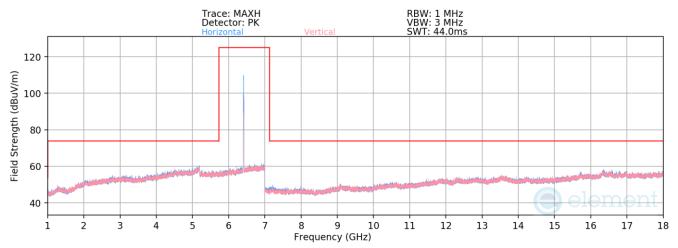


Plot 7-674. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 45 - RU26)

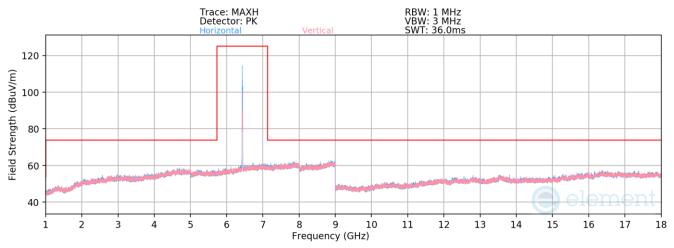

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.85	17.83	51.98	73.98	-22.00
*	12350.00	Average	Н	-	-	-83.89	17.83	40.94	53.98	-13.04

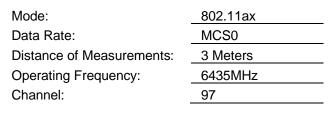
Table 7-53. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 185 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 105 01 524
			V 10 5 12/15/2021

Plot 7-675. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 93 - RU26)

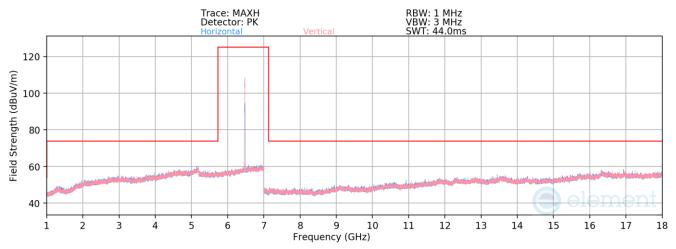

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6415MHz
Channel:	93

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.29	18.15	40.86	68.20	-27.34

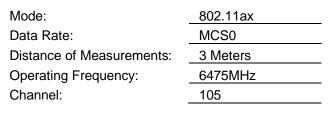

Table 7-54. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 186 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 186 01 324
			V/ 10 E 10/1E/2021

Plot 7-676. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 97 - RU26)

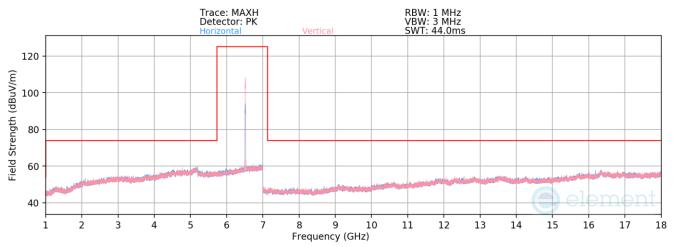


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-84.06	18.27	41.21	68.20	-26.99

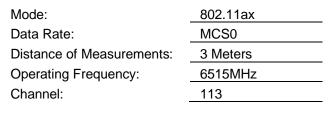

Table 7-55. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 107 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 187 of 324
			V 10 5 12/15/2021

Plot 7-677. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 105 - RU26)

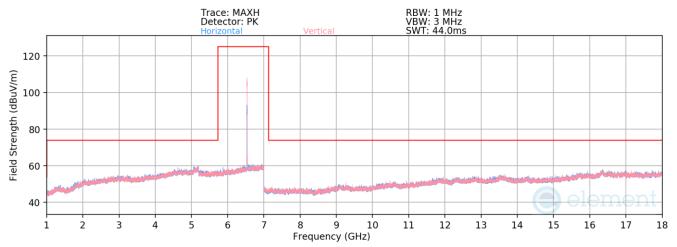


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00 A	Average	Н	-	-	-83.66	18.16	41.50	68.20	-26.70

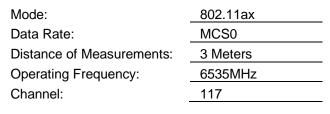

Table 7-56. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 100 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 188 of 324
			V/ 10 5 12/15/2021

Plot 7-678. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 113 – RU26)

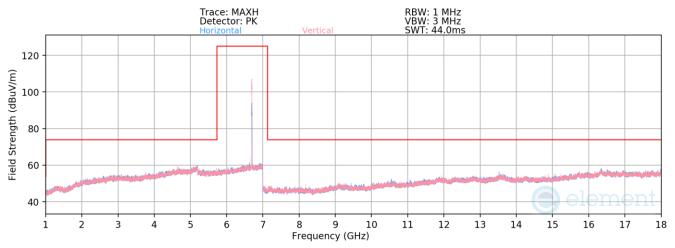


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-83.85	18.52	41.67	68.20	-26.53


Table 7-57. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 189 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 109 01 324
			V/ 10 E 10/1E/2021

Plot 7-679. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax – Ch. 117 – RU26)

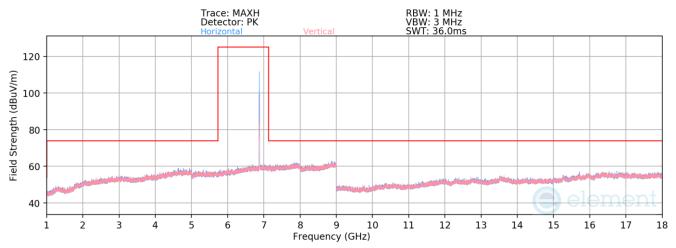


Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Average	Н	-	-	-83.77	18.31	41.54	68.20	-26.66
	-	Detector [H/V]	Detector [H/V] Height [cm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree]	Detector [H/V] Antenna Azimuth Level [H/V] Height [cm] [degree] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dBm] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] [dBm] AFCL [dB/m] Strength [dBµV/m]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] [dBm] AFCL [dB/m] Strength [dBµV/m]

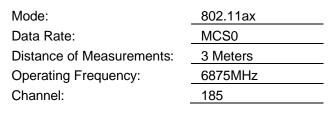
Table 7-58. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 190 of 324
			V 40 E 40/4E/2024

Plot 7-680. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 149 - RU26)

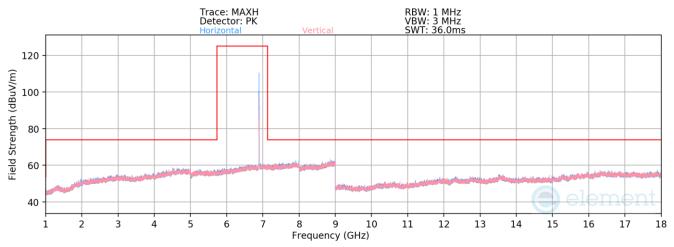

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6695MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.33	18.01	52.68	73.98	-21.30
*	13390.00	Average	Н	-	-	-83.89	18.01	41.12	53.98	-12.86

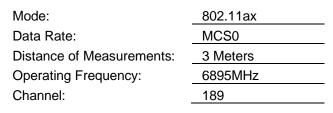

Table 7-59. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 191 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 191 01 324
			V/ 10 E 10/1E/2021

Plot 7-681. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 185 - RU26)

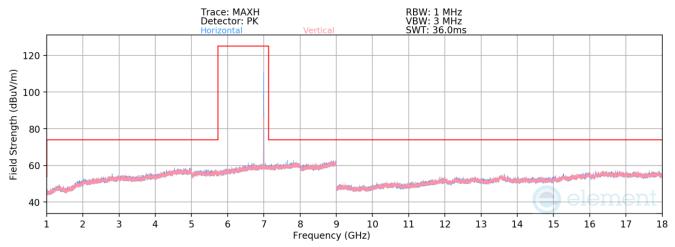


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-82.92	17.84	41.92	68.20	-26.28
13/ 30.00	9					_	-	00.20	-20.20

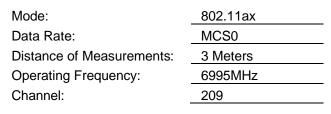

Table 7-60. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 102 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 192 of 324
			V/ 10 5 12/15/2021

Plot 7-682. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 189 - RU26)

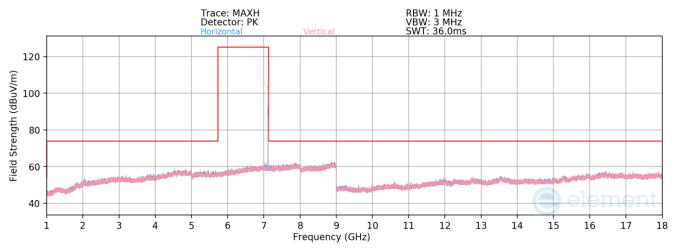


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-83.07	17.84	41.77	68.20	-26.43

