
Page 641 of 1393

Page 642 of 1393

Page 643 of 1393

8.62. 802.11ac VHT40 2Tx (CHAIN 1 + CHAIN 2) CDD STRADDLE CHANNEL 142 RESULTS (FCC)

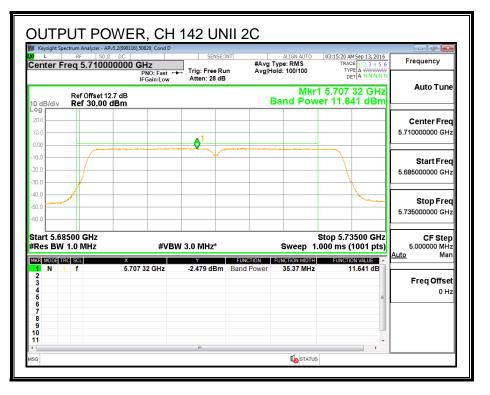
8.62.1. OUTPUT POWER AND PSD

UNII-2C BAND

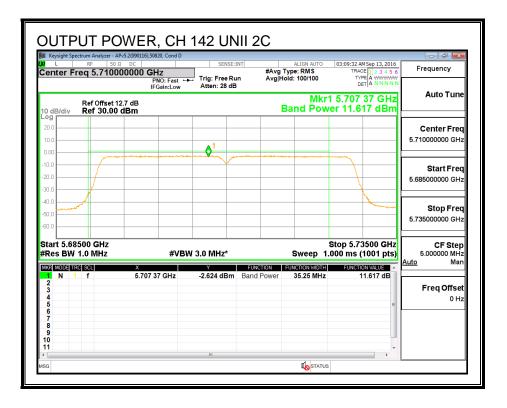
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	35.25	6.44	9.38	23.56	7.62

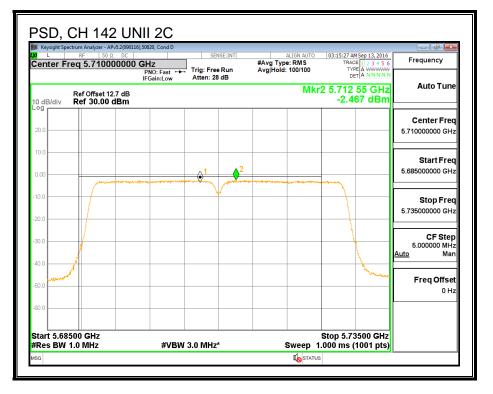
Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--

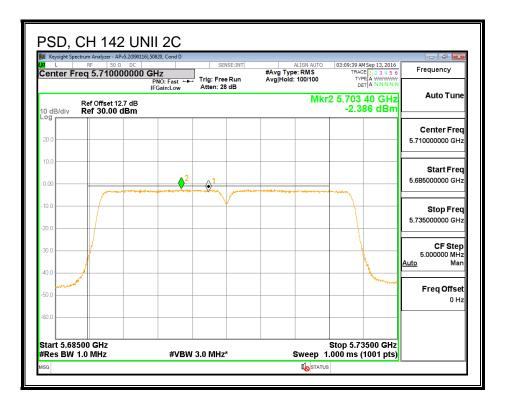

Output Power Results

Channel	Frequency	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.64	11.62	14.64	23.56	-8.92


PSD Results

Channel	Frequency	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.47	-2.39	0.58	7.62	-7.04


OUTPUT POWER, CHAIN 1


OUTPUT POWER, CHAIN 2

Page 645 of 1393

PSD, CHAIN 2

Page 646 of 1393

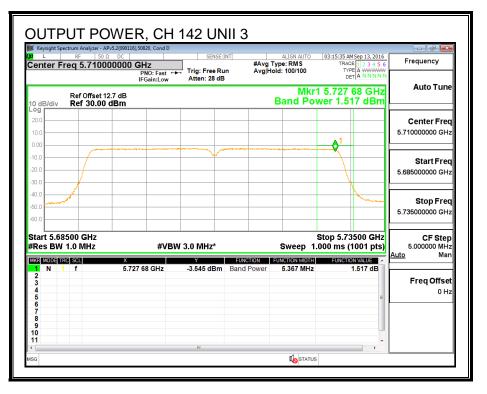
UNII-3 BAND

Antenna Gain and Limit

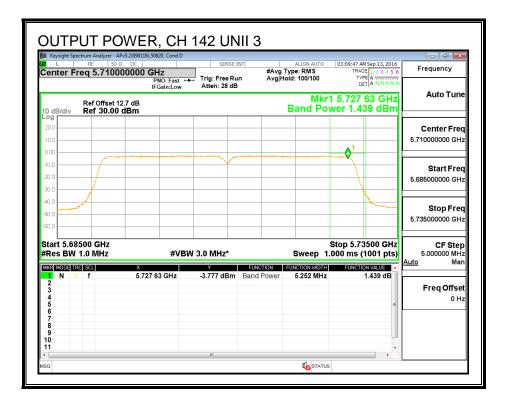
Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	5.25	6.44	9.38	29.56	26.62

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
	0.00	

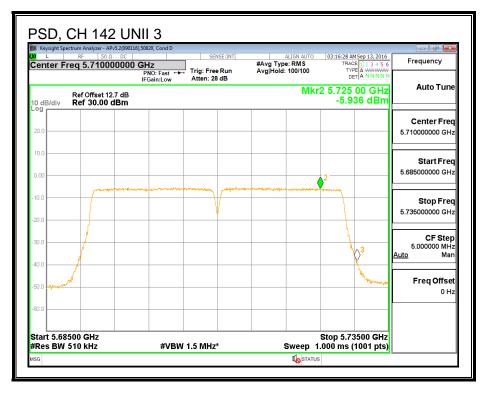
Output Power Results

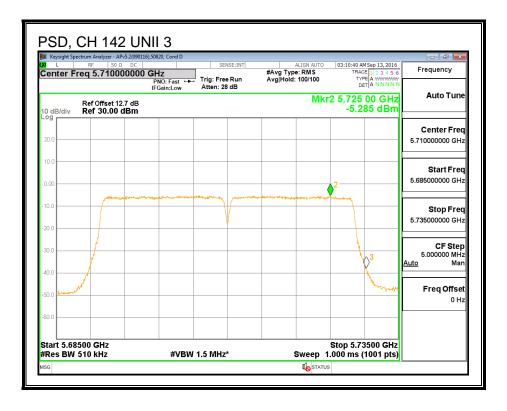

Channel	Frequency	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.52	1.44	4.49	29.56	-25.07

PSD Results


Channel	Frequency	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-5.94	-5.29	-2.59	26.62	-29.21

Page 647 of 1393


OUTPUT POWER, CHAIN 1


OUTPUT POWER, CHAIN 2

Page 648 of 1393

PSD, CHAIN 2

Page 649 of 1393

8.63. 802.11ac VHT40 2Tx (CHAIN 1 + CHAIN 2) CDD STRADDLE CHANNEL 142 RESULTS (IC)

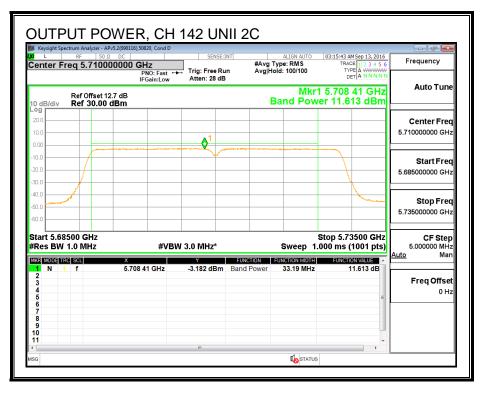
8.63.1. OUTPUT POWER AND PSD

UNII-2C BAND

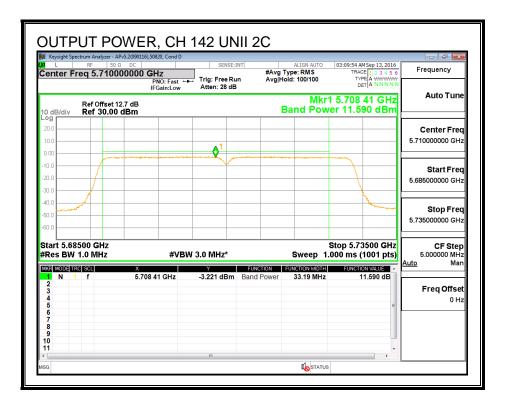
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	33.190	6.44	9.38	23.56	7.62

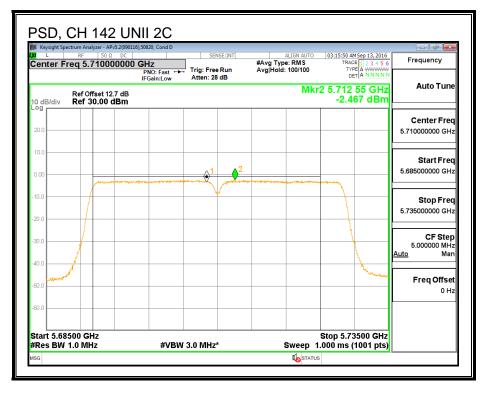
Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--

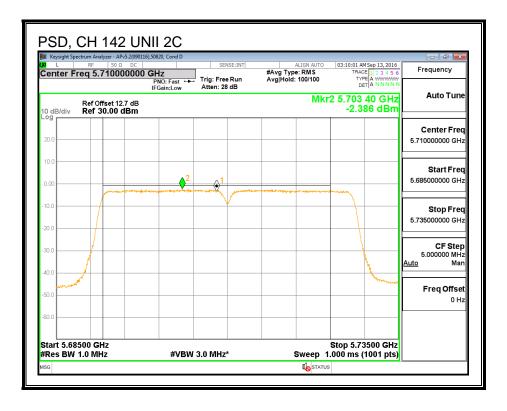

Output Power Results

Channel	Frequency	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.61	11.59	14.61	23.56	-8.95


PSD Results

Channel	Frequency	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.47	-2.39	0.58	7.62	-7.04


