

ELEMENT MATERIALS TECHNOLOGY

(Formerly PCTEST)

18855 Adams Ct, Morgan Hill, CA 95037 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
http://www.element.com

WIFI 6 GHZ RF EXPOSURE EVALUATION

Applicant Name Apple, Inc. One Apple Park Way Cupertino, CA 95014 Date of Testing 06/26/2022 – 09/21/2022 Test Site/Location Element, Morgan Hill, CA, USA Document Serial No: 1C2205090025-33.BCG

FCC ID: BCGA2435

APPLICANT: APPLE, INC.

DUT Type: Tablet Device
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: A2435

Tx Frequency SAR **APD** PD **Band & Mode** 1g Body - Tablet **Body - Tablet** MHz psPD (W/m²) (W/kg) (W/m²)WIFI 6 GHz 5955-7115 1.13 5.94 7.08

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

RJ Ortanez
Executive Vice President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 1 of 38

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
2	INTRODUCTION	10
3	DOSIMETRIC ASSESSMENT	.11
4	TEST CONFIGURATION POSITIONS	12
5	RF EXPOSURE LIMITS	13
6	MEASUREMENT PROCEDURES	15
7	RF CONDUCTED POWERS	17
	SYSTEM VERIFICATION	
9	DATA SUMMARY	26
10	SAR MEASUREMENT VARIABILITY	31
11	EQUIPMENT LIST	32
12	MEASUREMENT UNCERTAINTIES	33
14	CONCLUSION	35
15	REFERENCES	36

APPENDIX A: TEST PLOTS

APPENDIX B: SYSTEM VERIFICATION PLOTS

APPENDIX C: PROBE AND VERIFICATION SOURCE CALIBRATION CERTIFICATES

APPENDIX D: SAR TISSUE SPECIFICATIONS

APPENDIX E: SAR SYSTEM VALIDATION

APPENDIX F: WIFI TIME-AVERAGED SAR VERIFICATION

APPENDIX G: DUT ANTENNA DIAGRAM AND TEST SETUP PHOTOGRAPHS

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 2 of 38

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Tx Frequency
U-NII-5	5955 - 6415 MHz
U-NII-6	6435 - 6515 MHz
U-NII-7	6535 - 6875 MHz
U-NII-8	6895 - 7115 MHz

1.2 Power Reduction for SAR

This device additionally utilizes a power reduction mechanism for WLAN operations. When WLAN is operating simultaneously with certain combinations of 3G/4G, 5 GHz WLAN, and 6 GHz WLAN antennas, the output power of is permanently reduced. SAR evaluations were additionally performed at the maximum allowed output power for these scenarios to evaluate simultaneous transmission compliance.

Additionally, this device uses an independent mechanism that limits WIFI powers to a time-averaged output power. For the purposes of this test report, all SAR measurements were performed with the algorithm disabled at the maximum time-averaged output power level. Appendix F includes verification data for this time-averaged SAR mechanism.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 3 of 38

1.3 Nominal and Maximum Output Power Specifications

The device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01.

Note: Targets for 802.11ax RU operations can be found in 802.11ax RU SAR Exclusion Appendix of Measurement Report SN 1C2205090025-26.BCG.

1.3.1 Maximum WLAN Time-Averaged Output Power

		IEEE 802.11 (Maximum in dBm) - Ant 5b (Tolerance			nce +0/-3.00dB)
Mode	Channel	SIS		MII	
		а	ax (SU)	ax (SU) CDD	ax (SU) SDM
	1	3.25	3.25	-0.75	2.00
	5	3.25	3.25	-0.75	2.00
	9-29	3.25	3.25	-0.75	2.00
	33-61	3.25	3.25	-1.25	1.75
6 GHz	65-85	3.25	3.25	-1.50	1.50
WIFI	89	3.25	3.25	-1.50	1.50
(20MHz	93	3.25	3.25	-1.50	1.50
BW)	97-113	3.00	3.00	-1.50	1.25
,	117-181	2.75	2.75	-1.25	1.50
	185	2.75	2.75	-1.25	1.50
	189-225	3.25	3.25	0.25	2.50
	229	3.25	3.25	0.25	2.50
	233	2.50	2.50	0.25	2.50
	3		6.25	2.25	5.00
	11		6.25	2.25	5.00
	19-27 35-59		6.25 6.25	2.25 1.75	5.00 4.75
	67-75		6.25	1.50	4.73
6 GHz	83		6.25	1.50	4.50
WIFI	91		6.25	1.50	4.50
(40MHz	99-107		6.00	1.50	4.25
BW)	115		5.75	1.50	4.25
	123-179		5.75	1.75	4.50
	187		5.75	1.75	4.50
	195-219		6.25	3.25	5.50
	227		6.25	3.25	5.50
	7		9.25	5.25	8.00
	23		9.25	5.25	8.00
	39-55		9.25	4.75	7.75
6 GHz	71		9.25	4.50	7.50
WIFI	87		9.25	4.50	7.50
(80MHz	103		9.00	4.50	7.25
BW)	119		8.75	4.50	7.25
5,,,	135-167		8.75	4.75	7.50
	183		8.75	4.75	7.50
	199		9.25	6.25	8.50
	215		9.25	6.25	8.50
	15		12.75	8.75	11.50
6 GHz	47		13.00	8.75	11.75
WIFI	79		12.00	8.50	11.50
(160MHz	111		12.25	8.50	11.25
BW)	143		11.50	8.75	11.50
	175		11.50	8.75	11.50
	207		11.75	9.75	11.75

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 4 of 38

		IEEE 802.11 (M	laximum in dBm)	- Ant 4a (Tolerar	nce +0/-3.00dB)
Mode	Channel	SIS	_	-	MO
		a	ax (SU)	ax (SU) CDD	ax (SU) SDM
	1	3.25	3.25	-0.75	2.00
	5	3.25	3.25	-0.75	2.00
	9-29	3.25	3.25	-0.75	2.00
	33-61	3.25	3.25	-1.25	1.75
6 GHz	65-85	3.25	3.25	-1.50	1.50
WIFI	89	3.25	3.25	-1.50	1.50
(20MHz	93	3.25	3.25	-1.50	1.50
BW)	97-113	3.00	3.00	-1.50	1.25
	117-181	2.75	2.75	-1.25	1.50
	185	2.75	2.75	-1.25	1.50
	189-225	3.25	3.25	0.25	2.50
	229	3.25	3.25	0.25	2.50
	233	2.50	2.50	0.25	2.50
	3		6.25	2.25	5.00
	11		6.25	2.25	5.00
	19-27		6.25	2.25	5.00
	35-59 67-75		6.25 6.25	1.75 1.50	4.75 4.50
6 GHz	83		6.25	1.50	4.50
WIFI	91		6.25	1.50	4.50
(40MHz	99-107		6.00	1.50	4.25
BW)	115		5.75	1.50	4.25
	123-179		5.75	1.75	4.50
	187		5.75	1.75	4.50
	195-219		6.25	3.25	5.50
	227		6.25	3.25	5.50
	7		8.00	5.25	8.00
	23		8.00	5.25	8.00
	39-55		8.00	4.75	7.75
6 GHz	71		8.00	4.50	7.50
WIFI	87		8.00	4.50	7.50
(80MHz	103		9.00	4.50	7.25
BW)	119		8.75	4.50	7.25
5,00,	135-167		8.75	4.75	7.50
	183		8.75	4.75	7.50
	199		9.25	6.25	8.50
	215		9.25	6.25	8.50
	15		10.00	7.75	10.00
6 GHz	47		9.00	7.25	9.00
WIFI	79		8.50	7.00	8.50
(160MHz	111		8.50	7.00	8.50
BW)	143		8.50	7.25	8.50
	175		11.00	7.25	11.00
	207		12.00	8.75	12.00