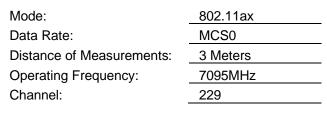

Table 7-61. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 102 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 193 of 324
			V/ 10 5 12/15/2021

Plot 7-683. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 209 - RU26)



· · · · Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13990.00 Average	Н	-	-	-83.49	17.91	41.42	68.20	-26.78


Table 7-62. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 104 of 204
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 194 of 324
			V/ 10 5 12/15/2021

Plot 7-684. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 229 - RU26)

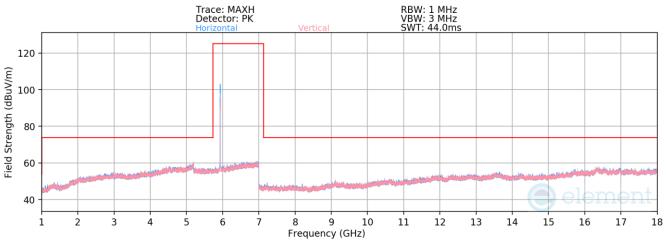
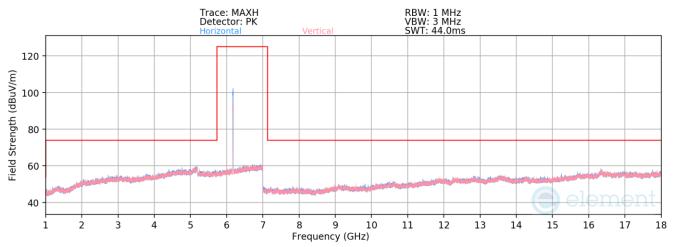

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
14230.00	Average	Н	-	-	-83.41	18.14	41.73	68.20	-26.47

Table 7-63. Radiated Spurious Emission Measurements Antenna 5b – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 105 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 195 of 324
			V/ 10 5 12/15/2021

RU242

Plot 7-685. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 1 - RU242)

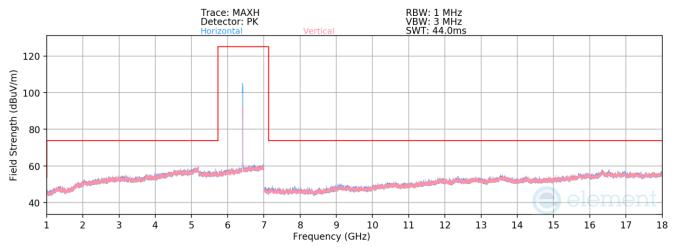

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.42	16.96	51.54	73.98	-22.44
*	11870.00	Average	Н	-	-	-83.43	16.96	40.53	53.98	-13.45
*	17805.00	Peak	Н	-	-	-72.82	21.89	56.07	73.98	-17.91
*	17805.00	Average	Н	-	-	-84.01	21.89	44.88	53.98	-9.10

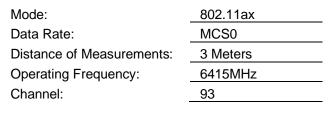
Table 7-64. Radiated Spurious Emission Measurements Antenna 5b - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 201	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 196 of 324	
			V/ 10 E 10/1E/2021	

Plot 7-686. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 45 - RU242)

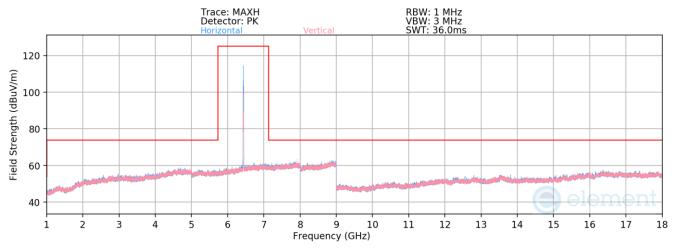

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.40	17.83	52.43	73.98	-21.55
*	12350.00	Average	Н	-	-	-84.09	17.83	40.74	53.98	-13.24


Table 7-65. Radiated Spurious Emission Measurements Antenna 5b - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 197 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	
			V/ 10 5 12/15/2021

Plot 7-687. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 93 - RU242)

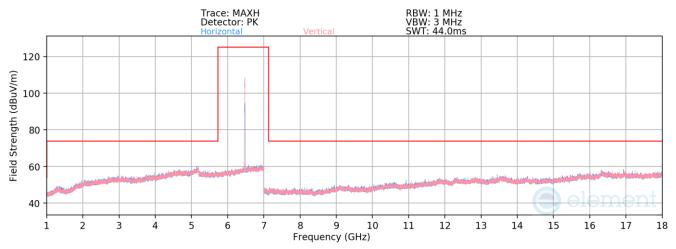


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-83.89	18.55	41.66	68.20	-26.54

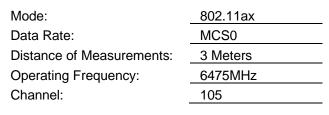
Table 7-66. Radiated Spurious Emission Measurements Antenna 5b – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 198 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 196 01 524
			V/ 10 E 10/1E/2021

Plot 7-688. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 97 - RU242)

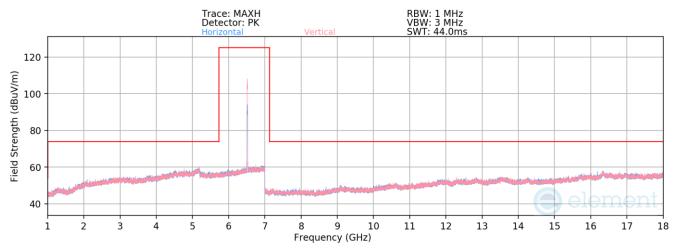

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6435MHz
Channel:	97

	equency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12	2870.00	Average	Н	-	-	-83.83	18.68	41.85	68.20	-26.35

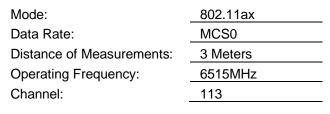

Table 7-67. Radiated Spurious Emission Measurements Antenna 5b - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 199 of 324
			V/ 10 5 12/15/2021

Plot 7-689. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 105 - RU242)



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	-	-	-83.58	18.16	41.58	68.20	-26.62
								110.40	

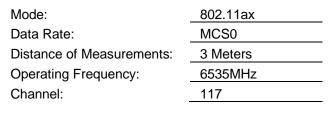

Table 7-68. Radiated Spurious Emission Measurements Antenna 5b – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 200 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 200 01 324
			V 10 E 10/1E/2021

Plot 7-690. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 113 - RU242)

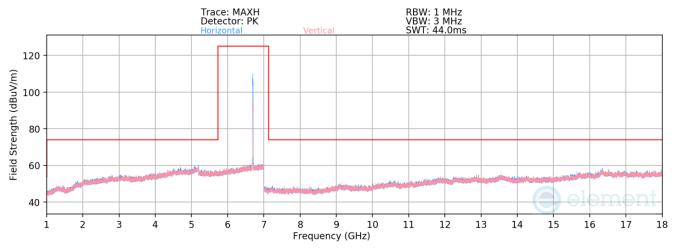


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-83.67	18.52	41.85	68.20	-26.35

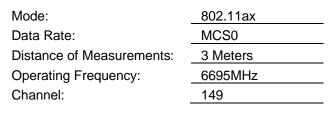

Table 7-69. Radiated Spurious Emission Measurements Antenna 5b - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 201 of 201	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 201 of 324	
			V/ 10 E 10/1E/2021	

Plot 7-691. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 117 - RU242)

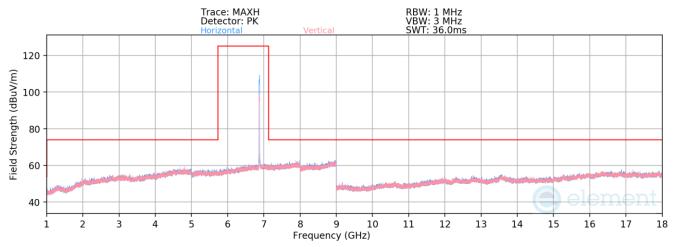


Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Average	Н	-	-	-83.49	18.31	41.82	68.20	-26.38
	-	Detector [H/V]	Detector [H/V] Height [cm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [degree] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dBm] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dB/m] Strength [degree] [dBm] [dB/m]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] [dBm] AFCL [dB/m] Strength [dBµV/m]

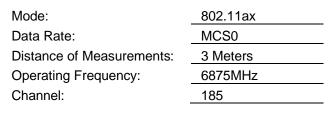

Table 7-70. Radiated Spurious Emission Measurements Antenna 5b – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 224	
1C2205090028-22-R4.BCG 5/30/2022 - 9/16/2022		Tablet Device	Page 202 of 324	
			V/ 40 E 40/4E/2024	

Plot 7-692. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 149 - RU242)

