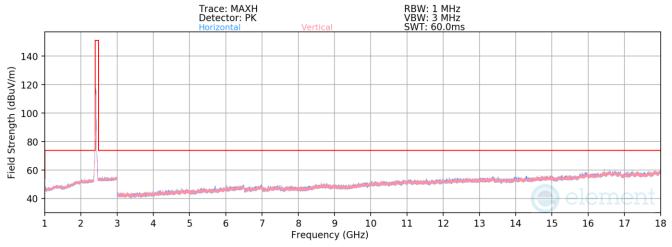





Plot 7-457. Radiated Spurious Emissions above 1GHz Antenna WF7 (802.11b - Ch. 11)


| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 1Mbps    |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2462MHz  |
| Channel:                  | 11       |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|-------------------|----------------|
| 4924.00            | Avg      | -                  | -                         | -                                | -80.02                     | 4.58           | 31.56                         | 53.98             | -22.42         |
| 4924.00            | Peak     | -                  | -                         | -                                | -68.69                     | 4.58           | 42.89                         | 73.98             | -31.09         |
| 7386.00            | Avg      | -                  | -                         | -                                | -80.81                     | 8.41           | 34.60                         | 53.98             | -19.38         |
| 7386.00            | Peak     | -                  | -                         | -                                | -69.21                     | 8.41           | 46.20                         | 73.98             | -27.78         |
| 12310.00           | Avg      | -                  | -                         | -                                | -83.14                     | 13.54          | 37.40                         | 53.98             | -16.58         |
| 12310.00           | Peak     | -                  | -                         | -                                | -71.95                     | 13.54          | 48.59                         | 73.98             | -25.39         |

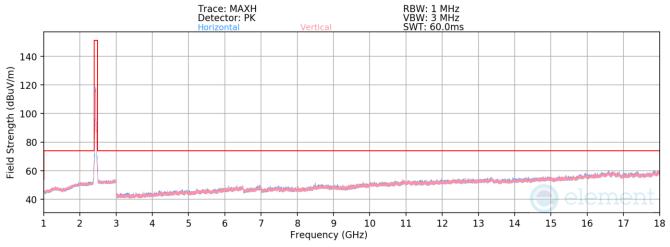
Table 7-56. Radiated Spurious Emission Measurements Antenna WF7

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dogo 207 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 287 of 441   |
|                                    |                       |                                               | V 10 5 12/15/2021 |





Plot 7-458. Radiated Spurious Emissions above 1GHz Antenna WF7 (802.11ax (SU) - Ch. 1)


| Mode:                     | 802.11ax (SU) |
|---------------------------|---------------|
| Data Rate:                | MCS0          |
| Distance of Measurements: | 3 Meters      |
| Operating Frequency:      | 2412MHz       |
| Channel:                  | 01            |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|-------------------|----------------|
| 4824.00            | Avg      | Н                  | -                         | -                                | -80.92                     | 8.18           | 34.26                         | 53.98             | -19.72         |
| 4824.00            | Peak     | Н                  | -                         | -                                | -69.10                     | 8.18           | 46.08                         | 73.98             | -27.90         |
| 12060.00           | Avg      | н                  | -                         | -                                | -82.53                     | 17.53          | 42.00                         | 53.98             | -11.98         |
| 12060.00           | Peak     | Н                  | -                         | -                                | -70.69                     | 17.53          | 53.84                         | 73.98             | -20.14         |

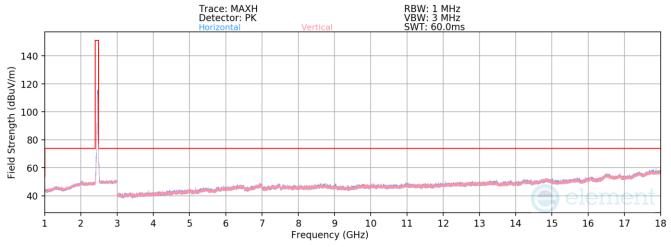
Table 7-57. Radiated Spurious Emission Measurements Antenna WF7

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dogo 200 of 111   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 288 of 441   |
|                                    | •                     | ·                                             | V 10 5 12/15/2021 |








| Mode:                     | 802.11ax (SU) |
|---------------------------|---------------|
| Data Rate:                | MCS0          |
| Distance of Measurements: | 3 Meters      |
| Operating Frequency:      | 2437MHz       |
| Channel:                  | 06            |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|-------------------|----------------|
| 4874.00            | Avg      | Н                  | -                         | -                                | -80.54                     | 8.63           | 35.09                         | 53.98             | -18.88         |
| 4874.00            | Peak     | Н                  | -                         | -                                | -68.95                     | 8.63           | 46.68                         | 73.98             | -27.29         |
| 7311.00            | Avg      | Н                  | -                         | -                                | -80.94                     | 11.22          | 37.28                         | 53.98             | -16.70         |
| 7311.00            | Peak     | Н                  | -                         | -                                | -69.58                     | 11.22          | 48.64                         | 73.98             | -25.34         |
| 12185.00           | Avg      | Н                  | -                         | -                                | -82.44                     | 17.25          | 41.81                         | 53.98             | -12.17         |
| 12185.00           | Peak     | Н                  | -                         | -                                | -71.71                     | 17.25          | 52.54                         | 73.98             | -21.44         |

Table 7-58. Radiated Spurious Emission Measurements Antenna WF7

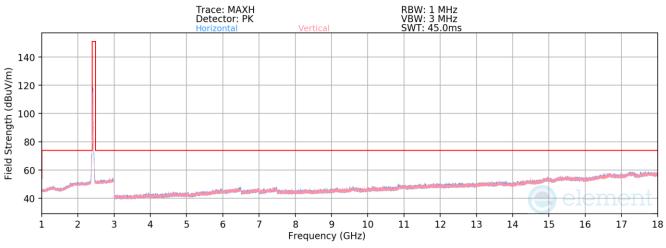
| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dega 200 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 289 of 441   |
|                                    |                       |                                               | V 10 5 12/15/2021 |