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 5 of 38

1.3.2 Reduced WLAN Time-Averaged Output Power

The below table is applicable in the following conditions:

- Simultaneous conditions with Licensed Bands Antenna 2a/2b active
- Simultaneous conditions with Inter-Band ULCA active

		IEEE 802.11 (M	aximum in dBm)	- Ant 5b (Tolerar	nce +0/-3.00dB)
Mode	Channel	SIS			MO
		а	ax (SU)	ax (SU) CDD	ax (SU) SDM
	1	3.25	3.25	-0.75	2.00
	5	3.25	3.25	-0.75	2.00
	9-29	3.25	3.25	-0.75	2.00
	33-61	3.25	3.25	-1.25	1.75
	65-85	3.25	3.25	-1.50	1.50
6 GHz	89	3.25	3.25	-1.50	1.50
WIFI	93	3.25	3.25	-1.50	1.50
(20MHz	97-113	3.00	3.00	-1.50	1.25
BW)	117-181	2.75	2.75	-1.25	1.50
	185	2.75	2.75	-1.25	1.50
	189-225	3.25	3.25	0.25	2.50
	229	3.25	3.25	0.25	2.50
	233	2.50	2.50	0.25	2.50
	3		6.25	2.25	5.00
	11		6.25	2.25	5.00
	19-27		6.25	2.25	5.00
	35-59		6.25	1.75	4.75
	67-75		6.25	1.50	4.50
6 GHz	83		6.25	1.50	4.50
WIFI	91		6.25	1.50	4.50
(40MHz	99-107		6.00	1.50	4.25
BW)	115		5.75	1.50	4.25
	123-179		5.75	1.75	4.50
	187		5.75	1.75	4.50
	195-219		6.25	3.25	5.50
	227		6.25	3.25	5.50
	7		9.00	5.25	8.00
	23		9.00	5.25	8.00
	39-55		9.00	4.75	7.75
	71		9.00	4.50	7.50
6 GHz	87		9.00	4.50	7.50
WIFI	103		8.25	4.50	7.25
(80MHz	119		7.50	4.50	7.25
BW)	135-167		7.50	4.75	7.50
	183		7.50	4.75	7.50
	199		7.75	6.25	7.75
	215		7.75	6.25	7.75
	15		9.00	8.75	9.00
	47		9.00	8.75	9.00
6 GHz	79		9.00	8.50	9.00
WIFI	111		8.25	8.25	8.25
(160MHz	143		7.50	7.50	7.50
BW)	175		7.50	7.50	7.50
	207		7.75	7.75	7.75

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 6 of 38

REV 2.0

The below table is applicable in the following conditions:

- Simultaneous conditions with Licensed Bands Antenna 4b active
- Simultaneous conditions with Inter-Band ULCA active

		IEEE 802.11 (M	aximum in dBm)	- Ant 4a (Toleran	ce +0/-3.00dB)
Mode	e Channel	SIS	50	MII	МО
		a	ax (SU)	ax (SU) CDD	ax (SU) SDM
	1	3.25	3.25	-0.75	2.00
	5	3.25	3.25	-0.75	2.00
	9-29	3.25	3.25	-0.75	2.00
	33-61	3.25	3.25	-1.25	1.75
C CII-	65-85	3.25	3.25	-1.50	1.50
6 GHz	89	3.25	3.25	-1.50	1.50
WIFI	93	3.25	3.25	-1.50	1.50
(20MHz	97-113	3.00	3.00	-1.50	1.25
BW)	117-181	2.75	2.75	-1.25	1.50
	185	2.75	2.75	-1.25	1.50
	189-225	3.25	3.25	0.25	2.50
	229	3.25	3.25	0.25	2.50
	233	2.50	2.50	0.25	2.50
	3		4.50	2.25	4.50
	11		4.50	2.25	4.50
	19-27		4.50	2.25	4.50
	35-59		4.50	1.75	4.50
6 GHz	67-75		4.50	1.50	4.50
WIFI	83		4.50	1.50	4.50
	91		4.50	1.50	4.50
(40MHz BW)	99-107		3.50	1.50	3.50
DVV)	115		3.50	1.50	3.50
	123-179		5.50	1.75	4.50
	187		5.75	1.75	4.50
	195-219		6.25	3.25	5.50
	227		6.25	3.25	5.50
	7		4.50	4.50	4.50
	23		4.50	4.50	4.50
	39-55		4.50	4.50	4.50
6 GHz	71		4.50	4.50	4.50
WIFI	87		4.50	4.50	4.50
(80MHz	103		3.50	3.50	3.50
BW)	119		5.50	4.50	5.50
DVV)	135-167		5.50	4.75	5.50
	183		5.50	4.75	5.50
	199		6.50	6.25	6.50
	215		6.50	6.25	6.50
	15		4.50	4.50	4.50
6 GHz	47		4.50	4.50	4.50
WIFI	79		4.50	4.50	4.50
(160MHz	111		3.50	3.50	3.50
BW)	143		5.50	5.50	5.50
D V V J	175		5.50	5.50	5.50
	207		6.50	6.50	6.50

Note: In MIMO operations, each antenna transmits at maximum allowed powers as indicated above.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 7 of 38

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the location of the device antennas can be found in SAR Part 1 Report, DUT Antenna Diagram & SAR Test Setup Photographs Appendix. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

Table 1-1
Device Surfaces - Tablet

Device Sides/Edges for Testing						
Mode Back Front Top Bottom Right Left					Left	
6 GHz WLAN Ant 5B	Yes	No	No	No	Yes	No
6 GHz WLAN Ant 4A	Yes	No	Yes	No	No	Yes

Note: Per FCC KDB Publication 616217 D04v01r01, particular edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01. Additional edges may have been evaluated for simultaneous transmission analysis.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 8 of 38

1.5 Miscellaneous Testing Considerations

Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. FCC KDB 648474 and FCC KDB 248227 were followed for test positions, distances, and modes. Per TCB workshop October 2020 notes, 5 channels were tested. Absorbed power density (APD) using a 4cm^2 averaging area is reported based on SAR measurements. Incident power density is evaluated at 2mm ensuring that the resolution is sufficient such that integrated power density (iPD) between d=2mm and d= λ /5mm is \geq -1dB per equipment manufacturer quidance. Power density results are scaled up for uncertainty above 30%.

6 GHz WIFI SAR results are used for simultaneous transmission analysis with the other WWAN/BT/WIFI transmitters. Analysis can be found in the SAR report.

To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T, and 996T.

Per FCC Guidance, 802.11ax RU was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax RU based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes. Please see Measurement Report SN 1C2205090025-26.BCG for 802.11ax RU output powers.

The WLAN/Bluetooth chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions. Two device variants are referenced as Variant 1 and Variant 2 in this report. WLAN SAR/APD worst case configuration was tested for Variant 1 and Variant 2.

