

TEST REPORT

Test Report No.: UL-RPT-RP10407443JD12A V2.0

Manufacturer : Apple Inc.

Model No. : A1600

FCC ID : BCGA1600

IC Certification No. : 579C-A1600

Technology : CDMA BC0

Test Standard(s) : FCC Part 22;

Industry Canada RSS Gen Issue 3 December 2010 &

RSS-132 Issue 3 January 2013

1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.

- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

5. Version 2.0 supersedes all previous versions.

Date of Issue: 15 September 2014

Checked by:

Sarah Williams Engineer, Radio Laboratory

Per Old

- Wellens

Issued by:

pp

John Newell Quality Manager, UL VS LTD

This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

Facsimile: +44 (0)1256 312001

VERSION 2.0 ISSUE DATE: 15 SEPTEMBER 2014

This page has been left intentionally blank.

Page 2 of 40 UL VS LTD

Table of Contents

1. Customer Information	. 4
2. Summary of Testing	5 5 5 5 5
3. Equipment Under Test (EUT)	. 6
3.1. Identification of Equipment Under Test (EUT)	6
3.2. Description of EUT	6
3.3. Modifications Incorporated in the EUT	6
3.4. Additional Information Related to Testing 3.5. Support Equipment	7 8
4. Operation and Monitoring of the EUT during Testing	9
4.2. Configuration and Peripherals	9
5. Measurements, Examinations and Derived Results	10
•	10
	11
	11
• ,	17
	21
	29
3	32
	35 37
	39
-	
7. Report Revision History	40

UL VS LTD Page 3 of 40

VERSION 2.0 ISSUE DATE: 15 SEPTEMBER 2014

1. Customer Information

Company Name:	Apple Inc.
Address:	1 Infinite Loop Cupertino, CA 95014 U.S.A.

Page 4 of 40 UL VS LTD

VERSION 2.0

ISSUE DATE: 15 SEPTEMBER 2014

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR22
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 22 Subpart H (Public Mobile Services)
Specification Reference:	RSS-Gen Issue 3, December 2010
Specification Title:	General Requirements and Information for the Certification of Radio Apparatus
Specification Reference:	RSS-132 Issue 3, January 2013
Specification Title:	Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
Site Registration:	FCC: 209735; Industry Canada: 3245B-2
Location of Testing:	UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	04 August 2014 to 20 August 2014

2.2. Summary of Test Results

FCC Reference	IC Reference	Measurement	Result
Part 22.913(a)(2)	RSS-Gen 4.8 / RSS-132 5.4	Transmitter E.R.P. and E.I.R.P.	②
N/A	RSS-132 5.4	Transmitter Peak-to-Average Power Ratio (PAPR)	②
Part 2.1049	RSS-Gen 4.6.1	Transmitter Occupied Bandwidth	②
Part 2.1053/22.917	RSS-Gen 4.9 / RSS-132 5.5	Transmitter Out of Band Radiated Emissions	②
Part 2.1053/22.917	RSS-Gen 4.9 / RSS-132 5.5	Transmitter Band Edge Radiated Emissions	②
Part 2.1055/22.355	RSS-Gen 4.7 / RSS-132 5.3	Transmitter Frequency Stability (Temperature and Voltage Variation)	②
Key to Results O = Complied	= Did not comply		

2.3. Methods and Procedures

Reference:	FCC KDB 971168 D01 v02r01, 7 June 2013
Title:	Measurement Guidance for Certification of Licensed Digital Transmitters

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

UL VS LTD Page 5 of 40

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Apple
Model Name or Number:	A1600
Test Sample ESN:	80C51D54 (Conducted sample #1)
Test Sample MEID:	35202506027472
Hardware Version Number:	REV1.0
Software Version Number:	iOS 12A314 BB: 3.08.08
FCC ID:	BCGA1600
Industry Canada Certification Number:	579C-A1600

Brand Name:	Apple
Model Name or Number:	A1600
Test Sample ESN:	80BCF6E7 (Conducted sample #2)
Test Sample MEID:	35202506027453
Hardware Version Number:	REV1.0
Software Version Number:	iOS 12A314 BB: 3.08.08
FCC ID:	BCGA1600
Industry Canada Certification Number:	579C-A1600

Brand Name:	Apple
Model Name or Number:	A1600
Test Sample ESN:	8084BC87 (Radiated sample)
Test Sample MEID:	35202506023879
Hardware Version Number:	REV1.0
Software Version Number:	iOS 12A314 BB: 3.08.08
FCC ID:	BCGA1600
Industry Canada Certification Number:	579C-A1600

3.2. Description of EUT

The Equipment Under Test was a tablet with GSM/GPRS/EGPRS/UMTS/LTE and CDMA technologies. It also supports IEEE 802.11a/b/g/n (MIMO 2x2) and *Bluetooth*®. The rechargeable battery is not user accessible.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 6 of 40 UL VS LTD

