

PCTEST

18855 Adams Court, Morgan Hill, CA 95037 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.407 / ISED RSS-247 UNII 802.11a/n/ac

Applicant Name: Apple Inc.

One Apple Park Way Cupertino, CA 95014 United States

Date of Testing: 12/10/2019 - 02/26/2020 **Test Site/Location:** PCTEST. Morgan Hill, CA, USA **Test Report Serial No.:** 1C1912170050-08-R1.BCG

FCC ID:	BCGA2228
IC:	579C-A2228
APPLICANT:	Apple Inc.

Application Type: Model/HVIN: EUT Type: **Frequency Range:** FCC Classification: FCC Rule Part(s): **ISED Specification:** Test Procedure(s):

Certification A2228 **Tablet Device** 5180 - 5825MHz Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) RSS-247 Issue 2 ANSI C63.10-2013, KDB 789033 D02 v02r01, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1C1912170050-08-R1.BCG) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: BCGA2228	<i>CTEST</i>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 1 of 204
© 2020 PCTEST			V 9.0 02/01/2019

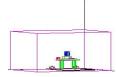


TABLE OF CONTENTS

1.0	INTR	ODUCT	ION	4
	1.1	Scope)	4
	1.2	PCTE	ST Test Location	4
	1.3	Test F	acility / Accreditations	4
2.0	PRO	DUCT IN	NFORMATION	5
	2.1	Equip	ment Description	5
	2.2	Device	e Capabilities	5
	2.3	Anten	na Description	7
	2.4	Test S	Support Equipment	7
	2.5		Configuration	
	2.6		are and Firmware	
	2.7		uppression Device(s)/Modifications	
3.0	DES	CRIPTIC	DN OF TESTS	9
	3.1	Evalua	ation Procedure	9
	3.2	AC Lir	ne Conducted Emissions	9
	3.3	Radia	ted Emissions	10
	3.4	Enviro	onmental Conditions	10
4.0	ANTI	ENNA R	EQUIREMENTS	11
5.0	MEA	SUREM	ENT UNCERTAINTY	12
6.0	TES	T EQUIP	MENT CALIBRATION DATA	13
7.0	TES	T RESUL	LTS	14
	7.1		nary	
	7.2	26dB	Bandwidth Measurement – 802.11a/n/ac	15
	7.3		andwidth Measurement – 802.11a/n/ac	
	7.4		Dutput Power Measurement – 802.11a/n/ac	
	7.5		num Power Spectral Density – 802.11a/n/ac	
	7.6		ted Spurious Emission Measurements – Above 1GHz	
		7.6.1 S	SISO CORE-0 Radiated Spurious Emission Measurements	
		7.6.2	SISO CORE-1 Radiated Spurious Emission Measurements	
		7.6.3	CDD Radiated Spurious Emission Measurements	146
		7.6.4	SISO Core-0 Radiated Band Edge Measurements (20MHz BW)	
		7.6.5	SISO Core-0 Radiated Band Edge Measurements (40MHz BW)	
		7.6.6	SISO Core-0 Radiated Band Edge Measurements (80MHz BW)	
		7.6.7	SISO Core-1 Radiated Band Edge Measurements (20MHz BW)	
		7.6.8	SISO Core-1 Radiated Band Edge Measurements (40MHz BW)	
		7.6.9	SISO Core-1 Radiated Band Edge Measurements (80MHz BW)	180
		7.6.10	CDD Radiated Band Edge Measurements (20MHz BW)	183
		7.6.11	CDD Radiated Band Edge Measurements (40MHz BW)	188
		7.6.12	o	
	7.7		ted Spurious Emissions Measurements – Below 1GHz	
	7.8	AC Lir	ne-Conducted Test Data	200
8.0	CON	CLUSIO	N	204

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 2 of 204
© 2020 PCTEST			V 9.0 02/01/2019

MEASUREMENT REPORT

 1

				SI	SO				CDD/	/SDM		
	Channel	Tri Francisco a	Cor	те 0	Со	re 1	Core 0		Cor	re 1	Summed	
UNII Band	I Band Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)								
1		5180 - 5240	56.234	17.50	50.119	17.00	50.119	17.00	50.119	17.00	100.231	20.01
2A	20	5260 - 5320	44.668	16.50	44.463	16.48	44.668	16.50	44.668	16.50	88.920	19.49
2C	20	5500 - 5720	35.481	15.50	44.668	16.50	35.481	15.50	44.157	16.45	79.433	19.00
3		5745 - 5825	37.584	15.75	39.811	16.00	37.584	15.75	39.811	16.00	77.446	18.89
1		5190 - 5230	55.081	17.41	50.003	16.99	56.234	17.50	50.119	17.00	106.414	20.27
2A	40	5270 - 5310	43.451	16.38	44.668	16.50	44.259	16.46	44.259	16.46	88.512	19.47
2C	40	5510 - 5710	43.853	16.42	44.055	16.44	35.481	15.50	44.668	16.50	80.168	19.04
3		5755 - 5795	37.584	15.75	39.811	16.00	37.068	15.69	39.811	16.00	76.913	18.86
1		5210	27.797	14.44	27.990	14.47	22.387	13.50	22.387	13.50	44.771	16.51
2A	80	5290	18.239	12.61	18.578	12.69	12.589	11.00	12.388	10.93	25.003	13.98
2C		5530 - 5690	35.237	15.47	43.954	16.43	35.481	15.50	44.668	16.50	80.168	19.04
3		5775	36.308	15.60	39.811	16.00	36.475	15.62	39.811	16.00	76.208	18.82

FCC EUT Overview

				SI	SO				CDD/	/SDM		
	Channel	Tri Francisco a	Cor	re 0	e 0 Core 1		Core 0		Core 1		Summed	
UNII Band	d Bandwidth (MHz) Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)									
1		5180 - 5240	39.811	16.00	39.811	16.00	12.589	11.00	12.503	10.97	25.119	14.00
2A	20	5260 - 5320	44.668	16.50	44.463	16.48	44.668	16.50	44.668	16.50	89.331	19.51
2C	20	5500 - 5720	35.481	15.50	44.668	16.50	35.481	15.50	44.157	16.45	79.433	19.00
3		5745 - 5825	37.584	15.75	39.811	16.00	37.584	15.75	39.811	16.00	77.446	18.89
1		5190 - 5230	55.081	17.41	50.003	16.99	22.387	13.50	22.387	13.50	44.668	16.50
2A	40	5270 - 5310	43.451	16.38	44.668	16.50	44.259	16.46	44.259	16.46	88.512	19.47
2C	40	5510 - 5710	43.853	16.42	44.055	16.44	35.481	15.50	44.668	16.50	80.168	19.04
3		5755 - 5795	37.584	15.75	39.811	16.00	37.068	15.69	39.811	16.00	76.913	18.86
1		5210	27.797	14.44	27.990	14.47	22.387	13.50	22.387	13.50	44.771	16.51
2A	80	5290	18.239	12.61	18.578	12.69	12.589	11.00	12.388	10.93	25.003	13.98
2C		5530 - 5690	35.237	15.47	43.954	16.43	35.481	15.50	44.668	16.50	80.168	19.04
3		5775	36.308	15.60	39.811	16.00	36.475	15.62	39.811	16.00	76.208	18.82

ISED EUT Overview

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 3 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 18855 Adams Court, Morgan Hill, CA 95037. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 and KDB 414788 D01 v01r01.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST located in Morgan Hill, CA 95037, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.02 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 4 of 204
© 2020 PCTEST			V 9.0 02/01/2019

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Apple Tablet Device FCC ID: BCGA2228. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: DLXZR006P7FJ, DLXZR034P7FJ

2.2 **Device Capabilities**

This device contains the following capabilities:

802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII, Bluetooth (1x, EDR, LE, HDR4, HDR8)

This device supports BT Beamforming

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	116	5580	157	5785
:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825
	Table 2-1, 802 11a / 802 11n / 802 11ac (20MHz) Frequency / Channel Operations						

able 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	:
46	5230

	Band 2A
Ch.	Frequency (MHz)
54	5270
:	:
62	5310

	Band 2C
Ch.	Frequency (MHz)
102	5510
:	•
110	5550
:	:
142	5710

Band	3

Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: BCGA2228	<u><i>CPCTEST</i></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 5 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Measured Duty Cycles						
903 11 M	odo/Pand		Duty Cycle [%]			
802.11 Mode/Band		Core 0	Core 1	MIMO/CDD		
	а	99.0	99.2	98.8		
5GHz	n (HT20)	98.9	98.8	98.5		
SGHZ	n (HT40)	98.1	98.2	98.1		
	ac (HT80)	96.5	95.7	96.0		

Table 2-4	Measured	Duty C	ycles
-----------	----------	--------	-------

- 2. 5GHz ANTUpper is correlating to Core 0 and 5GHz ANTLower is correlating to Core 1.
- 3. The device employs CDD/SDM technology. Below are the possible configurations.

WiFi Configurations		SI	SO	CDD		SDM		STBC	
WIFI CC	Jingurations	CORE0	CORE1	CORE0	CORE1	CORE0	CORE1	CORE0	CORE1
	11a	~	~	~	~	×	×	×	×
5GHz	11n (20MHz)	~	~	~	~	~	~	~	✓
JGHZ	11n (40MHz)	~	~	~	~	~	~	~	✓
	11ac (80MHz)	~	\checkmark	\checkmark	\checkmark	\checkmark	✓	~	~

Table 2-5. Frequency / Channel Operations

 \checkmark = Support ; * = NOT Support SISO = Single Input Single Output CDD = Cyclic Delay Diversity – 2Tx Function SDM = Spatial Diversity Multiplexing – CDD/SDM function STBC = Space-Time Block Coding – 2Tx Function

Data Rate(s) Tested: 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz)

13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW)

29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

13/14.4, 26.28.9, 39/43.3, 52/57.8, 78/86.7, 104/115.6, 117/130, 130/144.4MBps (CDD/SDM n/ac – 20MHz) 156/173Mbps (CDD/SDM ac – 20MHz) 27/30, 54/60, 81/90, 108/120, 162/180, 216/240, 243,270, 270/300Mbps (CDD/SDM n/ac – 40MHz) 324/360,

27/30, 54/60, 81/90, 108/120, 102/180, 216/240, 243,270, 270/300Midps (CDD/SDM h/ac – 40MHz) 324/360 360/400Mbps (CDD/SDM ac – 40MHz) 58.5/65, 117/130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps

58.5/65, 11//130, 175.5/195, 234/260, 351/390, 468/520, 526.5/585, 585/650, 702/780, 780/866.7Mbps (CDD/SDM ac – 80MHz)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage C of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 6 of 204
© 2020 PCTEST			V 9.0 02/01/2019

2.3 Antenna Description

Following antennas were used for the testing.

	Antenna	Gain (dBi)
Frequency [GHz]	ANTUpper	ANTLower
5.150 – 5.250	2.1	-0.2
5.260 - 5.350	1.3	0.2
5.470 – 5.725	3.7	2.3
5.745 – 5.850	4.7	2.8

Table 2-6. Highest Antenna Gain

2.4 Test Support Equipment

1	Apple MacBook	Model:	A1398	S/N:	C2QKP008F6F3
	w/ AC/DC Adapter	Model:	A1435	S/N:	C04325505K1F288BG
2	Apple USB-C Cable	Model:	Chimp	S/N:	304523
2		woder.	Chimp	5/N.	304323
3	USB-C Cable	Model:	A1997	S/N:	N/A
	w / AC/DC Adapter	Model:	A1720	S/N:	C3D9274B06YLHDAE
4	Apple Pencil	Model:	A2051	S/N:	GQXYGSXCJKM9
5	DC Power Supply	Model:	KPS3010D	S/N	N/A

Table 2-7. Test Support Equipment Used

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 7 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 7 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

2.5 Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 and KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

There are two vendors of the WiFi/Bluetooth radio modules, variant 1 and variant 2. Both radio modules have the same mechanical outline, same on-board antenna matching circuit, identical antenna structure, and are built and tested to conform to the same specifications and to operate within the same tolerances. The worst case configuration was found between the two variants. The EUT was also investigated with and without charger.

For emissions from 1GHz – 18GHz, low, mid, and high channels were tested with highest power and worst case configuration. The emissions below 1GHz and above 18GHz were tested with the highest transmitting power channel and the worst case configuration.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

For AC line conducted and radiated test below 1GHz, following configuration were investigated and worst case was reported.

- EUT powered by AC/DC adaptor via USB-C cable with wire charger
- EUT powered by host PC via USB-C cable with wire charger

802.11n HT20/40 and acVHT80 2TX CDD mode test data provided in this report covers 802.11n HT20/40 and 802.11acVHT80 2TX STBC mode

802.11ac VHT20 and VHT40 mode are different from 802.11n HT20 and HT40 only in control messages and have the same power settings.

Throughout the report, 5GHz ANTUpper is correlating to Core 0 and 5GHz ANTLower is correlating to Core 1.

For 802.11ax test results, see separate UNII 802.11ax (OFDMA) report, 1C1912170050-09.BCG.

2.6 Software and Firmware

The test was conducted with firmware version 17E228 installed on the EUT.

2.7 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 8 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 7m x $3.66m \times 2.7m$ shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-6. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is EPCOS 2X60A Power Line Filter (100dB Attenuation, 14kHz-18GHz) and the two EPCOS 2X48A filters (100dB Minimum Insertion Loss, 14kHz - 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 10.35.04.

