

7.6 Contention Based Protocol – 802.11a/ax(SU) §15.407(d)(6), RSS-248 [4.8]

Test Overview and Limit

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed indoor low-power devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 987594 D02 v01r01

Test Settings

- 1. Configure the EUT to transmit with a constant duty cycle.
- 2. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth
- 3. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT.
- 4. Connect the output port of the EUT to the signal analyzer 2, as shown in Figure 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- 5. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
- Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2.
- 8. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- 10. Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 11. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal and repeat the process.

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 450 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 159 of 282
© 2023 ELEMENT	•		V 10.5 12/15/2021

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

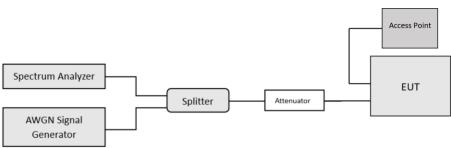


Figure 7-5. Contention-based protocol test setup, conducted method

Test Notes

- 1. Per guidance from KDB 987594 D02 v01r01, contention-based protocol was tested using an AWGN signal with a bandwidth of 10MHz. The amplitude of the signal was increased until detected by the EUT, signaled by the ceasing of transmission, marker indicates the point at which the AWGN signal is introduced.
- 2. Per KDB 987594 D04 v01, contention-based protocol was tested with receiver with the lowest antenna gain.
- 3. 15 trials were ran in order to assure that at least 90% of certainty was met.

Detection Level = Injected AWGN Power (dBm) – Antenna Gain (dBi) + Path Loss (dB)

Equation 7-1. Incumbent Detection Level Calculation

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 160 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 160 of 282
© 2023 ELEMENT	•		V 10.5 12/15/2021

Band	Channel	Channel Frquency [MHz]	Channel BW [MHz]	Incumbent Frequency [MHz]	Injected (AWGN) [dBm]	Antenna Gain [dBi]	Adjusted Power Level [dBm]	Detection Limit [dBm]	Margin [dB]
	53	6215	20	6215	-70.33	-1.50	-68.83	-62.0	-6.83
UNII				6110	-67.68	-1.50	-66.18	-62.0	-4.18
Band 5	47	6185	160	6185	-68.83	-1.50	-67.33	-62.0	-5.33
				6260	-65.98	-1.50	-64.48	-62.0	-2.48
	101	6455	20	6455	-71.71	-0.20	-71.51	-62.0	-9.51
UNII				6430	-70.32	-0.30	-70.02	-62.0	-8.02
Band 6	111	6505	160	6505	-70.12	-0.20	-69.92	-62.0	-7.92
				6580	-66.52	-0.20	-66.32	-62.0	-4.32
	149	6695	20	6695	-70.29	-0.80	-69.49	-62.0	-7.49
UNII				6590	-67.69	-0.20	-67.49	-62.0	-5.49
Band 7	143	6665	160	6665	-67.99	-0.20	-67.79	-62.0	-5.79
				6740	-65.69	-2.90	-62.79	-62.0	-0.79
	197	6935	20	6935	-70.72	-4.50	-66.22	-62.0	-4.22
UNII				6910	-69.52	-4.50	-65.02	-62.0	-3.02
Band 8	207	6985	160	6985	-70.42	-4.90	-65.52	-62.0	-3.52
				7060	-68.02	-5.10	-62.92	-62.0	-0.92

Table 7-53. Contention Based Protocol – Incumbent Detection Results

		Channel		Incumbent		ransmission S	
Band	Channel	Frquency [MHz]	Channel BW [MHz]	Frequency [MHz]	Normal	Minimal	Ceased
	53	6215	20	6215	-80.83	-71.33	-68.83
UNII				6110	-78.18	-68.68	-66.18
Band 5	47	6185	160	6185	-79.33	-69.83	-67.33
				6260	-76.48	-66.98	-64.48
	101	6455	20	6455	-83.51	-74.01	-71.51
UNII				6430	-82.02	-72.52	-70.02
Band 6	111	6505	160	6505	-81.92	-72.42	-69.92
				6580	-78.32	-68.82	-66.32
	149	6695	20	6695	-81.49	-71.99	-69.49
UNII				6750	-79.49	-69.99	-67.49
Band 7	175	6825	160	6825	-79.79	-70.29	-67.79
				6900	-74.79	-65.29	-62.79
	197	6935	20	6935	-78.22	-68.72	-66.22
UNII				6910	-77.02	-67.52	-65.02
Band 8	207	6985	160	6985	-77.52	-68.02	-65.52
				7060	-74.92	-65.42	-62.92

Table 7-54. Contention Based Protocol – Detection Results – All Tx Cases

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 161 of 282
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 161 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

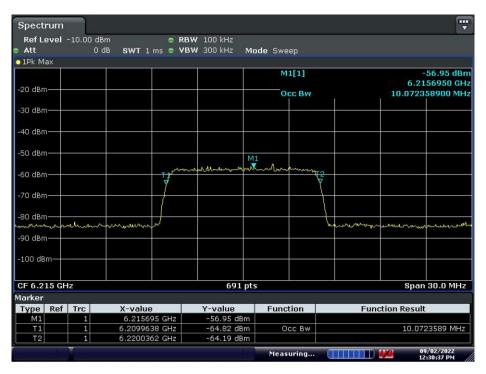

									CBP Detecti	on (1 = Detect	ion, Blank = N	o Detection)									
Band	Channel	Channel Frquency [MHz]	Channel BW [MHz]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Detection Rate [%]	Limit [%]	Pass/Fail
	53	6215	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
Band 5	47	6185	160	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
			I [1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
	101	6455	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
Band 6	111	6505	160	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
	149	6695	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
Band 7	175	6665	160	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
	197	6935	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
Band 8	207	6985	160	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100.0	90	Pass

Table 7-55. Contention Based Protocol – Incumbent Detection Trial Results


FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 162 of 282
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 162 of 282
© 2023 ELEMENT	•	·	V 10.5 12/15/2021

AWGN Plots

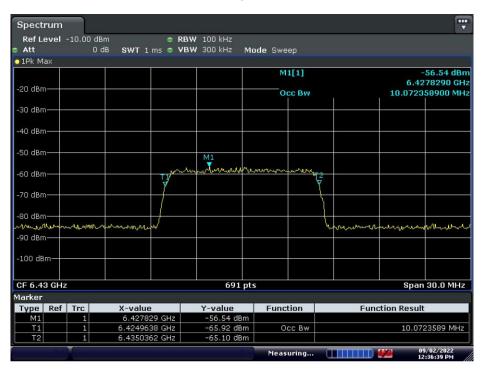
Plot 7-561. AWGN Signal – UNII 5 – 20MHz

Plot 7-562. AWGN Signal - UNII 5 - 160MHz - Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 163 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Spectrum												
Ref Level	-10.00 0	lBm	•	RBW	100 kHz							
Att	C	dB SWT	1 ms 😑 '	vвw	300 kHz	Мо	de Swe	ер				
1Pk Max												
-20 dBm								1[1]				57.33 dBm 20040 GHz
-20 ubiii							0	CC BW			10.1157	74240 MHz
-30 dBm						-						
-40 dBm						-						
-50 dBm				M1								
-60 dBm			TJ		unverrad	mi	mmle	my	2			
-70 dBm									Y-			
-80 dBm			\square			-			+	renterround		
monum	mound	unun	me						10	www.www	mound	a manual and
-90 dBm												
-100 dBm—												
CF 6.185 G	Hz				691	pts					Span	30.0 MHz
Marker												
Type Ref		X-va			Y-value		Func	tion		Fund	ction Result	
M1	1		2004 GHz		-57.33 dB							
T1 T2	1		9204 GHz		-66.20 dB		0	cc Bw			10.115	77424 MHz
	T						Marca		C		417	/02/2022
							meas	uring			12	:33:17 PM

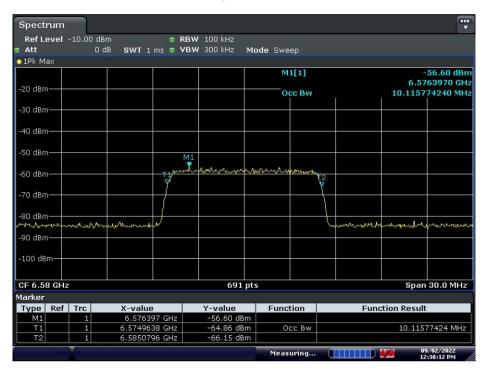
Plot 7-563. AWGN Signal - UNII 5 - 160MHz - Mid