1.6 Guidance Applied

- November 2017, October 2018, April 2019, November 2019, October 2020 TCBC Workshop Notes
- SPEAG DASY6 System Handbook
- SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz) (Nov 2021)
- IEEE 1528-2013
- IEC TR 63170:2018
- IEC 62479:2010
- FCC KDB 865664 D02 v01r02
- FCC KDB 248227 D01 v02r02
- FCC KDB 447498 D01
- FCC KDB 865664 D01 v01r04
- April 2019 TCB Workshop Notes (IEEE 802.11ax)
- FCC KDB Publication 616217 D04v01r02

1.7 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 9 of 38

2 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996, and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [15]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [44] and Health Canada RF Exposure Guidelines Safety Code 6 [35]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [17] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

 $SAR = \frac{\sigma \cdot E^2}{\rho}$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[20]

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 10 of 38

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface, and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

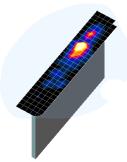


Figure 3-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 3-1) and IEEE1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 3-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	t died- ydiedy	7 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, , , ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 11 of 38

4 TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 SAR Testing for Tablet per KDB Publication 616217 D04v01r02

Per FCC KDB Publication 616217 D04v01r02, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 12 of 38

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e., as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure Limits for Frequencies Below 6 GHz

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR Head	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 13 of 38

5.4 RF Exposure Limits for Frequencies Above 6 GHz

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 5-2
Human Exposure Limits Specified in FCC 47 CFR §1.1310

Human Exposure to Radiofrequency (RF) Radiation Limits				
Frequency Range [MHz]	Power Density [mW/cm²]	Average Time [Minutes]		
(A) Limi	(A) Limits For Occupational / Controlled Environments			
1,500 – 100,000	5.0	6		
(B) Limits For General Population / Uncontrolled Environments				
1,500 — 100,000	1.0	30		

Note: 1.0 mW/cm² is 10 W/m²

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 14 of 38

6 MEASUREMENT PROCEDURES

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset-based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

6.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.2 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop guidance, 802.11ax was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 15 of 38

6.2.3 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 6.2.2). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.4 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

6.2.5 MIMO SAR Considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 16 of 38

7 RF CONDUCTED POWERS

Table 7-1
6 GHz WLAN Maximum Average RF Power – 802.11ax 160 MHz BW, Antenna 5B, Variant 1

6GHz (160MHz) Conducted Power [dBm]			
	Channel	IEEE Transmission	
Freq [MHz]		Mode	
Freq [winz]		802.11ax	
		Average	
6025	15	11.31	
6185	47	11.58	
6505	111	10.55	
6825	175	10.26	
6985	207	11.31	

Table 7-2
6 GHz WLAN Reduced Average RF Power – 802.11ax 160 MHz BW, Antenna 5B, Variant 1

6GHz (160MHz) Conducted Power [dBm]			
Freq [MHz]	Channel	IEEE Transmission Mode	
rreq [Min2]		802.11ax	
		Average	
6025	15	8.41	
6185	47	8.19	
6505	111	7.41	
6825	175	6.64	
6985	207	6.53	

Table 7-3
6 GHz WLAN Maximum Average RF Power – 802.11ax 160 MHz BW, Antenna 5B, Variant 2

6GHz (160MHz) Conducted Power [dBm]			
	Channel	IEEE Transmission	
Freq [MHz]		Mode	
rreq [winz]		802.11ax	
		Average	
6025	15	11.17	
6185	47	11.67	
6505	111	10.46	
6825	175	10.30	
6985	207	11.26	

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 17 of 38

Table 7-4
6 GHz WLAN Reduced Average RF Power – 802.11ax 160 MHz BW, Antenna 5B, Variant 2

6GHz (160MHz) Conducted Power [dBm]			
Freq [MHz]	Channel	IEEE Transmission Mode	
		802.11ax	
		Average	
6025	15	8.51	
6185	47	8.32	
6505	111	7.61	
6825	175	6.50	
6985	207	6.70	

Table 7-5
6 GHz WLAN Maximum Average RF Power – 802.11ax 160 MHz BW, Antenna 4A, Variant 1

6GHz (160MHz) Conducted Power [dBm]			
	Channel	IEEE Transmission	
Erog [MHz]		Mode	
Freq [MHz]		802.11ax	
		Average	
6025	15	9.09	
6345	79	7.81	
6505	111	7.96	
6825	175	10.27	
6985	207	10.30	

Table 7-6
6 GHz WLAN Reduced Average RF Power – 802.11ax 160 MHz BW, Antenna 4A, Variant 1

6GHz (160MHz) Conducted Power [dBm]			
Eroa [MUz]	Channel	IEEE Transmission Mode	
Freq [MHz]		802.11ax	
		Average	
6025	15	2.97	
6345	79	3.56	
6505	111	1.96	
6825	175	4.47	
6985	207	5.48	

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 18 of 38

Table 7-7
6 GHz WLAN Maximum Average RF Power – 802.11ax 160 MHz BW, Antenna 4A, Variant 2

6GHz (160MHz) Conducted Power [dBm]			
Erog [MUz]	Channel	IEEE Transmission Mode	
Freq [MHz]		802.11ax	
		Average	
6025	15	8.04	
6345	79	7.67	
6505	111	8.01	
6825	175	9.32	
6985	207	10.29	

Table 7-8
6 GHz WLAN Reduced Average RF Power – 802.11ax 160 MHz BW, Antenna 4A, Variant 2

6GHz (160MHz) Conducted Power [dBm]			
	Channel	IEEE Transmission	
From IMILE		Mode	
Freq [MHz]		802.11ax	
		Average	
6025	15	2.84	
6345	79	3.47	
6505	111	1.89	
6825	175	4.12	
6985	207	5.41	

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 19 of 38

Table 7-9
WLAN Power Reduction Verification

Antenna	Mode/Band	Mode/Band Condition (s)		Reduced Target Power [dBm]	Maximum Measured Power	Reduced Measured Power	Verdict
			(Tolerance [dB])	(Tolerance [dB])	[dBm]	[dBm]	
Ant 4A	6E GHz WLAN	Main Band Ant 4B ON	9.00 (+1.5/-1.5)	4.50 (+1.5/-2)	8.85	3.45	PASS
AIIL 4A	6E GHz WLAN	ULCA ON	9.00 (+1.5/-1.5)	4.50 (+1.5/-2)	8.85	3.42	PASS
	6E GHz WLAN	Main Band Ant 2A ON	11.75 (+1.5/-1.5)	7.75 (+1.5/-2)	11.11	7.74	PASS
Ant 5B	6E GHz WLAN	Main Band Ant 2B ON	11.75 (+1.5/-1.5)	7.75 (+1.5/-2)	11.11	7.70	PASS
	6E GHz WLAN	ULCA ON	11.75 (+1.5/-1.5)	7.75 (+1.5/-2)	11.11	7.68	PASS

Conducted powers were measured for each Mode/Band and applied condition. All conducted power measurements were verified to be within tolerance.

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- The WLAN chipset in this device is produced by two different suppliers. The electrically identical modules are manufactured with identical mechanical structures to meet the same specifications and functions.
- Two device variants are referenced as Variant 1 and Variant 2 in this report.
- WLAN SAR worst case configuration was spot checked on Variant 1 and Variant 2. The Variant with the highest reported SAR value was evaluated for the remaining WLAN configurations.