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 9 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

Per KDB 414788, radiated emission test sites other than open-field test sites (e.g., shielded anechoic chambers), may be employed for emission measurements below 30MHz if characterized so that the measurements correspond to those obtained at an open-field test site. To determine test site equivalency, a reference sample transmitting at 149kHz was measured on an open field test site (asphalt with no ground plane) and then measured in the 3m semi-anechoic chamber. A calibrated 60cm loop antenna was used while the reference device was rotated through the X, Y and Z axis in order to capture the worst case level. A maximum deviation of 2.77dB at 149kHz was measured when comparing the 3 meter semi-anechoic chamber to the open field site.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 10 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 11 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 11 of 204
© 2020 PCTEST			V 9.0 02/01/2019

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.29
Line Conducted Disturbance	2.48
Radiated Disturbance (<1GHz)	4.15
Radiated Disturbance (>1GHz)	4.70
Radiated Disturbance (>18GHz)	5.01

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 12 of 204
© 2020 PCTEST			V 9.0 02/01/2019

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	3/13/2019	Annual	3/13/2020	MY49430244
Anritsu	ML2496A	Power Meter	10/29/2019	Annual	10/29/2020	184005
Anritsu	MA2411B	Pulse Power Sensor	10/29/2019	Annual	10/29/2020	1726261
Anritsu	MA2411B	Pulse Power Sensor	10/29/2019	Annual	10/29/2020	1726262
ATM	180-442A-KF	20dB Nominal Gain Horn Antenna	10/29/2019	Annual	10/29/2020	T058701-02
COM-POWER	LIN-120A	LISN	3/13/2019	Annual	3/13/2020	241297
ETS-Lindgren	3142E-PA	Pre-Amplifier (30MHz - 6GHz)	9/19/2019	Annual	9/19/2020	213236
ETS-Lindgren	3142E	BiConiLog Antenna (30MHz - 6GHz)	8/14/2019	Annual	8/14/2020	224569
ETS-Lindgren	3117	Double Ridged Guide Antenna (1-18 GHz)	3/12/2019	Annual	3/12/2020	205956
Rohde & Schwarz	ESW26	EMI Test Receiver	5/21/2019	Annual	5/21/2020	101299
Rohde & Schwarz	ESW44	EMI Test Receiver	7/27/2019	Annual	7/27/2020	101668
Rohde & Schwarz	TS-PR1840	Pre-Amplifier (18GHz - 40GHz)	9/19/2019	Annual	9/19/2020	100051
Rohde & Schwarz	TC-TA18	Cross Polarized Vivaldi Antenna (400MHz-18GHz)	11/14/2019	Annual	11/14/2020	101057
Rohde & Schwarz	HFH2-Z2	Loop Antenna	3/21/2019	Annual	3/21/2020	100519

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 12 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 13 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

7.0 TEST RESULTS

7.1 Summary

Company Name:	Apple Inc.
FCC ID:	BCGA2228
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.7]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.7]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report (1C1912170050- 07.BCG)
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS- 247 [6.2])	RADIATED	PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])		PASS	Section 7.6, 7.7
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 1.3.0.

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 af 004
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 14 of 204
© 2020 PCTEST			V 9.0 02/01/2019

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

All antenna configs were investigated and only the worst case is reported.

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 201		
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 15 of 204		
© 2020 PCTEST V 9.0 02/01/2019					

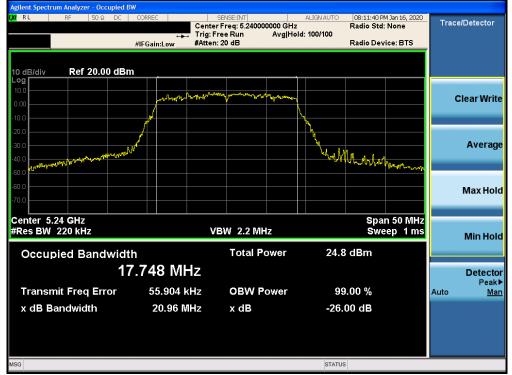
SISO CORE-0 26 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	20.90
_	5200	40	n (20MHz)	6.5/7.2 (MCS0)	20.99
Band 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	20.96
Bar	5190	38	n (40MHz)	13.5/15 (MCS0)	40.25
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.24
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	81.33
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	20.87
∢	5280	56	n (20MHz)	6.5/7.2 (MCS0)	20.74
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	20.96
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	39.48
ш	5310	62	n (40MHz)	13.5/15 (MCS0)	39.75
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	81.37
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	20.81
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	21.01
Ö	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.16
d 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	40.09
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	40.11
ш	5710	142	n (40MHz)	13.5/15 (MCS0)	40.39
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.96
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.36

Table 7-2. Conducted Bandwidth Measurements SISO CORE0

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 16 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

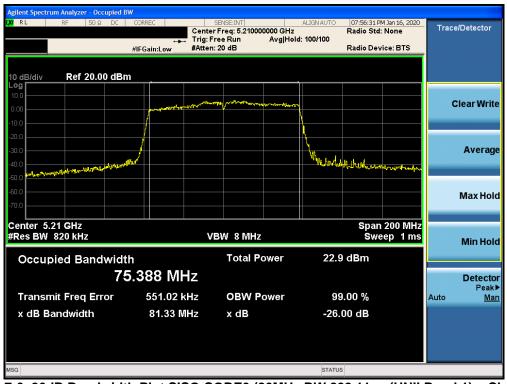
29 20 <td< th=""><th>RL RF 50Ω DC</th><th>Cente</th><th>SENSE:INT r Freq: 5.180000000 GHz ree Run Avg Hol I: 20 dB</th><th>ALIGN AUTO d: 100/100</th><th>08:07:39 PM Radio Std: 1 Radio Devic</th><th>None</th><th>Trace/Detector</th></td<>	RL RF 50Ω DC	Cente	SENSE:INT r Freq: 5.180000000 GHz ree Run Avg Hol I: 20 dB	ALIGN AUTO d: 100/100	08:07:39 PM Radio Std: 1 Radio Devic	None	Trace/Detector
Average Average Average Average Average Average Average Average Average Max Ho Span 50 MHz See BW 220 kHz VBW 2.2 MHz Sweep 1 ms Transmit Freq Error 137.23 kHz OBW Power 99.00 %	0 dB/div Ref 20.00 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Clear Wri
Image: Constraint of the second se	A MARKEN AND AND AND AND AND AND AND AND AND AN			My My Virinday Oll		Muhana	Avera
Res BW 220 kHz VBW 2.2 MHz Sweep 1 ms Occupied Bandwidth Total Power 24.4 dBm 17.782 MHz Detect Transmit Freq Error 137.23 kHz OBW Power 99.00 %	70.0						Max Ho
17.782 MHz Detect Transmit Freq Error 137.23 kHz OBW Power 99.00 %	Center 5.18 GHz Res BW 220 kHz				Swee		Min Ho
Transmit Freq Error 137.23 kHz OBW Power 99.00 %			Total Power	24.4	dBm		
	Transmit Freq Error x dB Bandwidth					A	


Plot 7-1. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

Plot 7-2. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

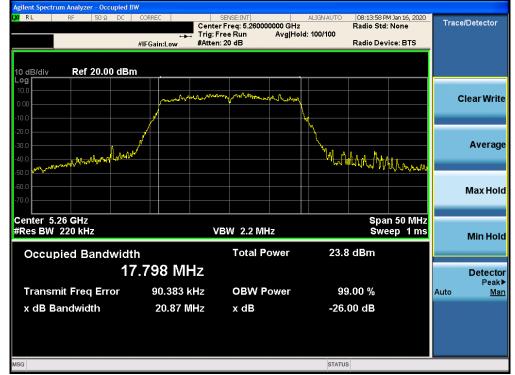
FCC ID: BCGA2228	<u><i>CPCTEST</i></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 17 of 204
© 2020 PCTEST			V 9.0 02/01/2019

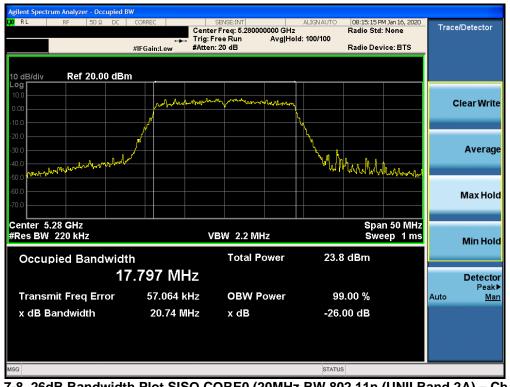
Plot 7-3. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)


Plot 7-4. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 18 of 204
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019

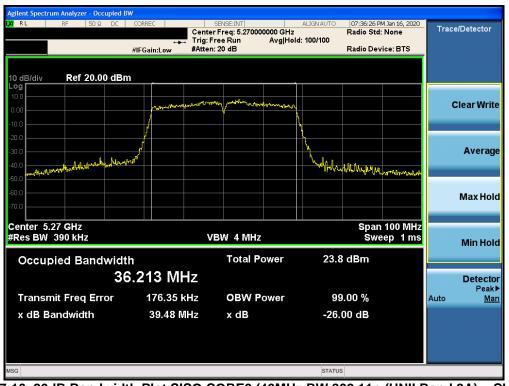
KIRL RF 50Ω DC		SENSE:INT Freq: 5.230000000 GHz	ALIGN AUTO	07:33:16 PM Jan 16, 2020 Radio Std: None	Trace/Detector
		Free Run Avg Ho n: 20 dB	ld: 100/100	Radio Device: BTS	
10 dB/div Ref 20.00 dBm -og					
10.0	INCOMPLATION AND AND AND AND AND AND AND AND AND AN	the warman war			Clear Writ
0.00					
20.0	/		1		
	1		L.		Averac
40.0 Hanniphator Mangaran	Jr		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the winds with the man	-
50.0				Construction of the first firs	
60.0					Max Ho
70.0					
Center 5.23 GHz				Span 100 MHz	
Res BW 390 kHz	V	/BW 4 MHz		Sweep 1 ms	Min Ho
Occupied Bandwidtl	า	Total Power	25.1	dBm	
36	.316 MHz				Detecto
Transmit Freq Error	161.23 kHz	OBW Power	qq	00 %	Peak Auto Ma
x dB Bandwidth	40.24 MHz	x dB	-26.0		
	40.24 10172	X UB	-20.0	O GB	
					-


Plot 7-5. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

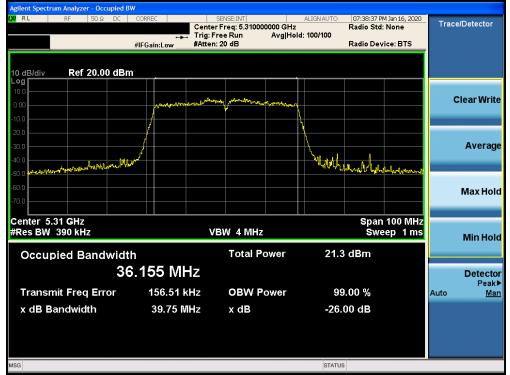

Plot 7-6. 26dB Bandwidth Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 201	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 19 of 204	
V 9.0 02/01/2019				


Plot 7-7. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

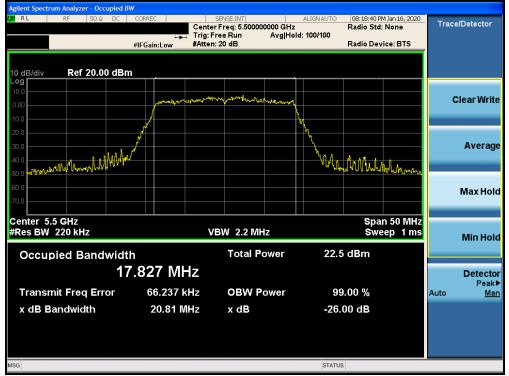

Plot 7-8. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

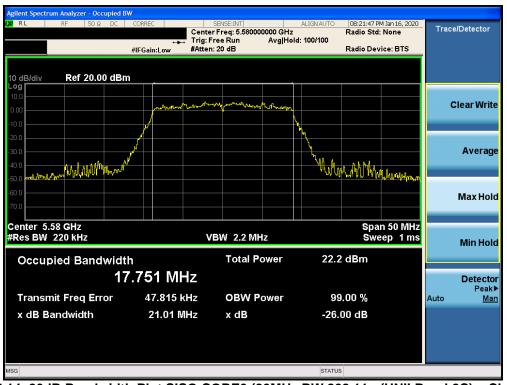
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 204		
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 20 of 204		
© 2020 PCTEST	V 9.0 02/01/2019				


Plot 7-9. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

Plot 7-10. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

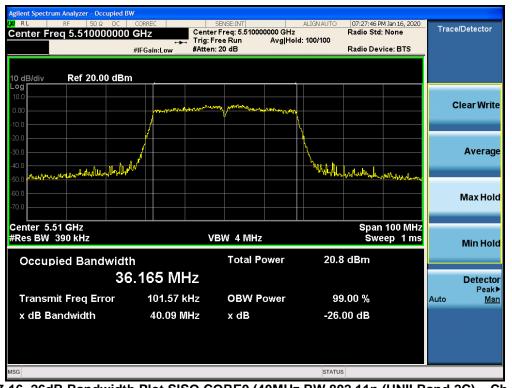
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 21 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-11. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)


Plot 7-12. 26dB Bandwidth Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

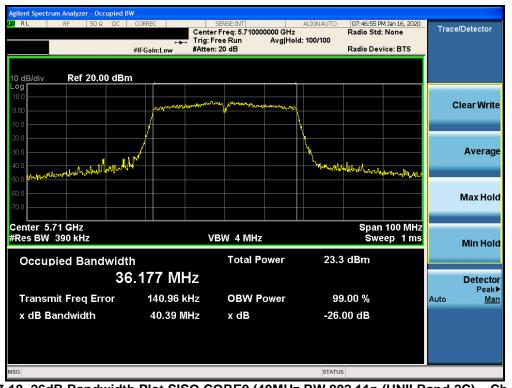
FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 004
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 22 of 204
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019

Plot 7-13. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)


Plot 7-14. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 204		
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 23 of 204		
© 2020 PCTEST	V 9.0 02/01/2019				

Plot 7-15. 26dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)


Plot 7-16. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 24 of 204
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019

Plot 7-17. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)


Plot 7-18. 26dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

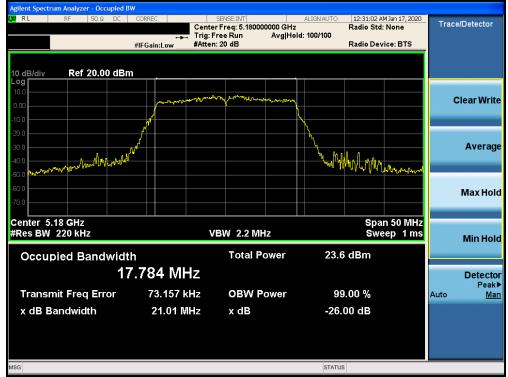
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 25 of 204
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019