3.4. Additional Information Related to Testing

Technology Tested:	CDMA BC0		
Type of Radio Device:	Transceiver		
Modes:	1xRTT, EV-DO Rev 0, EV-DO Rev A & EV-DO Rev B		
Modulation Type:	O-QPSK & H-PSK		
Power Supply Requirement(s):	Nominal	3.8 VDC	
	Minimum	3.4 VDC	
	Maximum	4.2 VDC	
Maximum Output Power (E.I.R.P.):	1xRTT	22.05 dBm (0.160 Watts)	
	EV-DO Rev 0	21.45 dBm (0.140 Wa	atts)
	EV-DO Rev A	21.35 dBm (0.136 Wa	atts)
	EV-DO Rev B	18.55 dBm (0.072 Wa	atts)
Transmit Frequency Range:	824 to 849 MHz		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	1013	824.7
	Middle	384	836.52
	Тор	777	848.31

UL VS LTD Page 7 of 40

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Brand Name:	Dell
Description:	Laptop PC
Model Name or Number:	Latitude E5400
Serial Number:	UL VS LTD Asset No. 01150
Brand Name:	Not marked or stated
Description:	USB Diagnostic cable
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated
Brand Name:	Apple
Description:	USB Cable
Model Name or Number:	A1480
Serial Number:	Not marked or stated
Brand Name:	Apple
Description:	USB Charger
Model Name or Number:	A1399
Serial Number:	Not marked or stated
Brand Name:	Apple
Description:	PHF
Model Name or Number:	Apple Ear Plugs
Serial Number:	Not marked or stated

Page 8 of 40 UL VS LTD

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- · Constantly transmitting at full power on bottom, middle and top channels as required.
- Occupied bandwidth, conducted power and band edge tests were performed with the EUT in 1xRTT and EV-DO modes.
- Transmitter radiated spurious emissions were checked in all modes during pre-scans. 1xRTT RC 1/1
 was found to be the worst case and all final measurements were performed with the EUT in this
 mode.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- Connected to a Rohde & Schwarz CMW 500 Wideband Radio Communications Tester operating in CDMA and EV-DO modes.
- Transmitter radiated spurious emissions tests were performed with the AC Charger and PHF connected to the EUT as this was found to be the worst case during pre-scans. All the accessories were individually connected and measurements made during the pre-scans to determine the worst case combination.
- Testing for frequency stability and measurements at temperature and voltage extremes was
 performed using a conducted sample supplied by the customer. Short 4-wire DC flying leads were
 connected internally to the device in place of the battery, and exited through a hole in the casing.
 These leads were then extended to a DC power supply for testing purposes.
- For conducted cellular measurements, the RF conducted port was created by removing a micro
 connector from the pcb antenna and extending it with a short flexible microstrip supplied by the
 customer. This microstrip exited the device through a hole in the casing and was terminated in a
 proprietary micro-coax to SMA adaptor.
- The conducted sample with ESN 80C51D54 was used for power and occupied bandwidth measurements.
- The conducted sample with ESN 80BCF6E7 was used for frequency stability measurements.
- The radiated sample with ESN 8084BC87 was used for all other measurements.

UL VS LTD Page 9 of 40

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6. Measurement Uncertainty* for details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Page 10 of 40 UL VS LTD

5.2. Test Results

5.2.1. Transmitter E.R.P. and E.I.R.P.

Test Summary:

Test Engineer:	lan Watch	Test Dates:	04 August 2014 to 07 August 2014
Test Sample ESN:	80C51D54		

FCC Reference:	Part 22.913(a)(2)
Industry Canada Reference:	RSS-Gen 4.8 / RSS-132 5.4
Test Method Used:	See Notes below

Environmental Conditions:

Temperature (℃):	24 to 25
Relative Humidity (%):	38 to 46

Note(s):

- Transmitter average output power was measured using a Rohde & Schwarz CMW 500 following current Rohde & Schwarz measurement procedures. An inquiry was made to the FCC by the manufacturer proposing the test configuration for EV-DO Rev. B tests, this proposal was accepted by the FCC. All configurations were tested with the EUT transmitting at maximum power on the bottom, middle and top channels. An RF level offset was entered on the CMW 500 to compensate for the loss of the attenuator and RF cables.
- 2. The manufacturer stated a maximum antenna gain of -2.95 dBi. The gain in dBi has been converted to gain in dBd for E.R.P. calculation. The gain in dBd was calculated as:

$$-2.95 dBi - 2.15 dB = -5.1 dBd.$$

3. The antenna gain was added to the conducted output power to obtain the radiated power. For completeness, results are shown as E.R.P. compared to an E.R.P. limit (FCC Part 22.913(a)(2) requirement) and also shown as E.I.R.P. compared to an E.I.R.P. limit (Industry Canada RSS-132 Section 5.4 requirement). The highest power recorded was subtracted from the limit to show the margin.