Plot 7-564. AWGN Signal - UNII 5 - 160MHz - High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 164 of 282
© 2023 ELEMENT	faller and an end an end of a second data of a		V 10.5 12/15/2021

Spectrum												
Ref Level	-10.00 dB	3m	•	RBW	100 kHz							
Att	0	dB SWT	1 ms 🗢	VBW	300 kHz	Mod	e Swe	ер				
0 1Pk Max												
							М	1[1]				56.81 dBm 75620 GHz
-20 dBm							0	CC BW			10.1157	74240 MHz
-30 dBm						-						
-40 dBm												
-50 dBm							M1					
-60 dBm			TJ	m	www.	m	imak	menny	2			
-70 dBm			ľ						ł			
-80 dBm			\rightarrow			ļ			\downarrow			
mound	manum	mound	www						Y	menoriount	unun	monument
-90 dBm												
-100 dBm—						├						
CF 6.455 G	Hz				691	pts					Span	30.0 MHz
Marker												
Type Ref	Trc	X-val	ue		Y-value		Func	tion		Fund	ction Result	
M1	1	6.457	562 GHz		-56.81 dE	3m						
T1	1	6,4499	638 GHz		-66.11 dB	3m	0	cc Bw			10.115	77424 MHz
T2	1	6.4600)796 GHz		-65.77 dE	3m						
	N						Meas	uring	0		0 12	9/02/2022 :35:51 PM

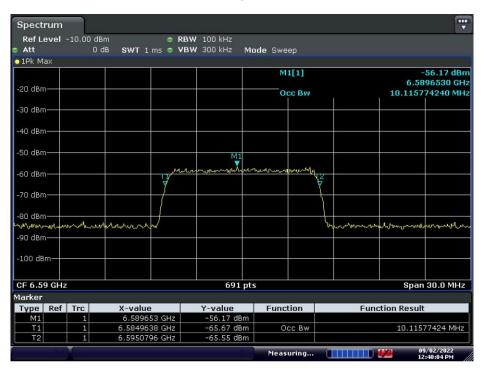
Plot 7-565. AWGN Signal – UNII 6 – 20MHz


Plot 7-566. AWGN Signal - UNII 6 - 160MHz - Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 405 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 165 of 282
© 2023 ELEMENT	fall in an and an article area and an article		V 10.5 12/15/2021

Spectrum												
Ref Level	-10.00 dB	m	• F	RBW	100 kHz							
🗢 Att	0 c	B SWT	1 ms 😑 🕚	/BW	300 kHz	Мо	de Swe	ер				
o 1Pk Max												
						Γ	M	1[1]			-	55.89 dBm
-20 dBm											6.50	45220 GHz
-20 ubili							0	CC BW			10.0723	58900 MHz
-30 dBm												
-30 0811												
-40 dBm												
-to abiii												
-50 dBm												
00 00.00					M1							
-60 dBm				honda	mound	rite	- when have	month	T2			
			T1						Y			
-70 dBm						<u> </u>			1			
									1			
-80 dBm			+	_		-			\rightarrow			
moundary	harmerhaly	mound	and						۲.,	mont	mound	mound
-90 dBm				\rightarrow								
-100 dBm			_	\rightarrow								
CF 6.505 G	H7				691	nts					Snan	30.0 MHz
Marker					0.71	-pas					opan	00.01.112
Type Ref	Trc	X-valı	10		Y-value		Func	tion	8	Euno	tion Result	
M1	1		522 GHz		-55.89 dt	3m	i unc			runc	cion Result	
T1	1		638 GHz		-66.01 dt		0	cc Bw			10.072	23589 MHz
T2	1	6.5100	362 GHz		-64.16 dB	3m						
	M						Meas	uring			09 12	/02/2022 :37:33 PM

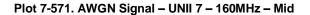
Plot 7-567. AWGN Signal - UNII 6 - 160MHz - Mid

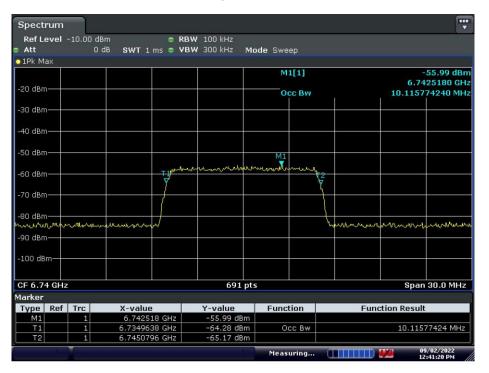

Plot 7-568. AWGN Signal - UNII 6 - 160MHz - High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 000		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 166 of 282		
2023 ELEMENT V 10.5 12/15/2021					

Spectrum												
Ref Level	-10.00 dB	m		RBW 1	00 kHz							
Att	0 0	B SWT	1 ms 🗢 🕚	BW 3	00 kHz	Mod	e Swe	ер				
0 1Pk Max												
						r –	M	1[1]				57.73 dBm
								-[-]				83000 GHz
-20 dBm							0	cc Bw				74240 MHz
										Ê		
-30 dBm						<u> </u>						
-40 dBm			-									
-50 dBm												
								11				
-60 dBm			لسرم	www	howard	mil	untron	Maring				
			4						12			
-70 dBm									ĭ			
70 abiii												
-80 dBm									1			
und your	Merhanner	and and and and	10 al						5	when	an overshird he has	and on the Para a south
	U									0.000000		
-90 dBm												
100 10												
-100 dBm-												
CF 6.695 G	Hz				691	pts					Span	30.0 MHz
Marker												
Type Ref	Trc	X-valu	10	Y	-value		Func	ion	8	Eupo	tion Result	
M1	1		983 GHz		-57.73 dB	\m				, and	cion no suit	
T1	1		638 GHz		-66.00 dB		0	C BW			10.115	77424 MHz
T2	1		796 GHz		-66.89 dB							
	T						(and a second		0			9/02/2022
							Meas	uring			674	:39:01 PM

Plot 7-569. AWGN Signal – UNII 7 – 20MHz




Plot 7-570. AWGN Signal - UNII 7 - 160MHz - Low

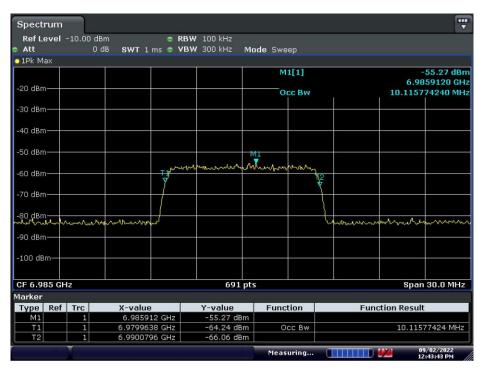
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dawa 407 at 000		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 167 of 282		
2023 ELEMENT V 10.5 12/15/2021					

Spectrum											.
Ref Level	-10.00 dB	m	e F	RBW 100) kHz						
Att	0 0	IB SWT	1 ms 🗢 🔪	/BW 300) kHz 🖪	lode Swe	ep				
0 1Pk Max											
-20 dBm-							1[1]			6.66	54.32 dBm 69540 GHz
						0	CC BW			10.0723	58900 MHz
-30 dBm											
-40 dBm											
-50 dBm						- M1					
-60 dBm			T.J.M	un in	- min	multi	mmly	₽			
-70 dBm								$\left\{ - \right\}$			
-80 dBm								1			
monula	morner	mound	and					have	unnun	mmerch	workbury
-90 dBm											
-100 dBm											
CF 6.665 GH	Iz				691 p	ts				Span	30.0 MHz
Marker											
Type Ref	Trc	X-val	ue	Y-۱	/alue	Func	tion		Func	tion Result	
M1	1		954 GHz		4.32 dBm						
T1	1		638 GHz		4.97 dBm		cc Bw			10.072	23589 MHz
	1	6.6700	1362 GHz	-6	3.88 dBm						
						Meas	uring			09 12	/02/2022 :40:47 PM




Plot 7-572. AWGN Signal - UNII 7 - 160MHz - High

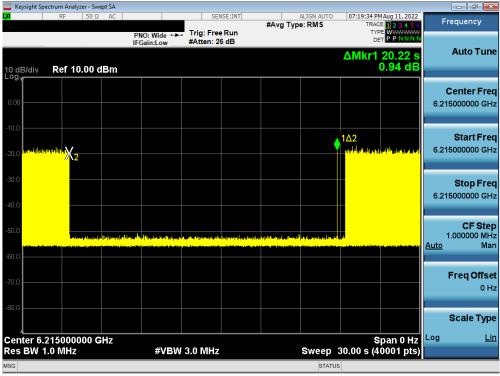
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 000		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 168 of 282		
2023 ELEMENT V 10.5 12/15/2021					