OUTPUT POWER, CHAIN 1


OUTPUT POWER, CHAIN 2

Page 651 of 1393

PSD, CHAIN 2

Page 652 of 1393

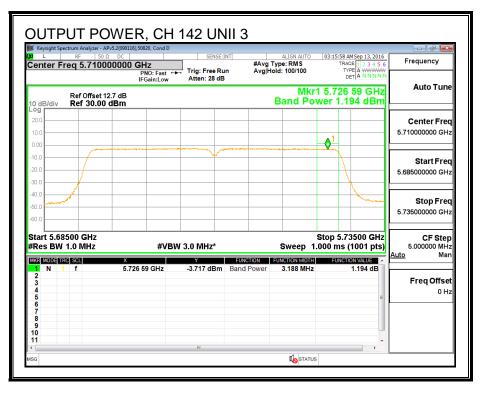
UNII-3 BAND

Antenna Gain and Limit

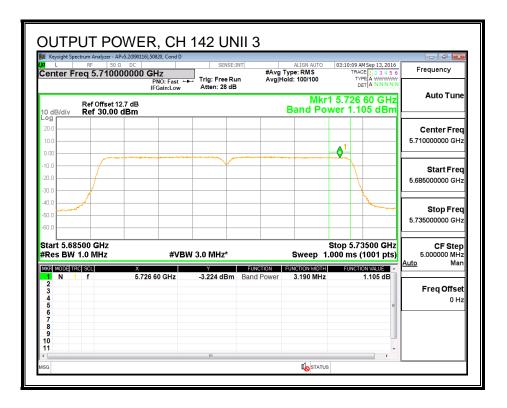
Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	3.188	6.44	9.38	29.56	26.62

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
Duty Cycle CF (dB)	0.00	Included in Calculations of Corr d Power & PS

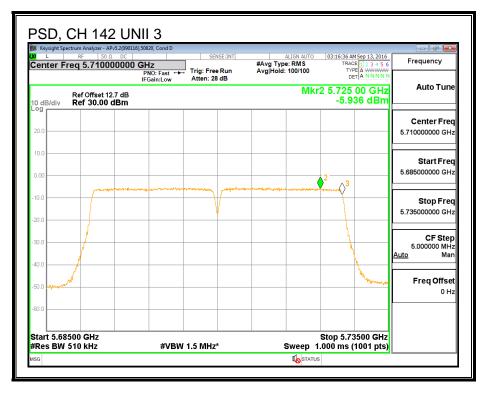
Output Power Results

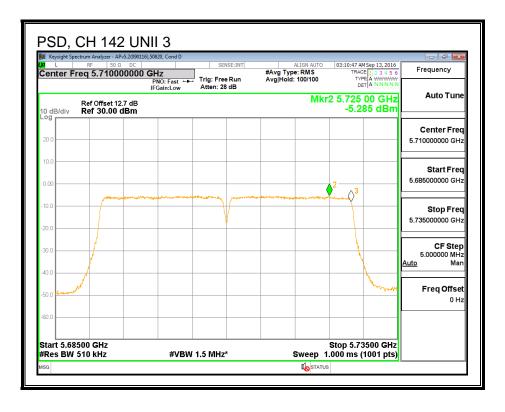

Channel	Frequency	Chain 1	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.19	1.11	4.16	29.56	-25.40

PSD Results


Channel	Frequency	Chain 1	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-5.94	-5.29	-2.59	26.62	-29.21

Page 653 of 1393


OUTPUT POWER, CHAIN 1


OUTPUT POWER, CHAIN 2

Page 654 of 1393

PSD, CHAIN 2

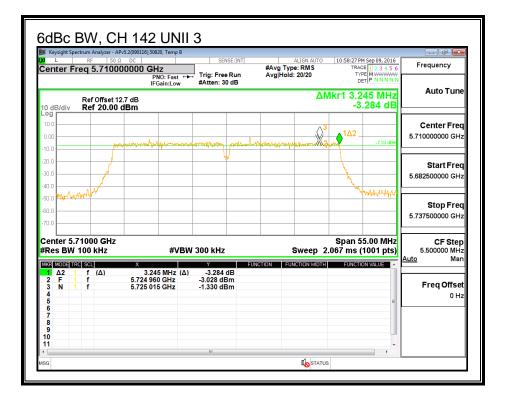
Page 655 of 1393

8.63.2. 6 dB BBANDWIDTH

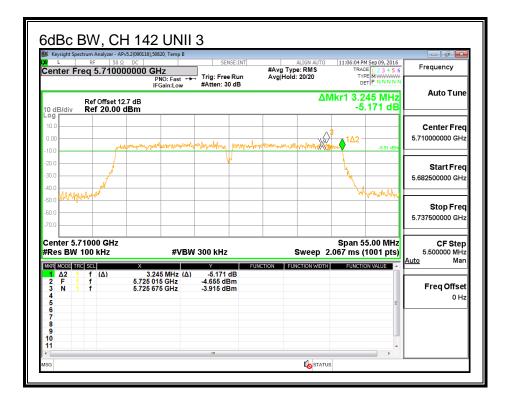
LIMITS

FCC §15.407 (e)

IC RSS-247 (6.2.4) (1)


The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>


Channel	Frequency	6 dB BW	6 dB BW
		Chain 1	Chain 2
	(MHz)	(MHz)	(MHz)
142	5710	3.245	3.245

Page 656 of 1393

CHAIN 1

CHAIN 2

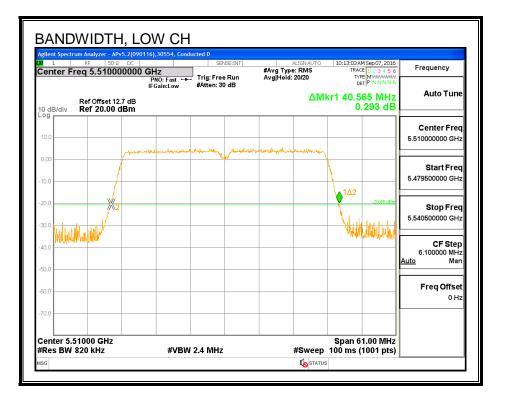
Page 657 of 1393

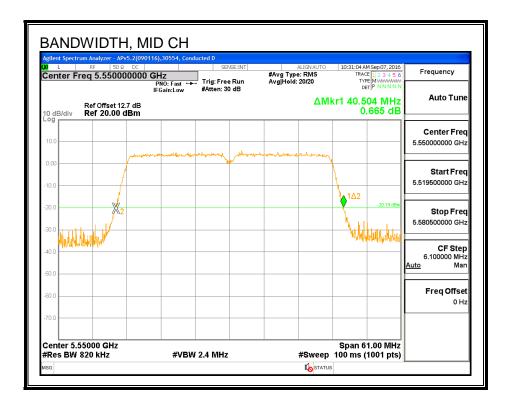
8.64. 802.11n HT40 2Tx (CHAIN 0 + CHAIN 1) STBC MODE IN THE 5.6 GHz BAND

8.64.1. **26 dB BANDWIDTH**

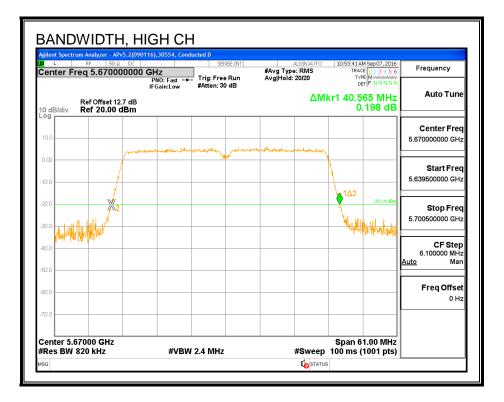
<u>LIMITS</u>

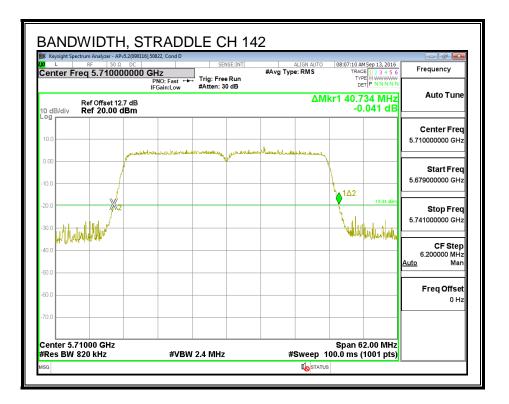
None; for reporting purposes only.

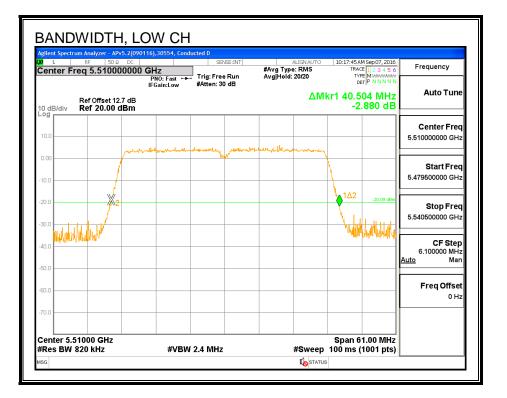

RESULTS

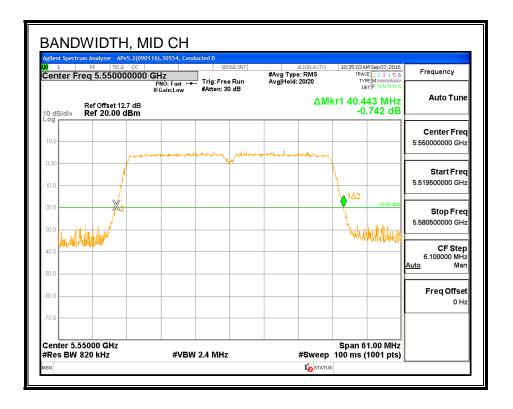

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	40.565	40.504
Mid	5550	40.504	40.443
High	5670	40.565	40.565
142	5710	40.734	40.796

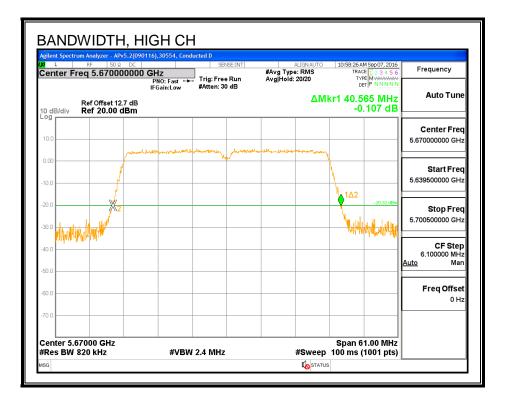
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

