# FCC and ISED Test Report

Apple Inc

Model: A2681

In accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN (2.4 GHz Bluetooth, 2.4 GHz WLAN and 5 GHz WLAN)

Prepared for: Apple Inc

One Apple Park Way, Cupertino

California, 95014

USA

FCC ID: BCGA2681 IC: 579C-A2681

# **COMMERCIAL-IN-CONFIDENCE**

Document 75954421-08 Issue 02



Add value. Inspire trust.

| SIGNATURE    |                              |                      |             |
|--------------|------------------------------|----------------------|-------------|
| Janen Adams  |                              |                      |             |
| NAME         | JOB TITLE                    | RESPONSIBLE FOR      | ISSUE DATE  |
| Jensen Adams | Technical Solutions, Manager | Authorised Signatory | 16 May 2022 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

#### **ENGINEERING STATEMENT**

SIGNATURE

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR   | NAME            | DATE        | SIGNATURE |
|-------------------|-----------------|-------------|-----------|
| Report Generation | Hollie Marshall | 16 May 2022 | AMAS      |

FCC Accreditation ISED Accreditation

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

#### **EXECUTIVE SUMMARY**

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2020, ICES-003: Issue 7: 2020 and ISED RSS-GEN: Issue 5 + A2 (2021-02) for the tests detailed in section 1.3.





## DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2022 TÜV SÜD. This report relates only to the actual item/items tested.

#### ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



# Contents

| 1   | Report Summary                           | 2  |
|-----|------------------------------------------|----|
| 1.1 | Report Modification Record               |    |
| 1.2 | Introduction                             | 2  |
| 1.3 | Brief Summary of Results                 | 3  |
| 1.4 | Product Information                      | 4  |
| 1.5 | Deviations from the Standard             |    |
| 1.6 | EUT Modification Record                  |    |
| 1.7 | Test Location                            | 5  |
| 2   | Test Details                             | 6  |
| 2.1 | Conducted Disturbance at Mains Terminals | 6  |
| 2.2 | Radiated Disturbance                     | 12 |
| 3   | Test Equipment Information               | 19 |
| 3.1 | General Test Equipment Used              | 19 |
| 4   | Incident Reports                         | 20 |
| 5   | Measurement Uncertainty                  | 21 |
|     |                                          |    |



# 1 Report Summary

## 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change                           | Date of Issue |
|-------|-------------------------------------------------|---------------|
| 1     | First Issue                                     | 03 May 2022   |
| 2     | Typographical error on the cover page corrected | 16 May 2022   |

#### Table 1

#### 1.2 Introduction

Applicant Apple Inc

Manufacturer Apple Inc

Model Number(s) A2681

Serial Number(s) LM461YV61Y, DQH576VJ7N and MW4P32N6T0

Hardware Version(s) REV 1.0

Software Version(s) 21F27, 21E61410w and 21E71860f

Number of Samples Tested 3

Test Specification/Issue/Date FCC 47 CFR Part 15B: 2020

ICES-003: Issue 7: 2020

ISED RSS-GEN: Issue 5 + A2 (2021-02)

Order Number 0540246998

Date of Receipt of EUT 16-February-2022
Start of Test 11-March-2022
Finish of Test 28-March-2022

Name of Engineer(s) James Cumming, Mohammad Malik, Thomas Randall,

Ahmad Javid and Ian Hart

Related Document(s) ANSI C63.4: 2014



# 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN is shown below.

| Specification Clause |                                                             | se       | Test Description | Result                                   | Comments/Base Standard |                        |
|----------------------|-------------------------------------------------------------|----------|------------------|------------------------------------------|------------------------|------------------------|
| Section              | Part 15B                                                    | ICES-003 | RSS-GEN          | Test Description                         | Result                 | Comments/base Standard |
| Configuratio         | Configuration and Mode: 120 V AC Powered - Transmitter Idle |          |                  |                                          |                        |                        |
| 2.1                  | 2.1 15.107 3.1 8.8                                          |          | 8.8              | Conducted Disturbance at Mains Terminals | Pass                   | ANSI C63.4: 2014       |
| 2.2                  | 15.109                                                      | 3.2      | 7.1              | Radiated Disturbance                     | Pass                   | ANSI C63.4: 2014       |