Plot 7-573. AWGN Signal – UNII 8 – 20MHz

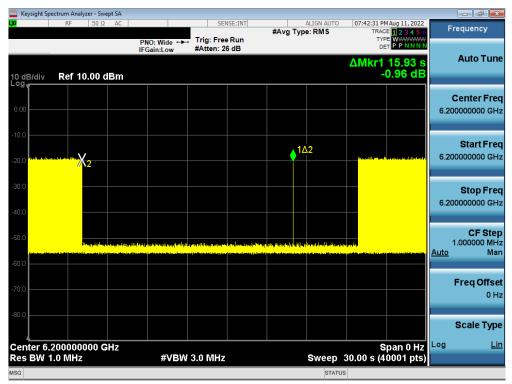
Plot 7-574. AWGN Signal - UNII 8 - 160MHz - Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 000		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 169 of 282		
2023 ELEMENT V 10.5 12/15/2021					

Plot 7-575. AWGN Signal - UNII 8 - 160MHz - Mid

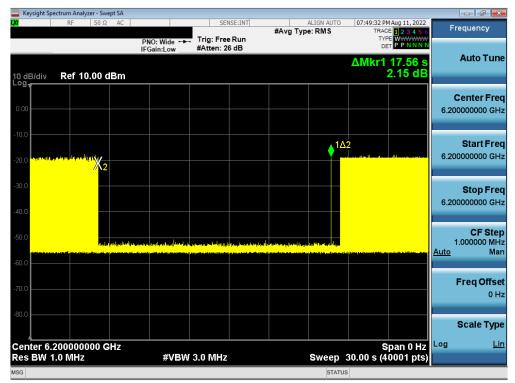


Plot 7-576. AWGN Signal - UNII 8 - 160MHz - High

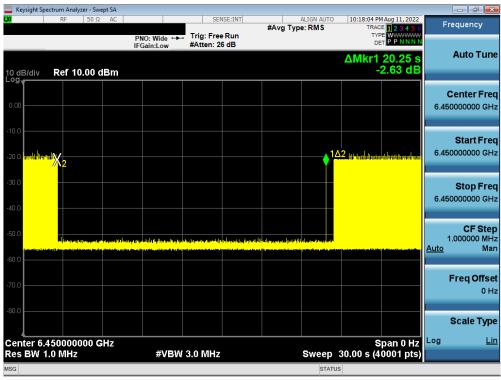

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dawa 470 at 000		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 170 of 282		
2023 ELEMENT V 10.5 12/15/2021					

Contention-Based Protocol Timing Plots

Plot 7-577. Contention Based Protocol Timing Plot – UNII 5 – 20MHz Channel 53


Plot 7-578. Contention Based Protocol Timing Plot – UNII 5 – 160MHz Channel 47 – Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dava 474 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 171 of 282
© 2023 ELEMENT		·	V 10 5 12/15/2021


Plot 7-580. Contention Based Protocol Timing Plot – UNII 5 – 160MHz Channel 47 – High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 470 of 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 172 of 282
© 2023 ELEMENT		·	V 10.5 12/15/2021

🧱 Keysight Spectrum Analyzer - Swept SA					
LX RF 50 Ω AC		SENSE:INT	ALIGN AUTO #Avg Type: RMS	08:04:48 PM Aug 11, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	• //	DET P P N N N N	
10 dB/div Ref 10.00 dBm				ΔMkr1 13.77 s -0.89 dB	Auto Tune
0.00					Center Freq 6.455000000 GHz
-10.0 -20.0 Wywelliadd a 1/10 <mark>×2</mark>			↓1∆2 upthetest	n-dansi palanyak da darinin angka ary	Start Freq 6.455000000 GHz
-30.0					Stop Freq 6.455000000 GHz
-50.0	lan filikasin turkulari San filikasin turkulari San filikasi	at Lon son fall an a traite al an a su sa tha trai Sy ann an an an an ann an an an an an an a		stery microsito karlina k kini ka ukondi mikun vicentet	CF Step 1.000000 MHz <u>Auto</u> Man
-70.0					Freq Offset 0 Hz
				Span 0 Hz	Scale Type
Center 6.455000000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 0 Hz 30.00 s (40001 pts)	
MSG			STAT		

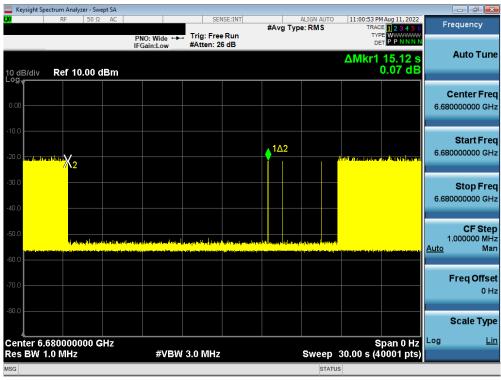
Plot 7-581. Contention Based Protocol Timing Plot – UNII 6 – 20MHz Channel 101

Plot 7-582. Contention Based Protocol Timing Plot – UNII 6 – 160MHz Channel 111 – Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 470 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 173 of 282
© 2023 ELEMENT	•		V 10.5 12/15/2021

	ectrum Analyzer - Swept SA								
l <mark>XI</mark>	RF 50 Ω AC		SEN	ISE:INT	#Avg Typ	ALIGN AUTO	10:31:39 PM Aug 11, 2022 TRACE 1 2 3 4 5 6	Frequ	ency
		PNO: Wide ↔ IFGain:Low	. Trig: Free #Atten: 2		• //		DET PPNNN		
10 dB/div Log _w	Ref 10.00 dBm						ΔMkr1 14.60 s 0.09 dB		ito Tune
0.00									i ter Freq 0000 GHz
-10.0 -20.0 <mark>\\\\</mark> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1000 X2				1∆2		Militian and detransplateness in		a rt Freq 0000 GHz
-30.0 -40.0									o p Freq 0000 GHz
-50.0		Sector of the second states in the second sector of the second sector of the second second second second second		lei kerpantel yaari 1955 - Horisten Hart	til en this dependent		egi (e) In galera departa de la constante		CF Step 0000 MHz Man
-70.0								Fre	q Offset 0 Hz
-80.0	520000000 CH-						Span 0 Hz		ale Type Lin
Res BW 1	520000000 GHz .0 MHz	#VBW	3.0 MHz			Sweep	span u Hz (40001 pts) 30.00		
MSG						STATUS			

Plot 7-583. Contention Based Protocol Timing Plot - UNII 6 - 160MHz Channel 111 - Mid


Plot 7-584. Contention Based Protocol Timing Plot – UNII 6 – 160MHz Channel 111 – High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 474 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 174 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

www.www.com.com.com.com.com.com.com.com.com.com						
LX RF 50 Ω AC		SENSE:INT	#Avg Typ	ALIGN AUTO e: RMS	10:48:48 PM Aug 11, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB			DET PPNNN	
10 dB/div Ref 10.00 dBm					ΔMkr1 14.47 s -0.21 dB	Auto Tune
0.00						Center Freq 6.695000000 GHz
-10.0			•1∆2 —		non-and place of the line of the	Start Freq 6.695000000 GHz
-30.0						Stop Freq 6.695000000 GHz
-50.0	er finnen och het sol förstög annar den Annar att som biska sol att som som som som	Ly foreign the first sector by foreign the sector	igital an eurificantini karpanyak Manana ang karpanyak			CF Step 1.000000 MHz <u>Auto</u> Man
-70.0						Freq Offset 0 Hz
-80.0						Scale Type
Center 6.695000000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz		Sweep	Span 0 Hz 30.00 s (40001 pts)	
MSG				STATU		

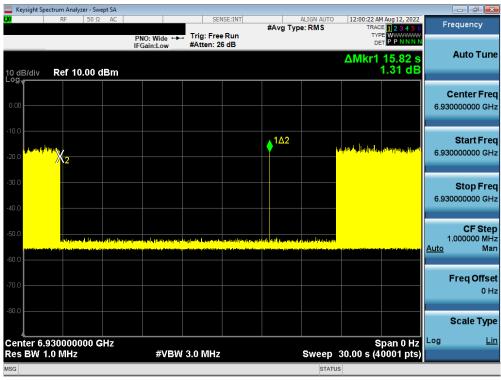
Plot 7-585. Contention Based Protocol Timing Plot - UNII 7 - 20MHz Channel 149