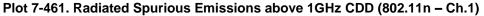






| Mode:                     | 802.11ax (SU) |
|---------------------------|---------------|
| Data Rate:                | MCS0          |
| Distance of Measurements: | 3 Meters      |
| Operating Frequency:      | 2462MHz       |
| Channel:                  | 11            |


| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height<br>[cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|---------------------------|----------------------------------|----------------------------|----------------|-------------------------------|-------------------|----------------|
| 4924.00            | Avg      | Н                  | -                         | -                                | -80.49                     | 9.23           | 35.74                         | 53.98             | -18.24         |
| 4924.00            | Peak     | Н                  | -                         | -                                | -68.86                     | 9.23           | 47.37                         | 73.98             | -26.61         |
| 7386.00            | Avg      | Н                  | -                         | -                                | -81.12                     | 12.66          | 38.54                         | 53.98             | -15.44         |
| 7386.00            | Peak     | Н                  | -                         | -                                | -69.88                     | 12.66          | 49.78                         | 73.98             | -24.20         |
| 12310.00           | Avg      | Н                  | -                         | -                                | -82.79                     | 18.60          | 42.81                         | 53.98             | -11.17         |
| 12310.00           | Peak     | Н                  | -                         | -                                | -71.48                     | 18.60          | 54.12                         | 73.98             | -19.86         |


Table 7-59. Radiated Spurious Emission Measurements Antenna WF7

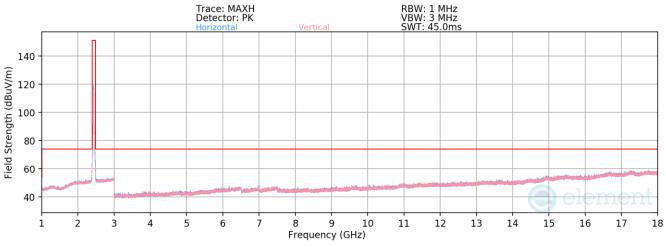
| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dogo 200 of 111   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 290 of 441   |
|                                    |                       | -                                             | V 10 5 12/15/2021 |



## 7.7.3 CDD Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209; RSS-Gen [8.9]






| Mode:                     | 802.11n  |  |  |  |
|---------------------------|----------|--|--|--|
| Data Rate:                | MCS8     |  |  |  |
| Distance of Measurements: | 3 Meters |  |  |  |
| Operating Frequency:      | 2412MHz  |  |  |  |
| Channel:                  | 1        |  |  |  |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4824.00            | Avg      | Н                  | -                      | -                                | -79.79                     | 4.57           | 31.78                      | 53.98             | -22.20         |
| 4824.00            | Peak     | Н                  | -                      | -                                | -67.95                     | 4.57           | 43.62                      | 73.98             | -30.36         |
| 12060.00           | Avg      | н                  | -                      | -                                | -82.84                     | 13.23          | 37.39                      | 53.98             | -16.59         |
| 12060.00           | Peak     | н                  | -                      | -                                | -71.59                     | 13.23          | 48.64                      | 73.98             | -25.34         |


Table 7-60. Radiated Spurious Emission Measurements Antenna CDD

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dama 004 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 291 of 441                   |
|                                    |                                               | •             | V 10 5 12/15/2021                 |









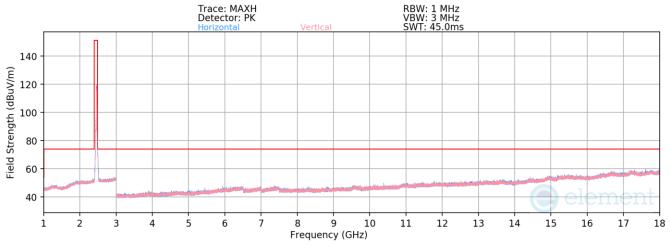
Plot 7-463. Radiated Spurious Emissions above 18GHz CDD (802.11n - Ch.6, Pol, H)

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Daga 202 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 292 of 441   |
|                                    |                       | •                                             | V 10.5 12/15/2021 |



|                                 |                                             |                          | l MHz                                            |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|---------------------------------|---------------------------------------------|--------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| tt<br>"FIFI DISTENIC"           |                                             |                          | 8 MHZ Mode S                                     | weep<br>CE.TDF","CA_TS-PR18-40                                                                                   | C00569 19-40GHz NEV                                                                                            | V" "CA ATM Horn Ant 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0GHz T059701-02"                            |                                                                                                                | Count 100                                                                                                       | /100                                                                                                               |
| equency Swe                     | ер                                          | 50110 10 200             | RECTION DISTAN                                   | GE. 101 , GA_10-FR10-40                                                                                          | _000000_10-400112110                                                                                           | , ca_ann_nonn_anc_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0012_1000701-02                             |                                                                                                                |                                                                                                                 | • 1 Pk 1                                                                                                           |
| Limit Che<br>Line FCC<br>dBuV/m | ck<br>15C PK LIMIT                          |                          |                                                  |                                                                                                                  | PASS<br>PASS                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 | M1[1] 41.93 dB <sub>F</sub><br>39.882 253                                                                          |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
| usy/m-                          | dalla didi mandala adda <mark>ditabi</mark> | Handard and the state    | at the scientist of the second                   | and a contract planting of the star particular.                                                                  | all near the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an and a survey to the survey of the survey | Mary contraction of the second se | a transform party of the party of | ())<br>The state of the second |
| and the desired states and      |                                             | Schelesters of Arthursto | مشاور شادر <sub>ی وق</sub> ی زنده اندر الا دیگری | and the second | ماناطورية الطالح ويتخذ بالعزود والدرسة طالل و                                                                  | A DESCRIPTION OF THE PARTY OF T | الحداد الأثني بدياتكم بمناديسته ويستقرعي    | الملاحد وأفلاق ورحافاتهم والأنان والمناف                                                                       | Contraction of the second second second                                                                         | الكليز ويعملنان والمكافلات والم                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |
|                                 |                                             |                          |                                                  |                                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                |                                                                                                                 |                                                                                                                    |