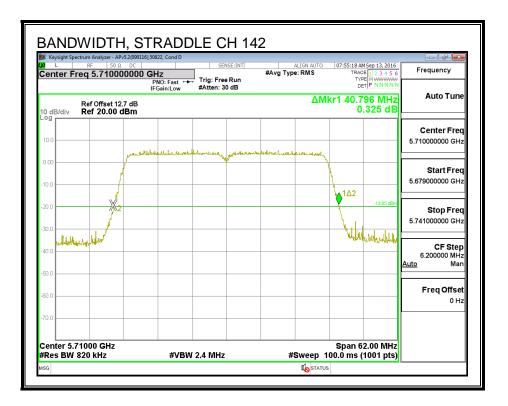

Page 658 of 1393


26 dB BANDWIDTH, CHAIN 0


Page 659 of 1393




Page 660 of 1393

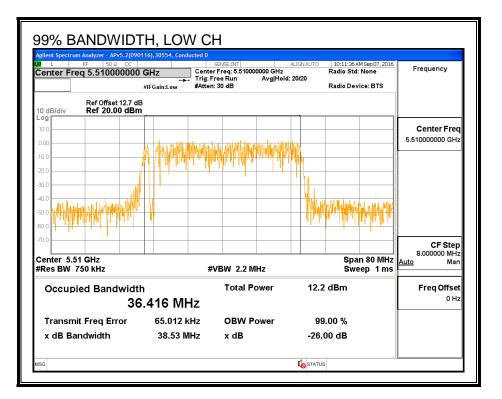

26 dB BANDWIDTH, CHAIN 1

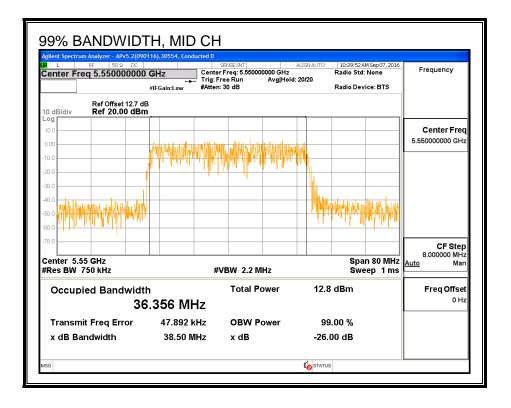
Page 661 of 1393

Page 662 of 1393

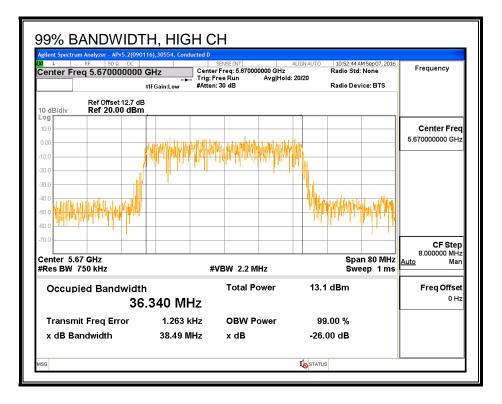
8.64.2. 99% BANDWIDTH

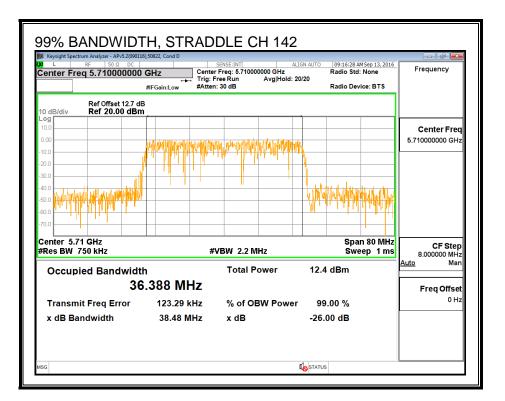
<u>LIMITS</u>

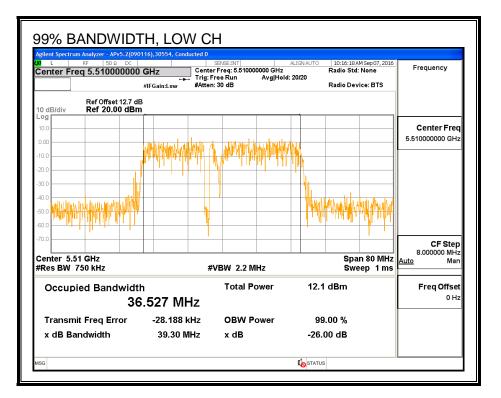

None; for reporting purposes only.

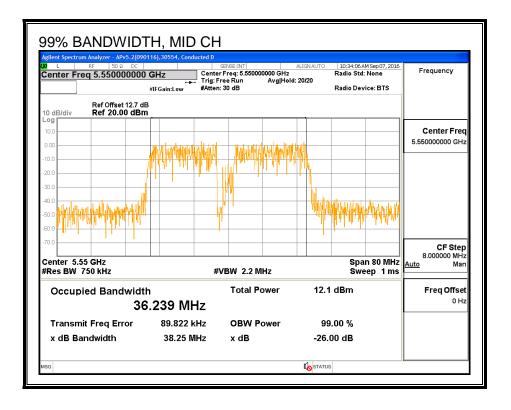

RESULTS

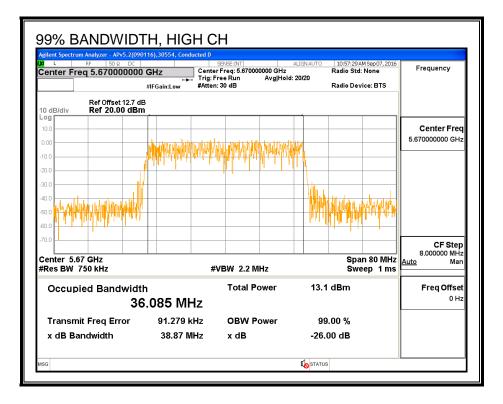
Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	36.416	36.527
Mid	5550	36.356	36.239
High	5670	36.340	36.085
142	5710	36.388	36.389

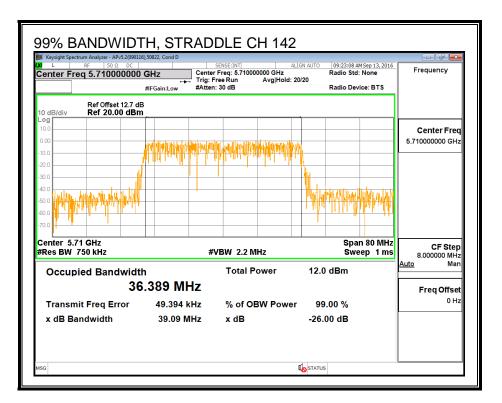

Page 663 of 1393


99% BANDWIDTH, CHAIN 0


Page 664 of 1393




Page 665 of 1393


99% BANDWIDTH, CHAIN 1

Page 666 of 1393

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 667 of 1393

8.64.3. **AVERAGE POWER**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

	=		
ID:	43573	Date:	9/7/16

Channel	Frequency	Chain 0 Chain 1		Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5510	11.84	11.92	14.89
Mid	5590	12.17	12.20	15.20
High	5670	12.19	12.18	15.20
142	5710	12.19	12.24	15.23

Page 668 of 1393

8.64.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1– MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-247 (6.2.3) (1)

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power is measured using PXA spectrum analyzer, duty cycle correction factor is required.

Page 669 of 1393

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains	
Antenna	Antenna	Directional	
Gain	Gain	Gain	
(dBi)	(dBi)	(dBi)	
4.90	7.40	6.33	

Page 670 of 1393

RESULTS

ID: 43573	Date:	9/7/16
------------------	-------	--------

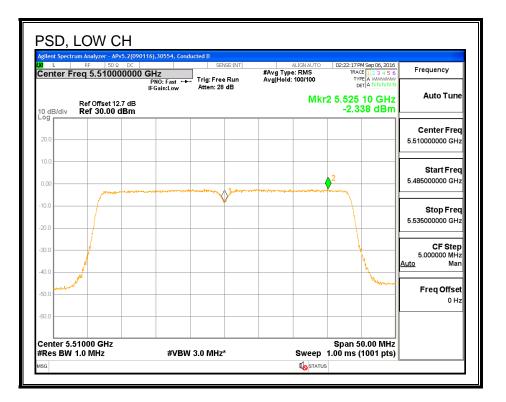
Bandwidth, Antenna Gain and Limits

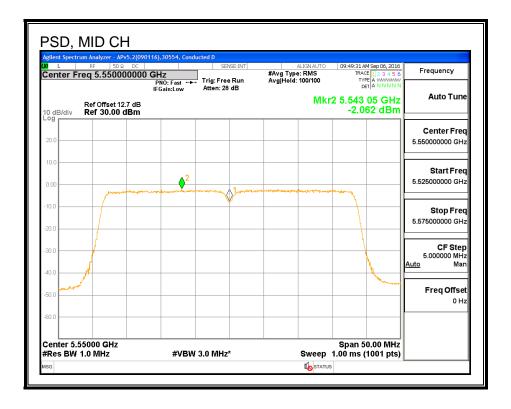
0.00

Channel	Frequency	Min	Min	Directional	Directional	Power	PSD
		26 dB	99%	Gain	Gain	Limit	Limit
		BW	BW	for Power	for PSD		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5510	40.50	36.416	6.33	6.33	24.00	10.67
Mid	5550	40.44	36.239	6.33	6.33	24.00	10.67
High	5670	40.57	36.085	6.33	6.33	24.00	10.67

Duty Cycle CF (dB)