Plot 7-586. Contention Based Protocol Timing Plot – UNII 7 – 160MHz Channel 143 – Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 475 af 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 175 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

	ectrum Analyzer - Swept SA									
L <mark>XI</mark>	RF 50 Ω AC		SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		Aug 11, 2022	Fr	equency
		PNO: Wide ↔ IFGain:Low	Trig: Free #Atten: 20				TYP DE			Auto Turre
10 dB/div Log _∉	Ref 10.00 dBm						ΔMkr1	15.03 s 2.05 dB		Auto Tune
0.00										Center Freq 0000000 GHz
-10.0					•1∆2		and few particula	())), and a second .	6.69	Start Freq 0000000 GHz
-30.0	X2								6.69	Stop Freq 0000000 GHz
-50.0	Lautre Lawry, Latinsara Harr	n (<mark>1) a la substantia (n. 1973) (1) a</mark>	desta a tradicion	(Honorbe control to see	andra an di sa	distance of the Desile	W Derrol)	des antes solar, en altera et al e	1 <u>Auto</u>	CF Step 1.000000 MHz Man
-60.0										Freq Offset 0 Hz
-80.0										Scale Type
	690000000 GHz	#\(D)A(2 0 MH-			Swoon	S		Log	<u>Lin</u>
Res BW 1	I.U MIHZ	#VBW	3.0 MHz				30.00 s (4	ooon pts)		
MSG						STATU	S			

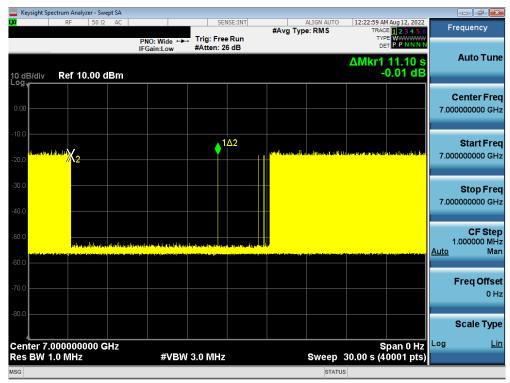
Plot 7-587. Contention Based Protocol Timing Plot - UNII 7 - 160MHz Channel 143 - Mid


Plot 7-588. Contention Based Protocol Timing Plot – UNII 7 – 160MHz Channel 143 – High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dama 470 at 000			
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 176 of 282			
© 2023 ELEMENT V 10.5 12/15/2021						

🔤 Keysight Spectrum Analyzer - Swept SA					
LX RF 50 Ω AC	SEN	SE:INT #Avg Type		16 AM Aug 12, 2022 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide +++ Trig: Free IFGain:Low #Atten: 26	Run		DET P P N N N	
				r1 15.97 s	Auto Tune
10 dB/div Ref 10.00 dBm				-0.33 dB	
					Center Freq
0.00					6.940000000 GHz
-10.0		1∆2			Start Freq
-20.0 thipshileshell		Y	Nata San Ang Kang Kang Kang Kang Kang Kang Kang Ka	the laby lite the sector	6.940000000 GHz
-30.0					Stop Freq
					6.940000000 GHz
-40.0					
-50.0					CF Step
ange (bei beforder de Landerske fer by be beset bester fer som en som en bester som	ette al bona in an telefol a logal the similar			and the state of the	1.000000 MHz <u>Auto</u> Man
-60.0					
-70.0					Freq Offset
70.0					0 Hz
-80.0					
					Scale Type
Center 6.940000000 GHz				Span 0 Hz	Log <u>Lin</u>
Res BW 1.0 MHz	#VBW 3.0 MHz		Sweep 30.00	s (40001 pts)	
MSG			STATUS		

Plot 7-589. Contention Based Protocol Timing Plot - UNII 8 - 20MHz Channel 197



Plot 7-590. Contention Based Protocol Timing Plot – UNII 8 – 160MHz Channel 207 – Low

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 477 af 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 177 of 282
© 2023 ELEMENT	•	·	V 10.5 12/15/2021

Keysight Spectrum Analyzer - Swept SA					
LXI RF 50 Ω AC		SENSE:INT	#Avg Type: RMS	12:15:42 AM Aug 12, 2022 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 10.00 dBm	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	• //	ΔMkr1 12.49 s -0.91 dB	Auto Tune
0.00					Center Freq 7.000000000 GHz
-10.0		1∆2	ald it i make in tan 1. O. I Mae	ndill (h. a. Jacobb Like Lander an Araba I. A	Start Freq 7.000000000 GHz
-30.0					Stop Freq 7.000000000 GHz
-50.0 -find a de Marchado das (Angles das -60.0	ant have been been from your the part of t	daga tilagi daga taraf pagta Jakitana pada a		n, see faan jadin ki kase ja ja sa jaksia kilaan din kuu	CF Step 1.000000 MHz <u>Auto</u> Man
-70.0					Freq Offset 0 Hz
-80.0					Scale Type
Center 7.000000000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep	Span 0 Hz 30.00 s (40001 pts)	
MSG			STATU		

Plot 7-591. Contention Based Protocol Timing Plot - UNII 8 - 160MHz Channel 207 - Mid

Plot 7-592. Contention Based Protocol Timing Plot – UNII 8 – 160MHz Channel 207 – High

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dama 470 at 000			
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 178 of 282			
© 2023 ELEMENT V 10.5 12/15/2021						

7.7 Radiated Spurious Emissions – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n, 802.11ax(SU) (20MHz BW), 802.11n, 802.11ax(SU) (40MHz BW), and 802.11ac, 802.11ax(SU) (80MHz), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.925-7.125 GHz band: All emissions outside of the 5.925-7.125 GHz band shall not exceed an EIRP of -27 dBm/MHz. Emissions found in a restricted band are subject to the limits of 15.209 as shown in the table below.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-56. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 470 of 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 179 of 282
© 2023 ELEMENT			V 10 5 12/15/2021

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

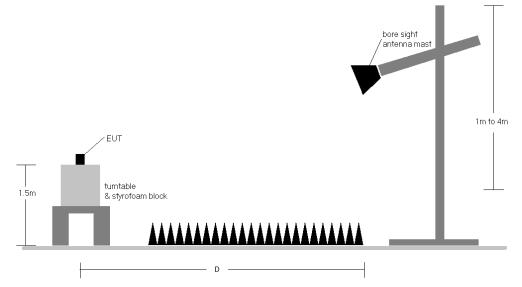


Figure 7-6. Test Instrument & Measurement Setup

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 180 of 282
© 2023 ELEMENT		·	V 10.5 12/15/2021

Test Notes

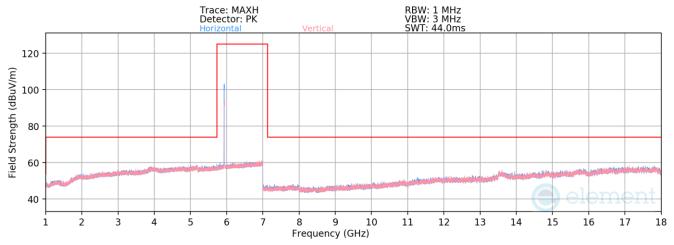
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-56.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-56. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas.
- 6. D is the measurement test distance and emissions 1-18GHz were measured at a 3 meters test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. All data rates were investigated and only the worse case is reported
- 9. The unit was tested with all possible modes and only the highest emission is reported.
- 10. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

Determining Spurious Emissions Levels

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] Preamplifier Gain [dB]
- Margin [dB] = Field Strength Level $[dB_{\mu}V/m]$ Limit $[dB_{\mu}V/m]$

Radiated Band Edge Measurement Offset

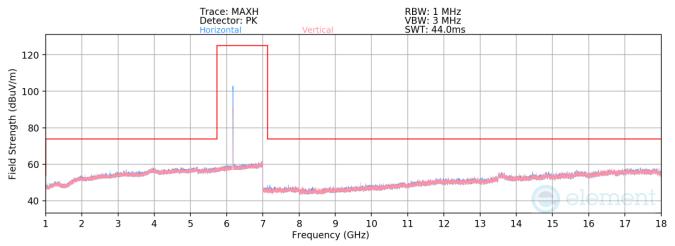

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.5 was calculated using the formula:

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 101 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 181 of 282
© 2023 ELEMENT	-	•	V 10.5 12/15/2021

7.7.1 Antenna 5b Radiated Spurious Emission

Plot 7-593. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 1)