UL VS LTD Page 11 of 40

Results: 1xRTT

Radio		Conducted Output Power (dBm)						
Configuration	Service	Ch. 1013 / 824.7 MHz	Ch. 384 / 836.52 MHz	Ch. 777 / 848.31 MHz				
(RC)	Option (SO)	Average	Average	Average				
RC1/1	2 (Loopback)	25.0	25.0	24.9				
	55 (Loopback)	25.0	24.9	24.9				
RC2/2	9 (Loopback)	25.0	24.9	24.9				
	55 (Loopback)	25.0	25.0	24.9				
	2 (Loopback)	25.0	24.9	25.0				
RC3/3	55 (Loopback)	25.0	24.9	25.0				
	32 (Test Data)	25.0	25.0	24.9				
	2 (Loopback)	25.0	24.9	25.0				
RC4/3	55 (Loopback)	25.0	25.0	25.0				
	32 (Test Data)	25.0	24.9	24.9				
RC5/4	55 (Loopback)	24.9	24.8	24.9				

Channel	Frequency (MHz)	Highest Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	25.0	-2.95	22.05	40.6	18.55	Complied
Middle	836.52	25.0	-2.95	22.05	40.6	18.55	Complied
Тор	848.31	25.0	-2.95	22.05	40.6	18.55	Complied

Channel	Frequency (MHz)	Highest Conducted Output Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	25.0	-5.1	19.9	38.4	18.5	Complied
Middle	836.52	25.0	-5.1	19.9	38.4	18.5	Complied
Тор	848.31	25.0	-5.1	19.9	38.4	18.5	Complied

Page 12 of 40 UL VS LTD

Results: EV-DO Rev. 0

FTAP Rate	RTAP Rate	Average Conducted Output Power (dBm)				
TTAL Nate NTAL Nate		Ch. 1013 / 824.7 MHz	Ch. 384 / 836.52 MHz	Ch. 777 / 848.31 MHz		
307.2 kbit/s	153.6 kbit/s	24.4	24.4	24.4		

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	24.4	-2.95	21.45	40.6	19.15	Complied
Middle	836.52	24.4	-2.95	21.45	40.6	19.15	Complied
Тор	848.31	24.4	-2.95	21.45	40.6	19.15	Complied

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	24.4	-5.1	19.3	38.4	19.1	Complied
Middle	836.52	24.4	-5.1	19.3	38.4	19.1	Complied
Тор	848.31	24.4	-5.1	19.3	38.4	19.1	Complied

UL VS LTD Page 13 of 40

Results: EV-DO Rev. A

FETAP	RETAP Data	Average	Average Conducted Output Power (dBm)				
Format	Payload Size	Ch. 1013 / 824.7 MHz	Ch. 384 / 836.52 MHz	Ch. 777 / 848.31 MHz			
307.2 kbit/s	4096 bits	24.3	24.2	24.3			

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	24.3	-2.95	21.35	40.6	19.25	Complied
Middle	836.52	24.2	-2.95	21.25	40.6	19.35	Complied
Тор	848.31	24.3	-2.95	21.35	40.6	19.25	Complied

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
Bottom	824.7	24.3	-5.1	19.2	38.4	19.2	Complied
Middle	836.52	24.2	-5.1	19.1	38.4	19.3	Complied
Тор	848.31	24.3	-5.1	19.2	38.4	19.2	Complied

Page 14 of 40 UL VS LTD

Transmitter E.R.P. and E.I.R.P. (continued)

Results: EV-DO Rev. B / Two Carrier Minimum Separation

Ave	Average Conducted Output Power (dBm)							
Bottom Middle Top								
Ch. 1013 / 824.7 MHz Ch. 31 / 825.93 MHz	Ch. 384 / 836.52 MHz Ch. 425 / 837.75 MHz	Ch. 736 / 847.08 MHz Ch. 777 / 848.31 MHz						
21.4	21.4	21.3						

Results: EV-DO Rev. B / Two Carrier Maximum Separation

Average Conducted Output Power (dBm)							
Bottom Middle Top							
Ch. 1013 / 824.7 MHz Ch. 156 / 829.68 MHz							
21.5	21.4	21.3					

Results: EV-DO Rev. B / Three Carrier Minimum Separation

Average Conducted Output Power (dBm)						
Bottom Middle Top						
Ch. 1013 / 824.7 MHz Ch. 31 / 825.93 MHz Ch. 72 / 827.16 MHz	Ch. 384 / 836.52 MHz Ch. 425 / 837.75 MHz Ch. 466 / 838.98 MHz	Ch. 695 / 845.85 MHz Ch. 736 / 847.08 MHz Ch. 777 / 848.31 MHz				
21.4	21.4	21.3				

