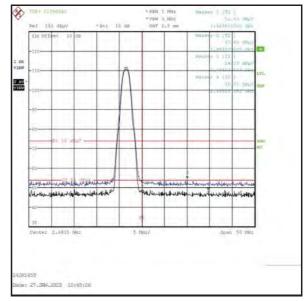
Frequency (MHz)	Antenna Polarity	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	33.6**	54.0	20.4	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2388.240	Horizontal	44.7	74.0	29.3	Complied


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2387.200	Horizontal	38.4	54.0	15.6	Complied

Transmitter Band Edge Radiated Emissions (continued)


Results: Static Mode / 2DH5 / SISO / Core 2

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

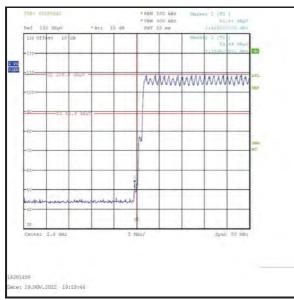
Upper Band Edge

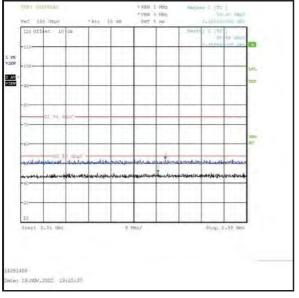
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.519	Horizontal	53.5	88.9*	35.4	Complied
2400.0	Horizontal	51.8	88.9*	37.1	Complied
2483.5	Horizontal	52.0	74.0	22.0	Complied
2491.000	Horizontal	53.4	74.0	20.6	Complied

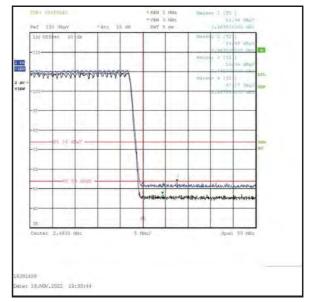
Results: Hopping Mode / 2DH5 / SISO / Core 2

Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
2483.5	Horizontal	33.0**	54.0	21.0	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2361.120	Horizontal	52.3	74.0	21.7	Complied

Fi	requency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2	2358.640	Horizontal	45.4	54.0	8.6	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 2DH5 / SISO / Core 2

2310 MHz to 2390 MHz Restricted Band

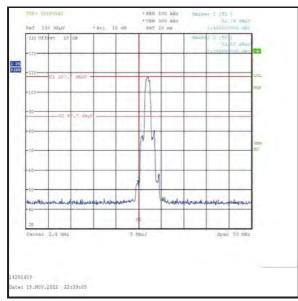
Upper Band Edge

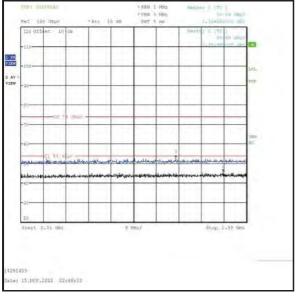
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.850	Horizontal	53.5	87.7*	34.2	Complied
2400.0	Horizontal	52.7	87.7*	35.0	Complied
2483.5	Horizontal	52.3	74.0	21.7	Complied
2498.000	Horizontal	53.4	74.0	20.6	Complied

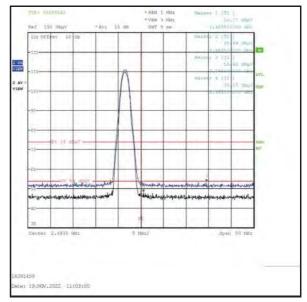
Results: Static Mode / 3DH5 / SISO / Core 2

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.3**	54.0	20.7	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2364.880	Horizontal	52.9	74.0	21.1	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2381.680	Horizontal	45.7	54.0	8.3	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 3DH5 / SISO / Core 2