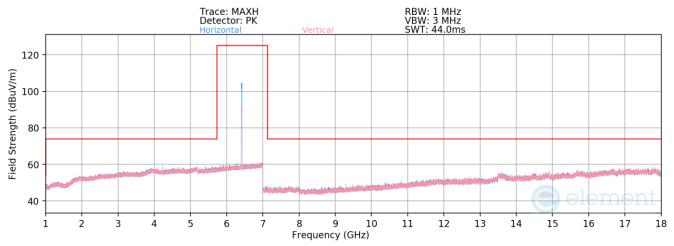

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.32	17.51	52.19	73.98	-21.79
*	11870.00	Average	Н	-	-	-84.52	17.51	39.99	53.98	-13.99
*	17805.00	Peak	Н	-	-	-72.11	23.10	57.99	73.98	-15.99
*	17805.00	Average	Н	-	-	-84.70	23.10	45.40	53.98	-8.58

Table 7-57. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 200
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 182 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-594. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 45, MCS2)

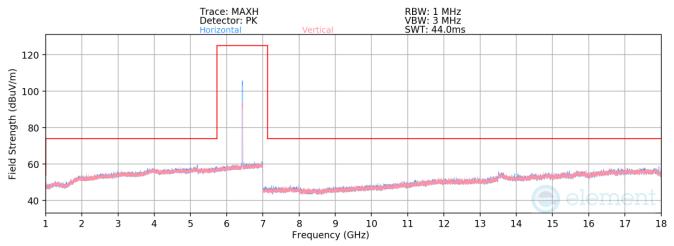

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.77	18.09	52.32	73.98	-21.66
*	12350.00	Average	Н	-	-	-85.11	18.09	39.98	53.98	-14.00

Table 7-58. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 202		
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 183 of 282		
© 2023 ELEMENT V 10.5 12/15/2021					

Plot 7-595. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 93)

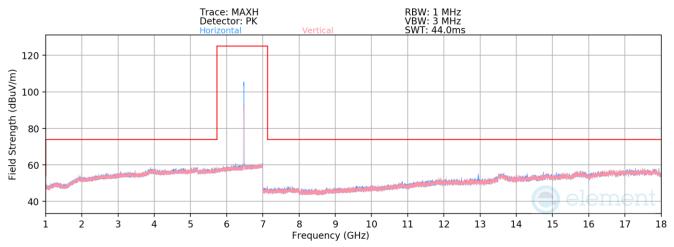

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6415MHz
Channel:	93
	· · · · · · · · · · · · · · · · · · ·

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-85.36	17.95	39.59	68.20	-28.61

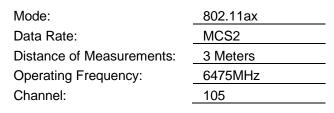
Table 7-59. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764	element	MEASUREMENT REPORT	Approved by:	
IC: 579C-A2764		(CERTIFICATION)	Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 184 of 282	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Faye 104 01 202	
© 2023 ELEMENT V 10.5 12/15/2021				

Plot 7-596. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 97)

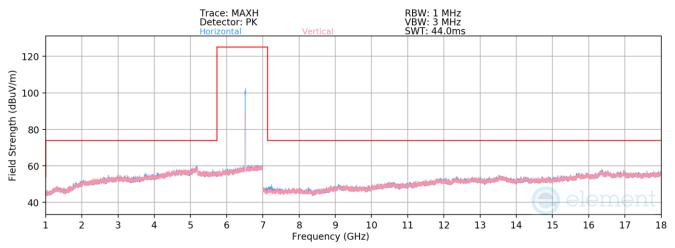

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6435MHz
Channel:	97

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-85.31	18.82	40.51	68.20	-27.69

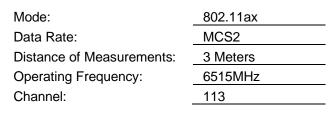

Table 7-60. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764	element	MEASUREMENT REPORT	Approved by:				
IC: 579C-A2764		(CERTIFICATION)	Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 195 of 292				
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 185 of 282				
© 2023 ELEMENT V 10.5 12/15/2021							

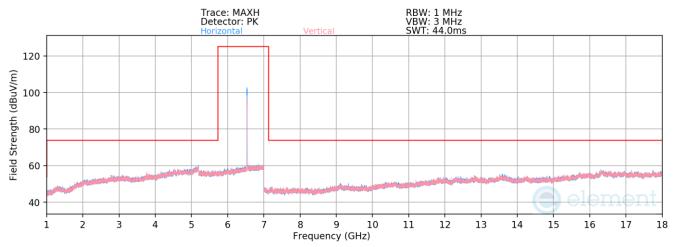
Plot 7-597. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 105, MCS2)



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	208	115	-77.23	18.24	48.01	68.20	-20.19


Table 7-61. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 196 of 292
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 186 of 282
© 2023 ELEMENT			V 10.5 12/15/2021



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-85.32	18.13	39.81	68.20	-28.39

Table 7-62. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 197 of 292
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 187 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-599. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 117)

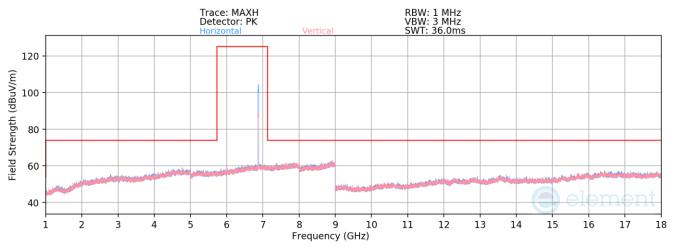
Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6535MHz
Channel:	117

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13070.00	Average	Н	-	-	-85.84	18.51	39.67	68.20	-28.53

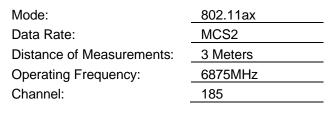
Table 7-63. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 188 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-600. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 149, MCS2)

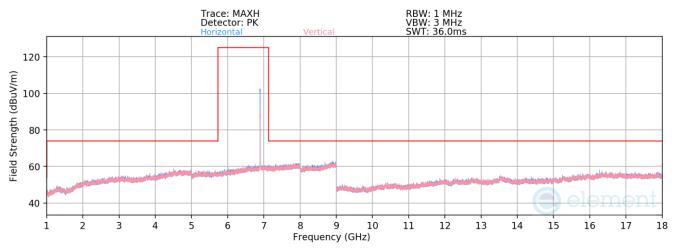

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6695MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-73.75	18.29	51.54	73.98	-22.44
*	13390.00	Average	Н	-	-	-85.51	18.29	39.78	53.98	-14.20

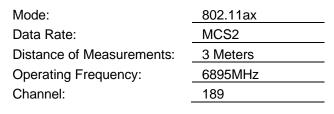

Table 7-64. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 189 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-601. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 185)

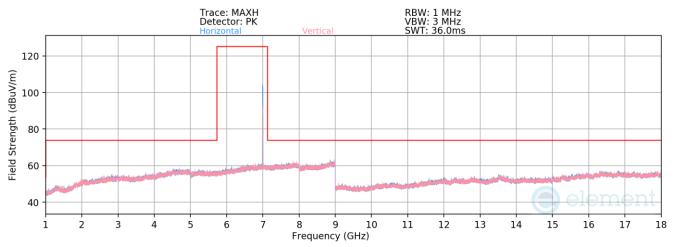


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-85.78	18.12	39.34	68.20	-28.86


Table 7-65. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 190 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-602. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 189)

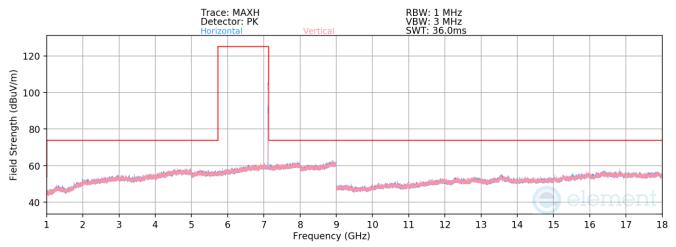


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-85.65	18.12	39.47	68.20	-28.73

Table 7-66. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 101 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 191 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-603. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 209, MCS2)


Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6995MHz
Channel:	209

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13990.00	Average	Н	-	-	-85.70	18.14	39.44	68.20	-28.76

Table 7-67. Radiated Spurious Emission Measurements Antenna 5b

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 200
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 192 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-604. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 233)