Agilent Spectrum Analyzer - Occupied BW					
LXX RL RF 50Ω DC CC		SENSE:INT nter Freq: 5.53000000 g: Free Run A		08:01:21 PM Jan 16, Radio Std: None	Trace/Detector
#1		g:FreeRun A ten:20 dB	vg Hold: 100/100	Radio Device: B1	rs
10 dB/div Ref 20.00 dBm					
Log 10.0					
0.00	warper and	wompen from the boly and the second			Clear Write
-10.0			N		
-20.0	<u>/</u>		<u>\</u>		
-30.0	/		<u> </u>		Average
-40.0			"White the	al marking the marker of	MALAN
-50.0					
-60.0					Max Hold
-70.0					
Center 5.53 GHz				Span 200	
#Res BW 820 kHz		VBW 8 MHz		Sweep 1	ms Min Hold
Occupied Bandwidth		Total Pow	er 20.4	dBm	
75.6	68 MHz				Detector
				00.0/	Peak►
Transmit Freq Error	191.87 kHz	OBW Pow		.00 %	Auto <u>Man</u>
x dB Bandwidth	81.96 MHz	x dB	-26.0	00 dB	
MSG			STATUS	5	

Plot 7-19. 26dB Bandwidth Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

Plot 7-20. 26dB Bandwidth Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

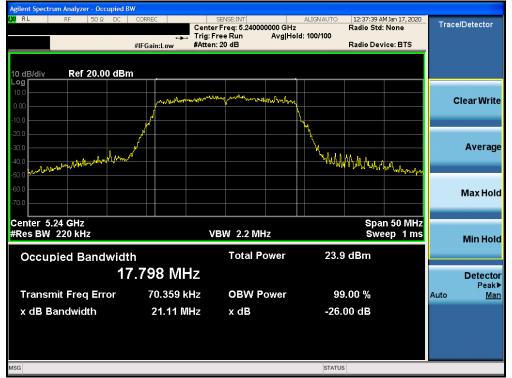
FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 26 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 26 of 204
© 2020 PCTEST V 9.0 02/01/2019			


SISO CORE-1 26dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	21.01
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	20.91
t pr	5240	48	n (20MHz)	6.5/7.2 (MCS0)	21.11
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	40.11
	5230	46	n (40MHz)	13.5/15 (MCS0)	39.49
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	81.93
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	21.43
∢	5280	56	n (20MHz)	6.5/7.2 (MCS0)	21.18
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	20.94
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	39.96
ш	5310	62	n (40MHz)	13.5/15 (MCS0)	39.95
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	81.80
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	20.91
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	20.81
o	5720	144	n (20MHz)	6.5/7.2 (MCS0)	21.09
Band 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	39.55
an	5550	110	n (40MHz)	13.5/15 (MCS0)	40.11
ш	5710	142	n (40MHz)	13.5/15 (MCS0)	40.08
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	81.58
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	81.36

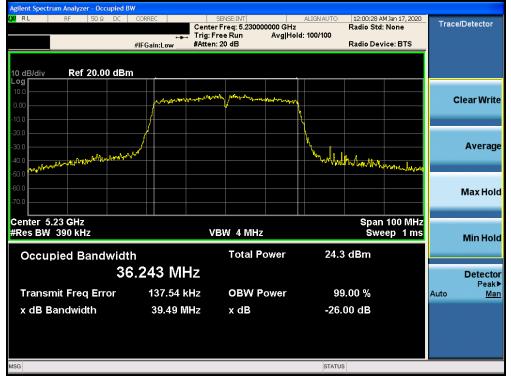
Table 7-3. Conducted Bandwidth Measurements SISO CORE1

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 27 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 27 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-21. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

Plot 7-22. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 28 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-23. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

Plot 7-24. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 af 004
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 29 of 204
© 2020 PCTEST		A new barran data data 2005 a dia amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisia	V 9.0 02/01/2019

Plot 7-25. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

Plot 7-26. 26dB Bandwidth Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

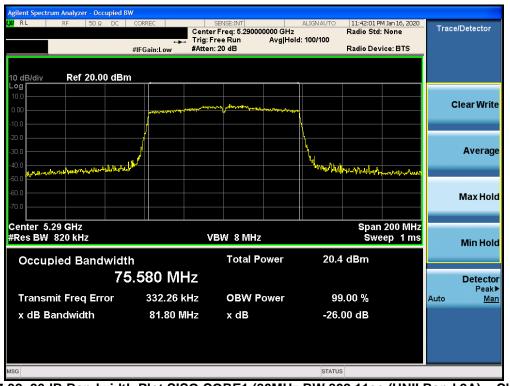
FCC ID: BCGA2228	<u><i>CPCTEST</i></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 30 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-27. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

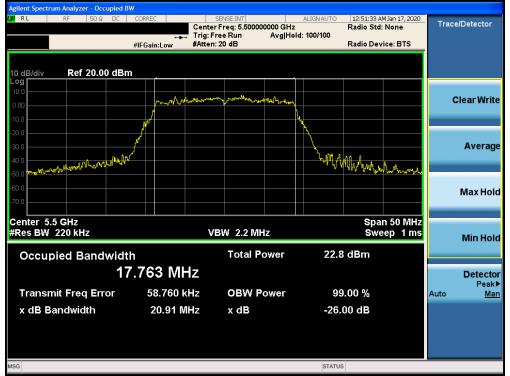
Plot 7-28. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

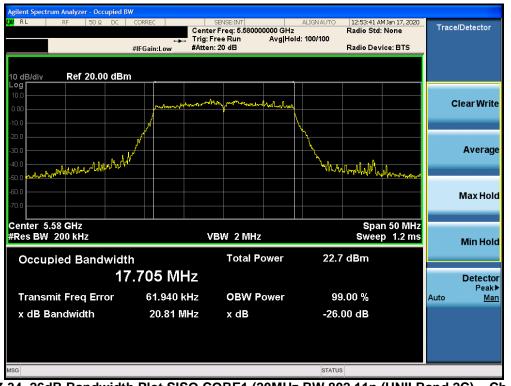
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 31 of 204
© 2020 PCTEST V 9.0 02/01/2019			

Plot 7-29. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

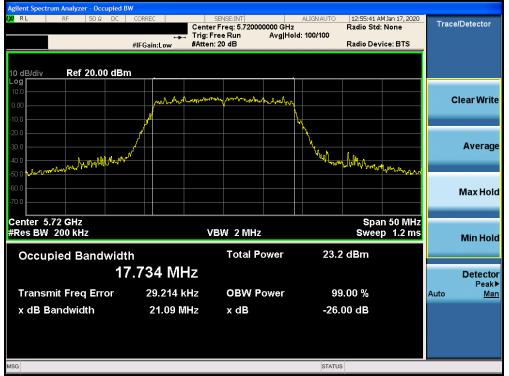

Plot 7-30. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

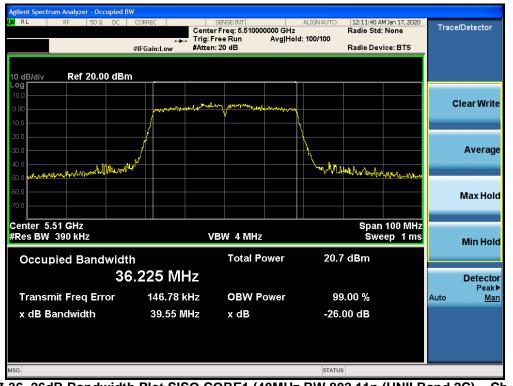
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 32 of 204
© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-31. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)


Plot 7-32. 26dB Bandwidth Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

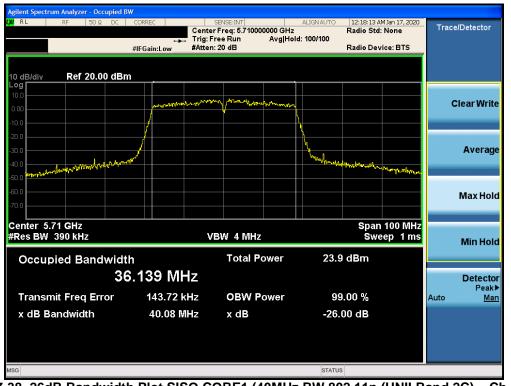
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 33 of 204
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019


Plot 7-33. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)


Plot 7-34. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 34 of 204
© 2020 PCTEST			V 9.0 02/01/2019

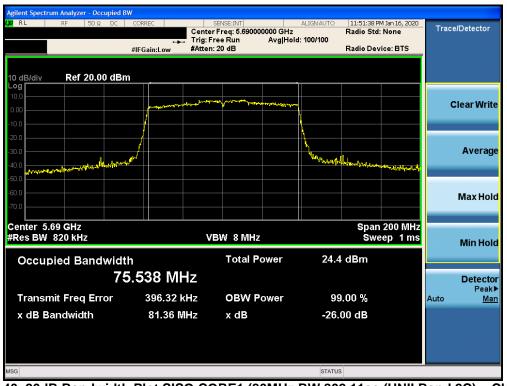
Plot 7-35. 26dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)


Plot 7-36. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	
© 2020 PCTEST		A second second second second the second	V 9.0 02/01/2019

Agilent Spectrum Analyzer - Occupied BW							
(X/RL RF 50Ω DO		SENSE:INT enter Freg: 5.550000000 GH;	ALIGNAUTO 12:15:18 AM Jan 17 Radio Std: None				
	T	rig:FreeRun Avg Ho	old: 100/100				
	#IFGain:Low #	Atten: 20 dB	Radio Device: B	TS			
10 dB/div Ref 20.00 d	Bm		· · · · · · · · · · · · · · · · · · ·				
10.0							
0.00	population and the states of the	working and him and the shower	^	Clear Write			
-10.0							
-20.0	(
-30,0	/			Average			
	Manuala		M. L. M.				
-40.0			hand hand hand hand hand hand hand hand	hallplane			
-60.0							
-70.0				Max Hold			
-70.0							
Center 5.55 GHz	MHz						
#Res BW 390 kHz		VBW 4 MHz	Sweep	1 ms Min Hold			
Occupied Bondwi	dth	Total Power	23.5 dBm				
Occupied Bandwi			23.3 UD III				
	36.269 MHz	•		Detector			
Transmit Freq Error	101.19 kHz	OBW Power	99.00 %	Peak▶ Auto Man			
				<u></u>			
x dB Bandwidth	40.11 MHz	z x dB	-26.00 dB				
MSG							

Plot 7-37. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)


Plot 7-38. 26dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 at 201	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 36 of 204	
© 2020 PCTEST			V 9.0 02/01/2019	

Agilent Spectrum Analyzer - Occupied BV					
LX/RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO	11:44:10 PM Jan 16, 2020 Radio Std: None	Trace/Detector
		rig: Free Run Atten: 20 dB	Avg Hold: 100/100	Radio Device: BTS	
	#IFGain:Low #	Atten: 20 dB		Radio Device: B15	
10 dB/div Ref 20.00 dBm Log					
10.0					Clear Write
0.00	- when we want	and the second s	and the set of the set		Clear write
-10.0	— <u>(</u> 1 — — — — — — — — — — — — — — — — — — —		N		
-20.0					
-30.0					Average
-40.0 -50.0 Manufartan Anna - 100 - 50.0	P ¹		Murden .	Whather make manual se	
-60.0					Max Hold
-70.0					
Center 5.53 GHz				Span 200 MHz	
#Res BW 820 kHz		VBW 8 MHz		Sweep 1 ms	Min Hold
Occupied Bandwidth		Total Po	ower 19 f	i dBm	
				, abiii	
/5	.672 MHz				Detector Peak▶
Transmit Freq Error	353.76 kH	Z OBW P	ower 99	0.00 %	Auto <u>Man</u>
x dB Bandwidth	81.58 MH;	z xdB	-26.	00 dB	
MSG			STATUS	5	

Plot 7-39. 26dB Bandwidth Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

Plot 7-40. 26dB Bandwidth Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 37 of 204
V 9.0 02/01/2019 V 9.0 02/01/2019			

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.7]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

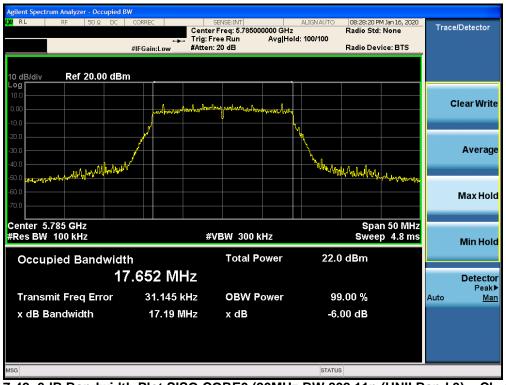
Test Notes

All antenna configs were investigated and only the worst case is reported.