Channel	Frequency (MHz)	Highest Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
Bottom	As above	21.5	-2.95	18.55	40.6	22.05	Complied
Middle	As above	21.4	-2.95	18.45	40.6	22.15	Complied
Тор	As above	21.4	-2.95	18.45	40.6	22.15	Complied

Channel	Frequency (MHz)	Highest Conducted Output Power (dBm)	Antenna Gain (dBd)	ERP (dBm)	ERP Limit (dBm)	Margin (dB)	Result
Bottom	As above	21.5	-5.1	16.4	38.4	22.0	Complied
Middle	As above	21.4	-5.1	16.3	38.4	22.1	Complied
Тор	As above	21.4	-5.1	16.3	38.4	22.1	Complied

UL VS LTD Page 15 of 40

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1657	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
G0608	Signal Generator	Rohde & Schwarz	SMIQ 06B	838341/033	14 Feb 2015	12
A2137	Directional Coupler	AtlanTecRF	A4224-10	26861	Calibrated before use	-
M1870	Radio Comms Tester	Rohde & Schwarz	CMW 500	145919	02 May 2015	12
M1873	Signal Analyser	Rohde & Schwarz	FSV30	103074	15 May 2015	12
A2142	Attenuator	AtlanTecRF	AN18-20	081120-23	Calibrated before use	-

Page 16 of 40 UL VS LTD

VERSION 2.0

ISSUE DATE: 15 SEPTEMBER 2014

5.2.2. Transmitter Peak-To-Average Power Ratio (PAPR)

Test Summary:

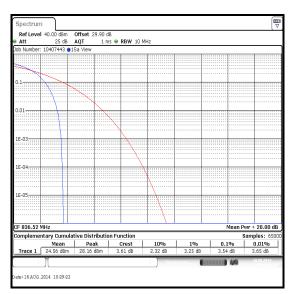
Test Engineer:	lan Watch	Test Date:	18 August 2014
Test Sample ESN:	80C51D54		

Industry Canada Reference:	RSS-132 5.4
Test Method Used:	As detailed in FCC KDB 971168 Section 5.7.1

Environmental Conditions:

Temperature (℃):	25
Relative Humidity (%):	35

Note(s):

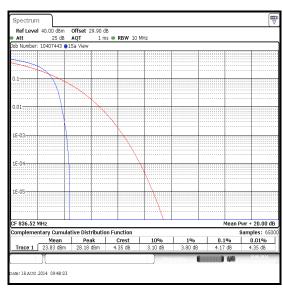

- 1. The CCDF function of a signal analyser was used to measure PAPR when the EUT was transmitting in 1xRTT and EV-DO modes. Maximum PAPR levels associated with a probability of 0.1% were recorded.
- The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cables. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cables.

UL VS LTD Page 17 of 40

Transmitter Peak-To-Average Power Ratio (continued)

Results: 1xRTT

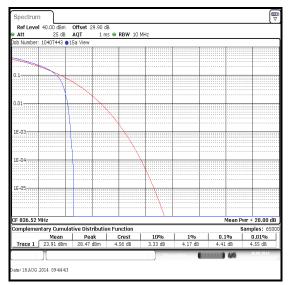
Channel	Frequency (MHz)	Peak (dBm)	Average (dBm)	Peak to Average Ratio (dB)	Ratio Limit (dB)	Margin (dB)	Result
Middle	836.52	28.16	24.56	3.54	13.0	9.46	Complied


Middle Channel

Page 18 of 40 UL VS LTD

<u>Transmitter Peak-To-Average Power Ratio (continued)</u>

Results: EV-DO Rev. 0


Channel	Frequency (MHz)	Peak (dBm)	Average (dBm)	Peak to Average Ratio (dB)	Ratio Limit (dB)	Margin (dB)	Result
Middle	836.52	28.18	23.83	4.17	13.0	8.83	Complied

Middle Channel

Results: EV-DO Rev. A

Channel	Frequency (MHz)	Peak (dBm)	Average (dBm)	Peak to Average Ratio (dB)	Ratio Limit (dB)	Margin (dB)	Result
Middle	836.52	28.47	23.91	4.41	13.0	8.59	Complied

Middle Channel

UL VS LTD Page 19 of 40

<u>Transmitter Peak-To-Average Power Ratio (continued)</u> <u>Test Equipment Used:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1658	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
G0608	Signal Generator	Rohde & Schwarz	SMIQ 06B	838341/033	14 Feb 2015	12
A2137	Directional Coupler	AtlanTecRF	A4224-10	26861	Calibrated before use	-
M1873	Signal Analyser	Rohde & Schwarz	FSV	103074	15 May 2015	12
A2142	Attenuator	AtlanTecRF	AN18-20	081120-23	Calibrated before use	-