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	7115MHz
Channel:	233

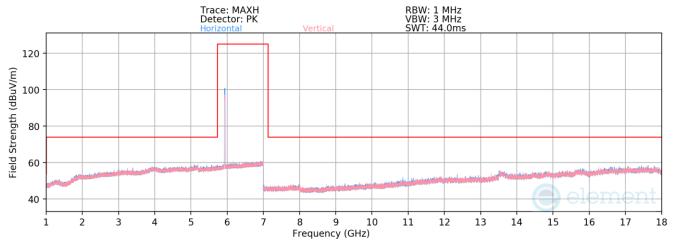
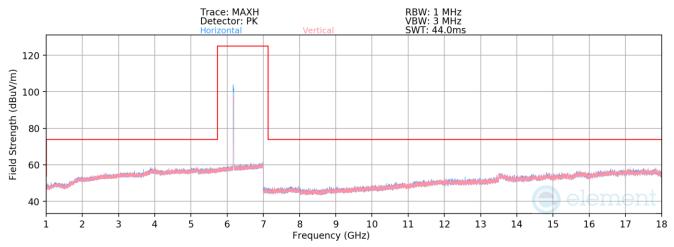

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
14230.00	Average	Н	-	-	-83.58	18.14	41.56	68.20	-26.64

Table 7-68. Radiated Spurious Emission Measurements Antenna 5b

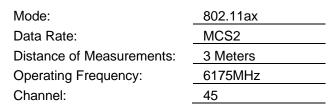
FCC ID: BCGA2764	element	MEASUREMENT REPORT	Approved by:
IC: 579C-A2764		(CERTIFICATION)	Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 102 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 193 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

7.7.2 Antenna 4a Radiated Spurious Emission

Plot 7-605. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax – Ch. 1)

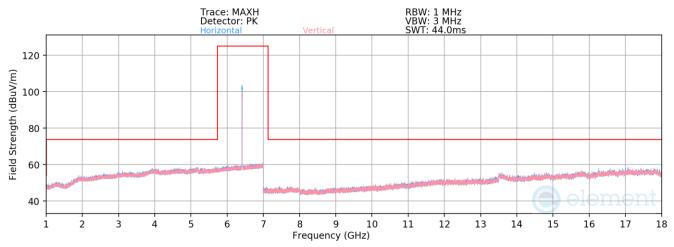

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-73.10	17.51	51.41	73.98	-22.57
*	11870.00	Average	Н	-	-	-83.95	17.51	40.56	53.98	-13.42
*	17805.00	Peak	Н	-	-	-73.27	23.10	56.83	73.98	-17.15
*	17805.00	Average	Н	-	-	-84.72	23.10	45.38	53.98	-8.60

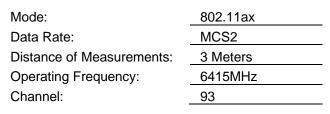

Table 7-69. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 104 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 194 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

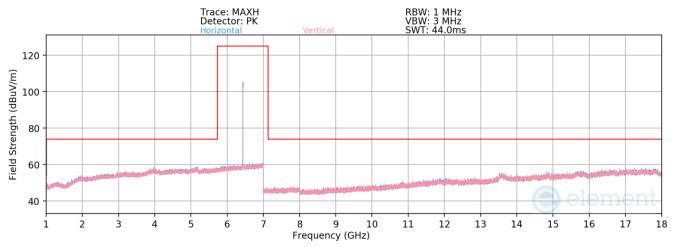
Plot 7-606. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 47, MCS2)

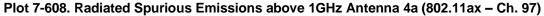


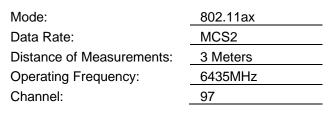
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.98	18.09	52.11	73.98	-21.87
*	12350.00	Average	н	-	-	-84.49	18.09	40.60	53.98	-13.38


Table 7-70. Radiated Spurious Emission Measurements Antenna 4a

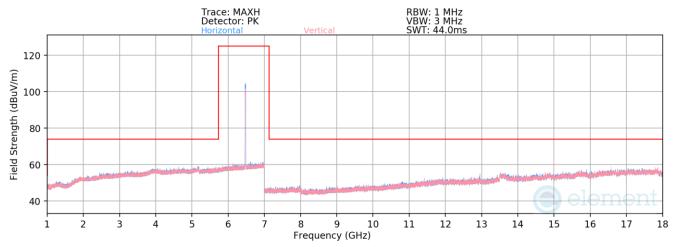
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dama 405 af 000					
1C2205090028-21-R3.BCG	Page 195 of 282							
2 2023 ELEMENT V 10.5 12/15/2021								



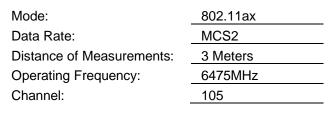

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.98	17.95	39.97	68.20	-28.23


Table 7-71. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Report S/N: Test Dates: EUT Type:		Dama 400 at 000	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 196 of 282	
© 2023 ELEMENT			V 10.5 12/15/2021	

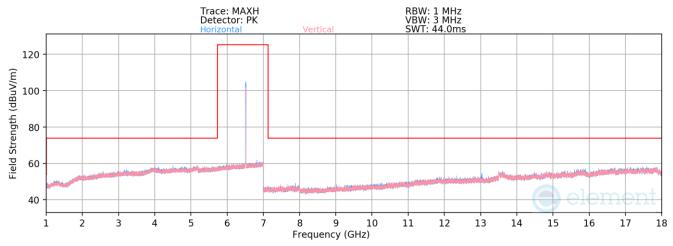


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
12870.00	Average	Н	-	-	-85.11	18.82	40.71	68.20	-27.49	

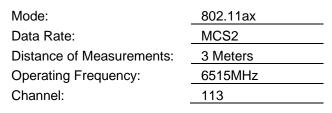

Table 7-72. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	EUT Type:		Dage 107 of 202	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 197 of 282	
© 2023 ELEMENT			V 10.5 12/15/2021	

Plot 7-609. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 105, MCS2)

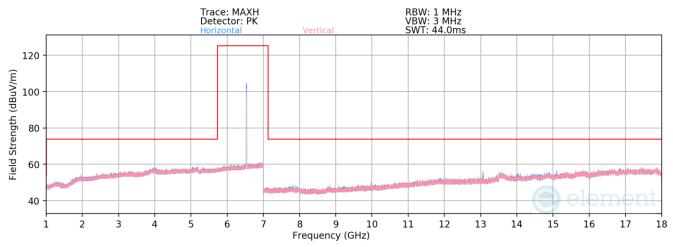


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	102	169	-81.62	18.24	43.62	68.20	-24.58

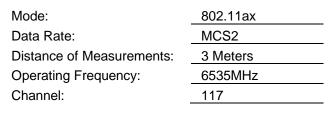

Table 7-73. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 198 of 282	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device		
© 2023 ELEMENT			V 10.5 12/15/2021	

Plot 7-610. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 113)

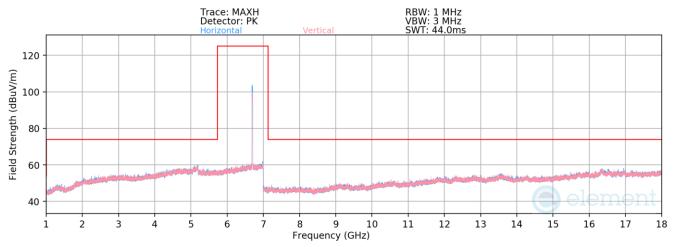


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-79.15	18.13	45.98	68.20	-22.22

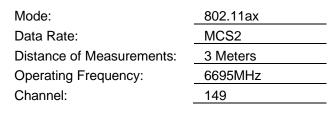

Table 7-74. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N: Test Dates: EUT Type:		EUT Type:	Dage 100 of 282	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 199 of 282	
© 2023 ELEMENT			V 10.5 12/15/2021	

Plot 7-611. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 117)

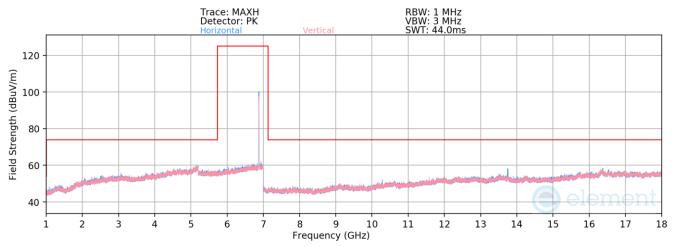


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13070.00	Average	Н	105	161	-77.88	18.51	47.63	68.20	-20.57

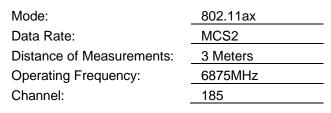

Table 7-75. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	st Report S/N: Test Dates: EUT Type:		D 000 -(000	
1C2205090028-21-R3.BCG	Page 200 of 282			
© 2023 ELEMENT	V 10.5 12/15/2021			