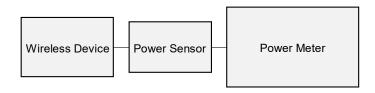


Figure 7-1
Power Measurement Setup

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 20 of 38

8 SYSTEM VERIFICATION

8.1 SAR Test System Verification

Table 8-1 Measured Tissue Properties

	1	1410	asurec	1 113346	Fiohei	1103			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			5935	5.366	36.794	5.411	35.143	-0.83%	4.70%
			5970	5.398	36.684	5.448	35.120	-0.92%	4.45%
			5985	5.419	36.657	5.464	35.110	-0.82%	4.41%
			6000	5.440	36.624	5.480	35.100	-0.73%	4.34%
			6025	5.477	36.589	5.510	35.070	-0.60%	4.33%
			6065	5.523	36.512	5.557	35.022	-0.61%	4.25%
			6075	5.537	36.496	5.569	35.010	-0.57%	4.24%
			6085	5.548	36.475	5.580	34.998	-0.57%	4.22%
			6275	5.795	36.135	5.805	34.770	-0.17%	3.93%
			6285	5.801	36.121	5.816	34.758	-0.26%	3.92%
			6305	5.819	36.073	5.840	34.734	-0.36%	3.86%
			6345	5.887	36.046	5.887	34.686	0.00%	3.92%
			6475	6.034	35.832	6.041	34.530	-0.12%	3.77%
06/26/2022	6500 Head	20.5	6485	6.042	35.808	6.052	34.518	-0.17%	3.74%
00/20/2022	osoo nead	20.5	6500	6.058	35.760	6.070	34.500	-0.20%	3.65%
			6505	6.067	35.744	6.076	34.494	-0.15%	3.62%
			6545	6.132	35.656	6.122	34.446	0.16%	3.51%
			6675	6.296	35.514	6.273	34.290	0.37%	3.57%
			6685	6.301	35.486	6.285	34.278	0.25%	3.52%
			6715	6.336	35.327	6.319	34.242	0.27%	3.17%
			6785	6.425	35.315	6.400	34.158	0.39%	3.39%
		1	6825	6.467	35.130	6.447	34.110	0.31%	2.99%
		1	6985	6.684	34.943	6.633	33.918	0.77%	3.02%
		1	6995	6.688	34.942	6.644	33.906	0.66%	3.06%
		1	7000	6.688	34.942	6.650	33.900	0.57%	3.07%
		1	7005	6.689	34.942	6.656	33.894	0.50%	3.08%
				6.712	34.886		33.870	0.48%	3.00%
			7025 5935	5.523	34.886	6.680 5.411	35.143	2.07%	2.74%
		1	5935		35.985	5.448	35.143	2.07%	2.46%
				5.569 5.593					2.44%
			5985	5.611	35.966 35.946	5.464 5.480	35.110	2.36%	2.41%
			6000 6025	5.642	35.946	5.510	35.100 35.070	2.40%	2.41%
			6065	5.688	35.831	5.557	35.022	2.36%	2.31%
			6075	5.704	35.812	5.569	35.010	2.42%	2.29%
			6085	5.717	35.803	5.580	34.998	2.46%	2.30%
			6275	5.959	35.413	5.805	34.770	2.65%	1.85%
			6285	5.976	35.402	5.816	34.758	2.75%	1.85%
			6305	5.994	35.393	5.840	34.734	2.64%	1.90%
			6345	6.041	35.318	5.887	34.686	2.62%	1.82%
07/01/2022	6500 Head	20.6	6475	6.200	35.043	6.041	34.530	2.63%	1.49%
07/01/2022	6500 neau	20.6	6485	6.215	35.016	6.052	34.518	2.69%	
			6500	6.235	34.999	6.070	34.500	2.72%	1.45%
			6505	6.244	34.995	6.076	34.494	2.76%	1.45%
			6545	6.299	34.967	6.122	34.446	2.89%	1.51%
			6675	6.455	34.731	6.273	34.290	2.90%	1.29%
			6685	6.459	34.694	6.285	34.278	2.77%	1.21%
			6715	6.509	34.532	6.319	34.242	3.01%	0.85%
			6785	6.586	34.528	6.400	34.158	2.91%	1.08%
			6825	6.659	34.333	6.447	34.110	3.29%	0.65%
			6985	6.844	34.157	6.633	33.918	3.18%	0.70%
			6995	6.846	34.148	6.644	33.906	3.04%	0.71%
		1	7000	6.847	34.138	6.650	33.900	2.96%	0.70%
		1	7005	6.848	34.129	6.656	33.894	2.88%	0.69%
			7025	6.879	34.050	6.680	33.870	2.98%	0.53%
		1	5935	5.413	35.739	5.411	35.143	0.04%	1.70%
		1	5970	5.455	35.662	5.448	35.120	0.13%	1.54%
		1	5985	5.475	35.642	5.464	35.110	0.20%	1.52%
		1	6000	5.494	35.614	5.480	35.100	0.26%	1.46%
		1	6025	5.527	35.567	5.510	35.070	0.31%	1.42%
		1	6065	5.574	35.501	5.557	35.022	0.31%	1.37%
		1	6075	5.588	35.483	5.569	35.010	0.34%	1.35%
		1	6085	5.603	35.466	5.580	34.998	0.41%	1.34%
		1	6275	5.838	35.106	5.805	34.770	0.57%	0.97%
		1	6285	5.853	35.101	5.816	34.758	0.64%	0.99%
		1	6305	5.877	35.064	5.840	34.734	0.63%	0.95%
		1	6345	5.930	35.028	5.887	34.686	0.73%	0.99%
		1	6475	6.074	34.777	6.041	34.530	0.55%	0.72%
09/07/2022	6500 Head	22.5	6485	6.090	34.757	6.052	34.518	0.63%	0.69%
		1	6500	6.110	34.737	6.070	34.500	0.66%	0.69%
		1	6505	6.117	34.726	6.076	34.494	0.67%	0.67%
		1	6545	6.180	34.663	6.122	34.446	0.95%	0.63%
		1	6675	6.339	34.455	6.273	34.290	1.05%	0.48%
		1	6685	6.343	34.450	6.285	34.278	0.92%	0.50%
		1	6715	6.390	34.331	6.319	34.242	1.12%	0.26%
		1	6785	6.465	34.291	6.400	34.158	1.02%	0.39%
		1	6825	6.519	34.140	6.447	34.110	1.12%	0.09%
		1	6985	6.712	33.918	6.633	33.918	1.19%	0.00%
		1	6995	6.718	33.917	6.644	33.906	1.11%	0.03%
		1		6.721	33.912	6.650	33.900	1.07%	0.04%
			/000						
			7000 7005	6.723			33.894		
			7005 7025		33.912 33.861	6.656 6.680		1.01%	0.05% -0.03%

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 21 of 38

Table 8-2
Measured Tissue Properties (cont.)