FCC ID: BCGA2228	<u><i>CPCTEST</i></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 38 of 204
© 2020 PCTEST V 9.0 02/01/2019			

SISO CORE-0 6 dB Bandwidth Measurements

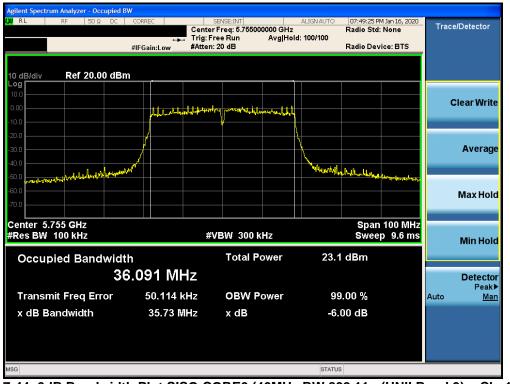
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.20
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.19
d 3	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.58
Band	5755	151	n (40MHz)	13.5/15 (MCS0)	35.73
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.24
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.46


Table 7-4. Conducted Bandwidth Measurements SISO CORE0

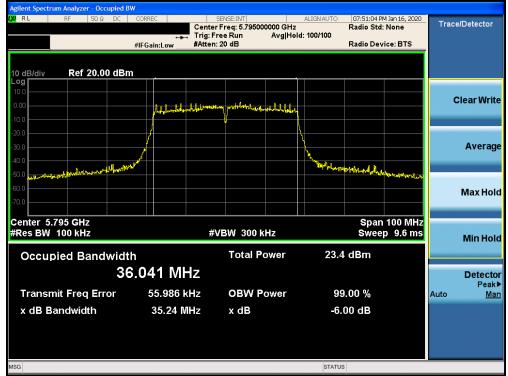
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 39 of 204
© 2020 PCTEST			V 9.0 02/01/2019

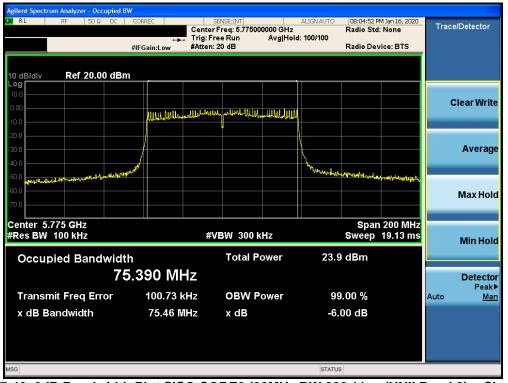
Agilent Spectrum Analyzer - Occupied E					
μα RL RF 50Ω DC 	T	sense:INT enter Freq: 5.74500000 rig: Free Run Atten: 20 dB	ALIGNAUTO DO GHz Avg Hold: 100/100	08:26:25 PM Jan 16, Radio Std: None Radio Device: BT	Trace/Detector
10 dB/div Ref 20.00 dBr	n				
10.0 0.00		www.alamy.actions.	malun		Clear Write
-20.0	Wat I			- n i .	Average
-400 -50.0			///www.	hon that we was	Max Hold
Center 5.745 GHz #Res BW 100 kHz		#VBW 300 kH;	z	Span 50 I Sweep 4.8	MHz ms Min Hold
Occupied Bandwidt	th 7.662 MHz	Total Pow	ver 21.8	3 dBm	Detector
Transmit Freq Error	27.202 kHz	Z OBW Pov	ver 99	9.00 %	Peak► Auto <u>Man</u>
x dB Bandwidth	17.20 MHz	z xdB	-6.	00 dB	
MSG			STATU	S	

Plot 7-41. 6dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-42. 6dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 40 of 204
2020 PCTEST V 9.0 02/01/2019			


Plot 7-43. 6dB Bandwidth Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

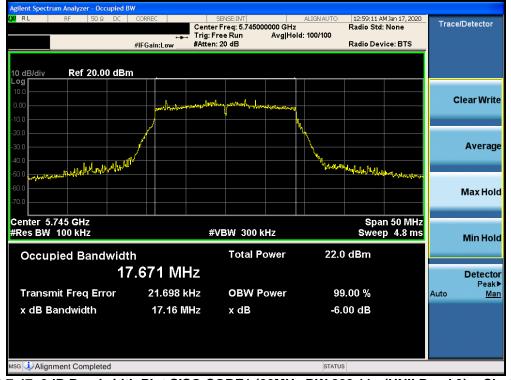

Plot 7-44. 6dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 41 of 204
© 2020 PCTEST V 9.0 02/01/2019			

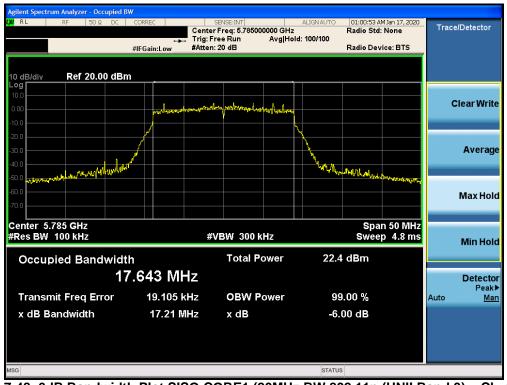
Plot 7-45. 6dB Bandwidth Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-46. 6dB Bandwidth Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 42 of 204
© 2020 PCTEST V 9.0 02/01/2019			

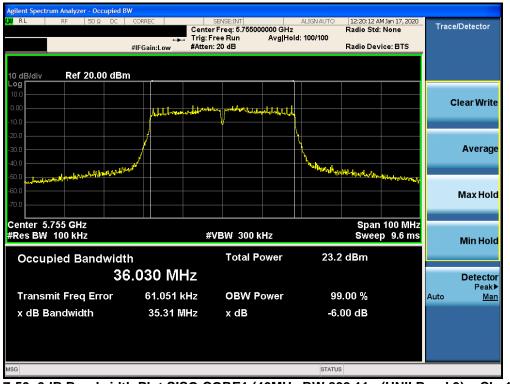

SISO CORE-1 6dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.16
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.21
d 3	5825	165	n (20MHz)	6.5/7.2 (MCS0)	16.96
Band	5755	151	n (40MHz)	13.5/15 (MCS0)	35.31
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.44
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.62

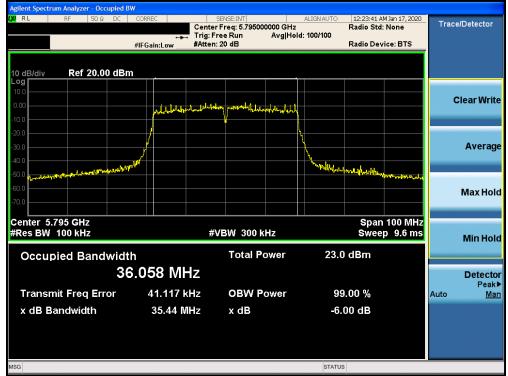

Table 7-5. Conducted Bandwidth Measurements SISO CORE1

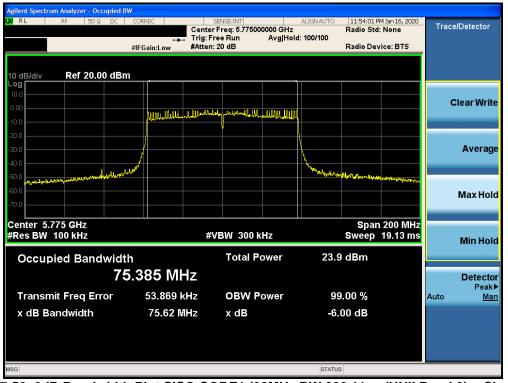
FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 43 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-47. 6dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-48. 6dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 at 004
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 44 of 204
2020 PCTEST V 9.0 02/01/2019			


Plot 7-49. 6dB Bandwidth Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-50. 6dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 45 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

Plot 7-51. 6dB Bandwidth Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-52. 6dB Bandwidth Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 46 of 204
© 2020 PCTEST			V 9.0 02/01/2019

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.43) = 24.31 dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.16) = 24.26 dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 47 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

FCC SISO CORE-0 Conducted Output Power Measurements

Freq [MHz]	Channel	Detector	etector IEEE Transmission Mode		Conducted Power Limit	Conducted Power
			802.11a	802.11n	[dBm]	Margin [dB]
5180	36	AVG	17.50	17.47	23.98	-6.48
5200	40	AVG	17.45	17.47	23.98	-6.51
5240	48	AVG	17.41	17.50	23.98	-6.48
5260	52	AVG	16.44	16.50	23.98	-7.48
5280	56	AVG	16.45	16.50	23.98	-7.48
5300	60	AVG	16.50	16.50	23.98	-7.48
5320	64	AVG	16.50	16.50	23.98	-7.48
5500	100	AVG	15.50	15.45	23.98	-8.48
5520	104	AVG	15.46	15.50	23.98	-8.48
5580	116	AVG	15.42	15.45	23.98	-8.53
5680	136	AVG	15.50	15.43	23.98	-8.48
5700	140	AVG	14.50	14.34	23.98	-9.48
5720	144	AVG	15.40	15.35	23.98	-8.58
5745	149	AVG	15.67	15.50	30.00	-14.33
5785	157	AVG	15.66	15.50	30.00	-14.34
5825	165	AVG	15.75	15.66	30.00	-14.25

 Table 7-6. FCC SISO CORE0 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11n	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5190	38	AVG	15.25	23.98	-8.73
5230	46	AVG	17.41	23.98	-6.57
5270	54	AVG	16.38	23.98	-7.60
5310	62	AVG	14.48	23.98	-9.50
5510	102	AVG	14.45	23.98	-9.53
5550	110	AVG	15.50	23.98	-8.48
5670	134	AVG	15.46	23.98	-8.52
5710	142	AVG	16.42	23.98	-7.56
5755	151	AVG	15.75	30.00	-14.25
5795	159	AVG	15.60	30.00	-14.40

Table 7-7. FCC SISO CORE0 40MHz BW	UNII) Maximum Conducted Output Pow	/er
------------------------------------	------------------------------------	-----

Freq [MHz]	Channel	Detector	IEEE Transmission Mode 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5210	42	AVG	14.44	23.98	-9.54
5290	58	AVG	12.61	23.98	-11.37
5530	106	AVG	12.89	23.98	-11.09
5690	138	AVG	15.47	23.98	-8.51
5775	155	AVG	15.60	30.00	-14.40

Table 7-8. FCC SISO CORE0 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 004
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 48 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

ISED SISO CORE-0 Conducted Output Power Measurements

Freq [MHz]	Channel	Detector	IEEE Transn	Pov		Conducted Conducted Power Limit Power		Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11a	802.11n	[dBm]	Margin [dB]	[dBi]	Lapud	Enne [GBii]	mar gin [ab]
5180	36	AVG	15.91	16.00	-	-	2.10	18.10	23.01	-4.91
5200	40	AVG	15.89	15.96	-	-	2.10	18.06	23.01	-4.95
5240	48	AVG	15.92	15.94	-	-	2.10	18.04	23.01	-4.97
5260	52	AVG	16.44	16.50	23.98	-7.48	1.30	17.80	30.00	-12.20
5280	56	AVG	16.45	16.50	23.98	-7.48	1.30	17.80	30.00	-12.20
5300	60	AVG	16.50	16.50	23.98	-7.48	1.30	17.80	30.00	-12.20
5320	64	AVG	16.50	16.50	23.98	-7.48	1.30	17.80	30.00	-12.20
5500	100	AVG	15.50	15.45	23.98	-8.48	3.70	19.20	30.00	-10.80
5520	104	AVG	15.46	15.50	23.98	-8.48	3.70	19.20	30.00	-10.80
5580	116	AVG	15.42	15.45	23.98	-8.53	3.70	19.15	30.00	-10.85
5680	136	AVG	15.50	15.43	23.98	-8.48	3.70	19.20	30.00	-10.80
5700	140	AVG	14.50	14.34	23.98	-9.48	3.70	18.20	30.00	-11.80
5720	144	AVG	15.40	15.35	23.98	-8.58	3.70	19.10	30.00	-10.90
5745	149	AVG	15.67	15.50	30.00	-14.33	4.70	20.37	-	-
5785	157	AVG	15.66	15.50	30.00	-14.34	4.70	20.36	-	-
5825	165	AVG	15.75	15.66	30.00	-14.25	4.70	20.45	-	-

Table 7-9. ISED SISO CORE0 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11n	Conducted Power Limit [dBm]	Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
5190	38	AVG	15.25	-	-	2.10	17.35	23.01	-5.66
5230	46	AVG	17.41	-	-	2.10	19.51	23.01	-3.50
5270	54	AVG	16.38	23.98	-7.60	1.30	17.68	30.00	-12.32
5310	62	AVG	14.48	23.98	-9.50	1.30	15.78	30.00	-14.22
5510	102	AVG	14.45	23.98	-9.53	3.70	18.15	30.00	-11.85
5550	110	AVG	15.50	23.98	-8.48	3.70	19.20	30.00	-10.80
5670	134	AVG	15.46	23.98	-8.52	3.70	19.16	30.00	-10.84
5710	142	AVG	16.42	23.98	-7.56	3.70	20.12	30.00	-9.88
5755	151	AVG	15.75	30.00	-14.25	4.70	20.45	-	-
5795	159	AVG	15.60	30.00	-14.40	4.70	20.30	-	-

Table 7-10. ISED SISO CORE0 40MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
5210	42	AVG	14.44	-	-	2.10	16.54	23.01	-6.47
5290	58	AVG	12.61	23.98	-11.37	1.30	13.91	30.00	-16.09
5530	106	AVG	12.89	23.98	-11.09	3.70	16.59	30.00	-13.41
5690	138	AVG	15.47	23.98	-8.51	3.70	19.17	30.00	-10.83
5775	155	AVG	15.60	30.00	-14.40	4.70	20.30	-	-

Table 7-11. ISED SISO CORE0 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 40 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 49 of 204	
© 2020 PCTEST			V 9.0 02/01/2019	

FCC SISO CORE-1 Conducted Output Power Measurements

Freq [MHz]	Channel	Detector	IEEE Transn	nission Mode	Conducted Power Limit	Conducted Power Margin [dB]	
			802.11a	802.11n	[dBm]		
5180	36	AVG	16.96	16.85	23.98	-7.02	
5200	40	AVG	16.99	16.92	23.98	-6.99	
5240	48	AVG	17.00	16.95	23.98	-6.98	
5260	52	AVG	16.43	16.39	23.98	-7.55	
5280	56	AVG	16.39	16.48	23.98	-7.50	
5300	60	AVG	16.34	16.45	23.98	-7.53	
5320	64	AVG	16.40	16.41	23.98	-7.57	
5500	100	AVG	15.66	15.74	23.98	-8.24	
5520	104	AVG	16.42	16.45	23.98	-7.53	
5580	116	AVG	16.50	16.39	23.98	-7.48	
5680	136	AVG	16.48	16.50	23.98	-7.48	
5700	140	AVG	14.50	14.45	23.98	-9.48	
5720	144	AVG	16.32	16.43	23.98	-7.55	
5745	149	AVG	16.00	15.83	30.00	-14.00	
5785	157	AVG	15.93	15.89	30.00	-14.07	
5825	165	AVG	15.95	16.00	30.00	-14.00	