Plot 7-612. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax – Ch. 149, MCS2)

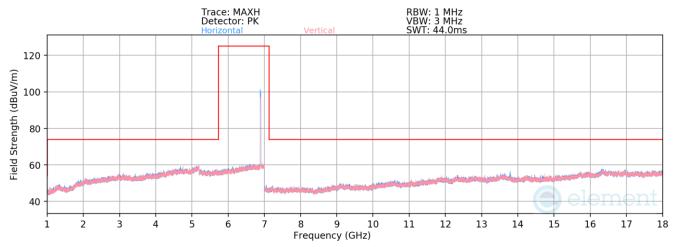


	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-73.05	18.01	51.96	73.98	-22.02
*	13390.00	Average	Н	-	-	-84.23	18.01	40.78	53.98	-13.20

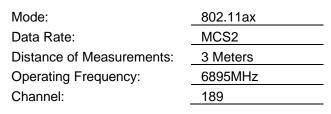

Table 7-76. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 201 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 201 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-613. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 185)

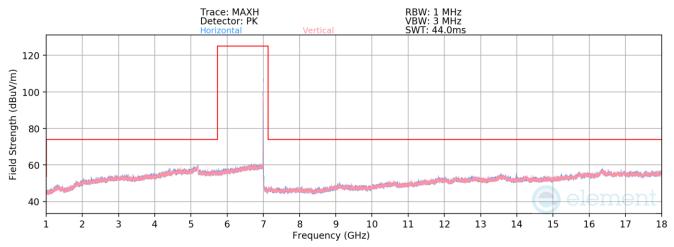


F	requency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	13750.00	Average	н	101	161	-75.46	17.84	49.38	68.20	-18.82

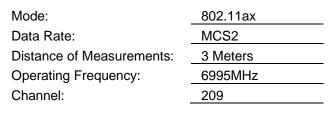

Table 7-77. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	D 000 -f 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 202 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-614. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 189)

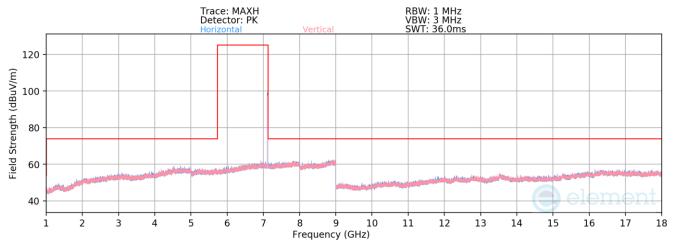


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13790.00	Average	Н	101	157	-76.27	17.74	48.47	68.20	-19.73

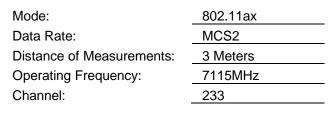

Table 7-78. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 202 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 203 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-615. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax – Ch. 209, MCS2)



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13990.00	Average	Н	101	164	-77.43	17.91	47.48	68.20	-20.72


Table 7-79. Radiated Spurious Emission Measurements Antenna 4a

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 204 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 204 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-616. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 233)

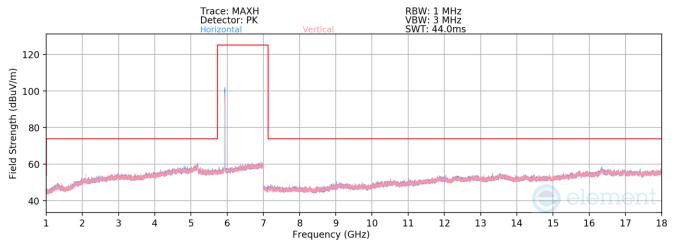
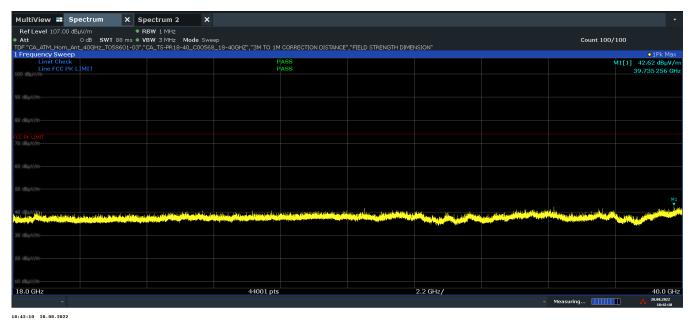

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
14230.00	Average	Н	-	-	-83.83	18.14	41.31	68.20	-26.89

Table 7-80. Radiated Spurious Emission Measurements Antenna 4a


FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 205 of 282
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 205 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

7.7.3 SDM Radiated Spurious Emission

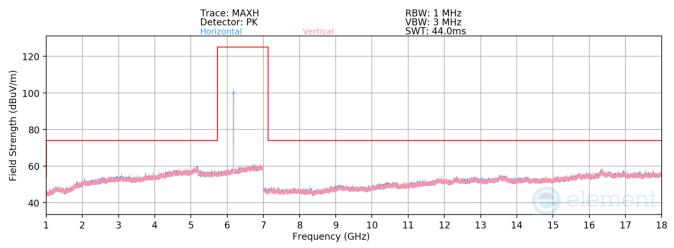
Plot 7-617. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 1)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 at 000	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 206 of 282	
© 2023 ELEMENT			V 10.5 12/15/2021	

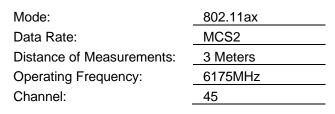
MultiView 📰 Spectrum 🗙	Spectrum 2 X							
	 RBW 1 MHz VBW 3 MHz Mode Swee 03","CA_TS-PR18-40_C00568_ 		CORRECTION DISTANCE	,"FIELD STRENGTH DIME	NSION"		Count 100/	100 • 1Pk Max
Limit Check			ASS					отрк мах и1[1] 42.78 dBµV/r
Line FCC PK LIMIT		P	ASS					39.810 754 GH
0 dBµV/m								
С РК LIMIT 0 dBµV/m								
			s	n and the second states to	hallon	wateral discontrol a	diskila a sa ana asa	in the state of the second
					and the second			the state of the s
I dBµV/m		44001 pts			2.2 GHz/			40.0.0
		44001 pts			2.2 GHZ/		Measuring	40.0 GH

18:45:34 28.08.2022

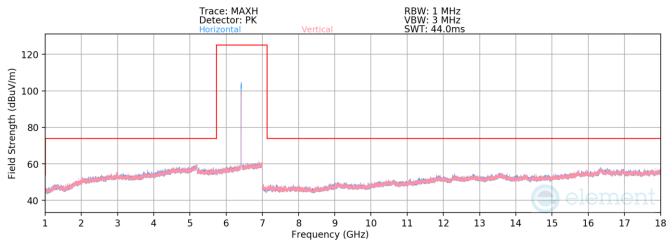
Plot 7-619. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 1, Pol. V)


Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

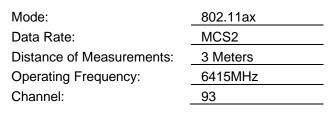
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.13	16.96	51.83	73.98	-22.15
*	11870.00	Average	Н	-	-	-83.56	16.96	40.40	53.98	-13.58
*	17805.00	Peak	Н	-	-	-72.88	21.89	56.01	73.98	-17.97
*	17805.00	Average	Н	-	-	-84.36	21.89	44.53	53.98	-9.45


Table 7-81. Radiated Spurious Emission Measurements SDM

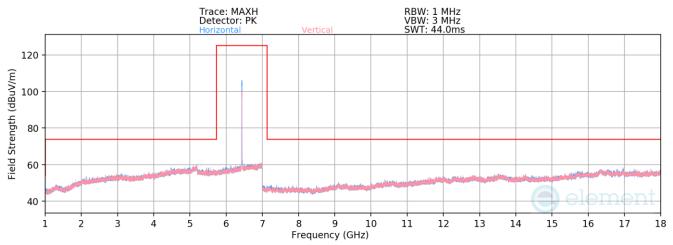
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 007 of 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 207 of 282
© 2023 ELEMENT	•	•	V 10.5 12/15/2021



	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-73.33	17.83	51.50	73.98	-22.48
*	12350.00	Average	Н	-	-	-84.16	17.83	40.67	53.98	-13.31