Plot 7-464. Radiated Spurious Emissions above 18GHz CDD (802.11n – Ch.6, Pol, V)


| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS8     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 06       |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4874.00            | Avg      | Н                  | -                      | -                                | -79.56                     | 4.50           | 31.94                      | 53.98             | -22.04         |
| 4874.00            | Peak     | н                  | -                      | -                                | -68.35                     | 4.50           | 43.15                      | 73.98             | -30.83         |
| 7311.00            | Avg      | н                  | -                      | -                                | -80.78                     | 8.31           | 34.53                      | 53.98             | -19.44         |
| 7311.00            | Peak     | н                  | -                      | -                                | -69.36                     | 8.31           | 45.95                      | 73.98             | -28.02         |
| 12185.00           | Avg      | н                  | -                      | -                                | -82.96                     | 13.27          | 37.31                      | 53.98             | -16.67         |
| 12185.00           | Peak     | н                  | -                      | -                                | -71.87                     | 13.27          | 48.40                      | 73.98             | -25.58         |

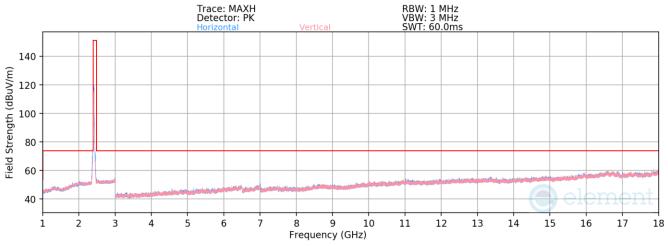
Table 7-61. Radiated Spurious Emission Measurements Antenna CDD

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dega 202 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 293 of 441                   |
|                                    |                       | -                                     | V 10 5 12/15/2021                 |








| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS8     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2462MHz  |
| Channel:                  | 11       |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4924.00            | Avg      | Н                  | -                      | -                                | -79.98                     | 4.58           | 31.60                      | 53.98             | -22.38         |
| 4924.00            | Peak     | н                  | -                      | -                                | -68.57                     | 4.58           | 43.01                      | 73.98             | -30.97         |
| 7386.00            | Avg      | н                  | -                      | -                                | -80.81                     | 8.41           | 34.60                      | 53.98             | -19.38         |
| 7386.00            | Peak     | н                  | -                      | -                                | -69.35                     | 8.41           | 46.06                      | 73.98             | -27.92         |
| 12310.00           | Avg      | н                  | -                      | -                                | -83.01                     | 13.54          | 37.53                      | 53.98             | -16.45         |
| 12310.00           | Peak     | н                  | -                      | -                                | -72.01                     | 13.54          | 48.53                      | 73.98             | -25.45         |

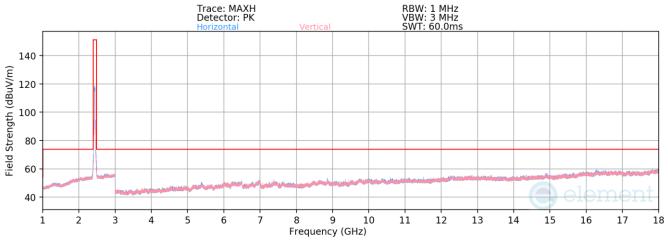
Table 7-62. Radiated Spurious Emission Measurements Antenna CDD

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dogo 204 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 294 of 441                   |
|                                    |                       |                                       | V 10 5 12/15/2021                 |








| 802.11ax (SU) |
|---------------|
| MCS0          |
| 3 Meters      |
| 2412MHz       |
| 01            |
|               |

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4824.00            | Avg      | н                  | -                      | -                                | -81.22                     | 8.18           | 33.96                      | 53.98             | -20.02         |
| 4824.00            | Peak     | н                  | -                      | -                                | -70.06                     | 8.18           | 45.12                      | 73.98             | -28.86         |
| 12060.00           | Avg      | н                  | -                      | -                                | -83.45                     | 17.53          | 41.08                      | 53.98             | -12.90         |
| 12060.00           | Peak     | Н                  | -                      | -                                | -71.69                     | 17.53          | 52.84                      | 73.98             | -21.14         |

Table 7-63. Radiated Spurious Emission Measurements Antenna CDD

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dage 205 of 111                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 295 of 441                   |
|                                    |                       |                                       | V 10 5 12/15/2021                 |









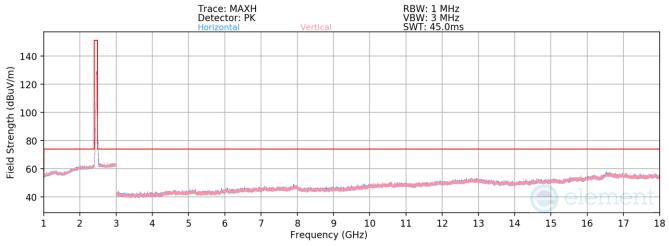
Plot 7-468. Radiated Spurious Emissions above 18GHz CDD (802.11ax (SU) – Ch.6, Pol, H)