Table 7-12. FCC SISO CORE1 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11n	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5190	38	AVG	15.21	23.98	-8.77
5230	46	AVG	16.99	23.98	-6.99
5270	54	AVG	16.50	23.98	-7.48
5310	62	AVG	14.46	23.98	-9.52
5510	102	AVG	14.45	23.98	-9.53
5550	110	AVG	16.43	23.98	-7.55
5670	134	AVG	15.75	23.98	-8.23
5710	142	AVG	16.44	23.98	-7.54
5755	151	AVG	16.00	30.00	-14.00
5795	159	AVG	15.93	30.00	-14.07

Table 7-13. FCC SISO CORE1 40MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
5210	42	AVG	14.47	23.98	-9.51
5290	58	AVG	12.69	23.98	-11.29
5530	106	AVG	12.90	23.98	-11.08
5690	138	AVG	16.43	23.98	-7.55
5775	155	AVG	16.00	30.00	-14.00

Table 7-14. FCC SISO CORE1 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><i>CPCTEST</i></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 50 of 204	
© 2020 PCTEST	•		V 9.0 02/01/2019	

ISED SISO CORE-1 Conducted Output Power Measurements

Freq [MHz]	Freq [MHz] Channel	Detector	Detector		Conducted Power Limit	Conducted Power	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			802.11a	802.11n	[dBm]	Margin [dB]	[abi]	Lapud	Enne [GBii]	margin [ab]
5180	36	AVG	15.98	16.00	23.98	-7.98	-0.20	15.80	23.01	-7.21
5200	40	AVG	15.92	15.95	23.98	-8.03	-0.20	15.75	23.01	-7.26
5240	48	AVG	15.95	15.83	23.98	-8.03	-0.20	15.75	23.01	-7.26
5260	52	AVG	16.43	16.39	23.98	-7.55	0.20	16.63	30.00	-13.37
5280	56	AVG	16.39	16.48	23.98	-7.50	0.20	16.68	30.00	-13.32
5300	60	AVG	16.34	16.45	23.98	-7.53	0.20	16.65	30.00	-13.35
5320	64	AVG	16.40	16.41	23.98	-7.57	0.20	16.61	30.00	-13.39
5500	100	AVG	15.66	15.74	23.98	-8.24	2.30	18.04	30.00	-11.96
5520	104	AVG	16.42	16.45	23.98	-7.53	2.30	18.75	30.00	-11.25
5580	116	AVG	16.50	16.39	23.98	-7.48	2.30	18.80	30.00	-11.20
5680	136	AVG	16.48	16.50	23.98	-7.48	2.30	18.80	30.00	-11.20
5700	140	AVG	14.50	14.45	23.98	-9.48	2.30	16.80	30.00	-13.20
5720	144	AVG	16.32	16.43	23.98	-7.55	2.30	18.73	30.00	-11.27
5745	149	AVG	16.00	15.83	30.00	-14.00	2.80	18.80	-	-
5785	157	AVG	15.93	15.89	30.00	-14.07	2.80	18.73	-	-
5825	165	AVG	15.95	16.00	30.00	-14.00	2.80	18.80	-	-

Table 7-15. ISED SISO CORE1 20MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11n	Conducted Power Limit [dBm]	Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
5190	38	AVG	15.21	23.98	-8.77	-0.20	15.01	23.01	-8.00
5230	46	AVG	16.99	23.98	-6.99	-0.20	16.79	23.01	-6.22
5270	54	AVG	16.50	23.98	-7.48	0.20	16.70	30.00	-13.30
5310	62	AVG	14.46	23.98	-9.52	0.20	14.66	30.00	-15.34
5510	102	AVG	14.45	23.98	-9.53	2.30	16.75	30.00	-13.25
5550	110	AVG	16.43	23.98	-7.55	2.30	18.73	30.00	-11.27
5670	134	AVG	15.75	23.98	-8.23	2.30	18.05	30.00	-11.95
5710	142	AVG	16.44	23.98	-7.54	2.30	18.74	30.00	-11.26
5755	151	AVG	16.00	30.00	-14.00	2.80	18.80	-	-
5795	159	AVG	15.93	30.00	-14.07	2.80	18.73	-	-

Table 7-16. ISED SISO CORE1 40MHz BW (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]	Ant. Gain [dBi]	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
5210	42	AVG	14.47	-	-	-0.20	14.27	23.01	-8.74
5290	58	AVG	12.69	23.98	-11.29	0.20	12.89	30.00	-17.11
5530	106	AVG	12.90	23.98	-11.08	2.30	15.20	30.00	-14.80
5690	138	AVG	16.43	23.98	-7.55	2.30	18.73	30.00	-11.27
5775	155	AVG	16.00	30.00	-14.00	2.80	18.80	-	-

Table 7-17. ISED SISO CORE1 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 51 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 51 of 204	
© 2020 PCTEST			V 9.0 02/01/2019	

FCC CDD/SDM Maximum Conducted Output Power Measurements

Freq [MHz]	Channel	Detector	Cone	ducted Power [dBm]	Conducted Power Limit	Conducted Power
			Core 0	Core 1	Summed	[dBm]	Margin [dB]
5180	36	AVG	16.75	16.75	19.76	23.98	-4.22
5200	40	AVG	17.00	17.00	20.01	23.98	-3.97
5240	48	AVG	17.00	16.97	20.00	23.98	-3.98
5260	52	AVG	16.50	16.50	19.51	23.98	-4.47
5280	56	AVG	16.42	16.40	19.42	23.98	-4.56
5300	60	AVG	16.50	16.45	19.49	23.98	-4.49
5320	64	AVG	14.50	14.50	17.51	23.98	-6.47
5500	100	AVG	15.23	15.25	18.25	23.98	-5.73
5520	104	AVG	15.50	16.00	18.77	23.98	-5.21
5580	116	AVG	15.35	16.00	18.70	23.98	-5.28
5680	136	AVG	15.42	16.00	18.73	23.98	-5.25
5700	140	AVG	13.00	13.00	16.01	23.98	-7.97
5720	144	AVG	15.50	15.97	18.75	23.98	-5.23
5745	149	AVG	15.75	16.00	18.89	30.00	-11.11
5785	157	AVG	15.60	16.00	18.81	30.00	-11.19
5825	165	AVG	15.75	15.98	18.88	30.00	-11.12

 Table 7-18. FCC CDD 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Mode	Detector	Conduc	cted Power [de	Bm]	Conducted Power Limit	
				Core 0	Core 1	Summed	[dBm]	Margin [dB]
5180	36	CDD	AVG	16.75	16.70	19.74	23.98	-4.24
5200	40	CDD	AVG	17.00	17.00	20.01	23.98	-3.97
5240	48	CDD	AVG	17.00	17.00	20.01	23.98	-3.97
5260	52	CDD	AVG	16.50	16.39	19.46	23.98	-4.52
5280	56	CDD	AVG	16.44	16.42	19.44	23.98	-4.54
5300	60	CDD	AVG	16.50	16.37	19.45	23.98	-4.53
5320	64	CDD	AVG	14.46	14.50	17.49	23.98	-6.49
5500	100	CDD	AVG	15.25	15.25	18.26	23.98	-5.72
5520	104	SDM	AVG	15.49	16.40	18.98	23.98	-5.00
5580	116	SDM	AVG	15.50	16.42	18.99	23.98	-4.99
5680	136	SDM	AVG	15.47	16.45	19.00	23.98	-4.98
5700	140	CDD	AVG	13.00	13.00	16.01	23.98	-7.97
5720	144	SDM	AVG	15.46	16.43	18.98	23.98	-5.00
5745	149	CDD	AVG	15.75	16.00	18.89	30.00	-11.11
5785	157	CDD	AVG	15.75	16.00	18.89	30.00	-11.11
5825	165	CDD	AVG	15.68	16.00	18.85	30.00	-11.15

Table 7-19. FCC CDD/SDM 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 52 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 52 of 204	
© 2020 PCTEST			V 9.0 02/01/2019	

Freq [MHz]	Channel	Detector	Conc	lucted Power [Conducted Power Limit	Conducted Power	
			Core 0	Core 1	Summed	[dBm]	Margin [dB]
5190	38	AVG	14.19	14.16	17.19	23.98	-6.79
5230	46	AVG	17.50	17.00	20.27	23.98	-3.71
5270	54	AVG	16.46	16.46	19.47	23.98	-4.51
5310	62	AVG	13.00	13.00	16.01	23.98	-7.97
5510	102	AVG	12.50	12.50	15.51	23.98	-8.47
5550	110	AVG	15.50	16.50	19.04	23.98	-4.94
5670	134	AVG	14.49	14.50	17.51	23.98	-6.47
5710	142	AVG	15.48	16.50	19.03	23.98	-4.95
5755	151	AVG	15.68	16.00	18.85	30.00	-11.15
5795	159	AVG	15.69	16.00	18.86	30.00	-11.14

Table 7-20. FCC CDD 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	Conc	lucted Power [Conducted Power Limit	Conducted Power		
			Core 0	Core 1	Summed	[dBm]	Margin [dB]	
5210	42	AVG	13.50	13.50	16.51	23.98	-7.47	
5290	58	AVG	11.00	10.93	13.98	23.98	-10.00	
5530	106	AVG	10.90	10.97	13.95	23.98	-10.03	
5690	138	AVG	15.50	16.50	19.04	23.98	-4.94	
5775	155	AVG	15.62	16.00	18.82	30.00	-11.18	

Table 7-21. FCC CDD 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 53 of 204
© 2020 PCTEST			V 9.0 02/01/2019

ISED CDD/SDM Maximum Conducted Output Power Measurements

Freq [MHz]	Channel	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Core 0	Core 1	Summed	[dBm]	Margin [dB]	[dBi]	[]		
5180	36	AVG	11.00	10.90	13.96	-	-	4.04	18.00	23.01	-5.01
5200	40	AVG	10.97	10.92	13.96	-	-	4.04	18.00	23.01	-5.01
5240	48	AVG	11.00	10.97	14.00	-	-	4.04	18.04	23.01	-4.97
5260	52	AVG	16.50	16.50	19.51	23.98	-4.47	3.78	23.29	30.00	-6.71
5280	56	AVG	16.42	16.40	19.42	23.98	-4.56	3.78	23.20	30.00	-6.80
5300	60	AVG	16.50	16.45	19.49	23.98	-4.49	3.78	23.27	30.00	-6.73
5320	64	AVG	14.50	14.50	17.51	23.98	-6.47	3.78	21.29	30.00	-8.71
5500	100	AVG	15.23	15.25	18.25	23.98	-5.73	6.04	24.29	30.00	-5.71
5520	104	AVG	15.50	16.00	18.77	23.98	-5.21	6.04	24.81	30.00	-5.19
5580	116	AVG	15.35	16.00	18.70	23.98	-5.28	6.04	24.74	30.00	-5.26
5680	136	AVG	15.42	16.00	18.73	23.98	-5.25	6.04	24.77	30.00	-5.23
5700	140	AVG	13.00	13.00	16.01	23.98	-7.97	6.04	22.05	30.00	-7.95
5720	144	AVG	15.50	15.97	18.75	23.98	-5.23	6.04	24.79	30.00	-5.21
5745	149	AVG	15.75	16.00	18.89	30.00	-11.11	6.81	25.70	-	-
5785	157	AVG	15.60	16.00	18.81	30.00	-11.19	6.81	25.62	-	-
5825	165	AVG	15.75	15.98	18.88	30.00	-11.12	6.81	25.69	-	-

Table 7-22. ISED CDD 20MHz BW 802.11a (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Mode	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
				Core 0	Core 1	Summed	[dBm]	Margin [dB]	[dBi]	[ubiii]		margin [ab]
5180	36	CDD	AVG	10.86	10.83	13.86	-	-	4.04	17.90	23.01	-5.11
5200	40	CDD	AVG	10.82	10.78	13.81	-	-	4.04	17.85	23.01	-5.16
5240	48	CDD	AVG	10.90	10.90	13.91	-	-	4.04	17.95	23.01	-5.06
5260	52	CDD	AVG	16.50	16.39	19.46	23.98	-4.52	3.78	23.24	30.00	-6.76
5280	56	CDD	AVG	16.44	16.42	19.44	23.98	-4.54	3.78	23.22	30.00	-6.78
5300	60	CDD	AVG	16.50	16.37	19.45	23.98	-4.53	3.78	23.23	30.00	-6.77
5320	64	CDD	AVG	14.46	14.50	17.49	23.98	-6.49	3.78	21.27	30.00	-8.73
5500	100	CDD	AVG	15.25	15.25	18.26	23.98	-5.72	6.04	24.30	30.00	-5.70
5520	104	SDM	AVG	15.49	16.40	18.98	23.98	-5.00	6.04	25.02	30.00	-4.98
5580	116	SDM	AVG	15.50	16.42	18.99	23.98	-4.99	6.04	25.03	30.00	-4.97
5680	136	SDM	AVG	15.47	16.45	19.00	23.98	-4.98	6.04	25.04	30.00	-4.96
5700	140	CDD	AVG	13.00	13.00	16.01	23.98	-7.97	6.04	22.05	30.00	-7.95
5720	144	SDM	AVG	15.46	16.43	18.98	23.98	-5.00	6.04	25.02	30.00	-4.98
5745	149	CDD	AVG	15.75	16.00	18.89	30.00	-11.11	6.81	25.70	-	-
5785	157	CDD	AVG	15.75	16.00	18.89	30.00	-11.11	6.81	25.70	-	-
5825	165	CDD	AVG	15.68	16.00	18.85	30.00	-11.15	6.81	25.66	-	-
	Table 7-	23. ISED	CDD/SI	DM 20MH	IZ BW 80)2.11n (l	JNII) Max	ximum C	onducte	ed Outpu	t Power	