Table 7-82. Radiated Spurious Emission Measurements SDM

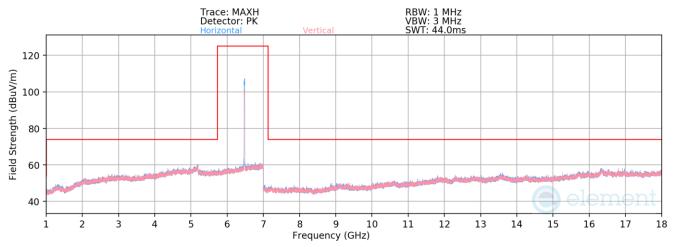
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 208 of 282
© 2023 ELEMENT			V 10.5 12/15/2021



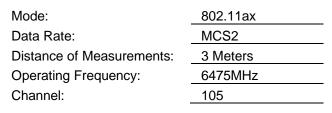

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.43	18.55	41.12	68.20	-27.08

Table 7-83. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 209 of 282
© 2023 ELEMENT		·	V 10.5 12/15/2021

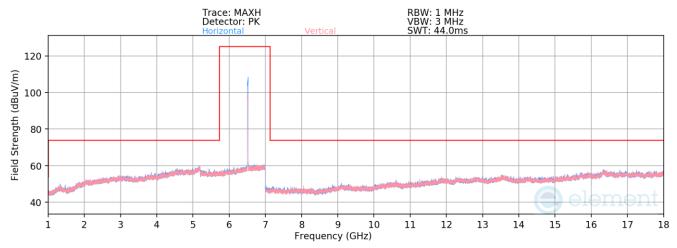

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6435MHz
Channel:	97

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-83.90	18.68	41.78	68.20	-26.42

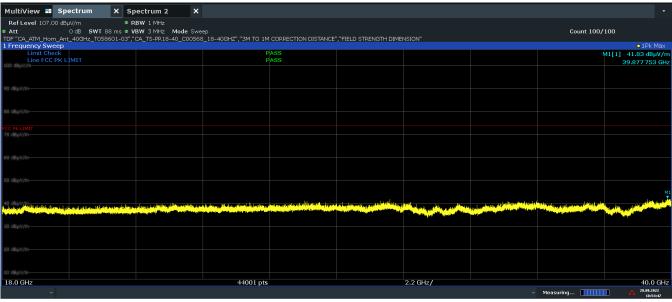

Table 7-84. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 210 of 282
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 210 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-623. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 105, MCS2)



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	-	-	-83.57	18.16	41.59	68.20	-26.61


Table 7-85. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 044 at 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 211 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-624. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 113)

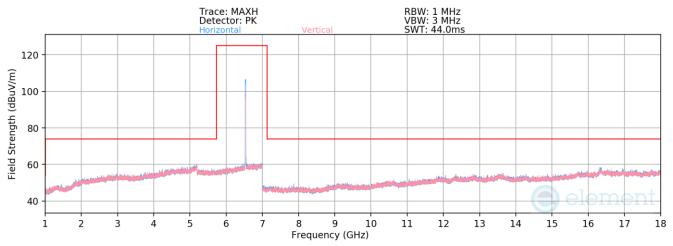
18:54:47 28.08.2022

Plot 7-625. Radiated Spurious Emissions 18-40GHz SDM (802.11ax - Ch. 113, Pol. H)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 040 at 000				
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 212 of 282				
© 2023 ELEMENT V 10.5 12/15/202							

MultiView 🖬 Spectrum 🛛 🗙 S	Spectrum 2 ×						
Att OdB SWT 88 ms ●	RBW 1 MHz VBW 3 MHz Mode Sweep ","CA_TS-PR18-40_C00568_18-40GHZ","3M TO 1M	CORRECTION DISTANCE", "FIE	ELD STRENGTH DIMENS	ION"		Count 100/1	100 • 1Pk Max
Limit Check Line FCC PK LIMIT		ASS				N	11[1] 43.49 dBµV/m
LINE FCC PK LIMIT		ASS					39.837754 GH;
CC PK LIMIT							
					strain d		ا معاليات
				والمتلفق والمسترور والمرافقة	المتحدية فالمتجافة والمتحطي فاستغط والما		aniti ani
0 dBµV/m				and the second sec			
18.0 GHz	44001 pts		2	.2 GHz/			40.0 GH
▼ ▼	44001 pts		Z	.2 GH2/	~	Measuring	

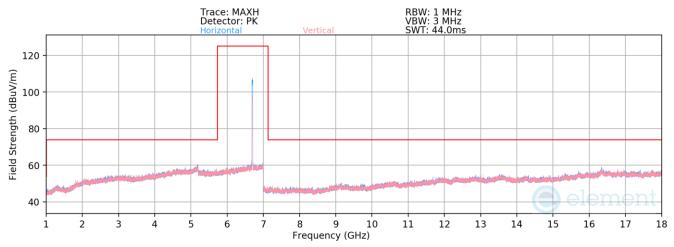
^{10:52:27} ^{20.00.2022} Plot 7-626. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 113, Pol. V)


Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6515MHz
Channel:	113

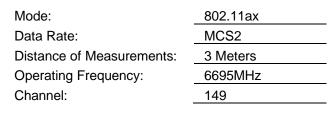
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-83.89	18.52	41.63	68.20	-26.57

Table 7-86. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 212 of 202
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 213 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

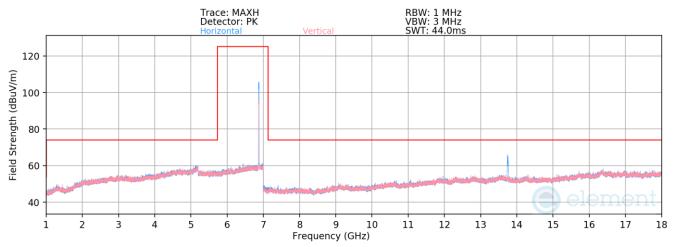

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6535MHz
Channel:	117

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13070.00	Average	Н	-	-	-83.69	18.31	41.62	68.20	-26.58

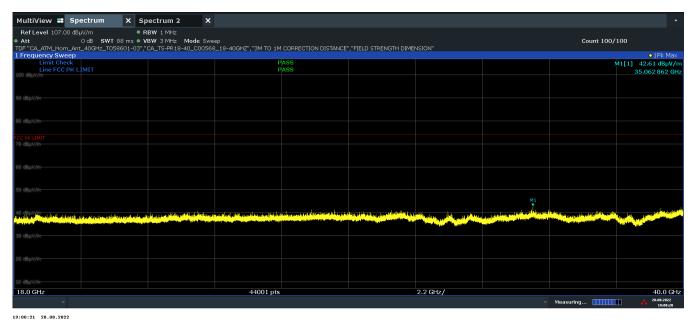

Table 7-87. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 014 of 000
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 214 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-628. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 149, MCS2)



	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.86	18.01	52.15	73.98	-21.83
*	13390.00	Average	Н	-	-	-84.25	18.01	40.76	53.98	-13.22


Table 7-88. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 245 of 292
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 215 of 282
© 2023 ELEMENT			V 10.5 12/15/2021

Plot 7-629. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 185)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dama 040 at 000				
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 216 of 282				
© 2023 ELEMENT V 10.5 12/15/2021							

MultiView 🖬 Spectrum 🛛 🗙	Spectrum 2 X						
Ref Level 107.00 dBµV/m Att 0 dB SWT 88 ms TDF "CA_ATM_Horn_Ant_40GHz_T058601- 1 Frequency Sweep 1	 RBW 1 MHz VBW 3 MHz Mode Sweep 03","CA_TS-PR18-40_C00568_18-40 	IGHZ", "3M TO 1M CORRECTION DISTANCE	","FIELD STRENGTH DIME	NSION"		Count 100/	100 • 1Pk Max
Limit Check Line FCC PK LIMIT		PASS PASS				Ň	41[1] 41.93 dBµV/m 26.552 556 GHz
CC PK LIMIT 70 dBµV/m-							
i0 d8µV/m-							
				Mana and a second s		hild the state of his state	A START OF THE OWNER OF THE OWNER OF
0 dBµV/m		44001 pts		2.2 GHz/			40.0 GHz
~					~	Measuring	28.08.2022 19:02:34

^{19:02:34} ^{28.08.2022} Plot 7-631. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 185, Pol. V)

Mode:	802.11ax
Data Rate:	MCS2
Distance of Measurements:	3 Meters
Operating Frequency:	6875MHz
Channel:	185

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	217	108	-68.72	17.84	56.12	68.20	-12.08

Table 7-89. Radiated Spurious Emission Measurements SDM

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 017 of 000	
1C2205090028-21-R3.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 217 of 282	
© 2023 ELEMENT			V 10.5 12/15/2021	