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 21



#### 1.4 Product Information

# 1.4.1 Technical Description

The equipment under test was an Apple laptop computer with Bluetooth® and IEEE 802.11 a/b/g/n/ac/ax Wi-Fi in the 2.4 GHz and 5 GHz bands.

### 1.4.2 EUT Port/Cable Identification

| Port                  | Max Cable Length specified                                  | Usage        | Туре                    | Screened |  |
|-----------------------|-------------------------------------------------------------|--------------|-------------------------|----------|--|
| Configuration and Mod | Configuration and Mode: 120 V AC Powered - Transmitter Idle |              |                         |          |  |
| AC power              | 2 m                                                         | Power        | 230 V 50 Hz AC<br>Power | No       |  |
| USB                   | 2 m                                                         | Power / Data | Type - C                | No       |  |
| Audio                 | 2 m                                                         | Line - Out   | 3.5mm Jack              | No       |  |

Table 3

# 1.4.3 Test Configuration

| Configuration    | Description                                                                                                                              |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 120 V AC Powered | The EUT was powered from a 120 V AC power supply. One USB-C port was loaded with a mouse and the audio port was loaded using headphones. |

#### Table 4

# 1.4.4 Modes of Operation

| Mode             | Description                                                                                                                                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter Idle | All transmitters within the EUT were disabled. The EUT was configured to display video on the EUT screen whilst playing audio through the headphones. The display was set to maximum brightness and sleep mode was disabled. |

Table 5

## 1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.



### 1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                      | Description of Modification still fitted to EUT Modification Fitted By |                | Date Modification<br>Fitted |  |  |
|-----------------------------------------|------------------------------------------------------------------------|----------------|-----------------------------|--|--|
| Model: A2681, Seria                     | Model: A2681, Serial Number: LM461YV61Y                                |                |                             |  |  |
| 0                                       | As supplied by the customer                                            | Not Applicable | Not Applicable              |  |  |
| Model: A2681, Seria                     | Model: A2681, Serial Number: MW4P32N6T0                                |                |                             |  |  |
| 0                                       | As supplied by the customer                                            | Not Applicable | Not Applicable              |  |  |
| Model: A2681, Serial Number: DQH576VJ7N |                                                                        |                |                             |  |  |
| 0                                       | As supplied by the customer                                            | Not Applicable | Not Applicable              |  |  |

Table 6

### 1.7 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

| Test Name                                                   | Name of Engineer(s)                                         | Accreditation |  |
|-------------------------------------------------------------|-------------------------------------------------------------|---------------|--|
| Configuration and Mode: 120 V AC Powered - Transmitter Idle |                                                             |               |  |
| Conducted Disturbance at Mains Terminals                    | James Cumming                                               | UKAS          |  |
| Radiated Disturbance                                        | Mohammad Malik, Thomas Randall,<br>Ahmad Javid and Ian Hart | UKAS          |  |

Table 7

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



## 2 Test Details

# 2.1 Conducted Disturbance at Mains Terminals

#### 2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107 ICES-003, Clause 3.1 ISED RSS-GEN, Clause 8.8

### 2.1.2 Equipment Under Test and Modification State

A2681, S/N: LM461YV61Y - Modification State 0

#### 2.1.3 Date of Test

16-March-2022

#### 2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

## 2.1.5 Example Calculation

Quasi-Peak level ( $dB\mu V$ ) = Receiver level ( $dB\mu V$ ) + Correction Factor (dB) Margin (dB) = Quasi-Peak level ( $dB\mu V$ ) - Limit ( $dB\mu V$ )