Table 7-23. ISED CDD/SDM 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 54 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 54 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Freq [MHz]	Channel	Detector	Conducted Power [dBm]			Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Core 0	Core 1	Summed	[dBm]	Margin [dB]	[dBi]	Lapud	Enne [GBii]	margin [ab]
5190	38	AVG	13.50	13.48	16.50	-	-	4.04	20.54	23.01	-2.47
5230	46	AVG	13.44	13.50	16.48	-	-	4.04	20.52	23.01	-2.49
5270	54	AVG	16.46	16.46	19.47	23.98	-4.51	3.78	23.25	30.00	-6.75
5310	62	AVG	13.00	13.00	16.01	23.98	-7.97	3.78	19.79	30.00	-10.21
5510	102	AVG	12.50	12.50	15.51	23.98	-8.47	6.04	21.55	30.00	-8.45
5550	110	AVG	15.50	16.50	19.04	23.98	-4.94	6.04	25.08	30.00	-4.92
5670	134	AVG	14.49	14.50	17.51	23.98	-6.47	6.04	23.55	30.00	-6.45
5710	142	AVG	15.48	16.50	19.03	23.98	-4.95	6.04	25.07	30.00	-4.93
5755	151	AVG	15.68	16.00	18.85	30.00	-11.15	6.81	25.66	-	-
5795	159	AVG	15.69	16.00	18.86	30.00	-11.14	6.81	25.67	-	-

Table 7-24. ISED CDD 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

Freq [MHz]	Channel	Detector	Cond	lucted Power [dBm]	Conducted Power Limit	Conducted Power	Directional Ant. Gain	Max e.i.r.p. [dBm]	Max e.i.r.p. Limit [dBm]	e.i.r.p. Margin [dB]
			Core 0	Core 1	Summed	[dBm]	Margin [dB]	[dBi]	[]		
5210	42	AVG	13.50	13.50	16.51	-	-	4.04	20.55	23.01	-2.46
5290	58	AVG	11.00	10.93	13.98	23.98	-10.00	3.78	17.76	30.00	-12.24
5530	106	AVG	10.90	10.97	13.95	23.98	-10.03	6.04	19.99	30.00	-10.01
5690	138	AVG	15.50	16.50	19.04	23.98	-4.94	6.04	25.08	30.00	-4.92
5775	155	AVG	15.62	16.00	18.82	30.00	-11.18	6.81	25.63	-	-

Table 7-25. ISED CDD 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 55 01 204
© 2020 PCTEST			V 9.0 02/01/2019

Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Core 0 and Core 1 were first measured separately during CDD/SDM transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

For correlated unequal antenna gain

Directional gain = $10 \log[(10^{G_{1/20}} + 10^{G_{2/20}} + ... + 10^{G_{N/20}})^2 / N_{ANT}] dBi$

For completely uncorrelated unequal antenna gain

Directional gain = $10 \log[(10^{G_{1/10}} + 10^{G_{2/10}} + ... + 10^{G_{N/10}})/N_{ANT}] dBi$

Sample CDD/SDM Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 16.75 dBm for CORE-0 and 16.70 dBm for CORE-1.

(16.75 dBm + 16.70 dBm) = (47.315 mW + 46.774 mW) = 94.08994.09 mW = 19.74 dBm

Sample e.i.r.p. Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average CDD/SDM conducted power was calculated to be 19.74 dBm with directional gain of 4.04 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

19.74 dBm + 4.04 dBi = 23.78 dBm

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 56 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 56 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

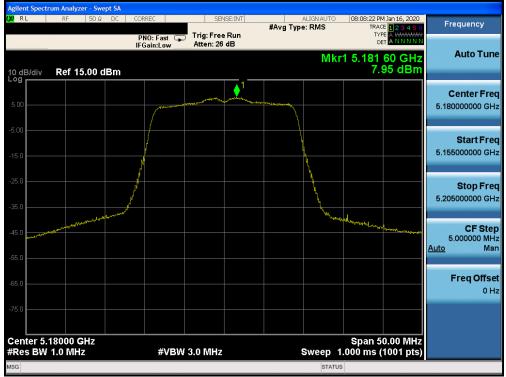
Test Notes

None

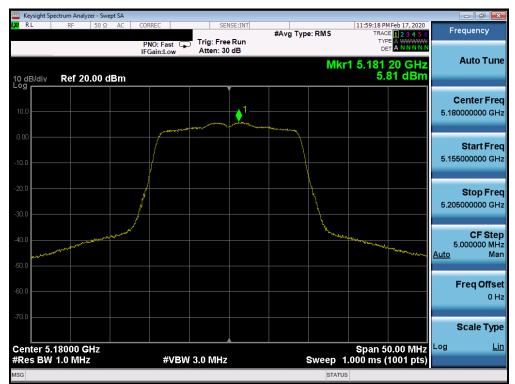
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 57 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 57 of 204
© 2020 PCTEST			V 9.0 02/01/2019

SISO CORE-0 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/MHz]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	7.95	11.0	-3.05
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	8.24	11.0	-2.76
1 pr	5240	48	n (20MHz)	6.5/7.2 (MCS0)	8.45	11.0	-2.55
Band 1	5190	38	n (40MHz)	13.5/15 (MCS0)	3.74	11.0	-7.26
_	5230	46	n (40MHz)	13.5/15 (MCS0)	5.50	11.0	-5.50
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-0.23	11.0	-11.23
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	7.75	11.0	-3.25
∢	5280	56	n (20MHz)	6.5/7.2 (MCS0)	7.46	11.0	-3.54
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	7.00	11.0	-4.00
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	4.34	11.0	-6.66
Ш	5310	62	n (40MHz)	13.5/15 (MCS0)	1.64	11.0	-9.36
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-2.47	11.0	-13.47
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.28	11.0	-4.73
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	6.12	11.0	-4.88
0	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.08	11.0	-4.92
4 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	1.46	11.0	-9.54
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	3.27	11.0	-7.73
8	5710	142	n (40MHz)	13.5/15 (MCS0)	3.67	11.0	-7.33
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-3.28	11.0	-14.28
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	0.54	11.0	-10.46

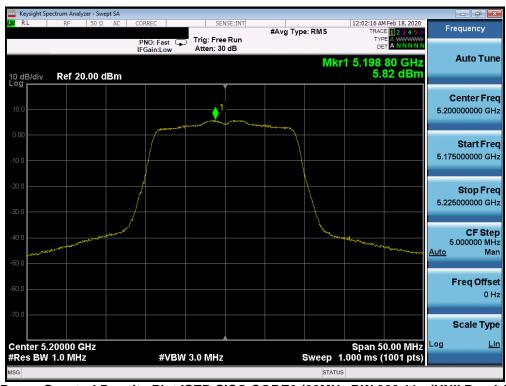

 Table 7-26. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO CORE0

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/MHz]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	5.81	2.10	7.91	10.0	-2.09
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	5.82	2.10	7.92	10.0	-2.08
l 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.82	2.10	7.92	10.0	-2.08
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	3.74	2.10	5.84	10.0	-4.16
_	5230	46	n (40MHz)	13.5/15 (MCS0)	5.50	2.10	7.60	10.0	-2.40
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-0.23	2.10	1.87	10.0	-8.13

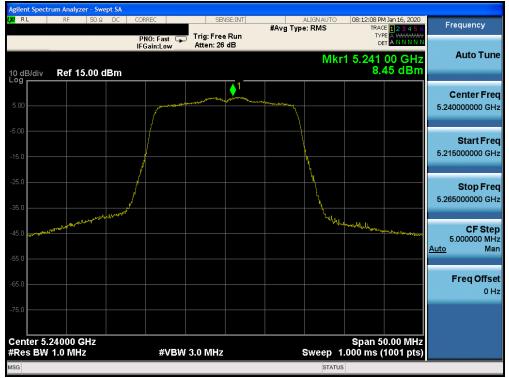

Table 7-27. Band 1 e.i.r.p. Conducted Power Spectral Density Measurements (ISED) SISO CORE0

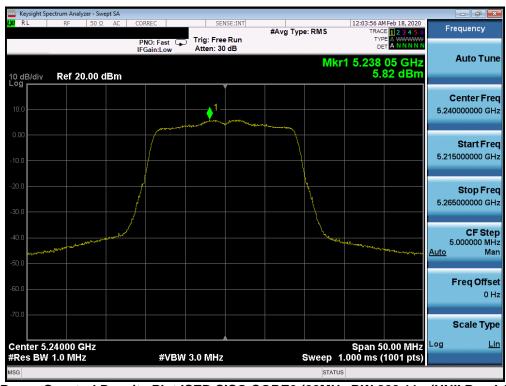
FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 59 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 58 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-53. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)


Plot 7-54. Power Spectral Density Plot ISED SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

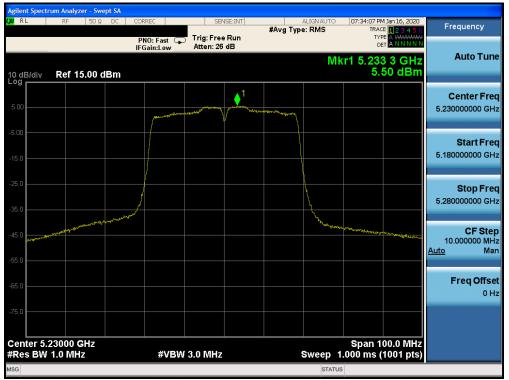
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 59 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-55. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)


Plot 7-56. Power Spectral Density Plot ISED SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 60 of 204
© 2020 PCTEST			V 9.0 02/01/2019

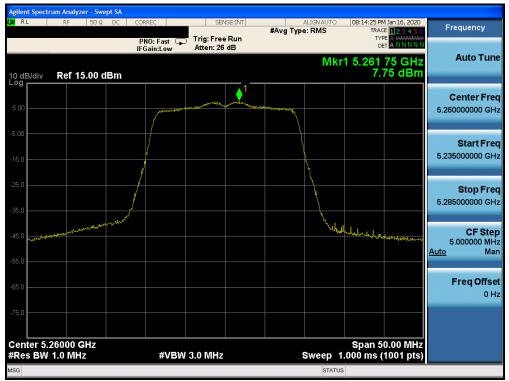
Plot 7-57. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)


Plot 7-58. Power Spectral Density Plot ISED SISO CORE0 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 61 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Agilent Spectrum Analyzer - Swept S					
XIRL RF 50Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	07:31:16 PM Jan 16, 2020 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 26 dB		TYPE A WWWWW DET A N N N N N	
10 dB/div Ref 15.00 dBn	n		Mk	r1 5.194 7 GHz 3.74 dBm	Auto Tune
5.00		1	and the second sec		Center Fre 5.190000000 GH
5.00		V			Start Fre 5.140000000 GH
25.0					Stop Fre 5.240000000 G⊦
45.0			- Lander	any and an any and any and any and any any and	CF Ste 10.000000 MH <u>Auto</u> Ma
65.0					Freq Offs 0 F
-75.0 Center 5.19000 GHz				Span 100.0 MHz	
Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 1	.000 ms (1001 pts)	
ISG			STATUS	5	

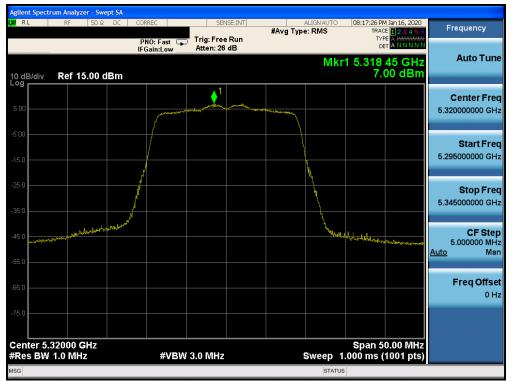
Plot 7-59. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-60. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 62 of 204
© 2020 PCTEST			V 9.0 02/01/2019

gilent Spectrum Analyzer -	DΩ DC COF	PEC	SEN	SE:INT		ALIGN AUTO	07:57:10 DM	Jan 16, 2020	
	р	NO: Fast 😱 Sain:Low		Run	#Avg Typ		TRAC	1 2 3 4 5 6 A WWWWWW A N N N N N	Frequency
10 dB/div Ref 15.0		Sam.Low	Haten: 20			Mk	r1 5.219 -0.2	2 GHz 23 dBm	Auto Tun
5.00				1-	And the second second				Center Fre 5.210000000 GH
.15.0		Marrie Marrie							Start Fre 5.110000000 G⊦
35.0									Stop Fre 5.310000000 G⊦
45.0	nature and and and and the					horan	ha Manglan ay sinala an ay	andersennange.	CF Ste 20.000000 MH <u>Auto</u> Ma
65.0									FreqOffs 0⊦
75.0 Center 5.2100 GHz Res BW 1.0 MHz		#\/B\M	3.0 MHz			Pwoon 1	Span 20 .000 ms (00.0 MHz	
		#4044	3.0 WHZ			Sweep 1		roo r pisj	

Plot 7-61. Power Spectral Density Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)


Plot 7-62. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 at 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 63 of 204
© 2020 PCTEST			V 9.0 02/01/2019

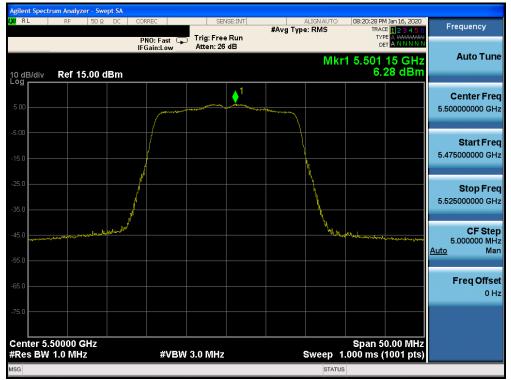
Plot 7-63. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

Plot 7-64. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 64 of 204
© 2020 PCTEST			V 9.0 02/01/2019

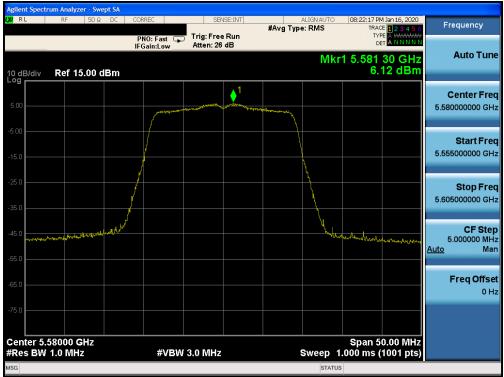
RL	Analyzer - Swept SA RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	07:36:48 PM Jan 16, 2020	
		PNO: Fast G		#Avg Type: RMS	TRACE 123456 TYPE A WWWW DET A N N N N N	Frequency
0 dB/div	Ref 15.00 dBm	II Guille Sw		M	(r1 5.275 0 GHz 4.34 dBm	Auto Tun
5.00		manghabase	and the second s	alter and a second		Center Fre 5.270000000 GH
15.0						Start Fre 5.220000000 GF
25.0 35.0 						Stop Fre 5.320000000 GH
15.0	and real which also all which	Serve de la constance de la co			White provide an another should	CF Ste 10.000000 Mi <u>Auto</u> Ma
65.0						Freq Offs 0 F
75.0 Center 5.27	000 GHz				Span 100.0 MHz	
Res BW 1.		#VBW	3.0 MHz	Sweep 1	.000 ms (1001 pts)	