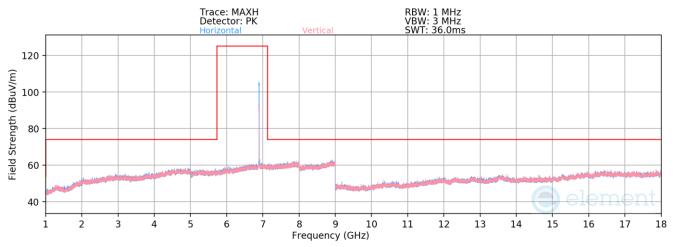


	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.72	18.01	52.29	73.98	-21.69
*	13390.00	Average	Н	-	-	-83.90	18.01	41.11	53.98	-12.87

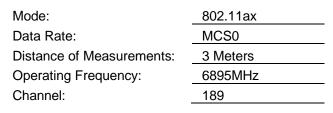

Table 7-71. Radiated Spurious Emission Measurements Antenna 5b – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 at 004	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 203 of 324	
			V 10 5 12/15/2021	

Plot 7-693. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 185 - RU242)

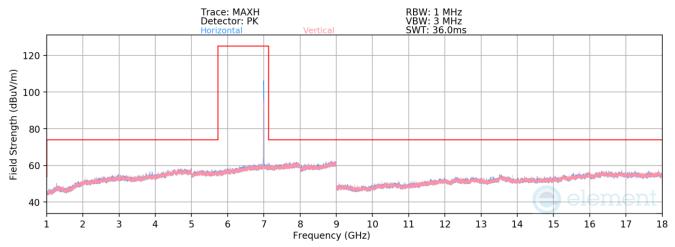


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-82.33	17.84	42.51	68.20	-25.69

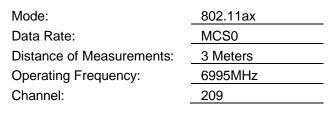

Table 7-72. Radiated Spurious Emission Measurements Antenna 5b – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 204 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 204 of 324
			V/ 10 5 12/15/2021

Plot 7-694. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 189 - RU242)

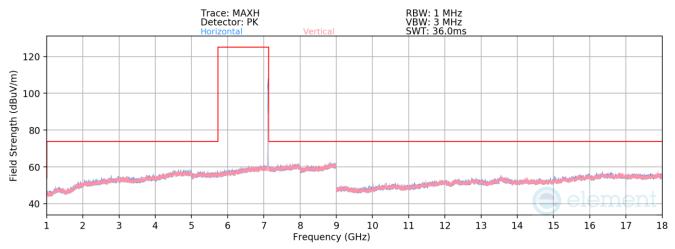


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-83.13	17.84	41.71	68.20	-26.49

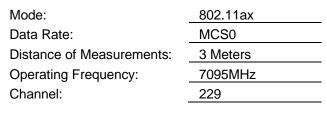

Table 7-73. Radiated Spurious Emission Measurements Antenna 5b - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 205 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 205 of 324
			V/ 10 5 12/15/2021

Plot 7-695. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 209 - RU242)



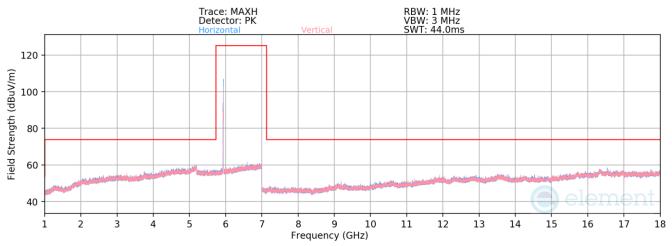
Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Average	Н	-	-	-82.89	17.91	42.02	68.20	-26.18
	Detector	[H/V]	Detector [H/V] Height [cm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [degree] [dBm]	Detector Ant. Pol. Antenna Azimuth Level AFCL [H/V] Height [cm] [degree] [dBm] [dB/m]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dB/m] AFCL [dB/m] Strength [degree] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] AFCL [dB/m] Strength [dBµV/m]


Table 7-74. Radiated Spurious Emission Measurements Antenna 5b – RU242

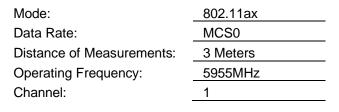
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 206 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			\/ 10 5 12/15/2021	

Plot 7-696. Radiated Spurious Emissions above 1GHz Antenna 5b (802.11ax - Ch. 229 - RU242)

Frequency [MHz] Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
14230.00 Average	Н	-	-	-83.65	18.14	41.49	68.20	-26.71


Table 7-75. Radiated Spurious Emission Measurements Antenna 5b – RU242

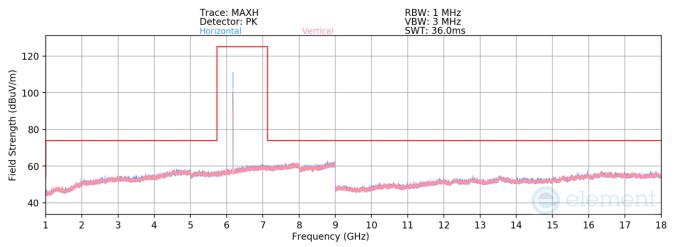
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 207 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 207 of 324	
			\/ 10 5 12/15/2021	



7.7.2 Antenna 4a Primary Radiated Spurious Emission

RU26

Plot 7-697. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 1 - RU26)

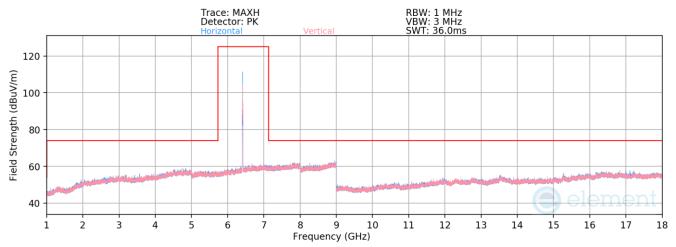


	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.23	16.96	51.73	73.98	-22.25
*	11870.00	Average	Н	-	-	-83.43	16.96	40.53	53.98	-13.45
*	17805.00	Peak	Н	-	-	-73.55	21.89	55.34	73.98	-18.64
*	17805.00	Average	Н	-	-	-84.06	21.89	44.83	53.98	-9.15

Table 7-76. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 208 of 324	
			V/ 10 E 12/1E/2021	

Plot 7-698. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 45 - RU26)

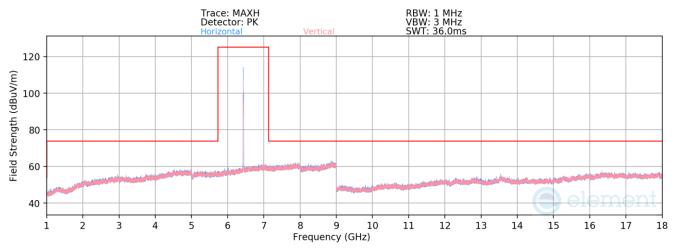

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-73.13	17.83	51.70	73.98	-22.28
*	12350.00	Average	Н	-	-	-84.09	17.83	40.74	53.98	-13.24

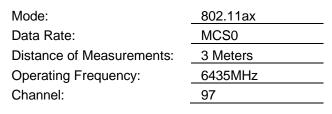
Table 7-77. Radiated Spurious Emission Measurements Antenna 4a - RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 200 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 209 of 324
			V 40 E 40/4E/2024

Plot 7-699. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 93 - RU26)

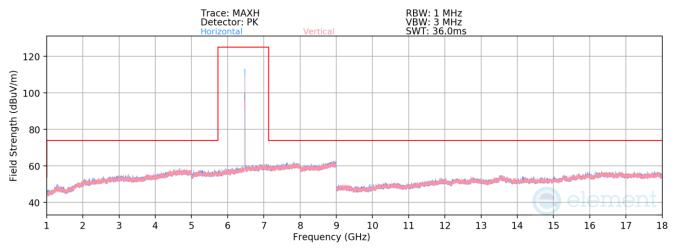


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.98	17.95	39.97	68.20	-28.23


Table 7-78. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 210 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	V 10 E 12/1E/2021

Plot 7-700. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 97 - RU26)

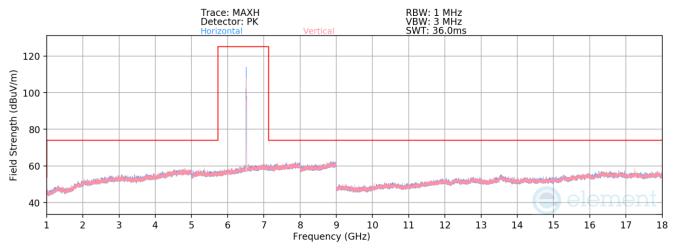


-	uency IHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
128	70.00	Average	Н	-	-	-85.11	18.82	40.71	68.20	-27.49

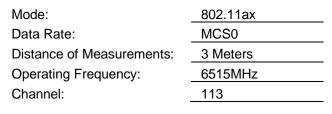
Table 7-79. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 211 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			V/ 10 5 12/15/2021	