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε																					
			5935	5.561	35.447	5.411	35.143	2.77%	0.87%																					
					5970	5.600	35.365	5.448	35.120	2.79%	0.70%																			
					5985	5.622	35.303	5.464	35.110	2.89%	0.55%																			
			6000	5.641	35.283	5.480	35.100	2.94%	0.52%																					
			6025	5.676	35.269	5.510	35.070	3.01%	0.57%																					
			6065	5.721	35.184	5.557	35.022	2.95%	0.46%																					
			6075	5.734	35.160	5.569	35.010	2.96%	0.43%																					
			6085	5.753	35.132	5.580	34.998	3.10%	0.38%																					
		20.3	6275	5.994	34.775	5.805	34.770	3.26%	0.01%																					
			6285	6.007	34.764	5.816	34.758	3.28%	0.02%																					
			20.3	20.3						6305	6.031	34.735	5.840	34.734	3.27%	0.00%														
									6345	6.083	34.681	5.887	34.686	3.33%	-0.01%															
																													6475	6.243
09/20/2022	6500 Head				6485	6.255	34.423	6.052	34.518	3.35%	-0.28%																			
			6500	6.265	34.385	6.070	34.500	3.21%	-0.33%																					
			6505	6.272	34.377	6.076	34.494	3.23%	-0.34%																					
			6545	6.335	34.324	6.122	34.446	3.48%	-0.35%																					
			6675	6.486	34.062	6.273	34.290	3.40%	-0.66%																					
			6685	6.508	34.011	6.285	34.278	3.55%	-0.78%																					
			6715	6.560	33.961	6.319	34.242	3.81%	-0.82%																					
			6785	6.621	33.855	6.400	34.158	3.45%	-0.89%																					
			6825	6.695	33.770	6.447	34.110	3.85%	-1.00%																					
			6985	6.856	33.570	6.633	33.918	3.36%	-1.03%																					
			6995	6.880	33.512	6.644	33.906	3.55%	-1.16%																					
			7000	6.893	33.478	6.650	33.900	3.65%	-1.24%																					
			7005	6.902	33.444	6.656	33.894	3.70%	-1.33%																					
			7025	6.928	33.396	6.680	33.870	3.71%	-1.40%																					

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 22 of 38

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in SAR System Validation Appendix.

Table 8-3
System Verification Results

	System Verification TARGET & MEASURED																			
SAR System#	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)	Measured SAR _{10g} (W/kg)	1 W Target SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)	Measured 4cm ² APD (W/m ²)	1W Target 4cm ² APD (W/m ²)	1 W Normalized 4cm ² APD (W/m ²)	Deviation 4cm² APD (%)
AM2	6500	Head	06/26/2022	21.7	21.0	0.025	1019	7421	7.260	285.000	290.400	1.89%	1.320	52.600	52.800	0.38%	32.3000	1300.0000	1292.000	-0.62%
AM2	6500	Head	07/01/2022	22.7	20.4	0.025	1019	7421	7.500	285.000	300.000	5.26%	1.350	52.600	54.000	2.66%	33.5000	1300.0000	1340.000	3.08%
AM7	6500	Head	09/07/2022	20.0	20.9	0.025	1019	7416	7.430	285.000	297.200	4.28%	1.380	52.600	55.200	4.94%	33.6000	1300.0000	1344.000	3.38%
AM2	6500	Head	09/20/2022	21.5	20.1	0.025	1019	7421	7.650	285.000	306.000	7.37%	1.390	52.600	55.600	5.70%	34.0000	1300.0000	1360.000	4.62%

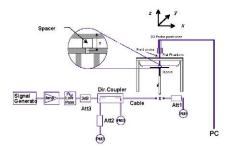


Figure 8-1
System Verification Setup Diagram

Figure 8-2
System Verification Setup Photo

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 23 of 38

8.2 Power Density Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

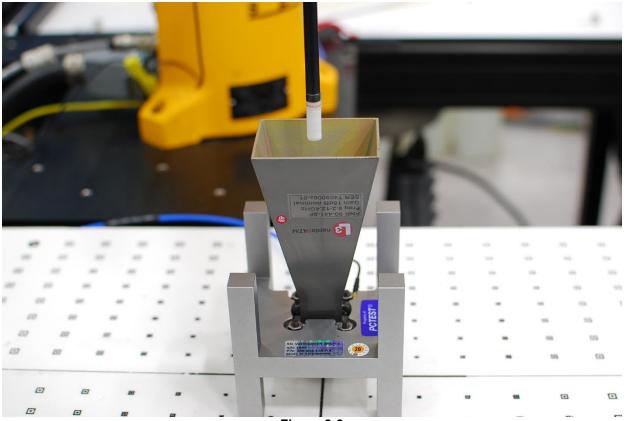


Figure 8-3
System Verification Setup Photo

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 24 of 38

Table 8-4 10 GHz Verifications

	10 OHZ Verifications											
	System Verification											
System	Frequency	Date	Source	Probe	Prad	Normal psPD (W	/m² over 4 cm²)	Deviation (dB)	Total psPD (W	//m² over 4 cm²)	Deviation (dB)	
System	(GHz)	Dute	S/N	S/N	(mW)	Measured	Target	Deviation (ab)	Measured	Target	Deviation (ub)	
AM5	10	07/07/2022	1006	9416	86.1	53.80	50.80	0.25	54.00	50.80	0.27	
AM5	10	08/26/2022	1006	9364	86.1	49.60	50.80	-0.10	49.90	50.80	-0.08	
AM5	10	09/07/2022	1006	9364	86.1	50.30	50.80	-0.04	50.50	50.80	-0.03	
AM5	10	09/09/2022	1006	9364	86.1	49.00	50.80	-0.16	49.30	50.80	-0.13	
AM5	10	09/09/2022	1006	9364	86.1	53.50	50.80	0.22	53.70	50.80	0.24	

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 25 of 38

9 DATA SUMMARY

9.1 SAR and Absorbed Power Density Results

Table 9-1 6 GHz WLAN Body SISO SAR – Tablet

								0 GHZ WEAR BODY SIGO SAR - Tablet													
									MEASU	JREMENT	RESULTS										
FREQU	IENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power	Power Drift [dB]	Spacing (mm)	Antenna Config.	Variant	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle	SAR (1g)	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Reported SAR (10g)	Plot#
MHz	Ch.														(W/kg)	(W/kg)	(Power)	Cycle)	(W/kg)	(W/kg)	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.05	0	5B	V1	K3395G	68.1	Back	97.94	0.048	0.018	1.387	1.021	0.068	0.025	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	-0.06	0	5B	V1	K3395G	68.1	Тор	97.94	0.003	0.002	1.387	1.021	0.004	0.003	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	-0.20	0	5B	V1	K3395G	68.1	Bottom	97.94	0.002	0.000	1.387	1.021	0.003	0.000	
6025.00	15	802.11ax	OFDM	160	12.75	11.31	0.19	0	5B	V1	NVH3X4	68.1	Right	97.94	0.349	0.113	1.393	1.021	0.496	0.161	ı
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.04	0	5B	V1	K3395G	68.1	Right	97.94	0.302	0.101	1.387	1.021	0.428	0.143	
6505.00	111	802.11ax	OFDM	160	12.25	10.55	0.00	0	5B	V1	NVH3X4	68.1	Right	97.94	0.289	0.097	1.479	1.021	0.436	0.146	ı
6825.00	175	802.11ax	OFDM	160	11.50	10.26	0.03	0	5B	V1	NVH3X4	68.1	Right	97.94	0.352	0.117	1.330	1.021	0.478	0.159	
6985.00	207	802.11ax	OFDM	160	11.75	11.31	0.04	0	5B	V1	NVH3X4	68.1	Right	97.94	0.475	0.149	1.107	1.021	0.537	0.168	
6985.00	207	802.11ax	OFDM	160	11.75	11.26	-0.01	0	5B	V2	00NCF0	68.1	Right	97.94	0.545	0.149	1.119	1.021	0.623	0.170	
6985.00	47	802.11ax	OFDM	160	13.00	11.58	-0.07	0	5B	V1	NVH3X4	68.1	Left	97.94	0.011	0.003	1.387	1.021	0.016	0.004	
6025.00	15	802.11ax	OFDM	160	10.00	9.09	0.05	0	4A	V1	MMHYXQ	68.1	Back	97.94	0.669	0.143	1.233	1.021	0.842	0.180	
6345.00	79	802.11ax	OFDM	160	8.50	7.81	-0.03	0	4A	V1	MMHYXQ	68.1	Back	97.94	0.749	0.148	1.172	1.021	0.896	0.177	
6505.00	111	802.11ax	OFDM	160	8.50	7.96	-0.04	0	4A	V1	NVH3X4	68.1	Back	97.94	0.850	0.168	1.132	1.021	0.982	0.194	A1
6505.00	111	802.11ax	OFDM	160	8.50	7.96	-0.02	0	4A	V1	MMHYXQ	68.1	Back	97.94	0.784	0.155	1.132	1.021	0.906	0.179	
6825.00	175	802.11ax	OFDM	160	11.00	10.27	-0.02	0	4A	V1	MMHYXQ	68.1	Back	97.94	0.611	0.115	1.183	1.021	0.738	0.139	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.00	0	4A	V1	MMHYXQ	68.1	Back	97.94	0.740	0.140	1.479	1.021	1.117	0.211	
6985.00	207	802.11ax	OFDM	160	12.00	10.29	0.01	0	4A	V2	00NCF0	68.1	Back	97.94	0.746	0.164	1.483	1.021	1.130	0.248	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	-0.05	0	4A	V1	MMHYXQ	68.1	Тор	97.94	0.083	0.019	1.479	1.021	0.125	0.029	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	-0.17	0	4A	V1	MMHYXQ	68.1	Bottom	97.94	0.003	0.002	1.479	1.021	0.005	0.003	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.00	0	4A	V1	MMHYXQ	68.1	Right	97.94	0.001	0.000	1.479	1.021	0.002	0.000	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.03	0	4A	V1	MMHYXQ	68.1	Left	97.94	0.127	0.032	1.479	1.021	0.192	0.048	
			SI	oatial Peak	AFETY LIMIT							Boo 1.6 W/kg averaged ov	(mW/g)							•	