Page 20 of 40 UL VS LTD

VERSION 2.0

5.2.3. Transmitter Occupied Bandwidth

Test Summary:

Test Engineer:	lan Watch	Test Dates:	04 August 2014 to 07 August 2014
Test Sample ESN:	80C51D54		

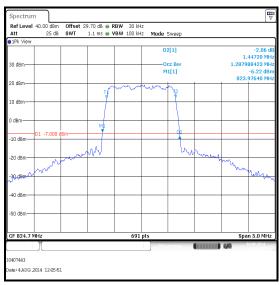
FCC Reference:	Part 2.1049
Industry Canada Reference:	RSS-Gen 4.6.1
Test Method Used:	As detailed in FCC KDB 971168 Sections 4.1 & 4.2

Environmental Conditions:

Temperature (℃):	24 to 25
Relative Humidity (%):	38 to 46

Note(s):

- 1. Occupied bandwidth (99% bandwidth) was measured using a signal analyser occupied bandwidth function.
- 2. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable.
- 3. EV-DO Rev. B tests were performed with the same configurations as power measurement tests in this test report.


UL VS LTD Page 21 of 40

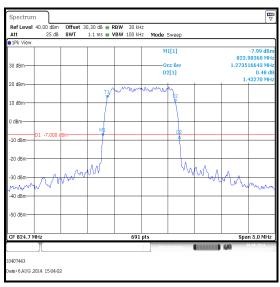
Results: 1xRTT

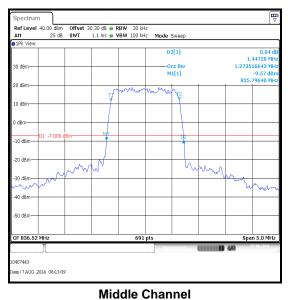
Spectrum

te:4AUG 2014 12:00:59

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	824.7	1287.988	1447.200
Middle	836.52	1287.988	1447.200
Тор	848.31	1302.460	1497.800

Bottom Channel


Top Channel

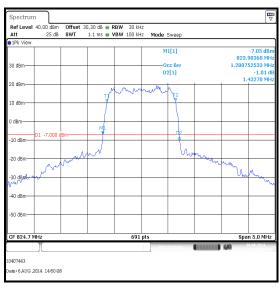

Middle Channel

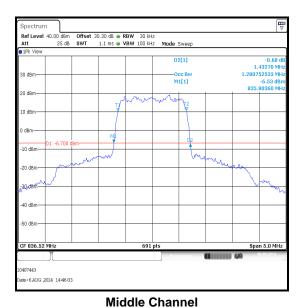
Page 22 of 40 UL VS LTD

Results: EV-DO Rev. 0

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	824.7	1273.517	1432.700
Middle	836.52	1273.517	1447.200
Тор	848.31	1273.517	1447.200

Bottom Channel

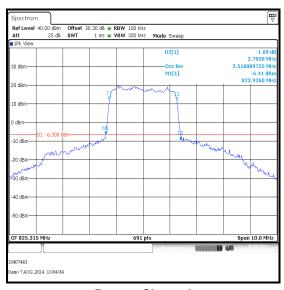

Spectrum Ref Level 40.00 dBm Att 25 dB -0.94 dl 1.44720 MH 1.273516643 MH -7.91 dBn 847.58640 MH -Occ Bw M1[1] te:7AUG 2014 08:19:22

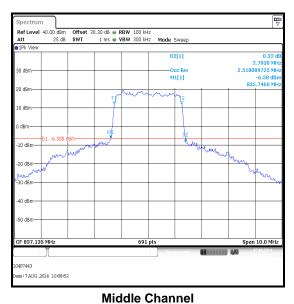

Top Channel

UL VS LTD Page 23 of 40

Results: EV-DO Rev. A

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	824.7	1280.753	1432.700
Middle	836.52	1280.753	1432.700
Тор	848.31	1287.988	1447.200


Bottom Channel

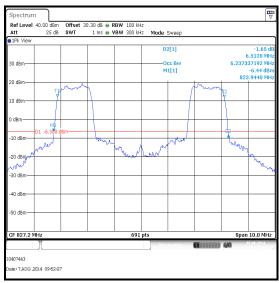

Top Channel

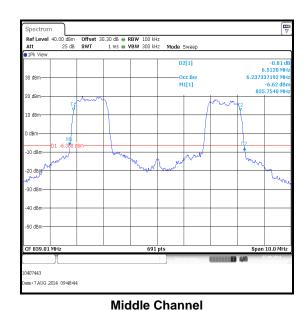
Page 24 of 40 UL VS LTD

Results: EV-DO Rev. B, 2 Carrier Minimum Separation

Channel	Centre Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	825.315	2518.090	2793.000
Middle	837.135	2518.090	2793.000
Тор	847.695	2503.618	2822.000