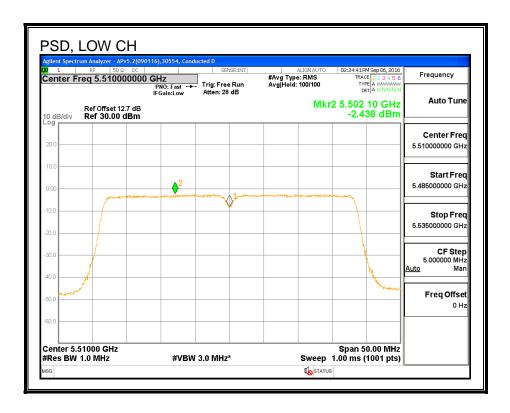
Included in Calculations of Corr'd PSD

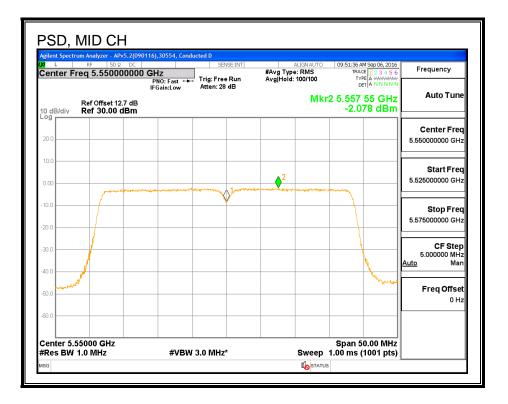

Output Power Results

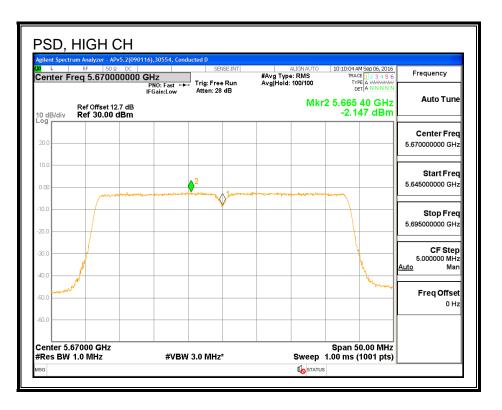

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.84	11.92	14.89	24.00	-9.11
Mid	5550	12.17	12.20	15.20	24.00	-8.80
High	5670	12.19	12.18	15.20	24.00	-8.80

PSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	-2.34	-2.44	0.62	10.67	-10.05
Mid	5550	-2.06	-2.08	0.94	10.67	-9.73
High	5670	-2.29	-2.15	0.79	10.67	-9.88


Page 671 of 1393




Page 672 of 1393

Page 673 of 1393

Page 674 of 1393

8.65. 802.11ac VHT40 2Tx (CHAIN 0 + CHAIN 1) STBC STRADDLE CHANNEL 142 RESULTS (FCC)

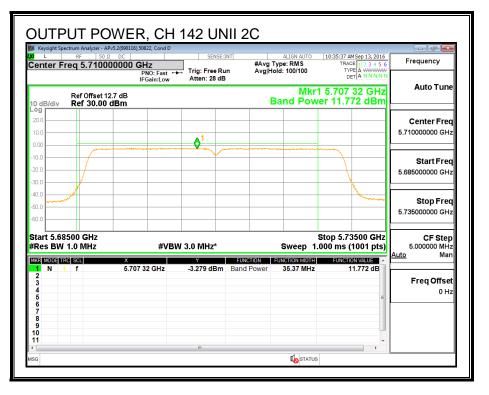
8.65.1. OUTPUT POWER AND PSD

UNII-2C BAND

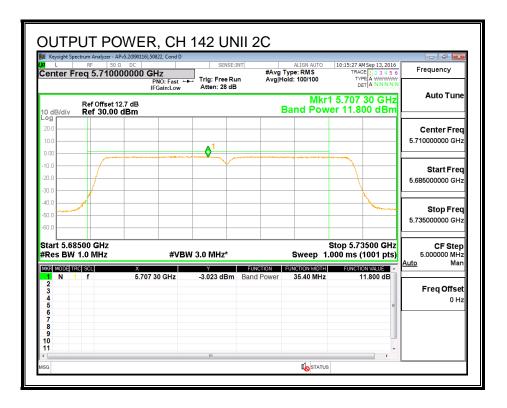
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	35.37	6.33	6.33	23.67	10.67

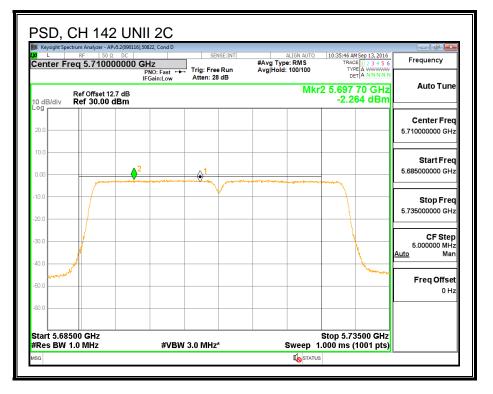
Output Power Results

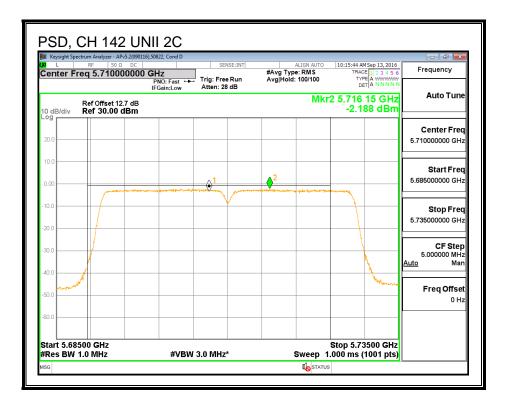

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.77	11.80	14.80	23.67	-8.87

PSD Results


Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.26	-2.19	0.78	10.67	-9.89

Page 675 of 1393


OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 1

Page 676 of 1393

PSD, CHAIN 1

Page 677 of 1393

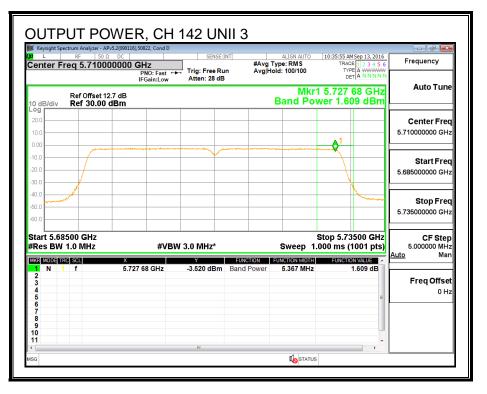
UNII-3 BAND

Antenna Gain and Limit

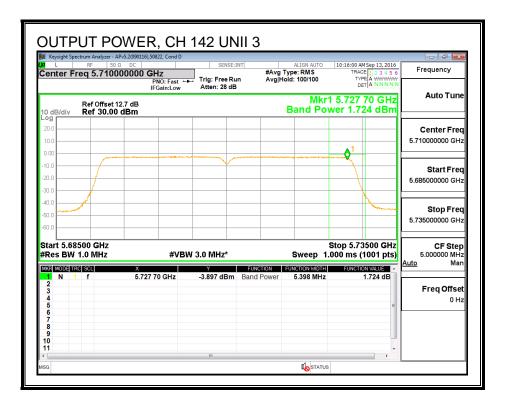
Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	5.37	6.33	6.33	29.67	29.67

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
	0.00	

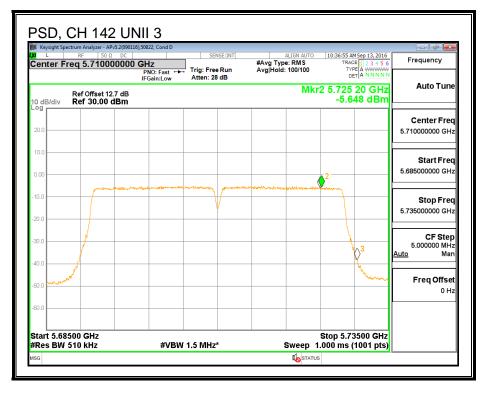
Output Power Results

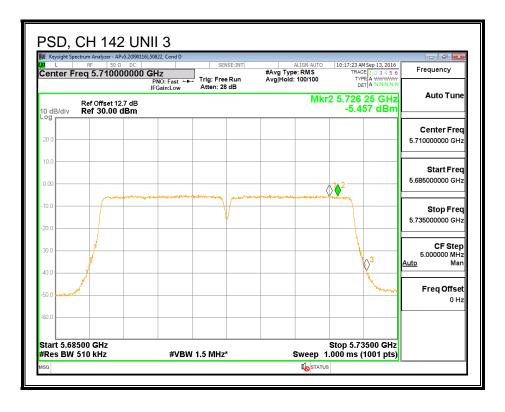

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.61	1.72	4.68	29.67	-24.99

PSD Results


Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-5.65	-5.46	-2.54	29.67	-32.21

Page 678 of 1393


OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 1

Page 679 of 1393

PSD, CHAIN 1

Page 680 of 1393

8.66. 802.11ac VHT40 2Tx (CHAIN 0 + CHAIN 1) STBC STRADDLE CHANNEL 142 RESULTS (IC)

8.66.1. OUTPUT POWER AND PSD

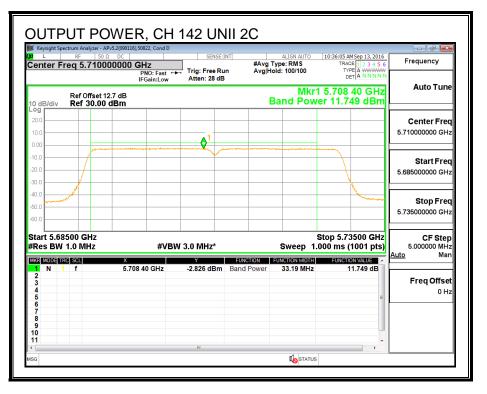
UNII-2C BAND

Bandwidth, Antenna Gain, and Limits

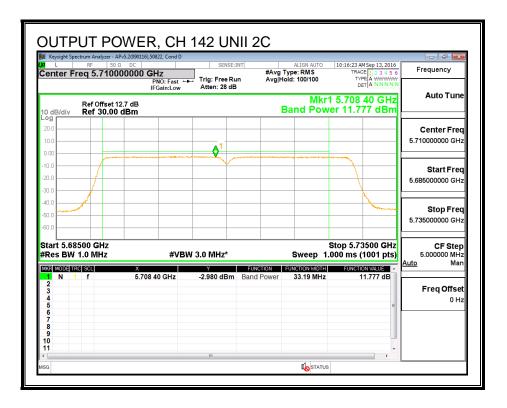
Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	33.190	6.33	6.33	23.67	10.67