Note: Blue entry represents variability measurement

Table 9-2 6 GHz WLAN Body SISO SAR Reduced- Tablet

FREQUENCY Mode Service Bandwidth Maximum Allowed Conducted Power (d8m) Maximum Allowed Conducted Power (d8m) Spacing (mm) Antenna Config. Antenna Config. Antenna Config. Conf												
Preductivity Mode Sarvice Bandwindth Maximum Allowed Conducted Power Gfffm Maximum Allowed Conducted Power Gfffm Gfffm Spacing (mm) Antenna Config. Variant Device Serial Number Data Rate Side Data Variant Data Var												
MHz Cs. (Whq) (Whq												
6885.00 207 802.11ax OFDM 160 6.50 5.48 0.00 0 4a V1 MHHYXQ 68.1 Back 97.94 0.282 0.048 1.265 1.021 0.364 0	<u> </u>											
6985 00 207 802 11ax OFDM 160 650 5.48 0.03 0 4a V1 MHYXXO 681 Top 97.94 0.036 0.010 1.265 1.021 0.046 0												
685.00 207 802.11mX OFDM 160 6.50 5.48 0.00 0 4m V1 MHHYXQ 68.1 Left 97.94 0.038 0.008 1.285 1.021 0.049 0												
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body												
Spatial Peak 1.6 W/kg (mW/g)												
Uncontrolled Exposure/General Population averaged over 1 gram	averaged over 1 gram											

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 26 of 38

Table 9-3
6 GHz WLAN Body SISO Absorbed Power Density - Tablet

								MEAS	UREMENT	RESULT	s								
FREQU	JENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted Power	Power Drift	Spacing (mm)	Antenna	Variant	Device Serial	Data Rate	Side	Duty Cycle	Measured APD	Scaling Factor	Scaling Factor (Duty	Reported APD	Plot#
MHz	Ch.	Mode	Service	[MHz]	Power [dBm]	[dBm]	[dB]	Spacing (mm)	Config.	variant	Number	(Mbps)	Side	(%)	W/m² (4cm²)	(Power)	Cycle)	W/m² (4cm²)	PIOL#
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.05	0	5B	V1	K3395G	68.1	Back	97.94	0.401	1.387	1.021	0.568	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	-0.06	0	5B	V1	K3395G	68.1	Тор	97.94	0.034	1.387	1.021	0.048	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	-0.20	0	5B	V1	K3395G	68.1	Bottom	97.94	0.021	1.387	1.021	0.030	
6025.00	15	802.11ax	OFDM	160	12.75	11.31	0.19	0	5B	V1	NVH3X4	68.1	Right	97.94	2.570	1.393	1.021	3.655	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.04	0	5B	V1	K3395G	68.1	Right	97.94	2.290	1.387	1.021	3.243	
6505.00	111	802.11ax	OFDM	160	12.25	10.55	0.00	0	5B	V1	NVH3X4	68.1	Right	97.94	2.210	1.479	1.021	3.337	
6825.00	175	802.11ax	OFDM	160	11.50	10.26	0.03	0	5B	V1	NVH3X4	68.1	Right	97.94	2.670	1.330	1.021	3.626	
6985.00	207	802.11ax	OFDM	160	11.75	11.31	0.04	0	5B	V1	NVH3X4	68.1	Right	97.94	3.400	1.107	1.021	3.843	
6985.00	207	802.11ax	OFDM	160	11.75	11.26	-0.01	0	5B	V2	00NCF0	68.1	Right	97.94	3.980	1.119	1.021	4.547	
6985.00	47	802.11ax	OFDM	160	13.00	11.58	-0.07	0	5B	V1	NVH3X4	68.1	Left	97.94	0.134	1.387	1.021	0.190	
6025.00	15	802.11ax	OFDM	160	10.00	9.09	0.05	0	4A	V1	MMHYXQ	68.1	Back	97.94	3.410	1.233	1.021	4.293	
6345.00	79	802.11ax	OFDM	160	8.50	7.81	-0.03	0	4A	V1	MMHYXQ	68.1	Back	97.94	3.600	1.172	1.021	4.308	
6505.00	111	802.11ax	OFDM	160	8.50	7.96	-0.04	0	4A	V1	NVH3X4	68.1	Back	97.94	4.050	1.132	1.021	4.681	A1
6505.00	111	802.11ax	OFDM	160	8.50	7.96	-0.02	0	4A	V1	MMHYXQ	68.1	Back	97.94	3.760	1.132	1.021	4.346	
6825.00	175	802.11ax	OFDM	160	11.00	10.27	-0.02	0	4A	V1	MMHYXQ	68.1	Back	97.94	2.800	1.183	1.021	3.382	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.00	0	4A	V1	MMHYXQ	68.1	Back	97.94	3.400	1.479	1.021	5.134	
6985.00	207	802.11ax	OFDM	160	12.00	10.29	0.01	0	4A	V2	00NCF0	68.1	Back	97.94	3.920	1.483	1.021	5.935	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	-0.05	0	4A	V1	MMHYXQ	68.1	Тор	97.94	0.462	1.479	1.021	0.698	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	-0.17	0	4A	V1	MMHYXQ	68.1	Bottom	97.94	0.029	1.479	1.021	0.044	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.00	0	4A	V1	MMHYXQ	68.1	Right	97.94	0.002	1.479	1.021	0.003	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.03	0	4A	V1	MMHYXQ	68.1	Left	97.94	0.747	1.479	1.021	1.128	