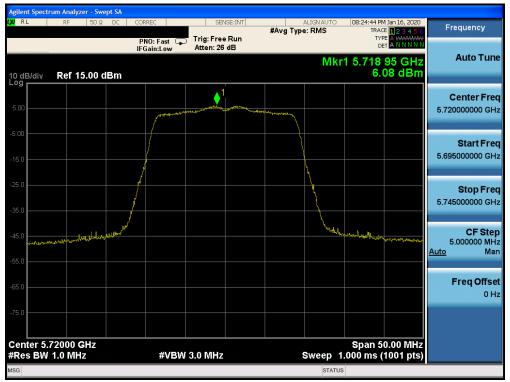
Plot 7-65. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)


Plot 7-66. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

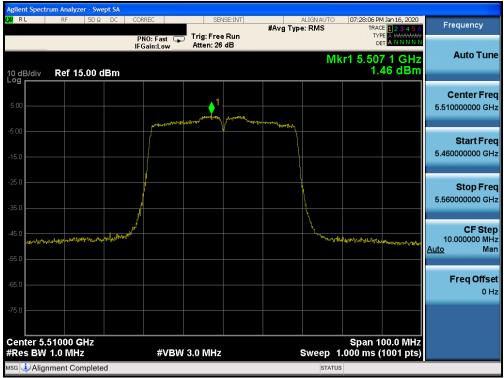
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage CE of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 65 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Agilent Spectrum Analyzer - Swept XI RL RF 50Ω	DC CORREC	SENSE:INT	ALIGN AUTO	07:59:52 PM Jan 16, 2020	_
	PNO: Fast 🕞 IFGain:Low	Trig: Free Run Atten: 26 dB	#Avg Type: RMS	TRACE 123456 TYPE A WWWWW DET A N N N N N	Frequency
10 dB/div Ref 15.00 dB	m		Mł	r1 5.298 2 GHz -2.47 dBm	Auto Tun
5.00		1			Center Fre 5.290000000 GH
5.00	for de state of the state of th	and the second			Start Fre 5.190000000 GH
35.0					Stop Fre 5.390000000 GH
45.0					CF St e 20.000000 M⊦ <u>Auto</u> Ma
65.0					Freq Offso 0 ⊦
75.0				Span 200.0 MHz	
Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 1	.000 ms (1001 pts)	


Plot 7-67. Power Spectral Density Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

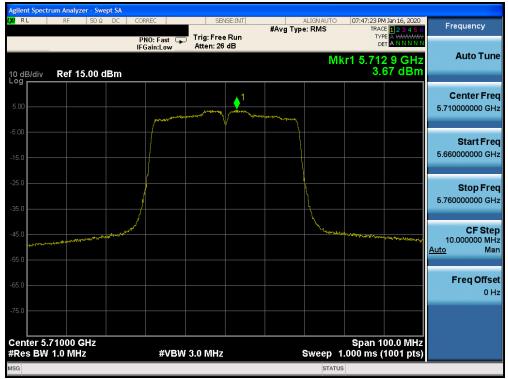

Plot 7-68. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

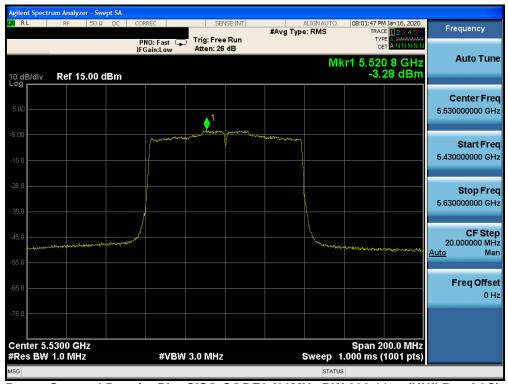
FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device		
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-69. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

Plot 7-70. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device		
© 2020 PCTEST			V 9.0 02/01/2019	


Plot 7-71. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)


Plot 7-72. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device		
© 2020 PCTEST V 9.0 02/01/2019				

Plot 7-73. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-74. Power Spectral Density Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

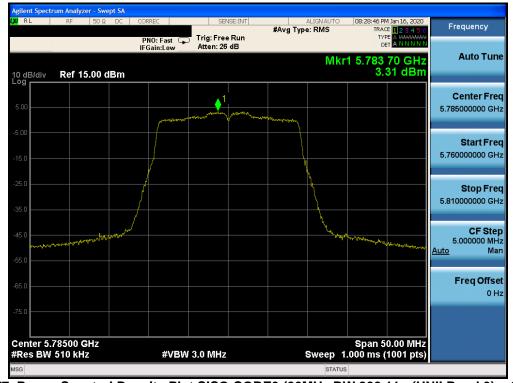
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device		
© 2020 PCTEST V 9.0 02/01/2019				

Plot 7-75. Power Spectral Density Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

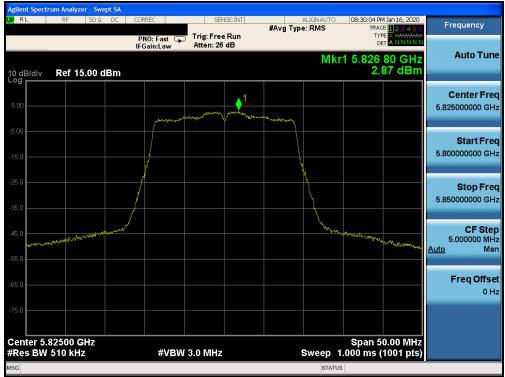
FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 70 of 204
© 2020 PCTEST	•		V 9.0 02/01/2019

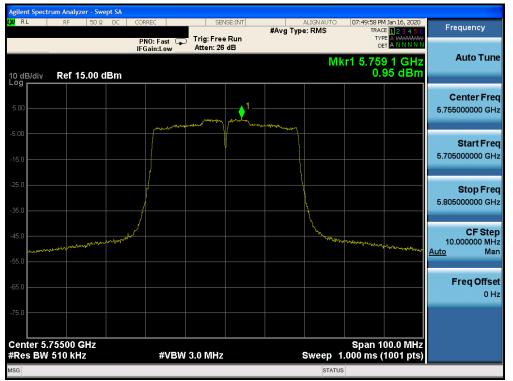


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.75	30.0	-26.25
с С	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.31	30.0	-26.69
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	2.87	30.0	-27.13
Band	5755	151	n (40MHz)	13.5/15 (MCS0)	0.95	30.0	-29.05
_	5795	159	n (40MHz)	13.5/15 (MCS0)	0.57	30.0	-29.43
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-2.62	30.0	-32.62

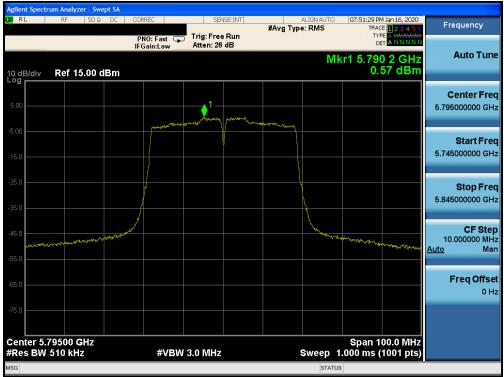

Table 7-28. Band 3 Conducted Power Spectral Density Measurements SISO CORE0

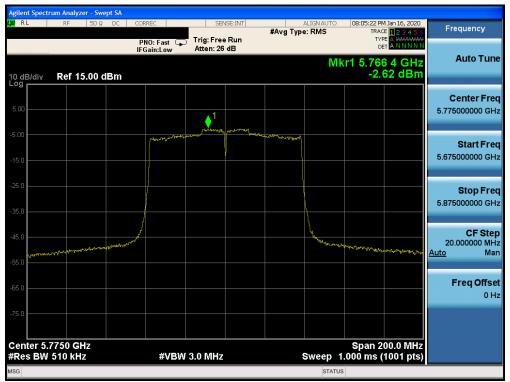
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 74 af 004	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 71 of 204	
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-76. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-77. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 72 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 72 of 204	
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-78. Power Spectral Density Plot SISO CORE0 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-79. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 73 of 204
© 2020 PCTEST			V 9.0 02/01/2019

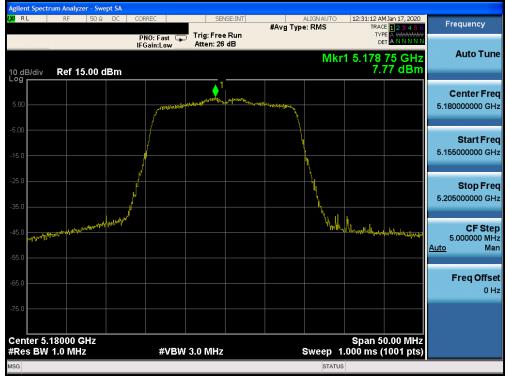
Plot 7-80. Power Spectral Density Plot SISO CORE0 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-81. Power Spectral Density Plot SISO CORE0 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 74 of 204
0 2020 PCTEST V 9.0 02/01/2019			

SISO CORE-1 Power Spectral Density Measurements

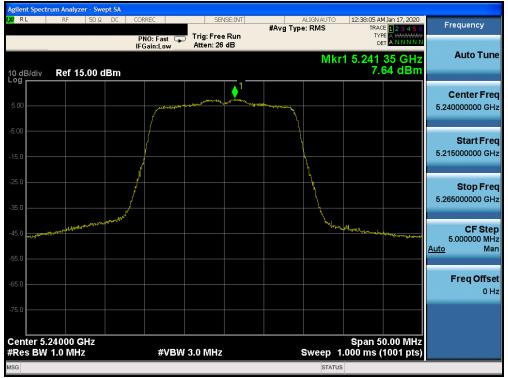
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/MHz]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	7.77	11.0	-3.23
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	7.89	11.0	-3.11
l 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.64	11.0	-3.36
Band 1	5190	38	n (40MHz)	13.5/15 (MCS0)	3.24	11.0	-7.76
_	5230	46	n (40MHz)	13.5/15 (MCS0)	4.77	11.0	-6.23
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.38	11.0	-12.38
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	7.27	11.0	-3.73
4	5280	56	n (20MHz)	6.5/7.2 (MCS0)	7.18	11.0	-3.82
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	6.44	11.0	-4.56
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	3.95	11.0	-7.05
Ш	5310	62	n (40MHz)	13.5/15 (MCS0)	1.59	11.0	-9.41
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-2.75	11.0	-13.75
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.40	11.0	-4.60
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	6.69	11.0	-4.31
0	5720	144	n (20MHz)	6.5/7.2 (MCS0)	7.53	11.0	-3.47
4 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	1.00	11.0	-10.00
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	3.87	11.0	-7.13
Ξ	5710	142	n (40MHz)	13.5/15 (MCS0)	4.71	11.0	-6.30
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-4.14	11.0	-15.14
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	1.18	11.0	-9.82


Table 7-29. Conducted Power Spectral Density Measurements SISO CORE1

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/MHz]	Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	7.77	-0.20	7.57	10.0	-2.43
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	7.89	-0.20	7.69	10.0	-2.31
nd 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.64	-0.20	7.44	10.0	-2.56
Bar	5190	38	n (40MHz)	13.5/15 (MCS0)	3.24	-0.20	3.04	10.0	-6.96
_	5230	46	n (40MHz)	13.5/15 (MCS0)	4.77	-0.20	4.57	10.0	-5.43
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.38	-0.20	-1.58	10.0	-11.58

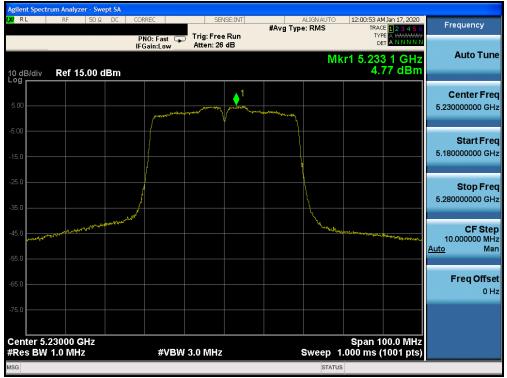

Table 7-30. Band 1 e.i.r.p. Conducted Power Spectral Density Measurements (ISED) SISO CORE1

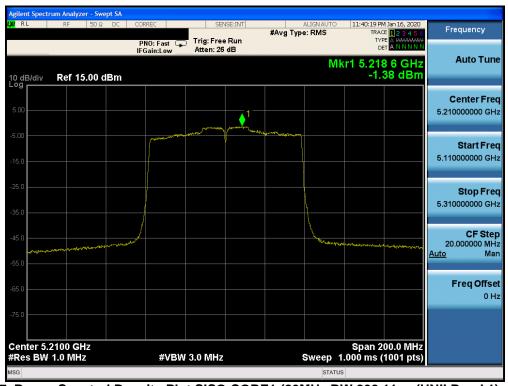
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 75 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 75 of 204
0 2020 PCTEST V 9.0 02/01/2019			