Duty Cycle CF (dB) 0.00	Included in Calculations of Corr'd Power & PSD
-------------------------	--

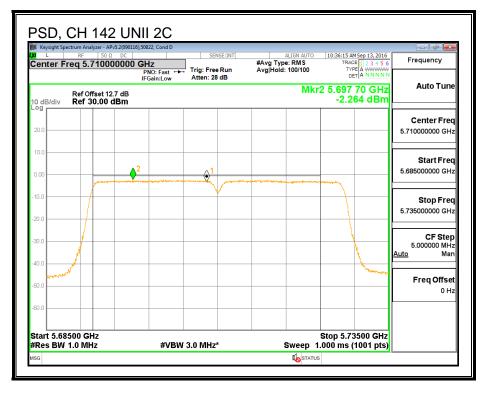
Output Power Results

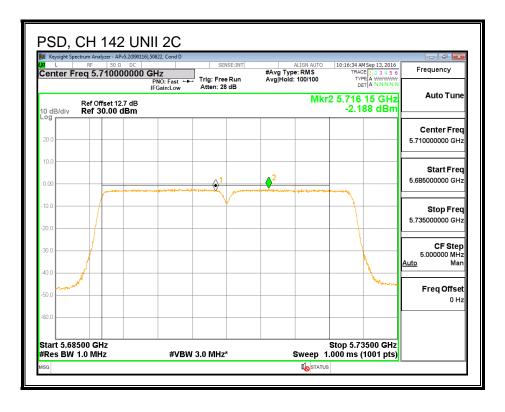

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.75	11.78	14.77	23.67	-8.90

PSD Results


Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.26	-2.19	0.78	10.67	-9.89

Page 681 of 1393


OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 1

Page 682 of 1393

PSD, CHAIN 1

Page 683 of 1393

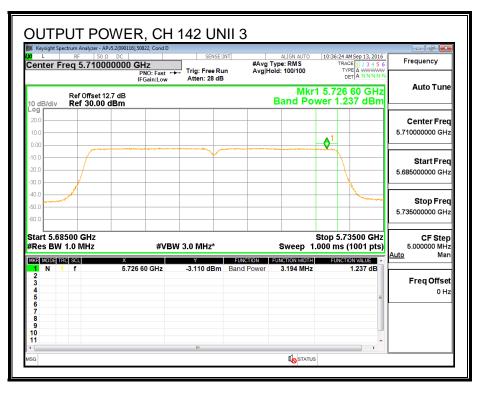
UNII-3 BAND

Antenna Gain and Limit

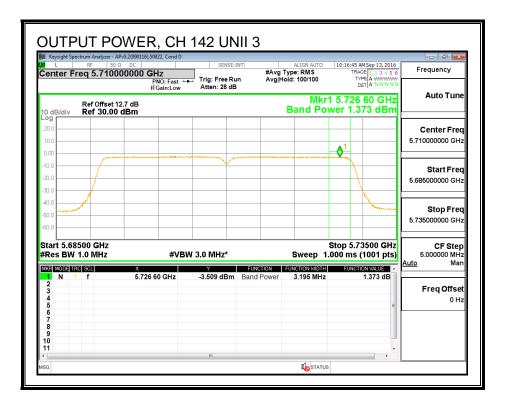
Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	3.194	6.33	6.33	29.67	29.67

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
	0.00	included in calculations of contait ower at 5D

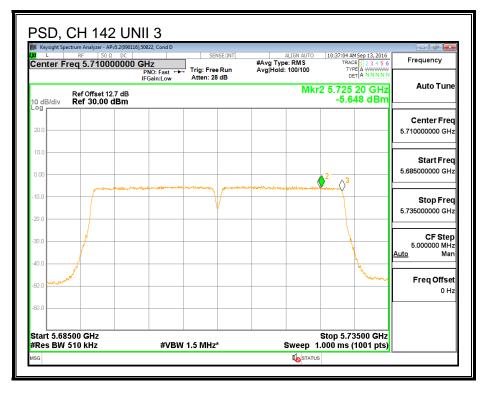
Output Power Results


Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.24	1.37	4.32	29.67	-25.35

PSD Results


Channel	Frequency	Chain 0	Chain 1	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-5.65	-5.46	-2.54	29.67	-32.21

Page 684 of 1393


OUTPUT POWER, CHAIN 0

OUTPUT POWER, CHAIN 1

Page 685 of 1393

PSD, CHAIN 1

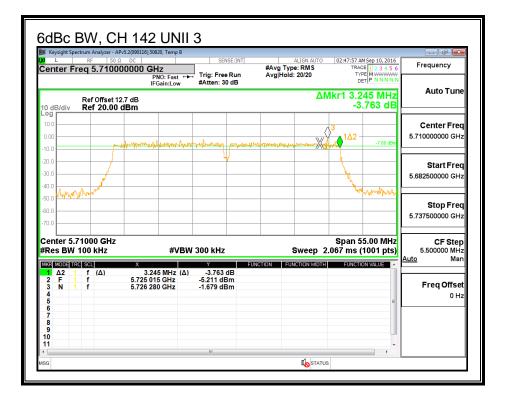
Page 686 of 1393

8.66.2. 6 dB BBANDWIDTH

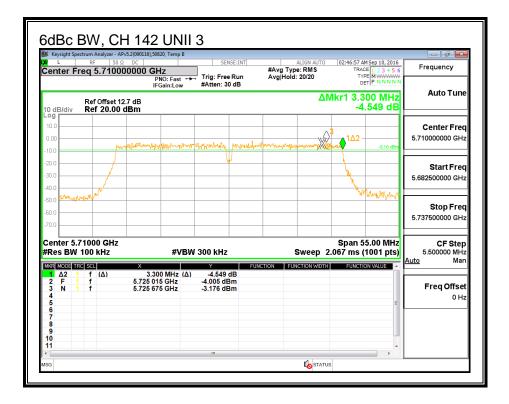
LIMITS

FCC §15.407 (e)

IC RSS-247 (6.2.4) (1)


The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>


Channel	Frequency	6 dB BW	6 dB BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
142	5710	3.25	3.30	

Page 687 of 1393

CHAIN 0

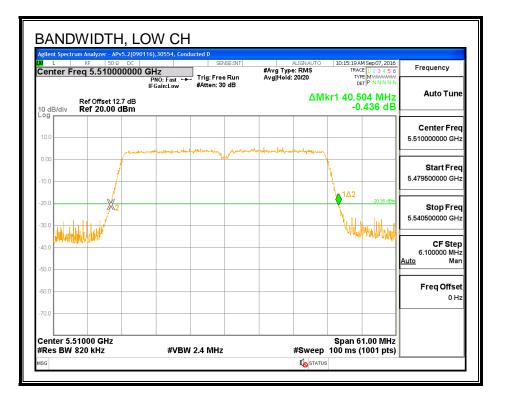
CHAIN 1

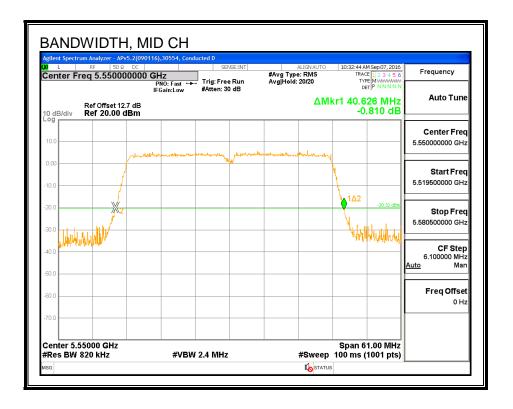
Page 688 of 1393

8.67. 802.11n HT40 2Tx (CHAIN 0 + CHAIN 2) STBC MODE IN THE 5.6 GHz BAND

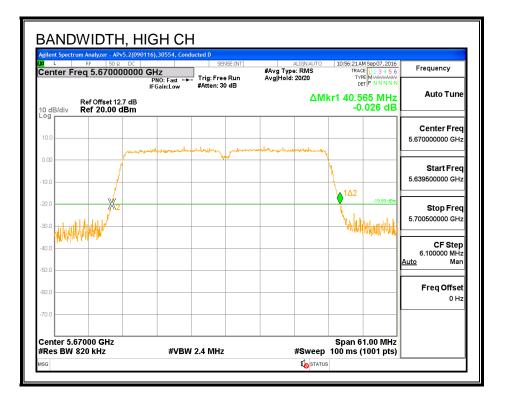
8.67.1. 26 dB BANDWIDTH

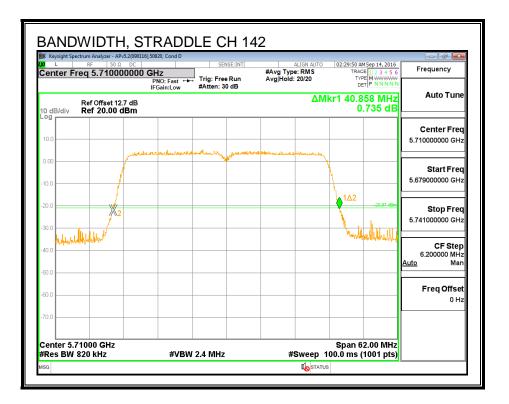
<u>LIMITS</u>

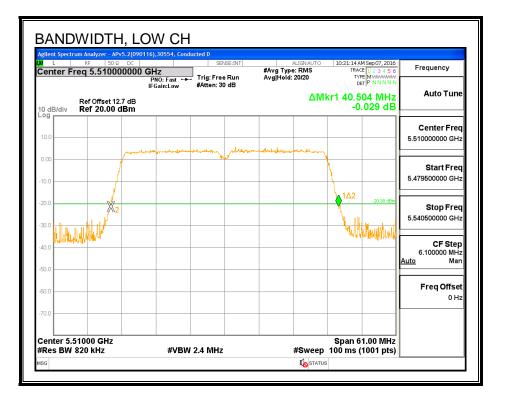

None; for reporting purposes only.