Note: Blue entry represents variability measurement

Table 9-4
6 GHz WLAN Body SISO Absorbed Power Density Reduced- Tablet

	MEASUREMENT RESULTS																		
FREQU	JENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted Power	Power Drift	Spacing (mm)	Antenna	Variant	Device Serial	Data Rate	014-	Duty Cycle	Measured APD	Scaling Factor	Scaling Factor (Duty	Reported APD	Plot#
MHz	Ch.	Mode	Service	[MHz]	Power [dBm]	[dBm]	[dB]	Spacing (mm)	Config.	vanant	Number	(Mbps)	Side	(%)	W/m ² (4cm ²)	(Power)		W/m ² (4cm ²)	Plot#
6185.00	47	802.11ax	OFDM	160	9.00	8.19	0.20	0	5B	V1	NVH3X4	68.1	Right	97.94	1.530	1.205	1.021	1.882	
6985.00	207	802.11ax	OFDM	160	6.50	5.48	0.00	0	4a	V1	MHHYXQ	68.1	Back	97.94	1.180	1.265	1.021	1.524	
6985.00	207	802.11ax	OFDM	160	6.50	5.48	0.03	0	4a	V1	MHHYXQ	68.1	Тор	97.94	0.236	1.265	1.021	0.305	
6985.00	207	802.11ax	OFDM	160	6.50	5.48	0.00	0	4a	V1	MHHYXQ	68.1	Left	97.94	0.187	1.265	1.021	0.242	

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 27 of 38

SAR and Absorbed Power Density General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013. and FCC KDB Publication 447498 D01.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR and APD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01.
- 6. Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors. Per October 2020 TCB Workshop notes, 5 channels were tested. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.
- 7. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 10 for variability analysis.

WLAN Notes:

- 1. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 2. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 3. The time-averaged mechanism for WLAN operations was disabled for the above SAR measurements. The SAR was scaled to the maximum time-averaged output power.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 28 of 38

9.2 Power Density Results

Table 9-5 6 GHz WLAN SISO Power Density - Tablet

													MENT RESUL	.TS			1 45.0							
Frequency (MHz)	Channel	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift (dB)	Spacing (mm)	Antenna Config.	Variant	DUT Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Grid Step (A)	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per IEC 62479	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Normal psPD (W/m²)	Scaled Normal psPD (W/m²)	Total psPD (W/m²)	Scaled Total psPD (W/m²)	Plot #
6185.00	47	802.11ax	OFDM	160	13.00	11.58	-0.17	2	5B	V2	00NCF0	68.1	Back	97.94	0.25	-	1.554	1.387	1.021	0.323	0.711	0.423	0.93	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.09	2	5B	V2	00NCF0	68.1	Тор	97.94	0.25	-	1.554	1.387	1.021	0.145	0.319	0.170	0.37	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.10	2	5B	V2	00NCF0	68.1	Bottom	97.94	0.25		1.554	1.387	1.021	0.210	0.462	0.242	0.53	
6025.00	15	802.11ax	OFDM	160	12.75	11.31	0.19	2	5B	V2	00NCF0	68.1	Right	97.94	0.25		1.554	1.393	1.021	2.540	5.614	2.820	6.23	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.03	2	5B	V2	00NCF0	68.1	Right	97.94	0.25	-	1.554	1.387	1.021	1.810	3.983	1.990	4.38	
6825.00	175	802.11ax	OFDM	160	11.50	10.26	-0.07	2	5B	V2	00NCF0	68.1	Right	97.94	0.25	-	1.554	1.330	1.021	2.890	6.099	3.230	6.82	
6985.00	207	802.11ax	OFDM	160	11.75	11.31	0.08	2	5B	V2	00NCF0	68.1	Right	97.94	0.25	6.240	1.554	1.107	1.021	3.260	5.726	3.880	6.81	A2
6985.00	207	802.11ax	OFDM	160	11.75	11.31	0.07	8.58	5B	V2	00NCF0	68.1	Right	97.94	0.25	7.740	1.554	1.107	1.021	2.050	3.601	2.220	3.90	
6185.00	47	802.11ax	OFDM	160	13.00	11.58	0.09	2	5B	V2	00NCF0	68.1	Left	97.94	0.25	-	1.554	1.387	1.021	1.440	3.169	1.480	3.26	
6025.00	15	802.11ax	OFDM	160	10.00	9.09	0.04	2	4A	V1	NVH3X4	68.1	Back	97.94	0.25	-	1.554	1.233	1.021	0.509	0.996	0.667	1.30	
6345.00	79	802.11ax	OFDM	160	8.50	7.81	-0.09	2	4A	V1	NVH3X4	68.1	Back	97.94	0.25	-	1.554	1.172	1.021	2.450	4.556	3.810	7.08	
6345.00	79	802.11ax	OFDM	160	8.50	7.67	0.08	2	4A	V2	00NCF0	68.1	Back	97.94	0.25		1.554	1.211	1.021	2.750	5.284	3.190	6.13	
6505.00	111	802.11ax	OFDM	160	8.50	7.96	0.07	2	4A	V1	NVH3X4	68.1	Back	97.94	0.25		1.554	1.132	1.021	3.180	5.712	3.760	6.75	
6825.00	175	802.11ax	OFDM	160	11.00	10.27	0.16	2	4A	V1	NVH3X4	68.1	Back	97.94	0.25		1.554	1.183	1.021	1.810	3.397	2.540	4.77	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.04	2	4A	V1	NVH3X4	68.1	Back	97.94	0.25		1.554	1.479	1.021	1.580	3.708	2.560	6.01	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.08	2	4A	V1	NVH3X4	68.1	Тор	97.94	0.25	-	1.554	1.479	1.021	0.446	1.047	0.514	1.21	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.16	2	4A	V1	NVH3X4	68.1	Bottom	97.94	0.25	-	1.554	1.479	1.021	0.350	0.821	0.358	0.84	
6985.00	207	802.11ax	OFDM	160	12.00	10.30	0.20	2	4A	V1	NVH3X4	68.1	Right	97.94	0.25	-	1.554	1.479	1.021	0.292	0.685	0.303	0.71	
	47 CFR §1.1310 - SAFETY LIMIT Spatial Average Uncontrolled Exposure / General Population																	Power Density 10 W/m² raged over 4 cm²						

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 29 of 38

Power Density General Notes

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by $\lambda/4$.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 5. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 6. Per equipment manufacturer guidance, power density was measured at d=2mm and d=λ/5mm using the same grid size and grid step size for some frequencies and surfaces. The integrated Power Density (iPD) was calculated based on these measurements. Since iPD ratio between the two distances is ≥ -1dB, the grid step was sufficient for determining compliance at d=2mm.
- 7. PD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01.
- 8. PTP-PR algorithm was used during psPD measurement and calculations.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 30 of 38

10 SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥
 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is >
 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 10-1
Body SAR Measurement Variability Results - Tablet

									<i>j</i>								
	BODY VARIABILITY RESULTS																
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Data Rate (Mbps)	Spacing [mm]	Antenna Config	Side	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio		
MHz	Ch.								(W/kg)	(W/kg)		(W/kg)		(W/kg)			
6505.00	111	802.11ax OFDM 160 68.1					0 4a Back 0.850 0.784 1.08 N/A N/A N/A										
	ANSI / IE	EE C95.1 1	992 - SAF	ETY LIMIT		Body											
		Spatia	l Peak			1.6 W/kg (mW/g)											
U	Incontrolle	ed Exposur	re/General	Populatio	n	averaged over 1 gram											