Plot 7-82. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

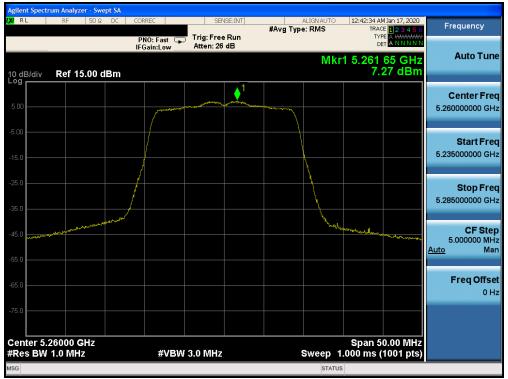

Plot 7-83. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

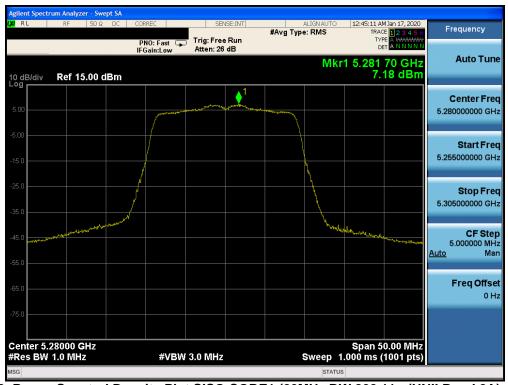
FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 76 at 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 76 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-84. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

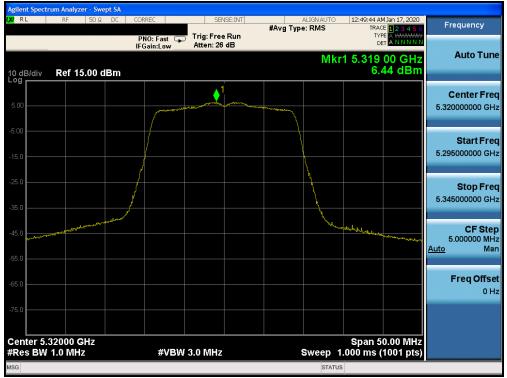

Plot 7-85. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

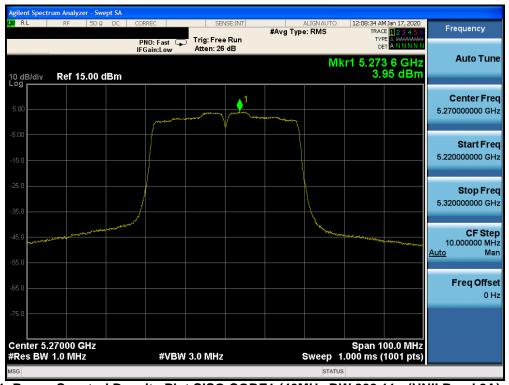
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 77 of 204
0 2020 PCTEST V 9.0 02/01/2019			


Plot 7-86. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

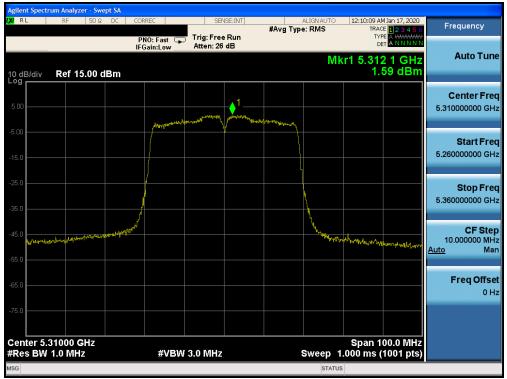

Plot 7-87. Power Spectral Density Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

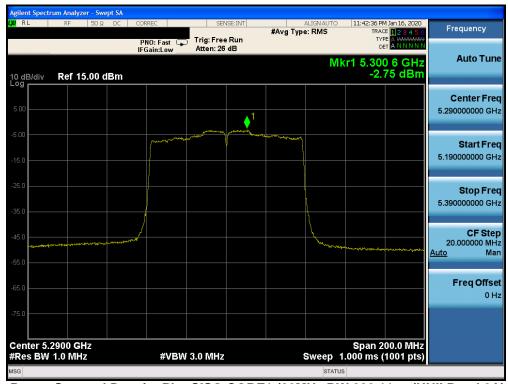
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 79 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 78 of 204
2020 PCTEST V 9.0 02/01/2019			


Plot 7-88. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

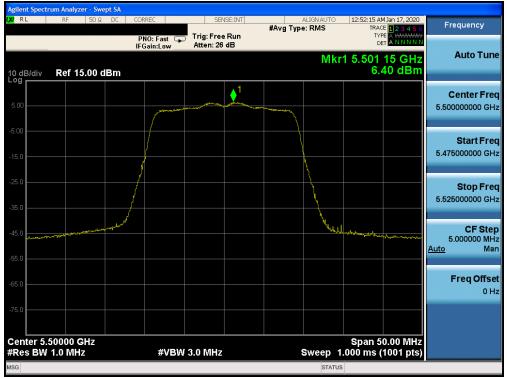

Plot 7-89. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

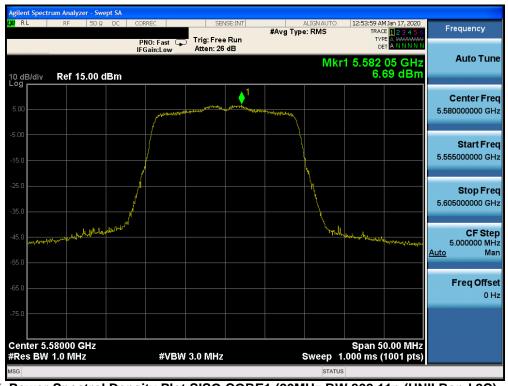
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 70 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 79 of 204
> 2020 PCTEST V 9.0 02/01/2019			


Plot 7-90. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

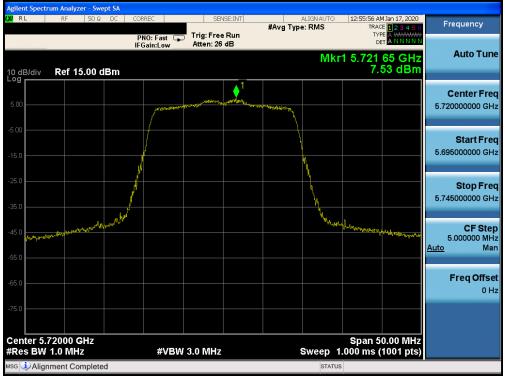

Plot 7-91. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

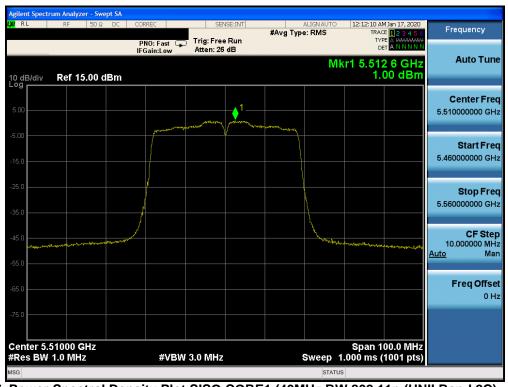
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 80 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 80 of 204
2020 PCTEST V 9.0 02/01/2019			


Plot 7-92. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

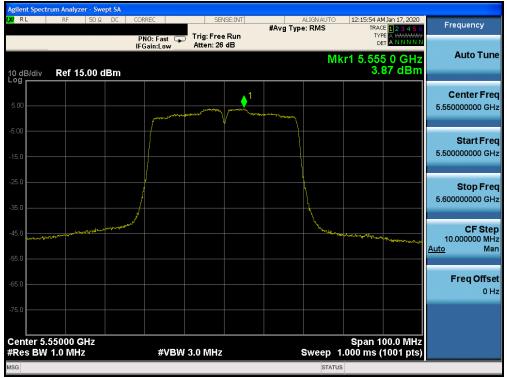

Plot 7-93. Power Spectral Density Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

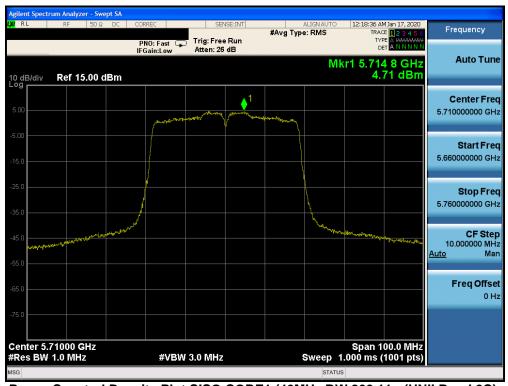
FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 91 of 201
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 81 of 204
2020 PCTEST V 9.0 02/01/2019			


Plot 7-94. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)


Plot 7-95. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 116)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 204	
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 82 of 204	
© 2020 PCTEST				


Plot 7-96. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)


Plot 7-97. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 82 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 83 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-98. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 110)

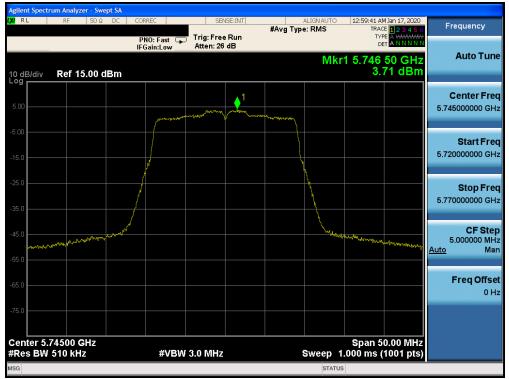
Plot 7-99. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

FCC ID: BCGA2228	<u><u><u></u><u>PCTEST</u></u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 84 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 84 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-100. Power Spectral Density Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

Plot 7-101. Power Spectral Density Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: BCGA2228	<u><u><u></u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 85 of 204
© 2020 PCTEST			V 9.0 02/01/2019

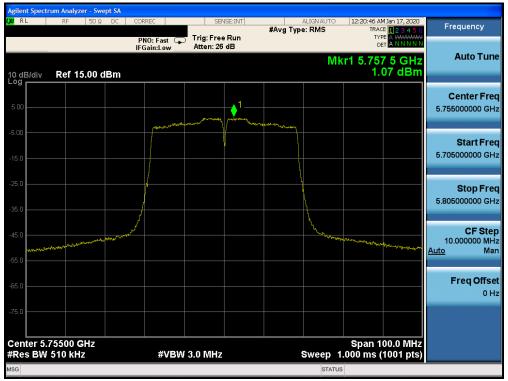


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm/500kHz]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.71	30.0	-26.29
с С	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.63	30.0	-26.37
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	3.26	30.0	-26.74
Band	5755	151	n (40MHz)	13.5/15 (MCS0)	1.07	30.0	-28.93
	5795	159	n (40MHz)	13.5/15 (MCS0)	0.42	30.0	-29.58
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-2.49	30.0	-32.49

Table 7-31. Band 3 Conducted Power Spectral Density Measurements SISO CORE1

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 86 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 86 of 204
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-102. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-103. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 87 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-104. Power Spectral Density Plot SISO CORE1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-105. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: BCGA2228	PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 88 of 204
© 2020 PCTEST			V 9.0 02/01/2019

Plot 7-106. Power Spectral Density Plot SISO CORE1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-107. Power Spectral Density Plot SISO CORE1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 89 of 204
© 2020 PCTEST			V 9.0 02/01/2019

_	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Core 0 Power Density [dBm/MHz]	Core 1 Power Density [dBm/MHz]	Summed Power Density [dBm/MHz]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	6.34	7.43	9.93	11.0	-1.07
d 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	7.77	7.89	10.84	11.0	-0.16
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	7.54	7.99	10.78	11.0	-0.22
Band	5190	38	n (40MHz)	13.5/15 (MCS0)	2.02	2.85	5.47	11.0	-5.53
_	5230	46	n (40MHz)	13.5/15 (MCS0)	5.49	5.64	8.58	11.0	-2.42
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.22	-0.60	2.11	11.0	-8.89
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	7.69	7.72	10.72	11.0	-0.28
-	5280	56	n (20MHz)	6.5/7.2 (MCS0)	7.68	7.33	10.52	11.0	-0.48
d 2A	5320	64	n (20MHz)	6.5/7.2 (MCS0)	4.95	5.43	8.21	11.0	-2.79
Band	5270	54	n (40MHz)	13.5/15 (MCS0)	3.77	4.87	7.37	11.0	-3.63
•	5310	62	n (40MHz)	13.5/15 (MCS0)	-1.36	1.26	3.15	11.0	-7.85
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-4.21	-3.03	-0.57	11.0	-11.57
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	6.46	6.31	9.40	11.0	-1.60
	5580	116	n (20MHz)	6.5/7.2 (MCS0)	6.00	5.34	8.69	11.0	-2.31
0	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.38	5.56	9.00	11.0	-2.00
4 2C	5510	102	n (40MHz)	13.5/15 (MCS0)	0.58	0.26	3.43	11.0	-7.57
Band	5550	110	n (40MHz)	13.5/15 (MCS0)	3.01	4.63	6.91	11.0	-4.09
-	5710	142	n (40MHz)	13.5/15 (MCS0)	3.17	3.03	6.11	11.0	-4.89
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-3.46	-2.39	0.12	11.0	-10.88
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	0.07	0.37	3.23	11.0	-7.77

Summed CDD Power Spectral Density Measurements

Table 7-32. Bands 1, 2A, 2C CDD Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Core 0 Power Density [dBm/MHz]	Core 1 Power Density [dBm/MHz]	Summed Power Density [dBm/MHz]	Directional Antenna Gain [dBi]	e.i.r.p. Power Density [dBm/MHz]	ISED Max e.i.r.p. Power Density [dBm/MHz]	Margin [dB]
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	2.48	2.58	5.54	4.04	9.58	10.0	-0.42
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	2.89	2.42	5.67	4.04	9.71	10.0	-0.29
d 1	5240	48	n (20MHz)	6.5/7.2 (MCS0)	2.90	2.45	5.69	4.04	9.73	10.0	-0.27
Bar	5190	38	n (40MHz)	13.5/15 (MCS0)	2.02	2.85	5.47	4.04	9.50	10.0	-0.50
	5230	46	n (40MHz)	13.5/15 (MCS0)	2.76	2.52	5.65	4.04	9.69	10.0	-0.31
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-1.22	-0.60	2.11	4.04	6.15	10.0	-3.85

Table 7-33. Band 1 CDD e.i.r.p. Conducted Power Spectral Density Measurements (ISED)

FCC ID: BCGA2228	<u><u>PCTEST</u></u>	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 00 of 204
1C1912170050-08-R1.BCG	12/10/2019 - 02/26/2020	Tablet Device	Page 90 of 204
© 2020 PCTEST			V 9.0 02/01/2019