2310 MHz to 2390 MHz Restricted Band

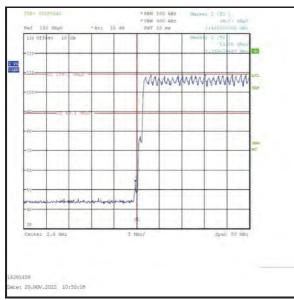
Upper Band Edge

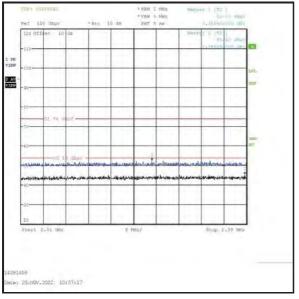
Transmitter Band Edge Radiated Emissions (continued)

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.679	Horizontal	53.6	89.1*	35.5	Complied
2400.0	Horizontal	48.1	89.1*	41.0	Complied
2483.5	Horizontal	51.5	74.0	22.5	Complied
2497.516	Horizontal	52.9	74.0	21.1	Complied

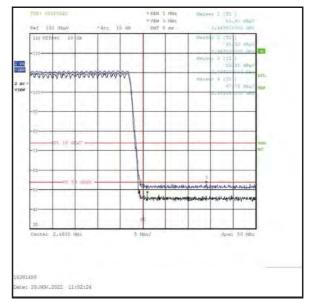
Results: Hopping Mode / 3DH5 / SISO / Core 2

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	32.5**	54.0	21.5	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2356.400	Horizontal	52.5	74.0	21.5	Complied

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2389.360	Horizontal	45.4	54.0	8.6	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 3DH5 / SISO / Core 2

2310 MHz to 2390 MHz Restricted Band

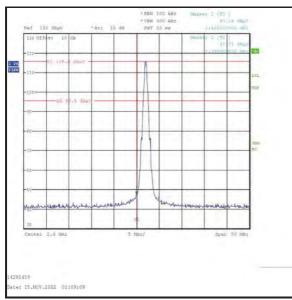
Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

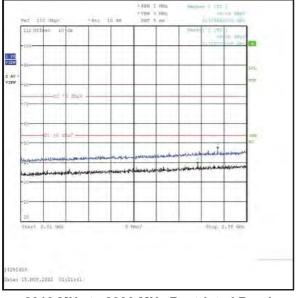
Results: Static Mode / DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.920	Horizontal	47.7	95.6*	47.9	Complied
2400.0	Horizontal	47.2	95.6*	48.4	Complied
2483.5	Horizontal	53.5	74.0	20.5	Complied
2483.660	Horizontal	54.5	74.0	19.5	Complied

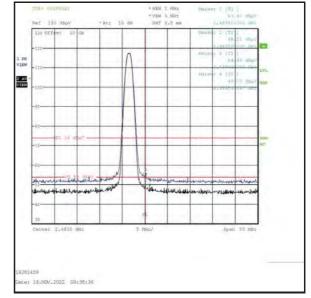
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	34.5**	54.0	19.5	Complied


Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2379.680	Horizontal	46.7	74.0	27.3	Complied


Fi	requency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2	2372.720	Horizontal	39.1	54.0	14.9	Complied

Transmitter Band Edge Radiated Emissions (continued)


Results: Static Mode / DH5 / Beamforming / Core 0 + Core 1

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

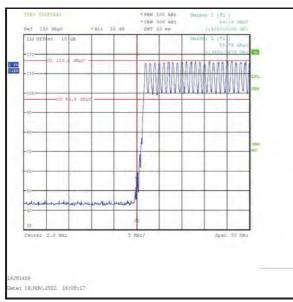
Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / DH5 / Beamforming / Core 0 + Core 1

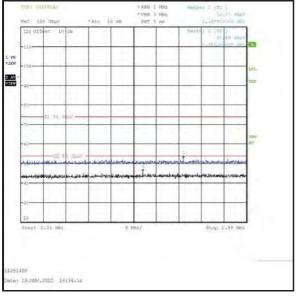
Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.920	Horizontal	55.8	96.8*	41.0	Complied
2400.0	Horizontal	54.2	96.8*	42.6	Complied
2483.5	Horizontal	52.0	74.0	22.0	Complied
2499.150	Horizontal	53.1	74.0	20.9	Complied