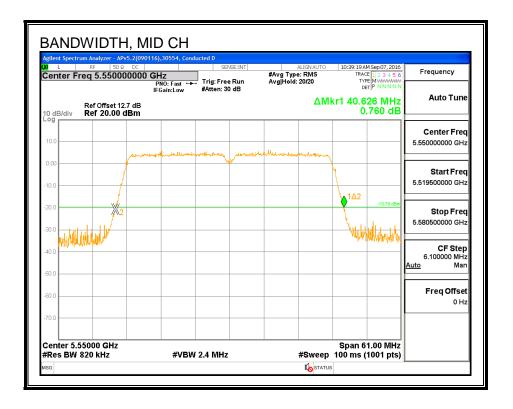

RESULTS

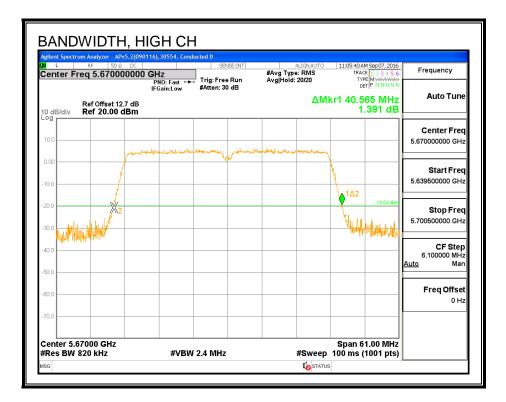
Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 2
	(MHz)	(MHz)	(MHz)
Low	5510	40.504	40.504
Mid	5550	40.626	40.626
High	5670	40.565	40.565
142	5710	40.858	40.321

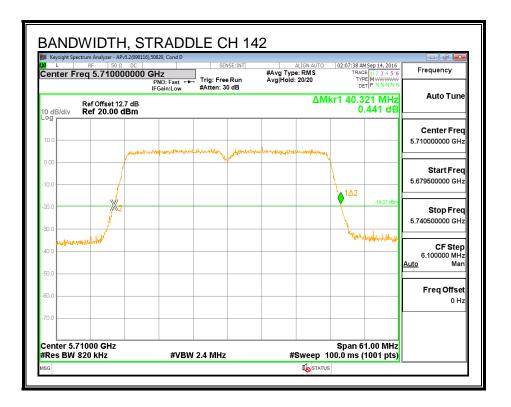

Page 689 of 1393


26 dB BANDWIDTH, CHAIN 0


Page 690 of 1393




Page 691 of 1393

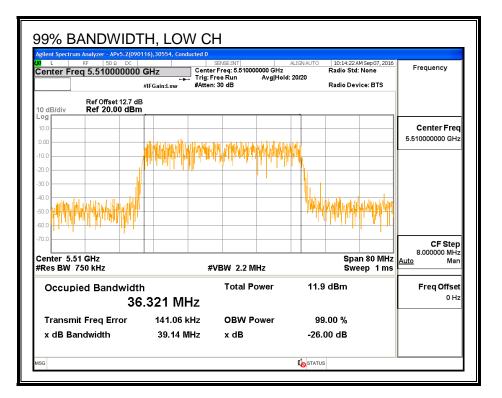

26 dB BANDWIDTH, CHAIN 2

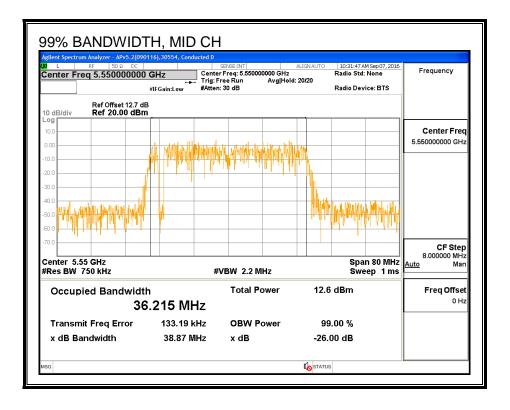
Page 692 of 1393

Page 693 of 1393

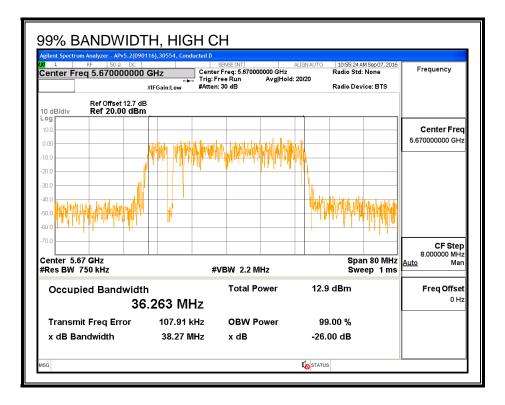
8.67.2. 99% BANDWIDTH

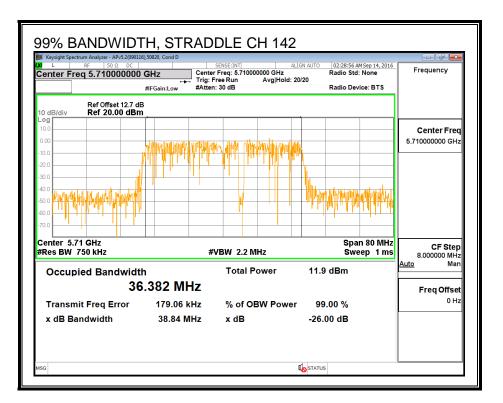
<u>LIMITS</u>


None; for reporting purposes only.

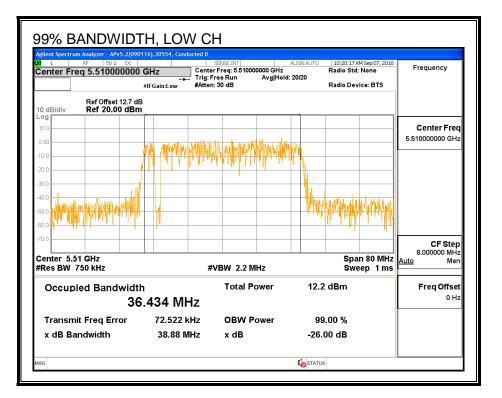

RESULTS

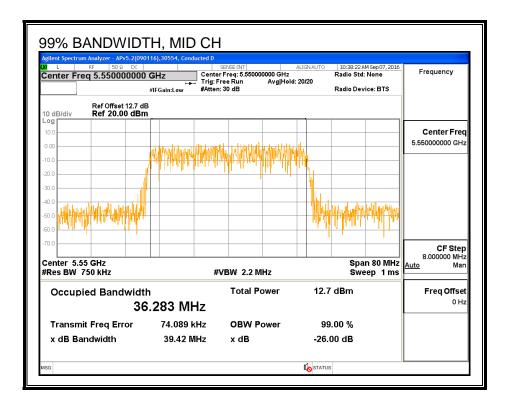
Channel	Frequency	99% BW	99% BW
			Chain 2
	(MHz)	(MHz)	(MHz)
Low	5510	36.321	36.434
Mid	5550	36.215	36.283
High	5670	36.263	36.359
142	5710	36.382	36.393


Page 694 of 1393

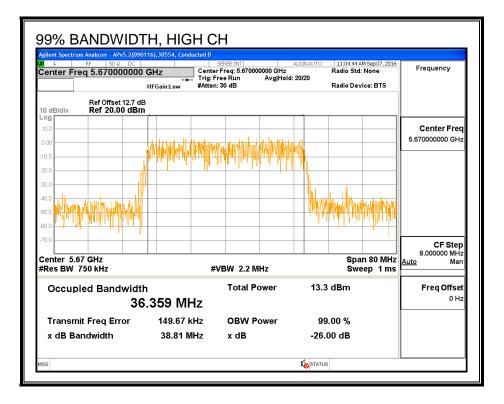

99% BANDWIDTH, CHAIN 0

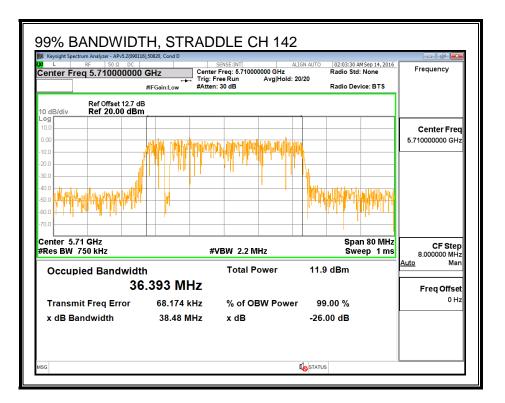
Page 695 of 1393





UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 696 of 1393


99% BANDWIDTH, CHAIN 2

Page 697 of 1393

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 698 of 1393

8.67.3. **AVERAGE POWER**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

RESULTS

	-		
ID:	43573	Date:	9/7/16

Average Power Results

Channel	Frequency	Chain 0 Chain 2		Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5510	11.89	11.87	14.89
Mid	5550	12.21	12.17	15.20
High	5670	12.17	12.19	15.19
142	5710	12.08	12.25	15.18

Page 699 of 1393

8.67.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (2)

For the band 5.47–5.725 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1– MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-247 (6.2.3) (1)

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power is measured using PXA spectrum analyzer, duty cycle correction factor is required.