CISPR Average level  $(dB\mu V)$  = Receiver level  $(dB\mu V)$  + Correction Factor (dB) Margin (dB) = CISPR Average level  $(dB\mu V)$  - Limit  $(dB\mu V)$ 



### 2.1.6 Example Test Setup Diagram



Figure 1 - Conducted Disturbance

#### 2.1.7 Environmental Conditions

Ambient Temperature 18.8 °C Relative Humidity 44.2 %

### 2.1.8 Specification Limits

| Required Specification Limits - Class B                    |                          |                                 |                                 |  |
|------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|--|
| Line Under Test                                            | Frequency Range<br>(MHz) | Quasi-Peak Test Limit<br>(dBµV) | CISPR Average Test Limit (dBµV) |  |
| AC Power Port                                              | 0.15 to 0.5              | 66 to 56 <sup>(1)</sup>         | 56 to 46 <sup>(1)</sup>         |  |
|                                                            | 0.5 to 5                 | 56                              | 46                              |  |
|                                                            | 5 to 30                  | 60                              | 50                              |  |
| Supplementary information<br>Note 1. Decreases with the lo |                          |                                 | •                               |  |

Table 8



# 2.1.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitter Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

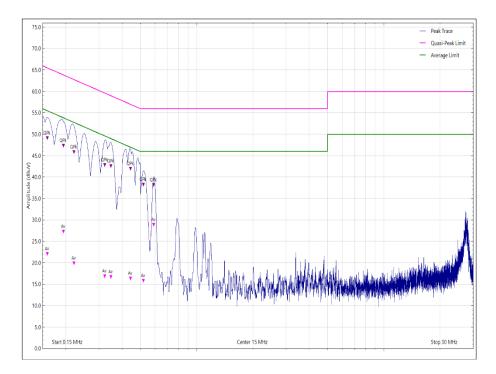



Figure 2 - Graphical Results - Live Line



| Frequency (MHz) | Level (dBµV) | Limit (dBµV) | Margin (dB) | Detector  |
|-----------------|--------------|--------------|-------------|-----------|
| 0.159           | 48.5         | 65.5         | -17.0       | Q-Peak    |
| 0.159           | 21.5         | 55.5         | -34.0       | CISPR Avg |
| 0.194           | 46.8         | 63.9         | -17.1       | Q-Peak    |
| 0.194           | 26.7         | 53.9         | -27.2       | CISPR Avg |
| 0.221           | 45.2         | 62.8         | -17.6       | Q-Peak    |
| 0.221           | 19.3         | 52.8         | -33.5       | CISPR Avg |
| 0.323           | 42.3         | 59.6         | -17.3       | Q-Peak    |
| 0.323           | 16.3         | 49.6         | -33.4       | CISPR Avg |
| 0.348           | 42.0         | 59.0         | -17.0       | Q-Peak    |
| 0.348           | 16.1         | 49.0         | -32.9       | CISPR Avg |
| 0.443           | 41.4         | 57.0         | -15.7       | Q-Peak    |
| 0.443           | 15.8         | 47.0         | -31.2       | CISPR Avg |
| 0.520           | 37.7         | 56.0         | -18.4       | Q-Peak    |
| 0.520           | 15.3         | 46.0         | -30.7       | CISPR Avg |
| 0.588           | 37.5         | 56.0         | -18.5       | Q-Peak    |
| 0.588           | 28.3         | 46.0         | -17.7       | CISPR Avg |