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.0**	54.0	21.0	Complied

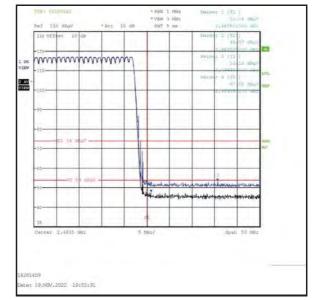
Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2367.600	Horizontal	52.5	74.0	21.5	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2353.200	Horizontal	46.7	54.0	7.3	Complied


ISSUE DATE: 14 MARCH 2023

Transmitter Band Edge Radiated Emissions (continued)


Results: Hopping Mode / DH5 / Beamforming / Core 0 + Core 1

Lower Band Edge

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

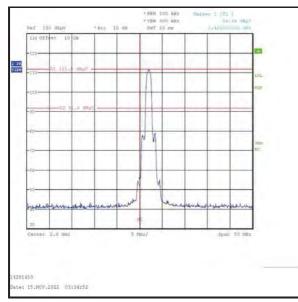
Transmitter Band Edge Radiated Emissions (continued)

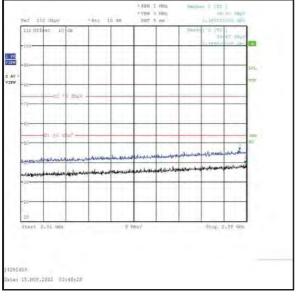
Results: Static Mode / 2DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	54.9	91.8*	36.9	Complied
2483.5	Horizontal	52.6	74.0	21.4	Complied
2484.622	Horizontal	54.0	74.0	20.0	Complied

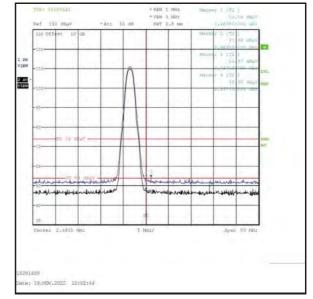
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.6**	54.0	20.4	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2387.520	Horizontal	46.3	74.0	27.7	Complied


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2389.520	Horizontal	39.5	54.0	14.5	Complied

ISSUE DATE: 14 MARCH 2023


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 2DH5 / Beamforming / Core 0 + Core 1

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

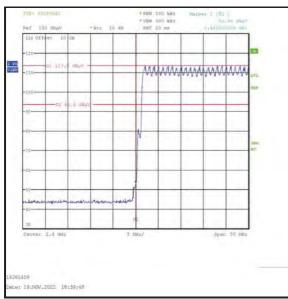
Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 2DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2400.0	Horizontal	53.0	93.6*	40.6	Complied
2483.5	Horizontal	52.1	74.0	21.9	Complied
2485.855	Horizontal	53.1	74.0	20.9	Complied

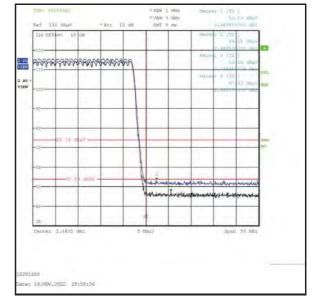
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	33.1**	54.0	20.9	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2370.400	Horizontal	52.7	74.0	21.3	Complied

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2381.680	Horizontal	45.5	54.0	8.5	Complied

ISSUE DATE: 14 MARCH 2023


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 2DH5 / Beamforming / Core 0 + Core 1

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

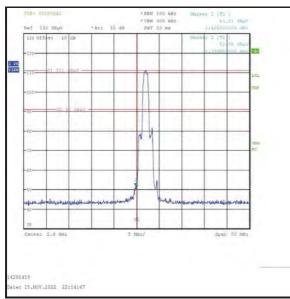
Transmitter Band Edge Radiated Emissions (continued)