Bottom Channel

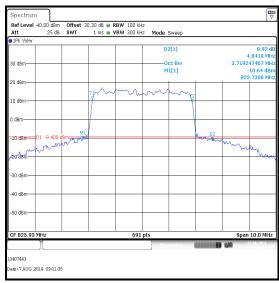

Spectrum Ref Level 40.00 dBm Att 25 dB -0cc Bw M1[1] -7.33 dB 846.2910 MF 10 dBm te:7AUG 2014 10:18:14


Top Channel

UL VS LTD Page 25 of 40

Results: EV-DO Rev. B, 2 Carrier Maximum Separation

Channel	Centre Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	827.2	6237.337	6512.000
Middle	839.01	6237.337	6512.000
Тор	845.82	6237.337	6512.000


Bottom Channel

Top Channel

Page 26 of 40 UL VS LTD

Results: EV-DO Rev. B, 3 Carrier Minimum Separation

Channel	Centre Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26 dB Bandwidth (kHz)
Bottom	825.93	3719.247	4841.000
Middle	837.75	3719.247	5742.000
Тор	847.08	3719.247	5224.000

Bottom Channel

Top Channel

te:7AUG 2014 09:17:33

Middle Channel

UL VS LTD Page 27 of 40

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1657	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
A2137	Directional Coupler	AtlanTecRF	A4224-10	26861	Calibrated before use	-
M1835	Signal Analyser	Rohde & Schwarz	FSV	103050	26 Mar 2015	12
A2142	Attenuator	AtlanTecRF	AN18-20	081120-23	Calibrated before use	-

Page 28 of 40 UL VS LTD

5.2.4. Transmitter Out of Band Radiated Emissions

Test Summary:

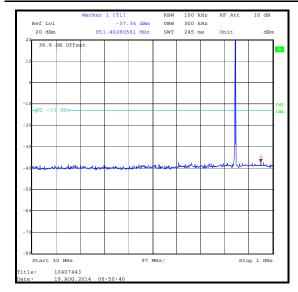
Test Engineer:	David Doyle	Test Dates:	12 August 2014 & 19 August 2014
Test Sample ESN:	8084BC87		

FCC Reference:	Parts 2.1053 & 22.917
Industry Canada Reference:	RSS-Gen 4.9 / RSS-132 5.5
Test Method Used:	As detailed in KDB 971168 Section 6.1, FCC Part 22.917(b), Industry Canada RSS-132 Section 5.5, RSS-Gen Section 4.9 & Notes below
Frequency Range:	30 MHz to 9 GHz
Configuration:	1xRTT RC1/1

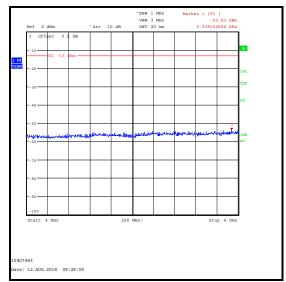
Environmental Conditions:

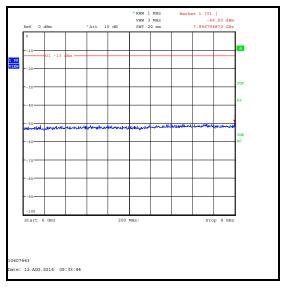
Temperature (℃):	23 to 24
Relative Humidity (%):	30 to 41

Note(s):

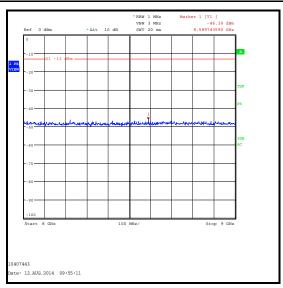

- 1. The uplink traffic channel is shown on the 30 MHz to 1 GHz plot.
- 2. All emissions shown on the pre-scan plots were investigated. Final measurements were made using appropriate RF filters and attenuators where required. All emissions shown on the pre-scan plots were found to be below the measurement system noise floor or ambient or > 20 dB below the applicable limit. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 3. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz, with the sweep time set to auto. A peak detector and trace mode of Max Hold were used to perform pre-scans, with markers placed on the highest measured levels. Final measurements were performed on the marker frequencies and the results entered into the table below.
- 4. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz, with the sweep time set to auto. A peak detector and trace mode of Max Hold were used to perform pre-scans, with markers placed on the highest measured levels. Final measurements were performed on the marker frequencies and the results entered into the table below.