Table 9



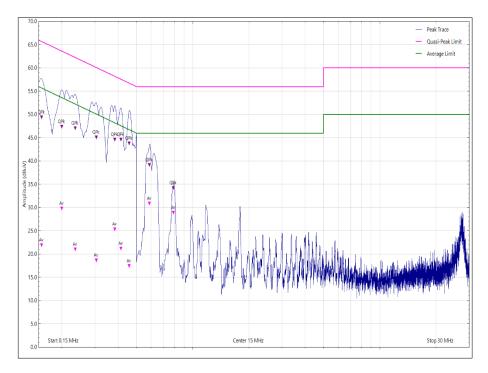



Figure 3 - Graphical Results - Neutral Line

| Frequency (MHz) | Level (dBµV) | Limit (dBµV) | Margin (dB) | Detector  |
|-----------------|--------------|--------------|-------------|-----------|
| 0.156           | 48.8         | 65.7         | -16.9       | Q-Peak    |
| 0.156           | 21.4         | 55.7         | -34.3       | CISPR Avg |
| 0.200           | 46.8         | 63.6         | -16.8       | Q-Peak    |
| 0.200           | 29.2         | 53.6         | -24.4       | CISPR Avg |
| 0.236           | 46.5         | 62.2         | -15.7       | Q-Peak    |
| 0.236           | 20.5         | 52.2         | -31.7       | CISPR Avg |
| 0.306           | 44.6         | 60.1         | -15.6       | Q-Peak    |
| 0.306           | 18.1         | 50.1         | -32.0       | CISPR Avg |
| 0.384           | 44.0         | 58.2         | -14.2       | Q-Peak    |
| 0.384           | 24.8         | 48.2         | -23.5       | CISPR Avg |
| 0.413           | 44.0         | 57.6         | -13.6       | Q-Peak    |
| 0.413           | 20.6         | 47.6         | -27.0       | CISPR Avg |
| 0.458           | 43.2         | 56.7         | -13.5       | Q-Peak    |
| 0.458           | 16.9         | 46.7         | -29.8       | CISPR Avg |
| 0.586           | 38.6         | 56.0         | -17.4       | Q-Peak    |
| 0.586           | 30.3         | 46.0         | -15.7       | CISPR Avg |
| 0.789           | 33.6         | 56.0         | -22.4       | Q-Peak    |
| 0.789           | 28.3         | 46.0         | -17.7       | CISPR Avg |

Table 10



# 2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 1.

| Instrument                    | Manufacturer    | Type No                  | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|-------------------------------|-----------------|--------------------------|-------|-----------------------------------|------------------------|
| Screened Room (1)             | Rainford        | Rainford                 | 1541  | 12                                | 14-May-2022            |
| Emissions Software            | TUV SUD         | EmX V2.1.12              | 5125  | -                                 | Software               |
| EMI Test Receiver             | Rohde & Schwarz | ESW44                    | 5382  | 12                                | 10-May-2022            |
| Test Receiver                 | Rohde & Schwarz | ESU40                    | 3506  | 12                                | 25-Mar-2023            |
| Transient Limiter             | Hewlett Packard | 11947A                   | 2378  | 12                                | 13-Oct-2022            |
| Termination (50ohm)           | Meca            | 405-1                    | 365   | 12                                | 06-Aug-2022            |
| Cable (SMA to SMA, 2 m)       | Junkosha        | MWX221-<br>02000AMSAMS/B | 5725  | 6                                 | 11-Aug-2022            |
| 8 Meter Cable                 | Teledyne        | PR90-088-8MTR            | 5212  | 12                                | 06-Sep-2022            |
| Cable (N-Type to N-Type, 5 m) | Teledyne        | PR90-088-5MTR            | 5206  | 12                                | 31-Aug-2022            |
| LISN                          | Rohde & Schwarz | ESH3-Z5                  | 1390  | 12                                | 31-Jan-2023            |

Table 11



#### 2.2 Radiated Disturbance

#### 2.2.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ICES-003, Clause 3.2 ISED RSS-GEN, Clause 7.1

#### 2.2.2 Equipment Under Test and Modification State

A2681, S/N: DQH576VJ7N - Modification State 0 A2681, S/N: MW4P32N6T0 - Modification State 0

#### 2.2.3 Date of Test

11-March-2022 to 28-March-2022

#### 2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

#### 2.2.5 Example Calculation

Below 1 GHz:

Quasi-Peak level ( $dB\mu V/m$ ) = Receiver level ( $dB\mu V$ ) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level ( $dB\mu V/m$ ) - Limit ( $dB\mu V/m$ )

Above 1 GHz:

CISPR Average level  $(dB\mu V/m)$  = Receiver level  $(dB\mu V)$  + Correction Factor (dB/m) Margin (dB) = CISPR Average level  $(dB\mu V/m)$  - Limit  $(dB\mu V/m)$ 

Peak level  $(dB\mu V/m)$  = Receiver level  $(dB\mu V)$  + Correction Factor (dB/m) Margin (dB) = Peak level  $(dB\mu V/m)$  - Limit  $(dB\mu V/m)$ 



## 2.2.6 Example Test Setup Diagram

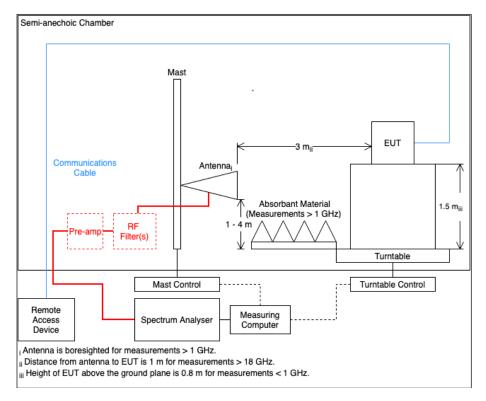



Figure 4

### 2.2.7 Environmental Conditions

Ambient Temperature 22.8 - 24.9 °C Relative Humidity 32.1 - 36.8 %

#### 2.2.8 Specification Limits

| Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance |                      |                        |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------|------------------------|--|--|--|
| Frequency Range (MHz)                                                                            | Test Limit<br>(μV/m) | Test Limit<br>(dBµV/m) |  |  |  |
| 30 to 88                                                                                         | 100                  | 40.0                   |  |  |  |
| 88 to 216                                                                                        | 150                  | 43.5                   |  |  |  |
| 216 to 960                                                                                       | 200                  | 46.0                   |  |  |  |
| Above 960                                                                                        | 500                  | 54.0                   |  |  |  |

## Supplementary information:

Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.

Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.

Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 12



### 2.2.9 Test Results

Results for Configuration and Mode: 120 V AC Powered - Transmitter Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 5825 MHz Which necessitates an upper frequency test limit of: 30 GHz

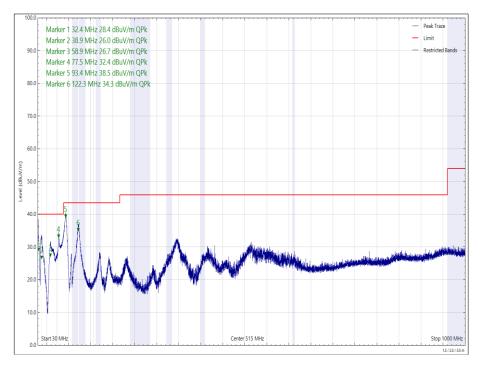



Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 32.438             | 28.4              | 40.0              | -11.6       | Q-Peak   | 170       | 100         | Vertical     |
| 38.926             | 26.0              | 40.0              | -14.0       | Q-Peak   | 29        | 100         | Vertical     |
| 58.924             | 26.7              | 40.0              | -13.3       | Q-Peak   | 61        | 100         | Vertical     |
| 77.455             | 32.4              | 40.0              | -7.6        | Q-Peak   | 286       | 132         | Vertical     |
| 93.397             | 38.5              | 43.5              | -5.0        | Q-Peak   | 165       | 100         | Vertical     |
| 122.308            | 34.3              | 43.5              | -9.2        | Q-Peak   | 175       | 100         | Vertical     |