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dage 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 296 of 441                   |
|                                    |                       | ·                                     | V 10.5 12/15/2021                 |



| MultiView                  | = Spect    | rum 🗙      | FullMax                                                                                                        | × P                                    | 'eak                  | X Avg          | ×          |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | •                                        |
|----------------------------|------------|------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|----------------|------------|------------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Att                        | STENGTH DI | 0 dB • SWT | 88 ms 单 🛚                                                                                                      | RBW 1 MHz<br>VBW 3 MHz<br>M CORRECTION |                       |                | S-PR18-40_ | _C00568_18-40GHz NEV                           | ","CA_ATM_Horn_Ant_4                 | 0GHz_T058701-02"                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Count 100                                                                                                        | <b>∕100</b><br>●1Pk Max                  |
| Li                         | nit Check  |            |                                                                                                                |                                        |                       |                | P          | ASS                                            |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 41[1] 42.23 dBµV/m                       |
| 100 dBµ∀/m-                | ne FCC 15C | PK LIMIT   |                                                                                                                |                                        |                       |                | P          | ASS                                            |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 39.950 251 GHz                           |
|                            |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 90 dBµ∀/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 80 dBµV/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 00 00017711                |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| FCC 15C PK L<br>70 dBµV/m— |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
|                            |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 60 dBµ∀/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
|                            |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 50 dBµ∀/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | MI                                       |
| .40 dBu∀/m                 |            | n a stati  | manual last. M                                                                                                 | an da mar da Alabada                   | to should a           | . Alkel Luther | at the     | antitet also states al conditions and the      | a maa maalatabababababababa abababaa | odia internet a la martinata                   | والعام أنشار ويستخدون ومقصا وتقا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | فالمحاجب الأوادية والمراجع ومراجع أفاقته وا                                                                      | ne entrik en brevenstandelinseren        |
| for the second second      |            |            | ana ang kana ang kan | Thing, the shirt of marks              | and the second second |                |            | Weiterstein und eine eine stelltenen auf einen | Carl Martin Basto Andre              | n a ser an | New South Street Stre | and the second | an a |
| 30 dBµ∀/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
|                            |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 20 dBµ∀/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 10 dBµV/m—                 |            |            |                                                                                                                |                                        |                       |                |            |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                          |
| 18.0 GHz                   |            |            |                                                                                                                |                                        |                       | 4              | 4001 pts   |                                                |                                      | 2.2 GHz/                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 40.0 GHz                                 |
| TOTO CITIZ                 |            |            |                                                                                                                |                                        |                       |                | pts        |                                                |                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measuring                                                                                                        |                                          |

Plot 7-469. Radiated Spurious Emissions above 18GHz CDD (802.11ax (SU) – Ch.6, Pol, V)


| Mode:                     | 802.11ax (SU) |
|---------------------------|---------------|
| Data Rate:                | MCS0          |
| Distance of Measurements: | 3 Meters      |
| Operating Frequency:      | 2437MHz       |
| Channel:                  | 06            |

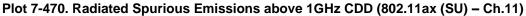

| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4874.00            | Avg      | Н                  | -                      | -                                | -81.03                     | 8.63           | 34.60                      | 53.98             | -19.37         |
| 4874.00            | Peak     | н                  | -                      | -                                | -69.38                     | 8.63           | 46.25                      | 73.98             | -27.72         |
| 7311.00            | Avg      | н                  | -                      | -                                | -81.57                     | 11.22          | 36.65                      | 53.98             | -17.33         |
| 7311.00            | Peak     | н                  | -                      | -                                | -70.15                     | 11.22          | 48.07                      | 73.98             | -25.91         |
| 12185.00           | Avg      | н                  | -                      | -                                | -82.19                     | 17.25          | 42.06                      | 53.98             | -11.92         |
| 12185.00           | Peak     | н                  | -                      | -                                | -71.82                     | 17.25          | 52.43                      | 73.98             | -21.55         |

Table 7-64. Radiated Spurious Emission Measurements Antenna CDD

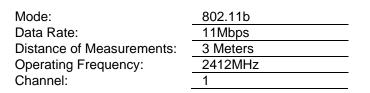
| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dogo 207 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 297 of 441                   |
|                                    |                       | •                                     | V 10 5 12/15/2021                 |

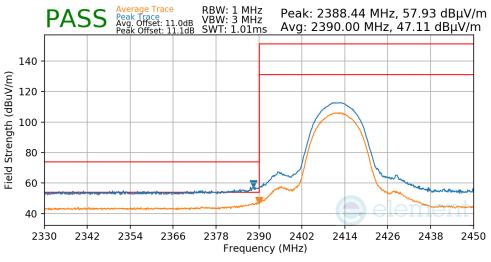




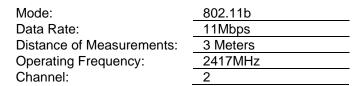


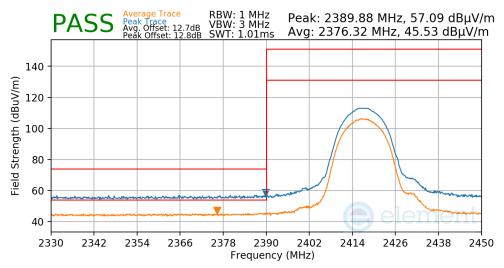
| Mode:                     | 802.11ax (SU) |
|---------------------------|---------------|
| Data Rate:                | MCS0          |
| Distance of Measurements: | 3 Meters      |
| Operating Frequency:      | 2462MHz       |
| Channel:                  | 11            |


| Frequency<br>[MHz] | Detector | Ant. Pol.<br>[H/V] | Antenna<br>Height [cm] | Turntable<br>Azimuth<br>[degree] | Analyzer<br>Level<br>[dBm] | AFCL<br>[dB/m] | Field Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] |
|--------------------|----------|--------------------|------------------------|----------------------------------|----------------------------|----------------|----------------------------|-------------------|----------------|
| 4924.00            | Avg      | Н                  | -                      | -                                | -80.86                     | 9.23           | 35.37                      | 53.98             | -18.61         |
| 4924.00            | Peak     | н                  | -                      | -                                | -69.42                     | 9.23           | 46.81                      | 73.98             | -27.17         |
| 7386.00            | Avg      | н                  | -                      | -                                | -80.74                     | 12.66          | 38.92                      | 53.98             | -15.06         |
| 7386.00            | Peak     | н                  | -                      | -                                | -70.21                     | 12.66          | 49.45                      | 73.98             | -24.53         |
| 12310.00           | Avg      | н                  | -                      | -                                | -82.38                     | 18.60          | 43.22                      | 53.98             | -10.76         |
| 12310.00           | Peak     | н                  | -                      | -                                | -71.15                     | 18.60          | 54.45                      | 73.98             | -19.53         |