Plot 7-701. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 105 - RU26)

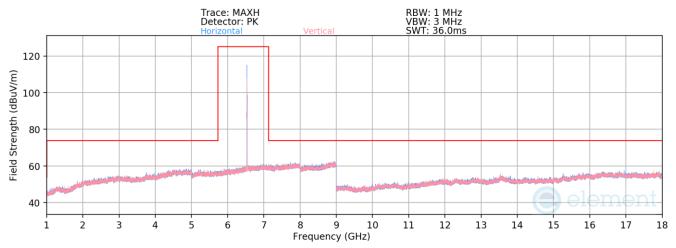

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6475MHz
Channel:	105

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	102	169	-81.62	18.24	43.62	68.20	-24.58

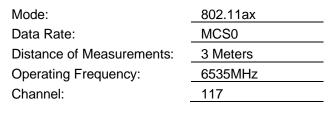

Table 7-80. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 212 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			V/ 10 5 12/15/2021	

Plot 7-702. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 113 - RU26)

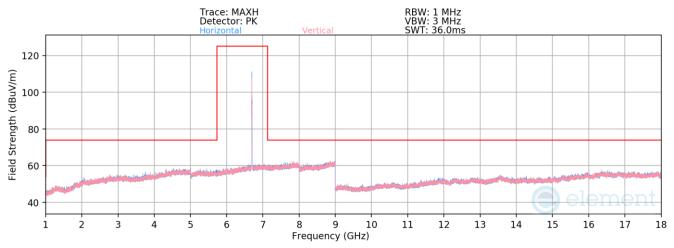


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-79.15	18.13	45.98	68.20	-22.22


Table 7-81. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 212 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 213 of 324	
			V 40 E 40/4E/2024	

Plot 7-703. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax – Ch. 117 – RU26)

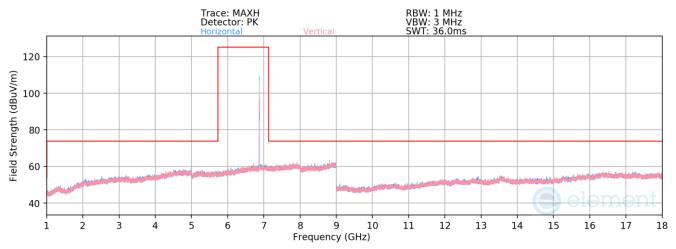


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13070.00	Average	Н	105	161	-77.88	18.51	47.63	68.20	-20.57

Table 7-82. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 214 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 214 of 324	
			V 40 E 40/4E/2024	

Plot 7-704. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 149 - RU26)

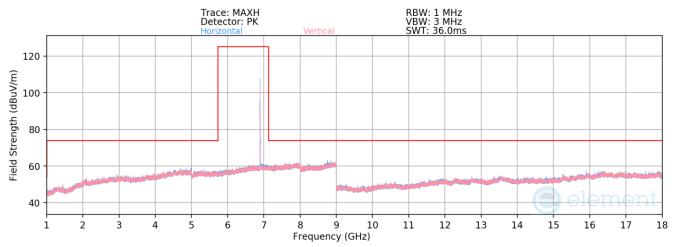

Mode:	802.11ax
Data Rate	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6695MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.66	18.12	52.46	73.98	-21.52
*	13390.00	Average	Н	-	-	-83.88	18.12	41.24	53.98	-12.74

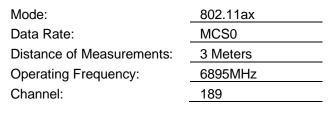
Table 7-83. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 215 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 215 of 324	
			V/ 10 E 10/1E/2021	

Plot 7-705. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 185 - RU26)

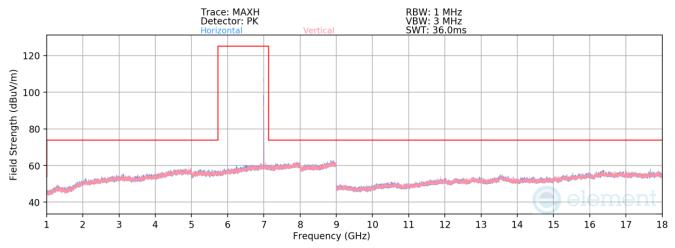

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6875MHz
Channel:	185

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	101	161	-75.46	17.84	49.38	68.20	-18.82


Table 7-84. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 216 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 216 of 324
			V/ 10 5 12/15/2021

Plot 7-706. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax – Ch. 189 – RU26)

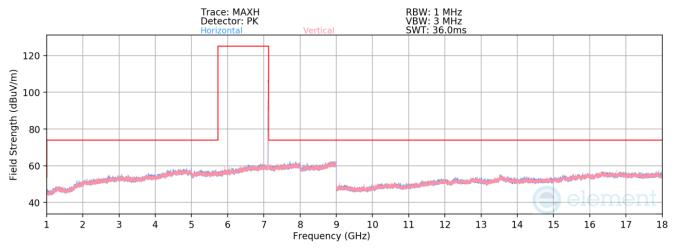


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13790.00	Average	Н	101	157	-76.27	17.74	48.47	68.20	-19.73

Table 7-85. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 217 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 217 of 324
			V 40 E 40/4E/2024

Plot 7-707. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 209 - RU26)


Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6995MHz
Channel:	209

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13990.00	Average	Н	101	164	-77.43	17.91	47.48	68.20	-20.72

Table 7-86. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 210 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 218 of 324
			V/ 10 5 12/15/2021

Plot 7-708. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 229 - RU26)

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	7095MHz
Channel:	229

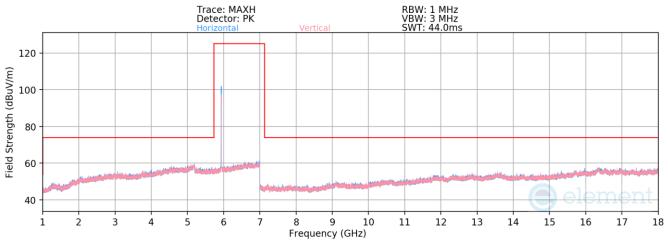
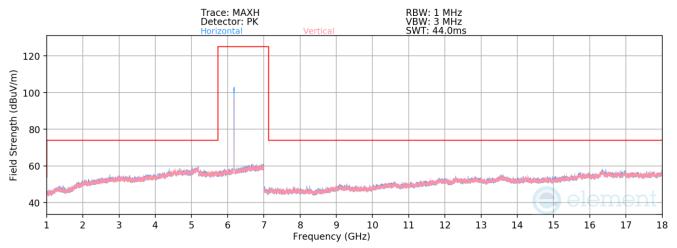

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
14230.00	Average	Н	-	-	-83.83	18.14	41.31	68.20	-26.89

Table 7-87. Radiated Spurious Emission Measurements Antenna 4a – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 210 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 219 of 324
			V/ 10 5 12/15/2021

RU242

Plot 7-709. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 1 - RU242)

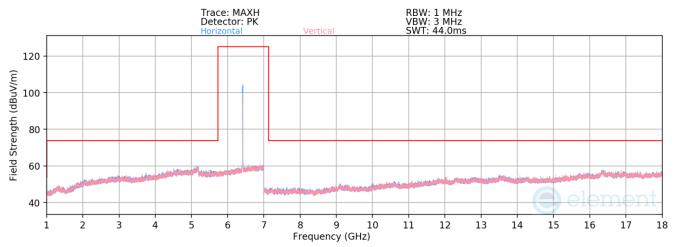

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.61	16.96	51.35	73.98	-22.63
*	11870.00	Average	Н	-	-	-83.47	16.96	40.49	53.98	-13.49
*	17805.00	Peak	Н	-	-	-72.86	21.89	56.03	73.98	-17.95
*	17805.00	Average	Н	-	-	-84.29	21.89	44.60	53.98	-9.38

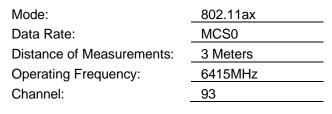
Table 7-88. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 220 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	
V 10 5 12/15/2021			

Plot 7-710. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 45 - RU242)

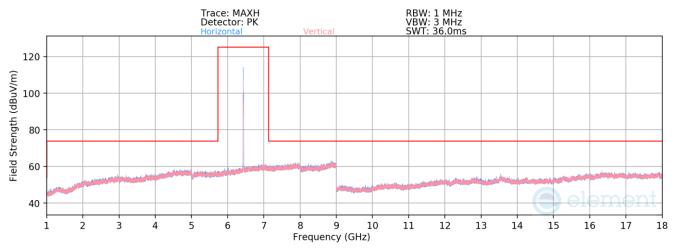

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.70	17.83	52.13	73.98	-21.85
*	12350.00	Average	Н	-	-	-84.26	17.83	40.57	53.98	-13.41