Table 13



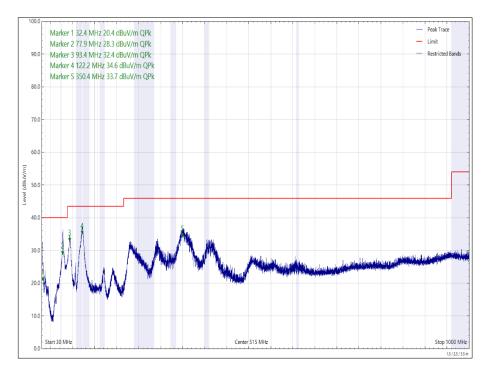



Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| 32.401             | 20.4              | 40.0              | -19.6       | Q-Peak   | 102       | 198         | Horizontal   |
| 77.865             | 28.3              | 40.0              | -11.7       | Q-Peak   | 0         | 230         | Horizontal   |
| 93.415             | 32.4              | 43.5              | -11.1       | Q-Peak   | 350       | 184         | Horizontal   |
| 122.167            | 34.6              | 43.5              | -9.0        | Q-Peak   | 355       | 244         | Horizontal   |
| 350.407            | 33.7              | 46.0              | -12.4       | Q-Peak   | 222       | 103         | Horizontal   |

Table 14

No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.



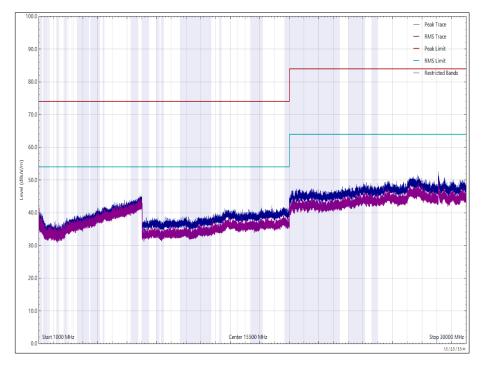



Figure 7 - 1 GHz to 30 GHz, Vertical

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

Table 15

<sup>\*</sup>No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the CISPR Average test limit.



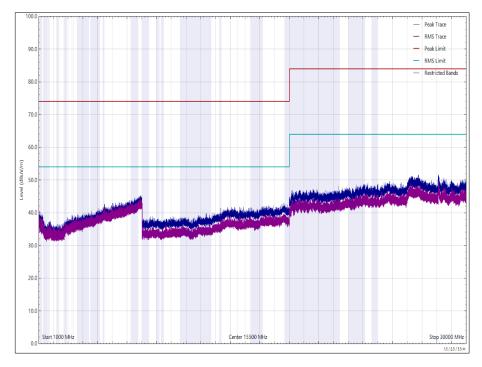



Figure 9 - 1 GHz to 30 GHz, Horizontal

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Detector | Angle (°) | Height (cm) | Polarisation |
|--------------------|-------------------|-------------------|-------------|----------|-----------|-------------|--------------|
| *                  |                   |                   |             |          |           |             |              |

Table 16

<sup>\*</sup>No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the CISPR Average test limit.