Page 700 of 1393

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 2	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
4.90	5.20	5.05

Page 701 of 1393

<u>RESULTS</u>

ID: 43573	Date:	9/7/16
------------------	-------	--------

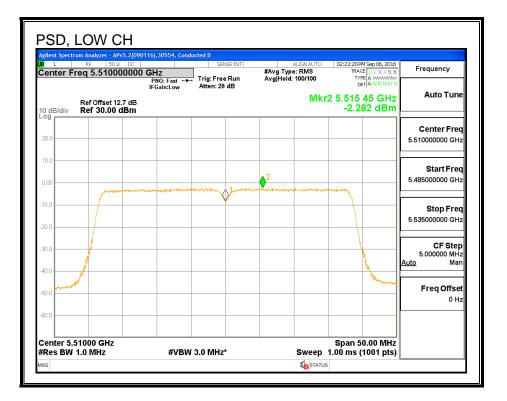
0.00

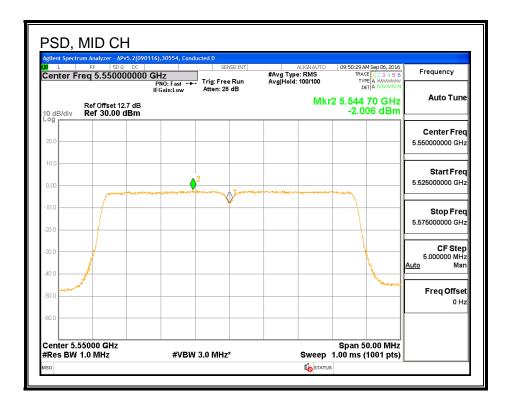
Bandwidth, Antenna Gain and Limits

Channel	Frequency	Min	Min	Directional	Directional	Power	PSD
		26 dB	99%	Gain	Gain	Limit	Limit
		BW	BW	for Power	for PSD		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5510	40.50	36.321	5.05	5.05	24.00	11.00
Mid	5550	40.63	36.215	5.05	5.05	24.00	11.00
High	5670	40.57	36.263	5.05	5.05	24.00	11.00

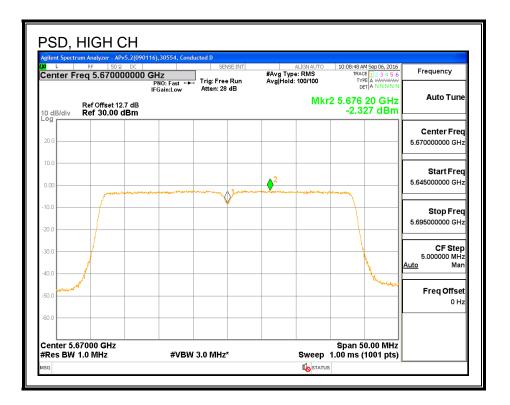
Duty Cycle CF (dB)

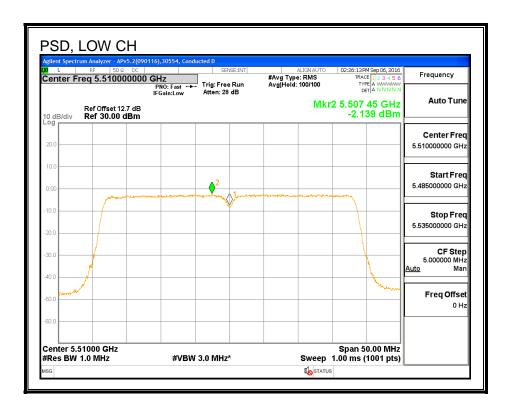
Included in Calculations of Corr'd PSD

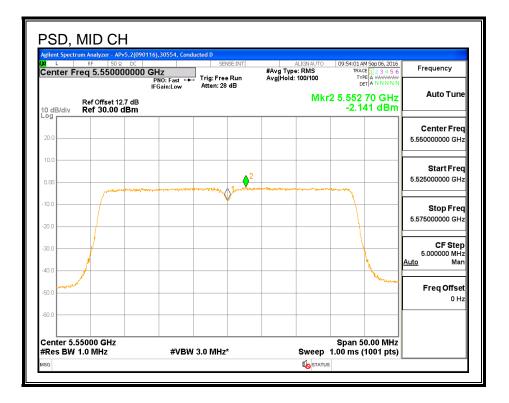

Output Power Results

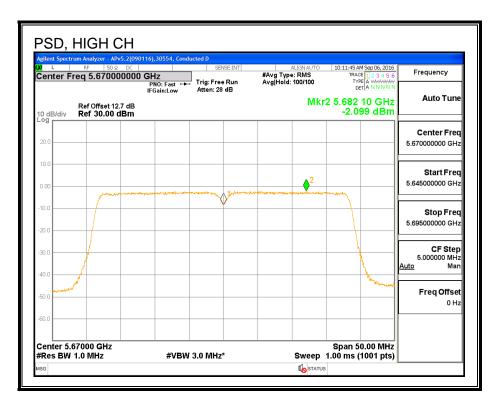

Channel	Frequency	Chain 0	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	11.89	11.87	14.89	24.00	-9.11
Mid	5550	12.21	12.17	15.20	24.00	-8.80
High	5670	12.17	12.19	15.19	24.00	-8.81

PSD Results


Channel	Frequency	Chain 0	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	-2.282	-2.139	0.80	11.00	-10.20
Mid	5550	-2.006	-2.141	0.94	11.00	-10.06
High	5670	-2.327	-2.099	0.80	11.00	-10.20


Page 702 of 1393




Page 703 of 1393

Page 704 of 1393

Page 705 of 1393

8.68. 802.11ac VHT40 2Tx (CHAIN 0 + CHAIN 2) STBC STRADDLE CHANNEL 142 RESULTS (FCC)

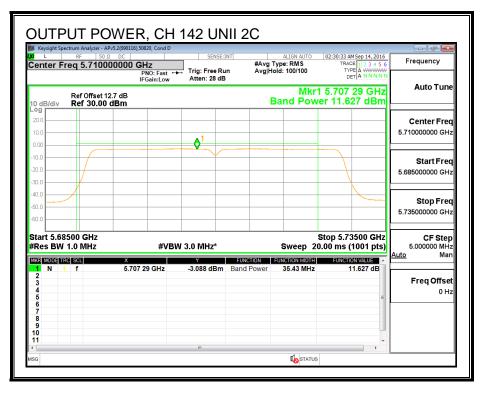
8.68.1. OUTPUT POWER AND PSD

UNII-2C BAND

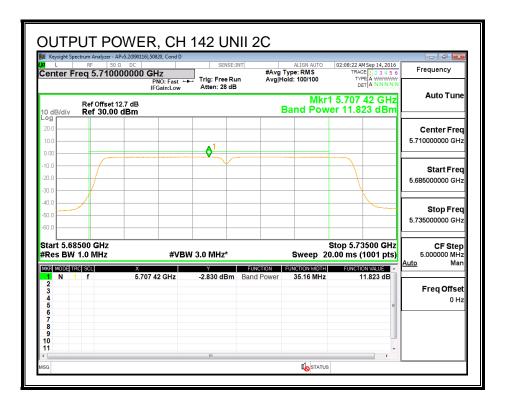
Bandwidth, Antenna Gain, and Limits

Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	35.16	5.05	5.05	24.00	11.00

Output Power Results

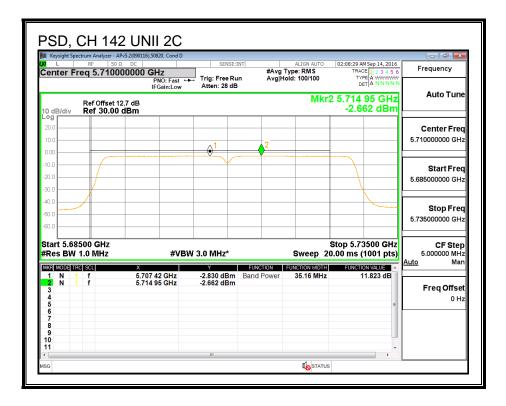

Channel	Frequency	Chain 0	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.63	11.82	14.74	24.00	-9.26

PSD Results


Channel	Frequency	Chain 0	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.90	-2.66	0.23	11.00	-10.77

Page 706 of 1393

OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 2

Page 707 of 1393

L	ctrum Analyzer - APv5.2(09 RF 50 Ω DC eq 5.71000000		SENSE:INT → Trig: Free Run Atten: 28 dB	ALIGN AUTO #Avg Type: RMS Avg Hold: 100/100	02:30:40 AM Sep 14, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N	
dB/div	Ref Offset 12.7 dE Ref 30.00 dBm			Mk	r2 5.703 90 GHz -2.900 dBm	Auto Tune
99 0.0 0.0			2 01			Center Free 5.710000000 GH
.00 0.0 0.0						Start Free 5.685000000 GH
0.0						Stop Free 5.735000000 GH
Res BW		#VB	₩ 3.0 MHz*	•	Stop 5.73500 GHz 20.00 ms (1001 pts)	CF Step 5.000000 MH Auto Mar
R MODE TR 1 N 1 2 N 1 3 4 5 6 7	f	5.707 29 GHz 5.703 90 GHz	Y -3.088 dBm ⊟ -2.900 dBm	FUNCTION FUNCTION WIDT and Power 35.43 MH		Freq Offse
8 9 0 1			111		•	

PSD, CHAIN 2

Page 708 of 1393

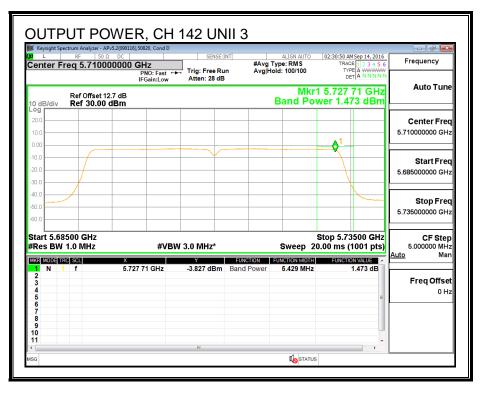
UNII-3 BAND

Antenna Gain and Limit

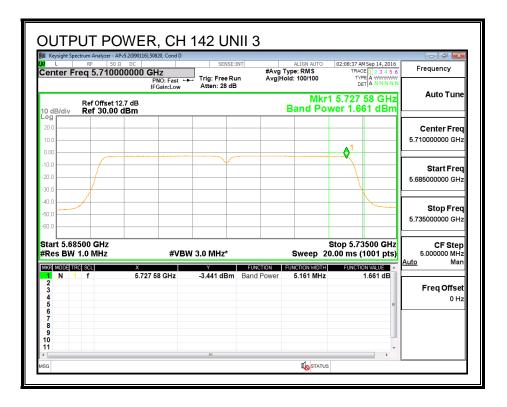
Channel	Frequency	Min	Directional	Directional	Power	PSD
		26 dB	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	5.16	5.05	5.05	30.00	30.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
Duty Oyole of (ub)	0.00	