Table 7-65. Radiated Spurious Emission Measurements Antenna CDD

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dega 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 298 of 441                   |
|                                    |                       |                                       | V 10 5 12/15/2021                 |



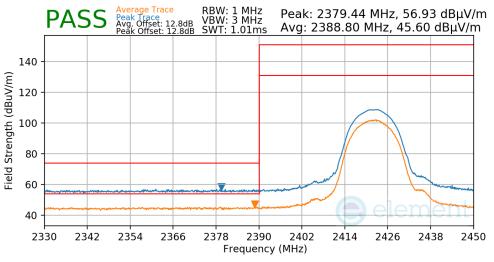


## 7.7.4 Antenna WF8 Radiated Restricted Band Edge Measurements §15.209; RSS-Gen [8.9]



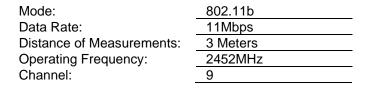


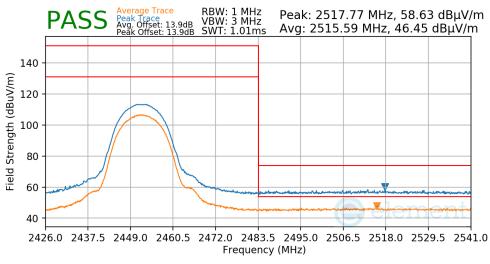
Plot 7-471. Radiated Restricted Lower Band Edge Measurement Antenna WF8






Plot 7-472. Radiated Restricted Lower Band Edge Measurement Antenna WF8


| FCC ID: BCGA2759<br>IC: 579C-A2759 | element 🕞             | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dogo 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 299 of 441                   |
|                                    |                       | ·                                     | V 10.5 12/15/2021                 |

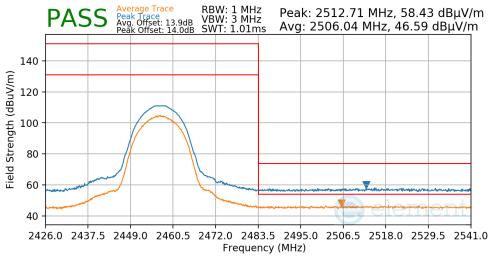



| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 11Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2422MHz  |
| Channel:                  | 3        |



Plot 7-473. Radiated Restricted Lower Band Edge Measurement Antenna WF8






Plot 7-474. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Daga 200 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 300 of 441   |
|                                    | -                     | •                                             | V 10.5 12/15/2021 |

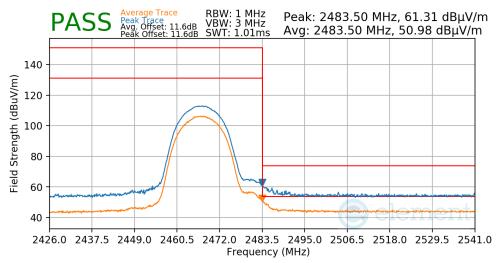


| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 11Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2457MHz  |
| Channel:                  | 10       |



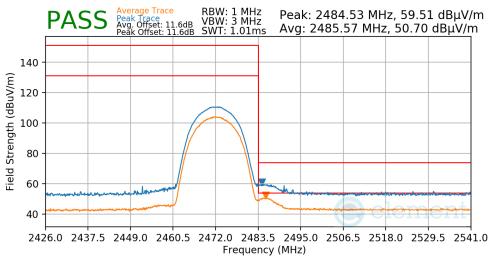
Plot 7-475. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 11Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2462MHz  |
| Channel:                  | 11       |




Plot 7-476. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dege 201 of 111   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 301 of 441   |
|                                    |                       | -                                             | V 10 5 12/15/2021 |

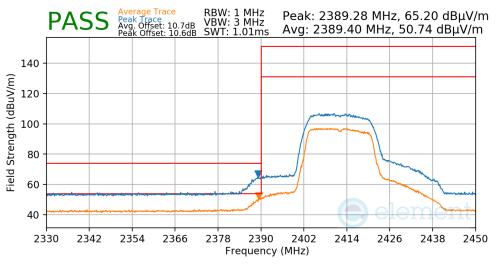



| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 11Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2467MHz  |
| Channel:                  | 12       |



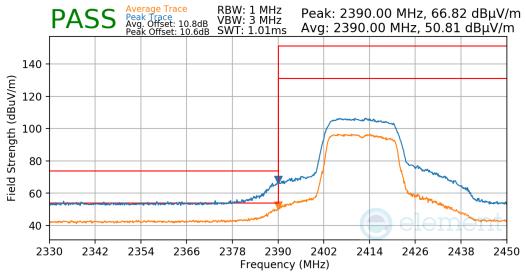
Plot 7-477. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11b  |
|---------------------------|----------|
| Data Rate:                | 11Mbps   |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2472MHz  |
| Channel:                  | 13       |




Plot 7-478. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Daga 202 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 302 of 441   |
|                                    |                       | -                                             | V 10 5 12/15/2021 |

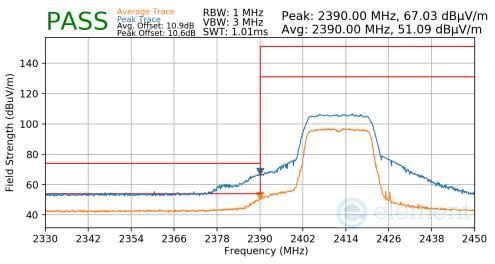



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2412MHz  |
| Channel:                  | 1        |