Table 7-89. Radiated Spurious Emission Measurements Antenna 4a - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	element MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 201 of 201	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 221 of 324	
			V 40 E 40/4E/2024	

Plot 7-711. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 93 - RU242)

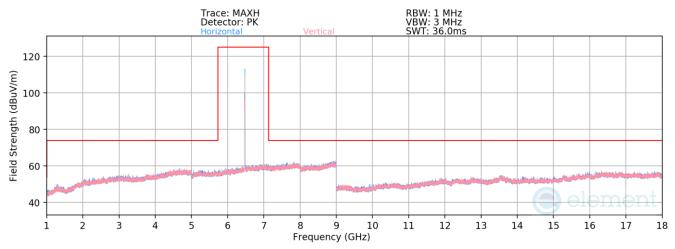


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.29	18.55	41.26	68.20	-26.94

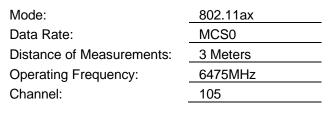
Table 7-90. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 222 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 222 of 324
			\/ 10 5 12/15/2021

Plot 7-712. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 97 - RU242)

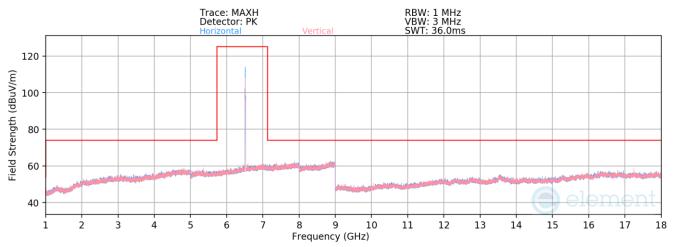

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6435MHz
Channel:	97

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-84.23	18.68	41.45	68.20	-26.75

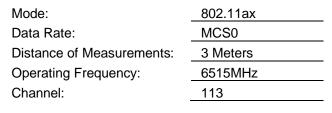

Table 7-91. Radiated Spurious Emission Measurements Antenna 4a - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 202 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 223 of 324
			V 10 5 12/15/2021

Plot 7-713. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 105 - RU242)

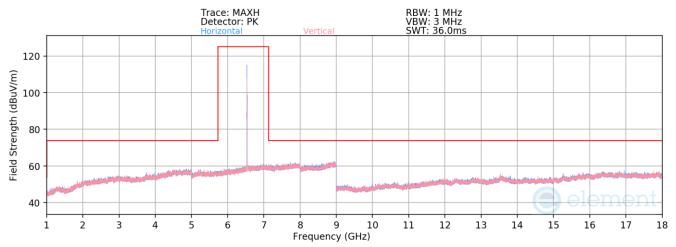


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	-	-	-83.48	18.16	41.68	68.20	-26.52

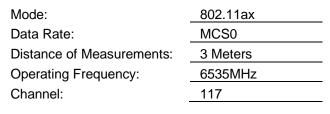

 Table 7-92. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 224 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	V 10 E 12/1E/2021

Plot 7-714. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 113 - RU242)

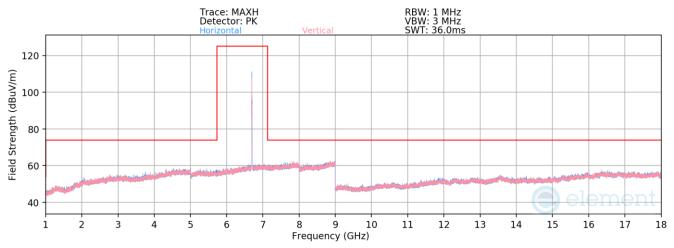


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13030.00	Average	Н	-	-	-83.72	18.52	41.80	68.20	-26.40


Table 7-93. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 225 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 225 01 324
			V/ 10 E 10/1E/2021

Plot 7-715. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 117 - RU242)

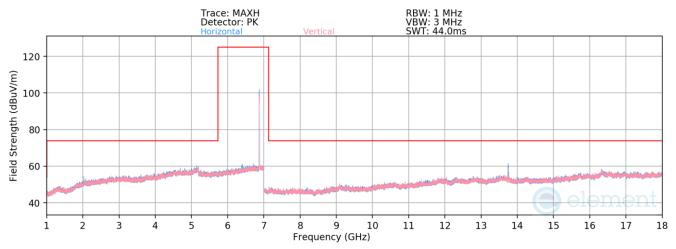


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13070.00	Average	Н	-	-	-83.65	18.31	41.66	68.20	-26.54
	Tabla	7 04 Dad	isted Sourie	ue Emission	Magguror	monto An	onna (a D	11242	

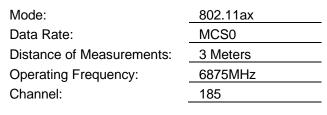
Table 7-94. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:	Dama 000 at 004	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 226 of 324	
			V/ 40 E 40/4E/0004	

Plot 7-716. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 149 - RU242)


Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6695MHz
Channel:	149

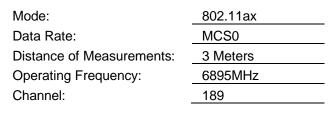
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.54	18.01	52.47	73.98	-21.51
*	13390.00	Average	Н	-	-	-84.02	18.01	40.99	53.98	-12.99


Table 7-95. Radiated Spurious Emission Measurements Antenna 4a - RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 227 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 227 01 324	
			V/ 10 E 10/1E/2021	

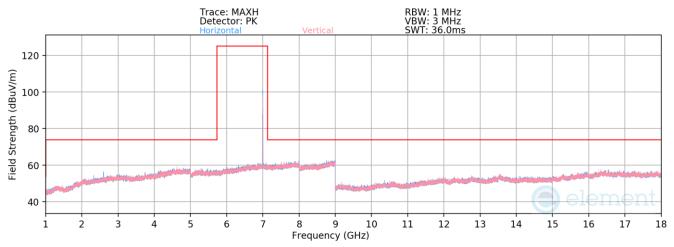
Plot 7-717. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 185 - RU242)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13750.00	Average	Н	-	-	-83.19	17.84	41.65	68.20	-26.55

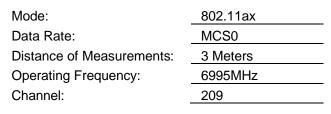

 Table 7-96. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 228 of 324
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	V 10 5 12/15/2021

Plot 7-718. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 189 - RU242)

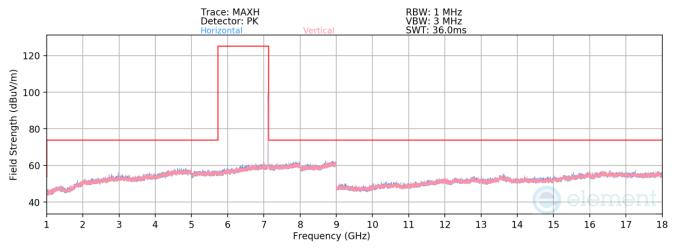


Frequ [MH	•	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1375	0.00	Average	Н	-	-	-83.00	17.84	41.84	68.20	-26.36

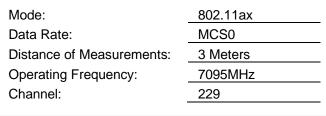

Table 7-97. Radiated Spurious Emission Measurements Antenna 4a – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Dage 220 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 229 of 324
			V/ 10 5 12/15/2021

Plot 7-719. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 209 - RU242)



Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Average	Н	-	-	-83.57	17.91	41.34	68.20	-26.86
	-	Detector [H/V]	Detector [H/V] Height [cm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [degree] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dBm] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] [dBm] AFCL [dB/m] Strength [dBµV/m]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] Level [dBm] AFCL [dB/m] Strength [dBµV/m]

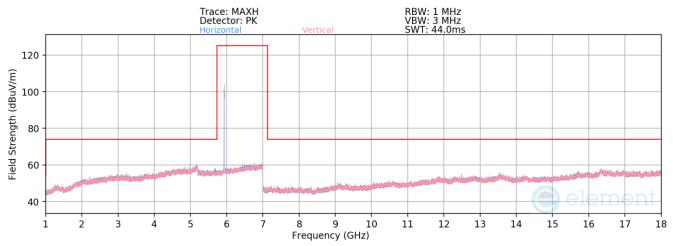

Table 7-98. Radiated Spurious Emission Measurements Antenna 4a – RU242

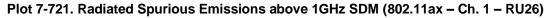
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 220 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 230 of 324	
			V 10 5 12/15/2021	

Plot 7-720. Radiated Spurious Emissions above 1GHz Antenna 4a (802.11ax - Ch. 229 - RU242)

Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Average	Н	-	-	-83.46	18.14	41.68	68.20	-26.52
		Detector [H/V]	Detector [H/V] Height [cm]	Detector [H/V] Height [cm] Azimuth [degree]	Detector Ant. Pol. Antenna Azimuth Level [H/V] Height [cm] [degree] [dBm]	Detector [H/V] Height [cm] Azimuth Level [dBm] [dBm]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth Level [dB/m] AFCL [dB/m] Strength [degree] [dBm] (dB/m]	Detector Ant. Pol. Antenna [H/V] Height [cm] Azimuth [degree] [dBm] AFCL [dB/m] Strength [dBµV/m]