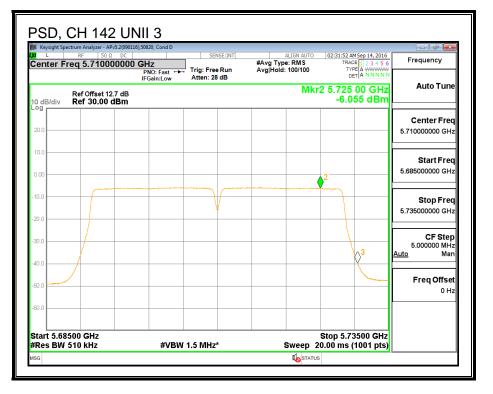
Output Power Results

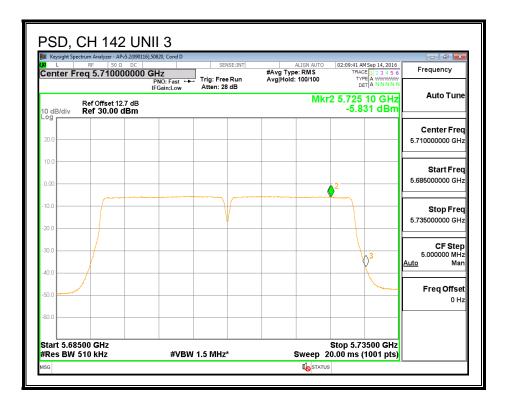

Channel	Frequency	Chain 0	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.47	1.66	4.58	30.00	-25.42

PSD Results


Channel	Frequency	Chain 0	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-6.06	-5.83	-2.93	30.00	-32.93

Page 709 of 1393


OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 2

Page 710 of 1393

PSD, CHAIN 2

Page 711 of 1393

8.69. 802.11ac VHT40 2Tx (CHAIN 0 + CHAIN 2) STBC STRADDLE CHANNEL 142 RESULTS (IC)

8.69.1. OUTPUT POWER AND PSD

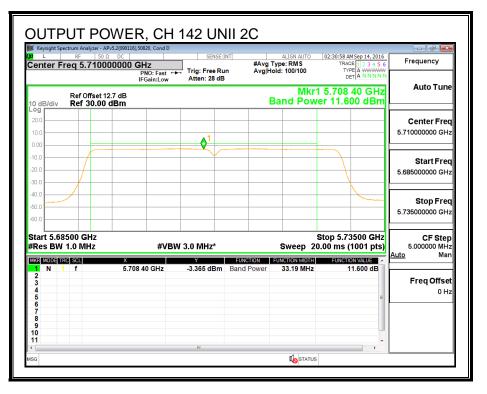
UNII-2C BAND

Bandwidth, Antenna Gain, and Limits

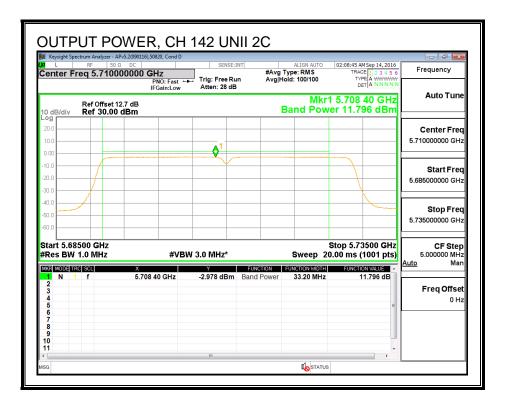
Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	for Power	for PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	33.190	5.05	5.05	24.00	11.00

Duty Cycle CF (dB) 0.	00	Included in Calculations of Corr'd Power & PSD
-----------------------	----	--

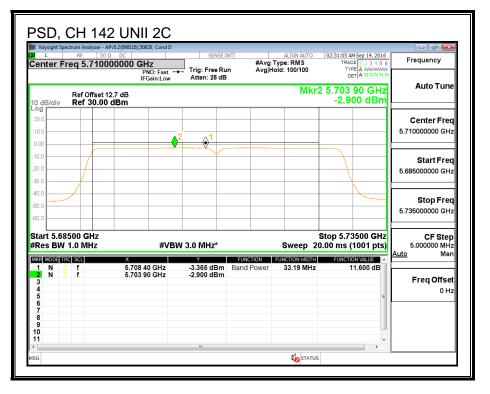
Output Power Results


Channel	Frequency	Chain 0	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	11.60	11.80	14.71	24.00	-9.29

PSD Results


Channel	Frequency	Chain 0	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-2.90	-2.66	0.23	11.00	-10.77

Page 712 of 1393


OUTPUT POWER, CHAIN 0


OUTPUT POWER, CHAIN 2

Page 713 of 1393

PSD, CHAIN 2

Page 714 of 1393

UNII-3 BAND

Antenna Gain and Limit

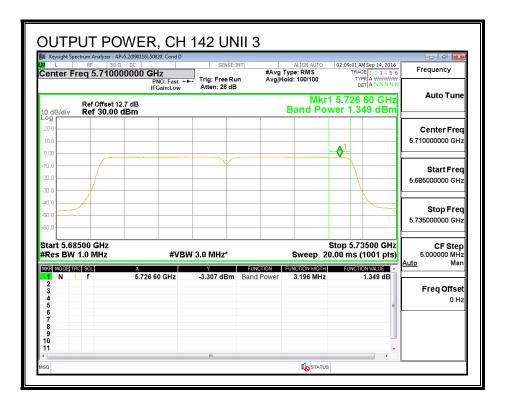
Channel	Frequency	Min	Directional	Directional	Power	PSD
		99%	Gain	Gain	Limit	Limit
		BW	For Power	For PSD		
	(MHz)	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
142	5710	3.191	5.05	5.05	30.00	30.00

Duty Cycle CF (dB)	0.00	Included in Calculations of Corr'd Power & PSD
Duly Cycle CF (ub)	0.00	Included in Calculations of Cont & Fower & For

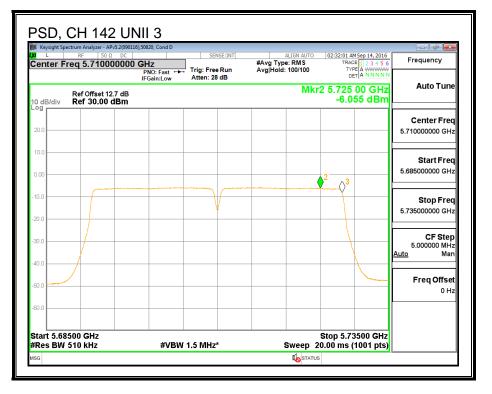
Output Power Results

Channel	Frequency	Chain 0	Chain 2	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	1.16	1.35	4.26	30.00	-25.74

PSD Results


Channel	Frequency	Chain 0	Chain 2	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
142	5710	-6.06	-5.83	-2.93	30.00	-32.93

Page 715 of 1393


OUTPUT POWER, CHAIN 0

L	RF 50 Ω DC		SENSE:INT Trig: Free Run Atten: 28 dB	#Avg	ALIGN AUTO Type: RMS Iold: 100/100	TE	4 AM Sep 14, 2016 RACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
dB/div	Ref Offset 12.7 dB Ref 30.00 dBm				Mkr Band Por		6 60 GHz 155 dBm	Auto Tune
								Center Free 5.710000000 GH:
I.O I.O								Start Free 5.685000000 GH
1.0 1.0								Stop Fred 5.735000000 GH:
	8500 GHz 1.0 MHz	#VB\	V 3.0 MHz*	FUNCTION		0.00 ms	73500 GHz 5 (1001 pts)	CF Step 5.000000 MH <u>Auto</u> Mar
		726 60 GHz	-3.463 dBm		3.191 MHz		1.155 dB	Freq Offse 0 H:

OUTPUT POWER, CHAIN 2

Page 716 of 1393

PSD, CHAIN 2

Page 717 of 1393

8.69.2. 6 dB BBANDWIDTH

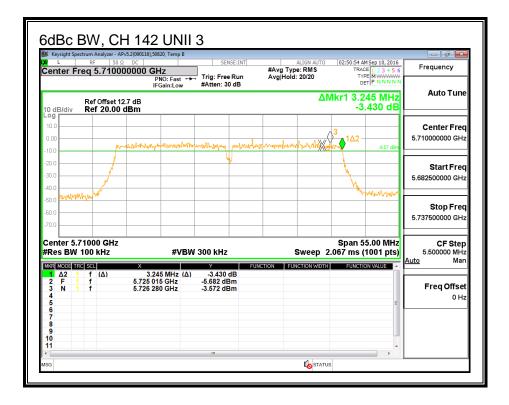
LIMITS

FCC §15.407 (e)

IC RSS-247 (6.2.4) (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>RESULTS</u>


Channel	Frequency	6 dB BW	6 dB BW	
		Chain 0	Chain 2	
	(MHz)	(MHz)	(MHz)	
142	5710	3.245	3.245	

Page 718 of 1393

CHAIN 0

L	RF 50 Ω	v5.2(090116),50820, Tem DC D00000 GHz PNO: Fa IFGain:Lo	st +++ Trig: Fre		ALIGN AUT #Avg Type: RMS Avg Hold: 20/20	TR	AM Sep 10, 2016 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 12 Ref 20.00					ΔMkr1 3.	245 MHz 1.498 dB	Auto Tune
og 10.0						0.3		Center Freq
0.0	بلريز	markanghrhamp	malina	, m-fupusqu	antropolistic	√21∆2	-7.34 dBm	5.710000000 GHz
0.0				Ly · · ·				Start Fred
0.0	- de la composición de la comp							5.682500000 GHz
0.0 0.0 promile	Whater					- ¹	munny	
0.0								Stop Freq
0.0								5.737500000 GH2
enter 5.7 Res BW	'1000 GHz 100 kHz	#	VBW 300 kH:	z	Sweep	Span 2.067 ms	55.00 MHz (1001 pts)	CF Step 5.500000 MH
	f (Δ)	X 3.245 MH;	Υ z (Δ) -1.498	FUNC	TION FUNCTION WIL	OTH FUNCT		<u>Auto</u> Mar
2 F 1 3 N 1	f f	5.725 015 GHz 5.727 545 GHz	-6.633 d	Bm				Freq Offset
4 5							=	0 H:
6 7								
8 9 0								
1								

CHAIN 2

Page 719 of 1393

8.70. 802.11n HT40 2Tx (CHAIN 1 + CHAIN 2) STBC MODE IN THE 5.6 GHz BAND

8.70.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	
		Chain 1	Chain 2	
	(MHz)	(MHz)	(MHz)	
Low	5510	40.443	40.626	
Mid	5550	40.565	40.565	
High	5670	40.626	40.565	
142	5710	40.982	40.382	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 720 of 1393