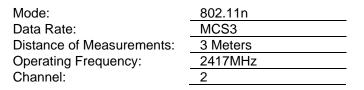


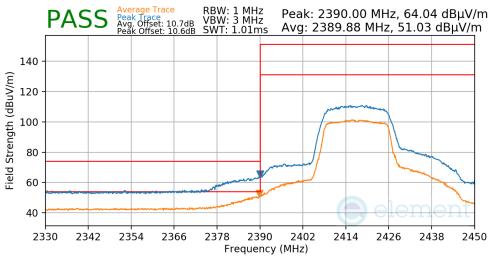
Plot 7-479. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2412MHz  |
| Channel:                  | 1        |




Plot 7-480. Radiated Restricted Lower Band Edge Measurement Antenna WF8


| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dega 202 of 444   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 303 of 441   |
|                                    |                       | -                                             | V 10 5 12/15/2021 |

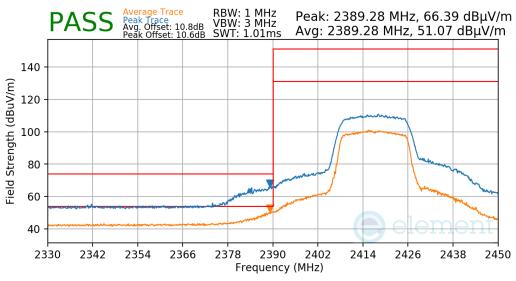



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2412MHz  |
| Channel:                  | 1        |



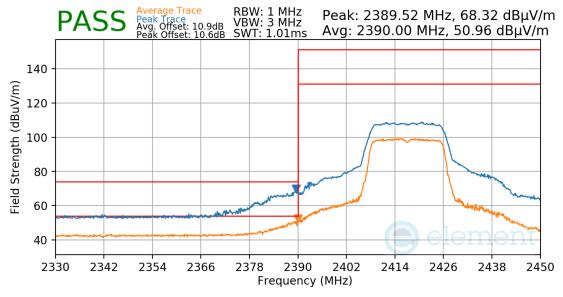
Plot 7-481. Radiated Restricted Lower Band Edge Measurement Antenna WF8






Plot 7-482. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                    |
|------------------------------------|-----------------------|-----------------------------------------------|--------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dega 204 of 444    |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 304 of 441    |
|                                    |                       |                                               | V/ 10 5 12/15/2021 |

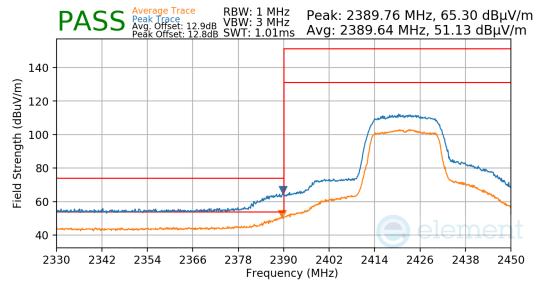



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2417MHz  |
| Channel:                  | 2        |



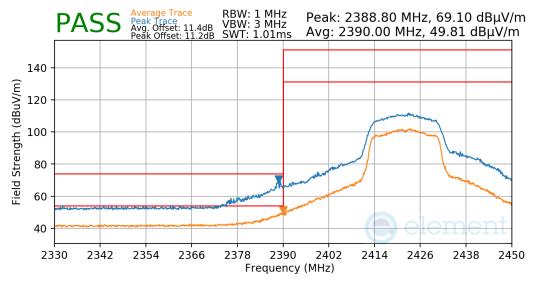
Plot 7-483. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2417MHz  |
| Channel:                  | 2        |




Plot 7-484. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dage 205 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 305 of 441                   |
|                                    |                       |                                       | V 10.5 12/15/2021                 |

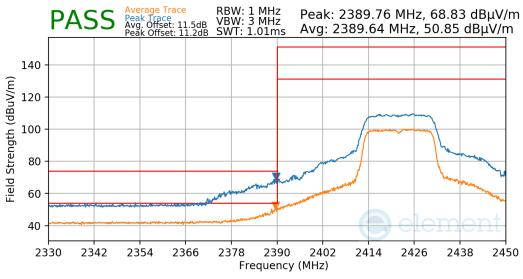



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2422MHz  |
| Channel:                  | 3        |



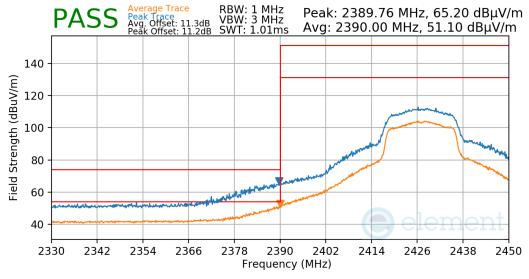
Plot 7-485. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2422MHz  |
| Channel:                  | 3        |




Plot 7-486. Radiated Restricted Lower Band Edge Measurement Antenna WF8

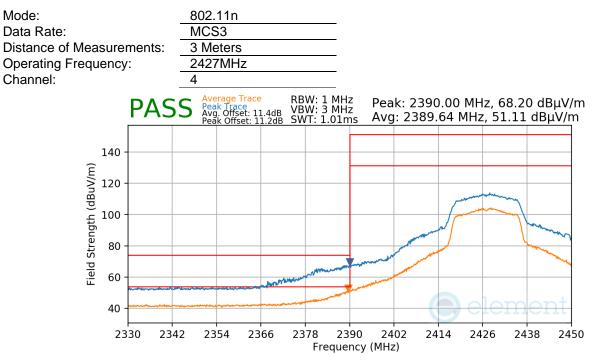
| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dogo 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 306 of 441                   |
|                                    |                       | ·                                     | V 10.5 12/15/2021                 |