Results: 1xRTT RC1/1 - Top Channel


Frequency	Peak Level	Limit	Margin	Result
(MHz)	(dBm)	(dBm)	(dB)	
1697.115	-45.3	-13.0	32.3	Complied


UL VS LTD Page 29 of 40

Transmitter Out of Band Radiated Emissions (continued)



Page 30 of 40 UL VS LTD

VERSION 2.0

Transmitter Out of Band Radiated Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1622	Thermohygrometer	JM Handelspunkt	30.5015.06	None stated	31 Dec 2014	12
K0001	5m RSE Chamber	Rainford EMC	N/A	N/A	26 Nov 2014	12
M1273	Test Receiver	Rohde & Schwarz	ESIB26	100275	15 Feb 2015	12
G0543	Pre-Amplifier	Sonoma	310N	230801	19 Aug 2014	3
A490	Antenna	Chase	CBL6111A	1590	29 Apr 2015	12
A1834	Attenuator	Hewlett Packard	8491B	10444	15 Nov 2014	12
M1622	Thermohygrometer	JM Handelspunkt	30.5015.06	None stated	31 Dec 2014	12
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Nov 2014	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	13 May 2015	12
A1534	Pre Amplifier	Hewlett Packard	8449B	3008A00405	18 May 2015	12
A1396	Attenuator	Huber & Suhner	6810.17.B	757987	02 May 2015	12
A1974	High Pass Filter	AtlanTecRF	AFH - 01000	090000283	12 Apr 2015	12
A1975	High Pass Filter	AtlanTecRF	AFH - 03000	090424010	12 Apr 2015	12
A1818	Antenna	EMCO	3115	00075692	14 Nov 2014	12
A253	Antenna	Flann Microwave	12240-20	128	14 Nov 2014	12
A254	Antenna	Flann Microwave	14240-20	139	14 Nov 2014	12
A255	Antenna	Flann Microwave	16240-20	519	14 Nov 2014	12

UL VS LTD Page 31 of 40

5.2.5. Transmitter Radiated Emissions at Band Edges

Test Summary:

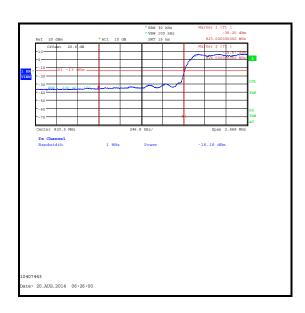
Test Engineer:	David Doyle		20 August 2014
Test Sample ESN:	8084BC87		

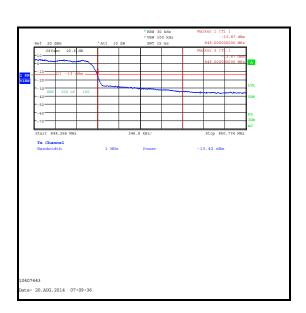
FCC Reference:	Parts 2.1053 & 22.917
Industry Canada Reference: RSS-Gen 4.9 / RSS-132 5.5	
Test Method Used:	As detailed in KDB 971168 Section 6.1, FCC Part 22.917(b), Industry Canada RSS-132 Section 5.5, RSS-Gen Section 4.9 & Notes below

Environmental Conditions:

Temperature (℃):	24
Relative Humidity (%):	39

Note(s):

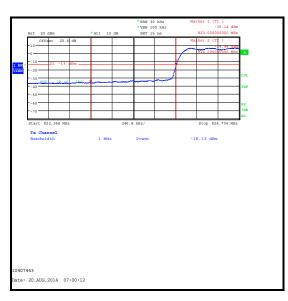

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. Measurements were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. The measurement antenna was placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
- 3. In the first 1.0 MHz immediately outside and adjacent to the band edges, the channel power function of the test receiver was used to integrate power over the measurement bandwidth. The resolution bandwidth used was greater than 1% of the 26 dB emission bandwidth.

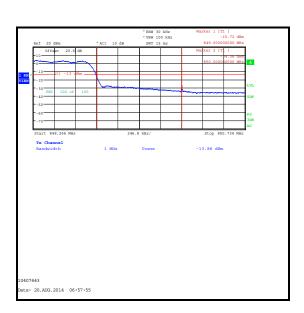

Page 32 of 40 UL VS LTD

Transmitter Radiated Emissions at Band Edges (continued)

Results: 1xRTT

Frequency (MHz)	Peak Level (dBm)			Result
824	-16.2	-13.0	3.2	Complied
849	-13.4	-13.0	0.4	Complied




UL VS LTD Page 33 of 40

Transmitter Radiated Emissions at Band Edges (continued)

Results: EV-DO Rev. A

Frequency (MHz)	Peak Level (dBm)			Result
824	-16.1	-13.0	3.1	Complied
849	-13.9	-13.0	0.9	Complied

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1656	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	14 Nov 2014	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	13 May 2015	12
A1393	Attenuator	Huber & Suhner	6820.17.B	757456	02 May 2015	12
A259	Antenna	Chase	CBL6111	1513	01 Apr 2015	12

Page 34 of 40 UL VS LTD

5.2.6. Transmitter Frequency Stability (Temperature Variation)

Test Summary:

Test Engineer:	lan Watch	Test Dates:	18 August 2014 & 19 August 2014
Test Sample ESN:	80BCF6E7		