 Table 7-99. Radiated Spurious Emission Measurements Antenna 4a – RU242

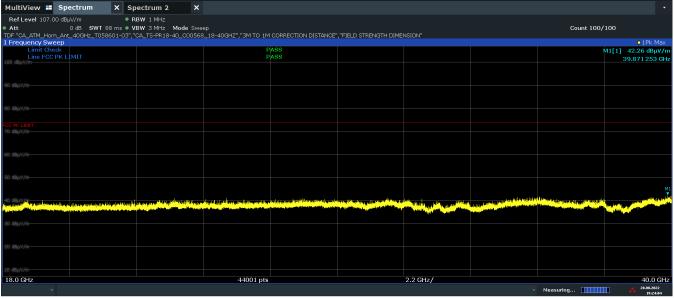

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 224 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 231 of 324
			V 40 E 40/4E/2024



7.7.3 SDM Primary Radiated Spurious Emission

RU26

19:21:06 28.08.2022



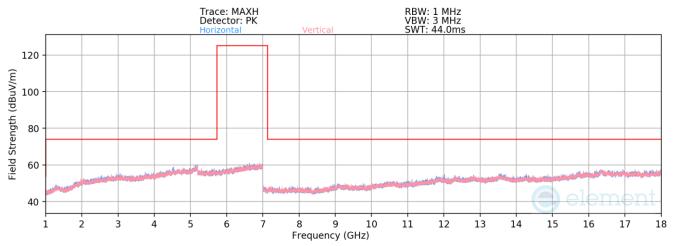
ef Level 107.00 dBµV/m	RBW 1 MHz						
tt 0 dB SWT 88 m: "CA_ATM_Hom_Ant_40GHz_T058601-	s • VBW 3 MHz Mode Sw				NCION!	Count 100/	100
equency Sweep	-U3", CA_TS-PR18-4U_C0056	8_18-40GHZ", 3M TO 1M	I CORRECTION DISTANCE	, FIELD STRENGTH DIME	INSION		●1Pk [
Limit Check Line FCC PK LIMIT			ASS			1	М1[1]—41.91 dBj
BµV/m-			455				39,93675
W/m	the second s	and an a shear and had an independent	and the second state the deballs of the	hile basis in the balance			
			Contraction of the second s	And a second	and the second	And the second se	State of the second
GHz		44001 pts			2.2 GHz/		40.0

Plot 7-722. Radiated Spurious Emissions 18-40GHz SDM (802.11ax - Ch. 1 - RU26, Pol. H)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 222 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 232 of 324
			V 10 5 12/15/2021

19:24:04 28.08.2022

Plot 7-723. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 1 – RU26, Pol. V)

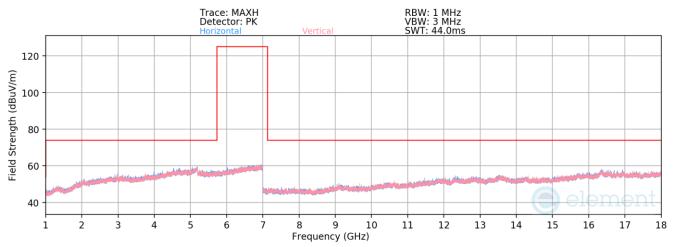

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.36	16.96	51.60	73.98	-22.38
*	11870.00	Average	Н	-	-	-83.48	16.96	40.48	53.98	-13.50
*	17805.00	Peak	Н	-	-	-72.57	21.89	56.32	73.98	-17.66
*	17805.00	Average	Н	-	-	-84.07	21.89	44.82	53.98	-9.16

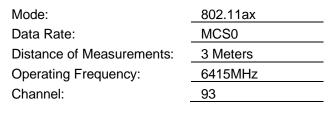
Table 7-100. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 222 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 233 of 324
			V 10 5 12/15/2021

Plot 7-724. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 45 – RU26)

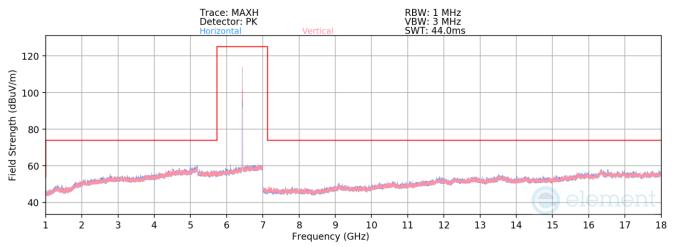

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.44	17.83	52.39	73.98	-21.59
*	12350.00	Average	Н	-	-	-84.19	17.83	40.64	53.98	-13.34

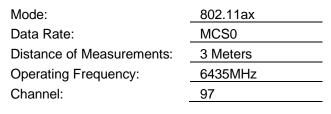

Table 7-101. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 224 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 234 of 324
			V/ 40 E 40/4E/2024

Plot 7-725. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 93 - RU26)

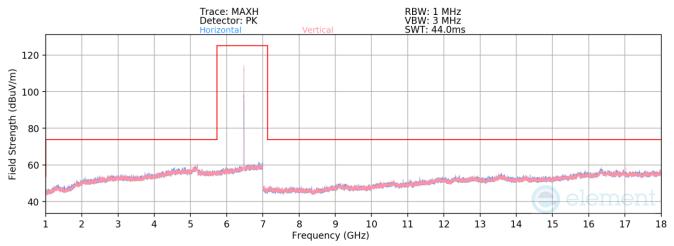


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.17	18.55	41.38	68.20	-26.82

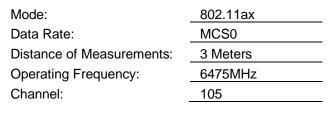

Table 7-102. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 225 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 235 of 324
			V/ 40 E 40/4E/2024

Plot 7-726. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 97 - RU26)

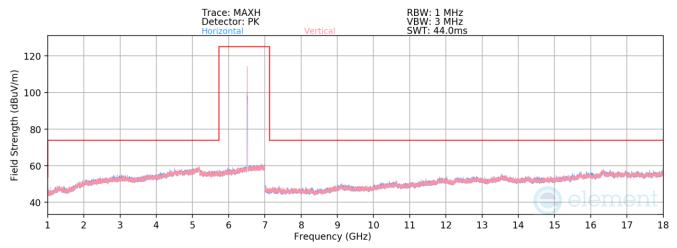


Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-83.92	18.68	41.76	68.20	-26.44
-	Ta	hlo 7-103	Radiated Sn	urious Emis	sion Mea	suromont		26	

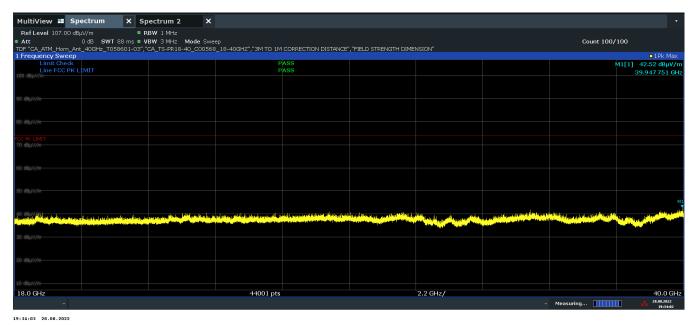

Table 7-103. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 236 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			V 40 E 40/4E/2024	

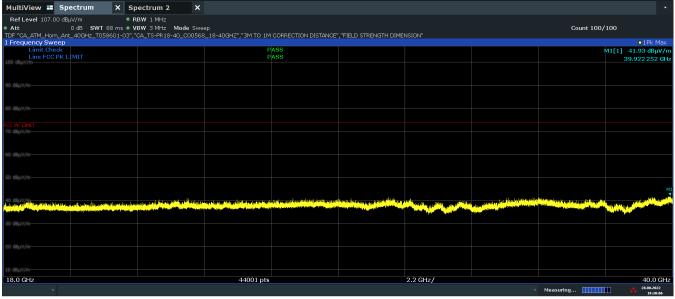
Plot 7-727. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 105 – RU26)



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	-	-	-83.73	18.16	41.43	68.20	-26.77


Table 7-104. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 237 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Fage 237 01 324	
			V/ 10 E 10/1E/2021	

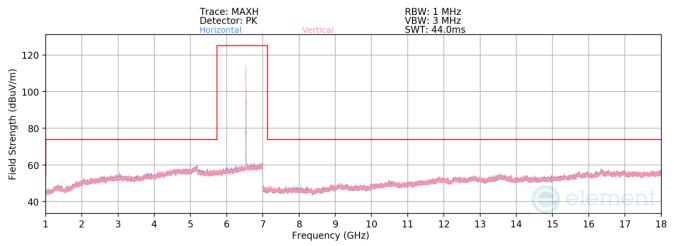

Plot 7-728. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 113 - RU26)