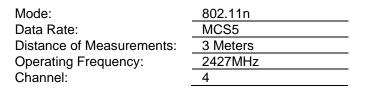

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2422MHz  |
| Channel:                  | 3        |

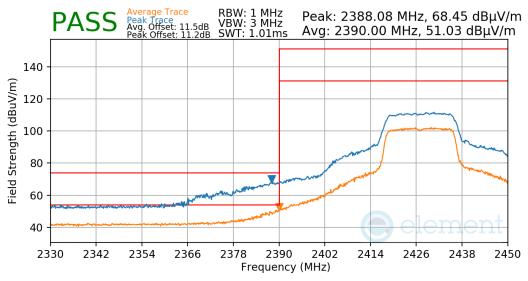


Plot 7-487. Radiated Restricted Lower Band Edge Measurement Antenna WF8


| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2427MHz  |
| Channel:                  | 4        |




Plot 7-488. Radiated Restricted Lower Band Edge Measurement Antenna WF8

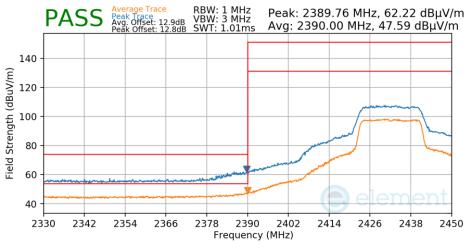

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dege 207 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 307 of 441                   |
|                                    |                                               |               | V/ 10 5 12/15/2021                |





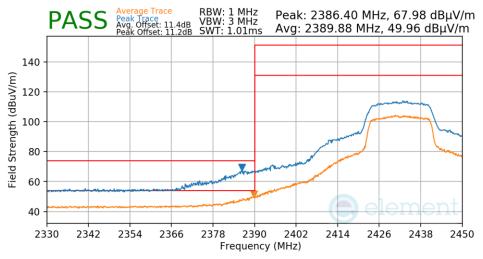
Plot 7-489. Radiated Restricted Lower Band Edge Measurement Antenna WF8






Plot 7-490. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dage 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 308 of 441                   |
|                                    |                                               | -             | V 10 5 12/15/2021                 |

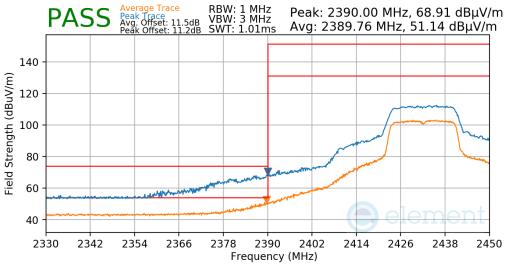



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2432MHz  |
| Channel:                  | 5        |



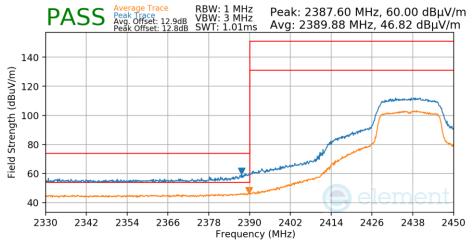
Plot 7-491. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2432MHz  |
| Channel:                  | 5        |




Plot 7-492. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dage 200 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 309 of 441                   |
|                                    |                                               | -             | V 10 5 12/15/2021                 |

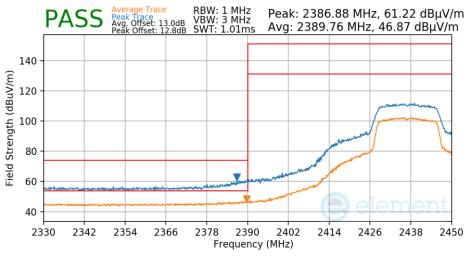



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2432MHz  |
| Channel:                  | 5        |

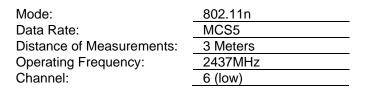


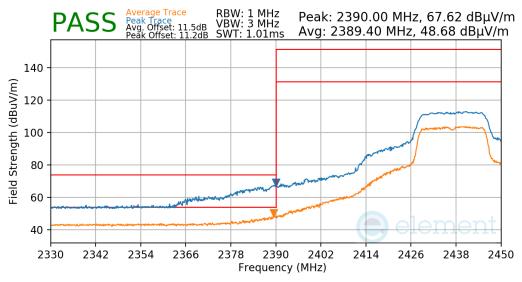
Plot 7-493. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 6 (low)  |




Plot 7-494. Radiated Restricted Lower Band Edge Measurement Antenna WF8


| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dage 210 of 111                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 310 of 441                   |
|                                    |                                               | -             | V 10 5 12/15/2021                 |




| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 6 (low)  |



Plot 7-495. Radiated Restricted Lower Band Edge Measurement Antenna WF8





Plot 7-496. Radiated Restricted Lower Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dage 211 of 111                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 311 of 441                   |
|                                    |                                               | •             | \/ 10 5 12/15/2021                |

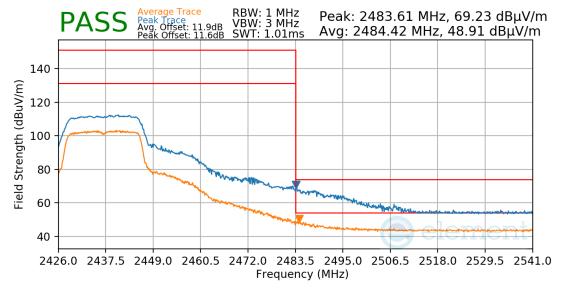


| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 6 (high) |



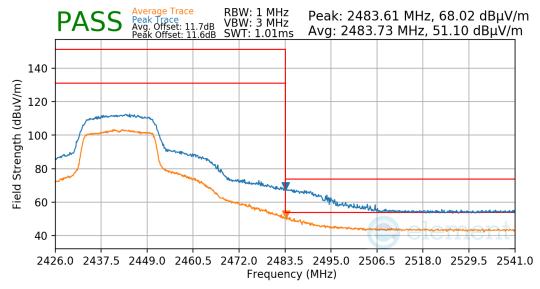
Plot 7-497. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 6 (high) |