# 2.2.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument                                       | Manufacturer        | Type No                  | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|--------------------------------------------------|---------------------|--------------------------|-------|-----------------------------------|------------------------|
| Screened Room (5)                                | Rainford            | Rainford                 | 1545  | 36                                | 15-Apr-2024            |
| Emissions Software                               | TUV SUD             | EmX V2.1.12              | 5125  | -                                 | Software               |
| EMI Test Receiver                                | Rohde & Schwarz     | ESW44                    | 5527  | 12                                | 15-Apr-2022            |
| Mast Controller                                  | Maturo Gmbh         | NCD                      | 4810  | -                                 | TU                     |
| Tilt Antenna Mast                                | Maturo Gmbh         | TAM 4.0-P                | 4811  | -                                 | TU                     |
| Turntable Controller                             | Inn-Co GmbH         | CO 1000                  | 1606  | -                                 | TU                     |
| Cable (K-Type to K-Type, 1 m)                    | Junkosha            | MWX241-<br>01000KMSKMS/A | 5511  | 12                                | 09-Apr-2022            |
| 1m K-Type Cable                                  | Junkosha            | MWX241-<br>01000KMSKMS/A | 5512  | 12                                | 09-Apr-2022            |
| 1m -SMA Cable                                    | Junkosha            | MWX221-<br>01000AMSAMS/A | 5513  | 12                                | 09-Apr-2022            |
| 2m SMA Cable                                     | Junkosha            | MWX221-<br>02000AMSAMS/A | 5517  | 12                                | 09-Apr-2022            |
| 8m N Type Cable                                  | Junkosha            | MWX221-<br>08000NMSNMS/B | 5519  | 12                                | 07-Mar-2023            |
| 8m N-Type Cable                                  | Junkosha            | MWX221-<br>08000NMSNMS/B | 5520  | 12                                | 24-Mar-2023            |
| 1200 MHz Low Pass Filter (01)                    | Mini-Circuits       | VLF-1200+                | 5559  | 12                                | 24-May-2022            |
| Preamplifier (30dB 1GHz to 18GHz)                | Schwarzbeck         | BBV 9718 C               | 5261  | 12                                | 08-Apr-2022            |
| 8 - 18 GHz pre amp                               | Wright Technologies | PS06-0061/PS06-<br>0060  | 4971  | 6                                 | 09-Nov-2022            |
| Pre-Amplifier (18 GHz to 40 GHz)                 | Phase One           | PSO4-0087                | 1534  | 12                                | 02-Aug-2022            |
| Antenna (Bi-Log, 30 MHz to 1 GHz)                | Teseq               | CBL6111D                 | 5615  | 24                                | 16-Oct-2022            |
| Antenna with attenuator (Bilog, 30 MHz to 3 GHz) | Schaffner           | CBL6143                  | 287   | 24                                | 14-Oct-2022            |
| Antenna (DRG Horn 7.5-<br>18GHz)                 | Schwarzbeck         | HWRD750                  | 5348  | 12                                | 15-Oct-2022            |
| Antenna (DRG, 18 GHz to 40 GHz)                  | Link Microtek Ltd   | AM180HA-K-TU2            | 230   | 24                                | 27-Jul-2022            |
| Double Ridge Broadband<br>Horn Antenna           | Schwarzbeck         | BBHA 9120 B              | 4848  | 12                                | 01-Apr-2022            |

Table 17

# TU - Traceability Unscheduled



# **3 Test Equipment Information**

# 3.1 General Test Equipment Used

| Instrument             | Manufacturer    | Type No      | TE No | Calibration<br>Period<br>(months) | Calibration<br>Expires |
|------------------------|-----------------|--------------|-------|-----------------------------------|------------------------|
| Power Supply Unit      | Farnell         | D302T        | 609   | 12                                | O/P Mon                |
| Multimeter             | Fluke           | 79 Series II | 3057  | 12                                | 23-Aug-2022            |
| Multimeter             | Fluke           | 177          | 3812  | 12                                | 15-Apr-2022            |
| Thermo-Hygro-Barometer | PCE Instruments | PCE-THB 40   | 5605  | 12                                | 23-Sep-2022            |
| Thermo-Hygro-Barometer | PCE Instruments | PCE-THB-40   | 5473  | 12                                | 01-Apr-2022            |

Table 18

O/P Mon – Output Monitored using calibrated equipment



# 4 Incident Reports

No incidents reports were raised.



# 5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                                | Measurement Uncertainty                 |
|------------------------------------------|-----------------------------------------|
| Conducted Disturbance at Mains Terminals | 150 kHz to 30 MHz, LISN, ±3.7 dB        |
| Radiated Disturbance                     | 30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB |
|                                          | 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB  |

Table 19

Worst case error for both Time and Frequency measurement 12 parts in 106.

#### Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2007, Clause 4.4.3 and 4.5.1. (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.