10.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 31 of 38

11 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	12/19/2021	Annual	12/19/2022	WL25-1
Agilent	N9038A	MXE EMI Receiver	N/A	N/A	N/A	MY51210133
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	N/A	N/A	N/A	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	N/A	N/A	N/A	A051107
Emco	3115	Horn Antenna (1-18GHz)	N/A	N/A	N/A	9704-5182
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433975
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	7/21/2021	Annual	7/21/2022	MY49430494
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	8/18/2022	Annual	8/18/2023	MY49430494
SPEAG	EUmmWV3	EUmmWV3 Probe	6/16/2022	Annual	6/16/2023	9364
SPEAG	EUmmWV3	EUmmWV3 Probe	12/13/2021	Annual	12/13/2022	9416
SPEAG	SM 003 100 AA	10 GHz System Verification Antenna	10/27/2021	Annual	10/27/2022	1006
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/20/2021	Annual	10/20/2022	1333
SPEAG	EX3DV4	SAR Probe	3/22/2022	Annual	3/22/2023	7421
SPEAG	EX3DV4	SAR Probe	5/18/2022	Annual	5/18/2023	7416
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/22/2022	Annual	3/22/2023	604
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/16/2022	Annual	5/16/2023	701
SPEAG	D6.5GHzV2	6.5GHz SAR Dipole	1/14/2022	Annual	1/14/2023	1019
Control Company	4352	Long Stem Thermometer	9/10/2021	Biennial	9/10/2023	210774678
Control Company	4040	Therm./Clock/Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202100
Agilent	SMF100A	Signal Generator	3/28/2022	Biennial	3/28/2024	101590
SPEAG	DAK-3.5	Dielectric Assessment Kit	11/9/2021	Annual	11/9/2022	1277
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Anritsu	MS2038C	20 GHz Vector Network Analyzer	2/18/2022	Annual	2/18/2023	1214109
MCL	BW-N6W5+	6dB Attenuator	СВТ	N/A	СВТ	1139
Narda	BW-S3W2	Attenuator (3dB)	СВТ	N/A	СВТ	120
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	СВТ	N/A
MiniCircuits	ZUDC10-83-S+	Directional Coupler	9/15/2021	Annual	9/15/2022	2111
Pasternack	PE5011-1	Torque Wrench	12/21/2021	Biennial	12/21/2023	82475
Anritsu	MA2411B	Pulse Power Sensor	9/21/2021	Annual	9/21/2022	1315051
Anritsu	MA2411B	Pulse Power Sensor	9/21/2021	Annual	9/21/2022	1339008
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1520

Note:

- 1. Each equipment item was used solely within its respective calibration period.
- 2. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 32 of 38

12 MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements:

	1			1				ı	
a	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	c _i	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	Vi
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	9.3	N	1	1	1	9.3	9.3	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.732	1	1	1.2	1.2	8
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.732	1	1	0.1	0.1	8
Modulation Response	E.2.5	4.8	R	1.732	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	8
Response Time	E.2.7	0.8	R	1.732	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3	R	1.732	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.732	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.732	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.732	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.732	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.732	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.732	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.732	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)			RSS			1	13.8	13.6	191
Expanded Uncertainty k=2				27.6	27.1				
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 33 of 38

Applicable for Power Density Measurements:

a	b	С	d	e	f =	g
					c x f/e	
	Unc.	Prob.			u _i	
Uncertainty Component	(± dB)	Dist.	Div.	C _i	(± dB)	Vi
Measurement System		<u> </u>	l.		ļ	
Calibration	0.49	N	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	∞
Frequency Response	0.20	R	1.73	1	0.12	∞
Sensor Cross Coupling	0.00	R	1.73	1	0.00	∞
Isotropy	0.50	R	1.73	1	0.29	∞
Linearity	0.20	R	1.73	1	0.12	∞
Probe Scattering	0.00	R	1.73	1	0.00	∞
Probe Positioning offset	0.30	R	1.73	1	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	∞
Sensor MechanicalOffset	0.00	R	1.73	1	0.00	∞
Probe Spatial Resolution	0.00	R	1.73	1	0.00	∞
Field Impedence Dependance	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	∞
Measurement Area Truncation	0.00	R	1.73	1	0.00	∞
Data Acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.73	1	0.00	∞
Field Reconstruction	2.00	R	1.73	1	1.15	∞
Forward Transformation	0.00	R	1.73	1	0.00	∞
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	∞
System Detection Limit	0.04	R	1.73	1	0.02	∞
Test Sample Related						
Probe Coupling with DUT	0.00	R	1.73	1	0.00	∞
Modulation Response	0.40	R	1.73	1	0.23	8
Integration Time	0.00	R	1.73	1	0.00	8
Response Time	0.00	R	1.73	1	0.00	8
Device Holder Influence	0.10	R	1.73	1	0.06	∞
DUT alignment	0.00	R	1.73	1	0.00	∞
RF Ambient Conditions	0.04	R	1.73	1	0.02	∞
Ambient Reflections	0.04	R	1.73	1	0.02	∞
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	∞
Drift of DUT	0.21	R	1.73	1	0.12	∞
Combined Standard Uncertainty (k=1)		RSS			1.34	∞
Expanded Uncertainty		k=2			2.68	
(95% CONFIDENCE LEVEL)						

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 34 of 38

14 CONCLUSION

14.1 Measurement Conclusion

The SAR and power density measurements indicate that the DUT complies with the RF radiation exposure limits of the FCC, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the RF Exposure and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 35 of 38

15 REFERENCES

- [1] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [2] IEC TR 63170:2018, Measurement Procedure for the Evaluation of Power Density Related to Human Exposure to Radiofrequency Fields from Wireless Communication Devices Operating between 6 GHz and 100 GHz
- [3] IEC TR 62630: 2010, Guidance for Evaluating Exposure from Multiple Electromagnetic Sources
- [4] K. Pokovic, T. Schmid, J. Frohlich, and N. Kuster. Novel Probes and Evaluation Procedures to Assess Field Magnitude and Polarization. IEEE Transactions on Electromagnetic Compatibility 42(2): 240 -244, 2000
- [5] R. W. Gerchberg and W. O. Saxton. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik 35(2): 237 246, 1972
- [6] A. P. Anderson and S. Sali. New Possibilities for Phaseless Microwave Diagnostics. Part 1: Error Reduction Techniques. IEE Proceedings H – Microwaves, Antennas and Propagation 132(5): 290 – 298, 1985
- [7] FCC KDB 865664 D02 v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz. Federal Communications Commission Office of Engineering and Technology, Laboratory Division.
- [8] FCC KDB 447498 D01 v02r01: RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices. Federal Communications Commission – Office of Engineering and Technology, Laboratory Division.
- [9] November 2017 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [10] October 2018 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [11] April 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [12] November 2019 Telecommunications Certification Body Council (TCBC) Workshop Notes
- [13] SPEAG DASY6 System Handbook (September 2019)
- [14] SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz)
- [15] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [16] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [17] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 36 of 38

- [18] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [19] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [20] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [21] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [22] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [23] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [24] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [25] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [26] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [27] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [28] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [29] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [30] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [31] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [32] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [33] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [34] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [35] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 37 of 38

- [36] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225. D01-D07
- [37] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [38] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [39] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [40] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [41] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [42] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [43] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [44] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.

FCC ID: BCGA2435	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
Document S/N: 1C2205090025-33.BCG	DUT Type: Tablet Device	Page 38 of 38