Plot 7-498. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dage 212 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 312 of 441                   |
|                                    |                                               |               | \/ 10 5 12/15/2021                |

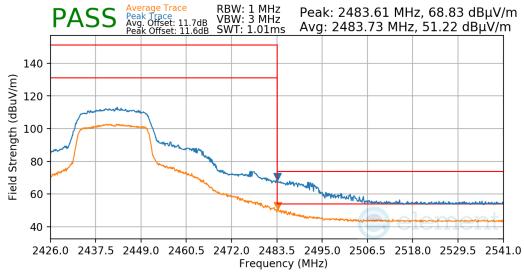



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2437MHz  |
| Channel:                  | 6 (high) |



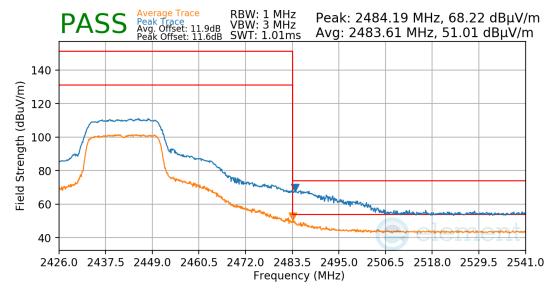
Plot 7-499. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2442MHz  |
| Channel:                  | 7        |




## Plot 7-500. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element 🕞             | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dage 212 of 111                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 313 of 441                   |
|                                    |                       |                                       | V 10.5 12/15/2021                 |

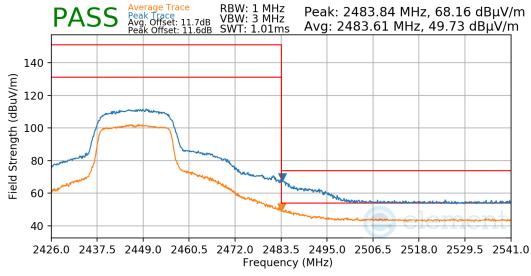



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2442MHz  |
| Channel:                  | 7        |



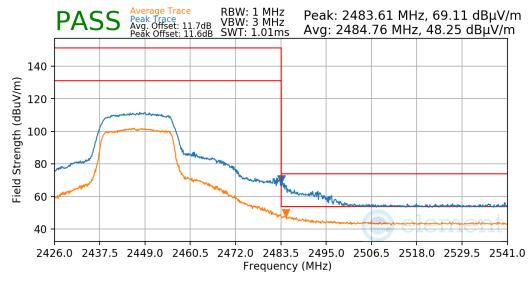
Plot 7-501. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2442MHz  |
| Channel:                  | 7        |




Plot 7-502. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element MEASUREMENT REPORT<br>(CERTIFICATION) |               | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------------------------------|---------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:                                   | EUT Type:     | Dega 214 of 444                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022                         | Tablet Device | Page 314 of 441                   |
|                                    |                                               | •             | V 10.5 12/15/2021                 |

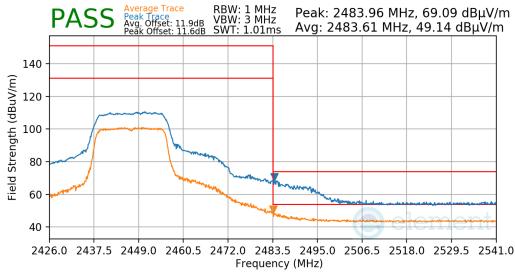



| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2447MHz  |
| Channel:                  | 8        |



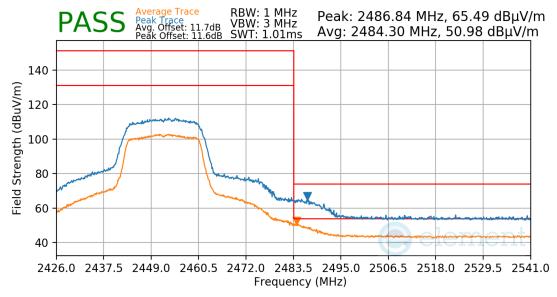
Plot 7-503. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS3     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2447MHz  |
| Channel:                  | 8        |




Plot 7-504. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | element MEASUREMENT REPORT<br>(CERTIFICATION) |                   |
|------------------------------------|-----------------------|-----------------------------------------------|-------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                                     | Dogo 215 of 111   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                                 | Page 315 of 441   |
| •                                  |                       | •                                             | V 10.5 12/15/2021 |




| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS5     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2447MHz  |
| Channel:                  | 8        |



Plot 7-505. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| Mode:                     | 802.11n  |
|---------------------------|----------|
| Data Rate:                | MCS2     |
| Distance of Measurements: | 3 Meters |
| Operating Frequency:      | 2452MHz  |
| Channel:                  | 9        |



## Plot 7-506. Radiated Restricted Upper Band Edge Measurement Antenna WF8

| FCC ID: BCGA2759<br>IC: 579C-A2759 | element               | MEASUREMENT REPORT<br>(CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------------------|-----------------------|---------------------------------------|-----------------------------------|
| Test Report S/N:                   | Test Dates:           | EUT Type:                             | Dega 216 of 111                   |
| 1C2205090024-01.BCG                | 07/21/2022-09/25/2022 | Tablet Device                         | Page 316 of 441                   |
|                                    | ·                     |                                       | V 10.5 12/15/2021                 |