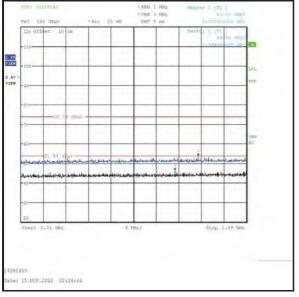
Results: Static Mode / 3DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.650	Horizontal	52.1	91.0*	38.9	Complied
2400.0	Horizontal	51.2	91.0*	39.8	Complied
2483.5	Horizontal	54.3	74.0	19.7	Complied
2483.550	Horizontal	54.8	74.0	19.2	Complied

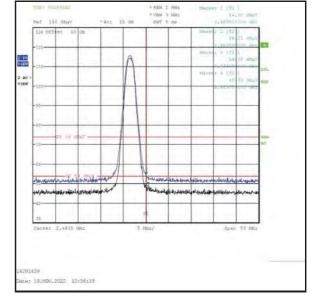
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	35.3**	54.0	18.7	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak


Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2372.800	Horizontal	53.7	74.0	20.3	Complied


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2364.640	Horizontal	46.4	54.0	7.6	Complied

ISSUE DATE: 14 MARCH 2023


Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 3DH5 / Beamforming / Core 0 + Core 1

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

Transmitter Band Edge Radiated Emissions (continued)

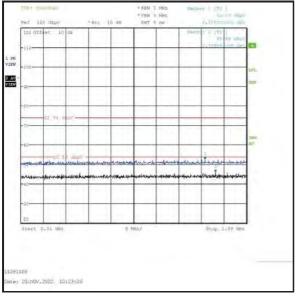
Results: Hopping Mode / 3DH5 / Beamforming / Core 0 + Core 1

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2399.760	Horizontal	53.2	93.8*	40.6	Complied
2400.0	Horizontal	51.5	93.8*	42.3	Complied
2483.5	Horizontal	53.2	74.0	20.8	Complied
2485.500	Horizontal	53.3	74.0	20.7	Complied

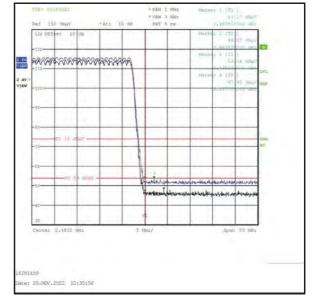
Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	Horizontal	34.2**	54.0	19.8	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak

Frequency (MHz)	Antenna Polarity	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
2375.200	Horizontal	52.5	74.0	21.5	Complied


Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBµV/m)	(dBµV/m)	(dB)	
2378.960	Horizontal	46.0	54.0	8.0	Complied

ISSUE DATE: 14 MARCH 2023


Transmitter Band Edge Radiated Emissions (continued)

Results: Hopping Mode / 3DH5 / Beamforming / Core 0 + Core 1

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge

ISSUE DATE: 14 MARCH 2023

Appendix 1

FHSS Duty Cycle Correction Factor Calculation

In accordance with KDB 558074 section 9 and ANSI C63.10 section 7.5, a duty cycle correction factor may be applied to calculate the average radiated field strength emission levels for an FHSS device.

For DH5, 2DH5 and 3DH5 *Bluetooth* signals, the following values were taken from the *Bluetooth* Core Specification V5.0 to give the worst case correction:

Modulation	DH5, 2DH5 and 3DH5
Channel Hopping Rate (Hops/s)	1600
Tx Timeslots	5
Rx Timeslots	1
Adjusted Hopping Rate for Adaptive Frequency Hopping (Hops/s)	266.667
Time per Hop (ms)	3.75
Minimum Number of Channels	20
Time per Hop Sequence (ms)	75
Maximum Number of Hops on One Channel in any 100 ms Observation Period	3
Maximum Dwell Time on One Channel in any 100 ms Observation Period (ms)	11.25
Calculated Duty cycle correction factor applied (dB)	19.0
Maximum Duty cycle correction factor applied (dB)	19.0

The duty cycle correction factor was calculated based on the above values:

DH5, 2DH5 and 3DH5: 20*Log(11.25 ms / 100 ms) = 19.0 dB

--- END OF REPORT ---