Plot 7-729. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 113 – RU26, Pol. H)

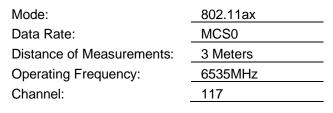
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 228 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 238 of 324
			\/ 10 5 12/15/2021

19:30:06 28.08.2022

Plot 7-730. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 113 – RU26, Pol. V)

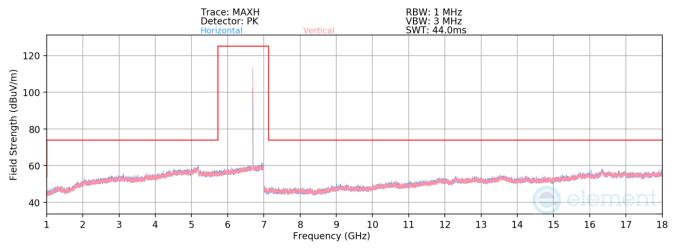

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6515MHz
Channel:	113

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
13030.00	Average	Н	-	-	-83.88	18.52	41.64	68.20	-26.56	


Table 7-105. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 220 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 239 of 324
			V/ 10 5 12/15/2021

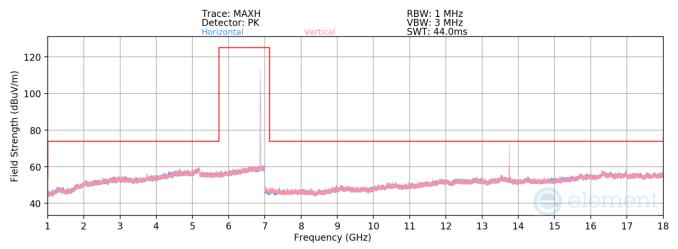
Plot 7-731. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 117 - RU26)



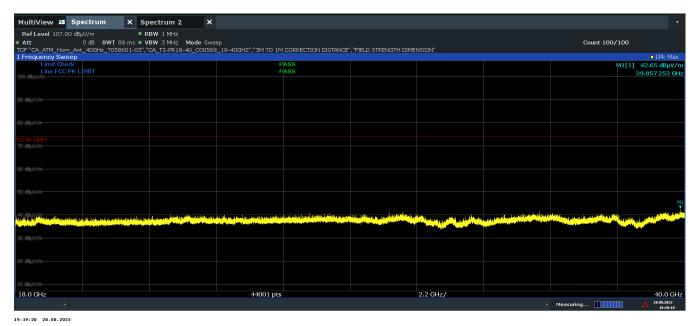
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]		
13070.00	Average	Н	-	-	-83.86	18.31	41.45	68.20	-26.75		
	Table 7-106 Radiated Spurious Emission Measurements SDM – RU26										

Table 7-106. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 240 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 240 of 324
			V/ 10 5 12/15/2021


Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6695MHz
Channel:	149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	13390.00	Peak	Н	-	-	-72.33	18.01	52.68	73.98	-21.30
*	13390.00	Average	Н	-	_	-83.98	18.01	41.03	53.98	-12.95


Table 7-107. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	element MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 244 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 241 of 324
			V/ 10 5 12/15/2021

Plot 7-733. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 185 - RU26)

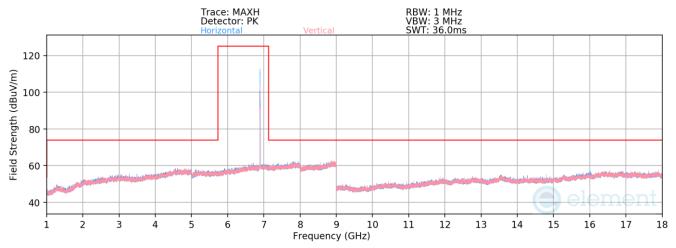
Plot 7-734. Radiated Spurious Emissions 18-40GHz SDM (802.11ax - Ch. 185 - RU26, Pol. H)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 242 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 242 of 324
			V 10 5 12/15/2021

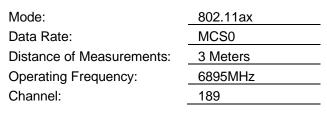
MultiView 📰 Sp	ectrum X	Spectrum 2 X							•
RefLevel 107.00 dB		• RBW 1 MHz							
		 VBW 3 MHz Mode Swi 13","CA_TS-PR18-40_C0056 		CORRECTION DISTANCE	","FIELD STRENGTH DIME	NSION"		Count 100/	100
Frequency Sweep					,				o1Pk Max
Limit Check Line FCC PK L 100 dBuV/m	IMIT			ASS ASS					и1[1] 42.17 dBµV/r 39.935 251 GH
CC PK LIMIT 10 dBµV/m									
I dBuV/gr and the state of the state of the state								i hiin a hali sa kata da kata da kata da k	and the second secon
0 dBµV/m							in a state of the		
0 dBµV/m-									10
18.0 GHz			44001 pts			2.2 GHz/			40.0 GH
~								Measuring	19:41:55

19:41:55 28.08.2022

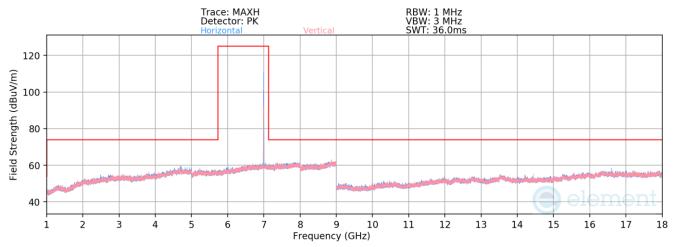
Plot 7-735. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 185 - RU26, Pol. V)


Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6875MHz
Channel:	185

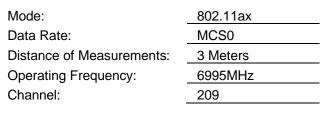
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
13750.00	Average	Н	-	-	-82.71	17.84	42.13	68.20	-26.07	


Table 7-108. Radiated Spurious Emission Measurements SDM – RU26

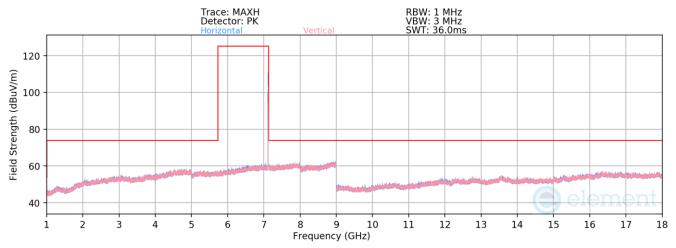
FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 242 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 243 of 324	
			V/ 10 5 12/15/2021	



-	uency Hz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
137	50.00	Average	Н	-	-	-83.18	17.84	41.66	68.20	-26.54


Table 7-109. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 244 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			V/ 10 5 12/15/2021	



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
13990.00	Average	Н	-	-	-83.26	17.91	41.65	68.20	-26.55

Table 7-110. Radiated Spurious Emission Measurements SDM – RU26

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 245 of 324	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device		
			\/ 10 5 12/15/2021	

Plot 7-738. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 229 - RU26)

MultiView 📰 Spectrum	× Spectrum 2 ×							•
TDF "CA_ATM_Horn_Ant_40GHz_T0586	 RBW 1 MHz 8 ms • VBW 3 MHz Mode Sw. 501-03", "CA_TS-PR18-40_C0056 		CORRECTION DISTANCE	',"FIELD STRENGTH DIME	NSION"		Count 100/	
1 Frequency Sweep								o1Pk Max
Limit Check Line FCC PK LIMIT			ASS					M1[1] 41.93 dBµV/m 39.820 754 GHz
80 dBµV/m								
FCC PK LIMIT 70 dBuV/m								
60 dBµV/m								
50 dBµV/m								EM
40 dBpV (m. 2. J. J. Covernet (M. State (Sector)) - A day met ter an Mile	and a street of the transformation and ball and	lanan di basa di danan katan di sala d	Autorist and the second states with the second	والمحافظ فأستند فالأوتان وروا أوافقا والمراج	ويتباهم لتألو وروالمأثل	أرعرا يتستعلم فأنتقل والطعيم والدرية الطاطرة	addition to the and the defendence	المرافعة الألبان والمراجب والارار ال
	a and the state of	and the second secon	internet and the second se	in the second			and the providence of the second s	
18.0 GHz		44001 pts			2.2 GHz/			40.0 GHz
*							Measuring	28.08.2022 19:49:16

19:49:16 28.08.2022

Plot 7-739. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 1 – RU26, Pol. H)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 040 at 004	
1C2205090028-22-R4.BCG 5/30/2022 - 9/16/2022		Tablet Device	Page 246 of 324	
			V 10.5 12/15/2021	

MultiView = Spectrum X S	pectrum 2 ×						•
	RBW 1 MHz						
	VBW 3 MHz Mode Sweep "CA_TS-PR18-40_C00568_18-40GHZ","3M TO 1M	CORRECTION DISTANCE	","FIELD STRENGTH DIME	NSION"		Count 100/	100
1 Frequency Sweep			, 			I	1Pk Max
Limit Check Line FCC PK LIMIT		ASS ASS				,	И1[1] 42.17 dBµV/n 35.721 347 GH
							551721547 GH
O dBµV/m-							
50 dBµV/m-							
						M1	
40 dBuV/m		and the second second because of	المراجع المراجع	t de	and a star bakes		مانى د يەنىلىر
a harran bilek a mini di bilaha ka ma kuma ka kala materiaka di birdan.	a bi da para katiki ka shifti da kili ka sa shiki. Ka sa shiki ta sana katiki sa			and the state of the second states	t and the structure of the second second		State of the second
10 dBµV/m-							
0 dBµV/m-							
18.0 GHz	44001 pts			2.2 GHz/			40.0 GH:
*					~	Measuring	28.08.2022

19:46:51 28.08.2022

Plot 7-740. Radiated Spurious Emissions 18-40GHz SDM (802.11ax – Ch. 1 – RU26, Pol. V)

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	7095MHz
Channel:	229

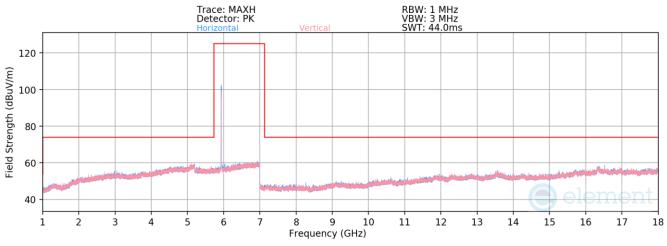
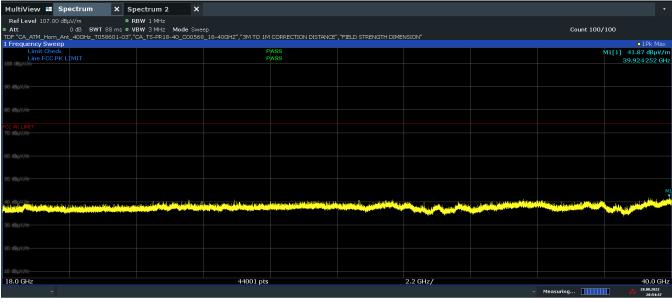

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]	1
14230.00	Average	Н	-	-	-84.91	18.64	40.73	68.20	-27.47	

Table 7-111. Radiated Spurious Emission Measurements SDM – RU26


FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 247 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 247 of 324
			V/ 10 5 12/15/2021

RU242

Plot 7-741. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 1 - RU242)

20:54:37 28.08.202

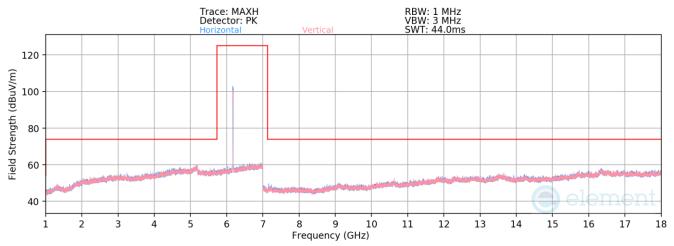
Plot 7-742. Radiated Spurious Emissions 18-40GHz SDM (802.11ax - Ch. 1 - RU242, Pol. H)

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 249 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 248 of 324
			V 10 5 12/15/2021

MultiView Spectrum X Sp	ectrum 2 ×					•
	BW 1 MHz BW 3 MHz Mode Sweep				Count 100/1	00
TDF "CA_ATM_Horn_Ant_40GHz_T058601-03","(CA_TS-PR18-40_C00568_18-40GHZ","3M TO 1M	CORRECTION DISTANCE", "FIELD	O STRENGTH DIMENSION"		Count 1007 1	•1Pk Max
1 Frequency Sweep Limit Check		ASS			M	о IPk мах 11[1] 41.79 dBµV/m
Line FCC PK LIMIT 100 dBµV/m	P	ASS				39.886 253 GHz
60 dBµV/m-						
50 dBµV/m-						
.40 dBuVám.	an an third a late of least a standard and a start of the		t		Mathematica In a debroating	The second s
						المتحالية المتحالي والمتحاد
10 dBµV/m-						
18.0 GHz	44001 pts		2.2 GHz/			40.0 GHz
~				*	Measuring	20:57:25

20:57:25 28.08.2022

Plot 7-743. Radiated Spurious Emissions 18-40GHz SDM (802.11ax - Ch. 1 - RU242, Pol. V)

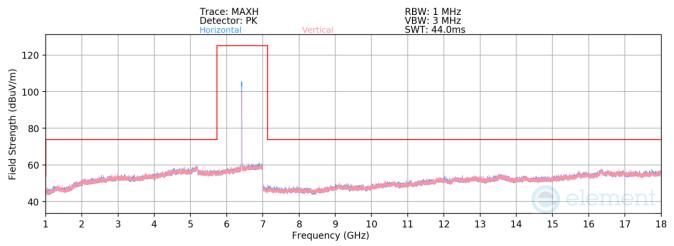

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5955MHz
Channel:	1

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11870.00	Peak	Н	-	-	-72.18	16.96	51.78	73.98	-22.20
*	11870.00	Average	H	-	-	-83.51	16.96	40.45	53.98	-13.53
*	17805.00	Peak	Н	-	-	-72.99	21.89	55.90	73.98	-18.08
*	17805.00	Average	Н	-	-	-84.08	21.89	44.81	53.98	-9.17

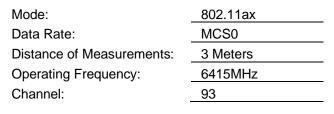
Table 7-112. Radiated Spurious Emission Measurements SDM – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 240 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 249 of 324
			V/ 10 5 12/15/2021

Plot 7-744. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 45 – RU242)

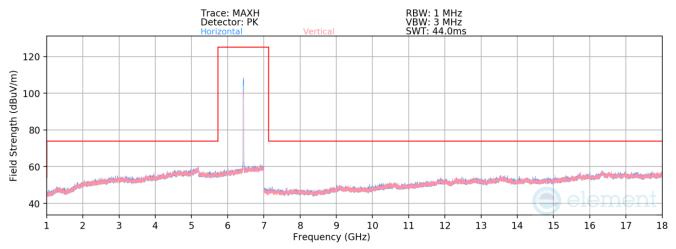

Mode:	802.11ax
Data Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	6175MHz
Channel:	45

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	12350.00	Peak	Н	-	-	-72.40	17.83	52.43	73.98	-21.55
*	12350.00	Average	Н	-	-	-84.18	17.83	40.65	53.98	-13.33

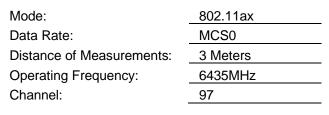

Table 7-113. Radiated Spurious Emission Measurements SDM – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 250 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 250 of 324
			V 40 E 40/4E/2024

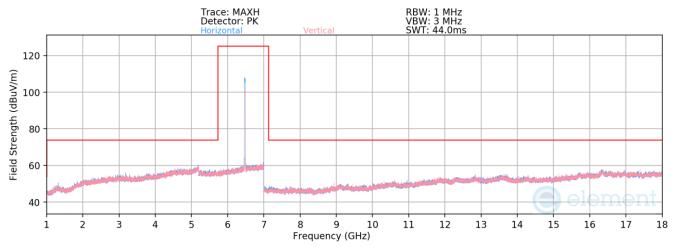
Plot 7-745. Radiated Spurious Emissions above 1GHz SDM (802.11ax – Ch. 93 – RU242)



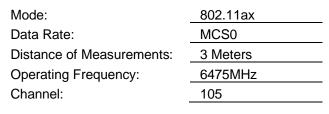
Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12830.00	Average	Н	-	-	-84.30	18.55	41.25	68.20	-26.95


Table 7-114. Radiated Spurious Emission Measurements SDM – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 251 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 251 of 324	
			V 40 E 40/4E/2024	



Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12870.00	Average	Н	-	-	-83.91	18.68	41.77	68.20	-26.43


Table 7-115. Radiated Spurious Emission Measurements SDM – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 252 of 224	
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 252 of 324	
			V/ 10 5 12/15/2021	

Plot 7-747. Radiated Spurious Emissions above 1GHz SDM (802.11ax - Ch. 105 - RU242)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
12950.00	Average	Н	-	-	-83.58	18.16	41.58	68.20	-26.62

Table 7-116. Radiated Spurious Emission Measurements SDM – RU242

FCC ID: BCGA2764 IC: 579C-A2764	element	lement MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dega 252 of 224
1C2205090028-22-R4.BCG	5/30/2022 - 9/16/2022	Tablet Device	Page 253 of 324
			V/ 10 5 12/15/2021