FCC Reference:	Parts 2.1055 & 22.355
Industry Canada Reference: RSS-Gen 4.7 / RSS-132 5.3	
Test Method Used:	FCC Part 2.1055, Industry Canada RSS-Gen Section 4.7 and Notes below
Test Mode:	RC1/1 with Service Option 2

Environmental Conditions:

Ambient Temperature (℃):	20 to 23
Ambient Relative Humidity (%):	33 to 42

Note(s):

- 1. Flying leads were connected internally to the EUT in place of the battery. These leads were extended and connected to a bench power supply.
- 2. Frequency error was measured using a calibrated Rohde & Schwarz CMW 500 Universal Radio Communications Tester in accordance with current Rohde & Schwarz application notes. The EUT was connected by suitable RF cables to the CMW 500. A bi-directional communications link was established between the EUT and CMW 500. The frequency meter value was recorded.
- 3. Temperature was monitored throughout the test with a calibrated digital thermometer. Nominal voltage was monitored throughout the test with a calibrated digital voltmeter.

Results: Middle Channel (836.52 MHz)

Temperature (°C)	Measured Frequency (MHz)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
-30	836.520020	20	0.0239	2.5	2.4761	Complied
-20	836.519981	19	0.0227	2.5	2.4773	Complied
-10	836.519982	18	0.0215	2.5	2.4785	Complied
0	836.519980	20	0.0239	2.5	2.4761	Complied
10	836.519982	18	0.0215	2.5	2.4785	Complied
20	836.519987	13	0.0155	2.5	2.4845	Complied
30	836.519982	18	0.0215	2.5	2.4785	Complied
40	836.519980	20	0.0239	2.5	2.4761	Complied
50	836.519982	18	0.0215	2.5	2.4785	Complied

UL VS LTD Page 35 of 40

<u>Transmitter Frequency Stability (Temperature Variation) (continued)</u> <u>Test Equipment Used:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1657	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
M1870	Radio Comms Tester	Rohde & Schwarz	CMW 500	145919	05 May 2015	12
S0537	DC power supply	TTi	EL302D	249928	Calibrated before use	-
M1643	Thermometer	Fluke	5211	18890136	07 Apr 2015	12
M122	Multimeter	Fluke	77	6491017	24 Apr 2015	12
E0520	Environmental Chamber	Thermatron	S-1.2CB	23840	Calibrated before use	-

Page 36 of 40 UL VS LTD

5.2.7. Transmitter Frequency Stability (Voltage Variation)

Test Summary:

Test Engineer:	lan Watch	Test Date:	18 August 2014
Test Sample ESN:	80BCF6E7		

FCC Reference:	Parts 2.1055 & 22.355
Industry Canada Reference:	RSS-Gen 4.7 / RSS-132 5.3
Test Method Used:	FCC Part 2.1055, Industry Canada RSS-Gen Section 4.7 and Notes below
Test Mode:	RC1/1 with Service Option 2

Environmental Conditions:

Temperature (℃):	20
Ambient Relative Humidity (%):	42

Note(s):

- 1. Flying leads were connected internally to the EUT in place of the battery. These leads were extended and connected to a bench power supply.
- 2. Frequency error was measured using a calibrated Rohde & Schwarz CMW 500 Universal Radio Communications Tester in accordance with current Rohde & Schwarz application notes. The EUT was connected by suitable RF cables to the CMW 500. A bi-directional communications link was established between the EUT and CMW 500. The frequency meter value was recorded.
- 3. Voltage was monitored throughout the test with a calibrated digital voltmeter.

Results: Middle Channel (836.52 MHz)

Supply Voltage (V)	Measured Frequency (MHz)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)	Margin (ppm)	Result
3.4	836.519986	14	0.0167	2.5	2.4833	Complied
4.2	836.519900	10	0.0120	2.5	2.4880	Complied
3.2 (End Point)	836.519986	14	0.0167	2.5	2.4833	Complied

UL VS LTD Page 37 of 40

<u>Transmitter Frequency Stability (Voltage Variation) (continued)</u> <u>Test Equipment Used:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1657	Thermohygrometer	JM Handelspunkt	30.5015.13	None stated	14 Mar 2015	12
M1870	Radio Comms Tester	Rohde & Schwarz	CMW 500	145919	05 May 2015	12
S0537	DC power supply	TTi	EL302D	249928	Calibrated before use	-
M1643	Thermometer	Fluke	5211	18890136	07 Apr 2015	12
M122	Multimeter	Fluke	77	6491017	24 Apr 2015	12
E0520	Environmental Chamber	Thermotron	S-1.2CB	23840	Calibrated before use	-

Page 38 of 40 UL VS LTD

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Conducted Output Power	824 to 849 MHz	95%	±1.13 dB
Occupied Bandwidth	824 to 849 MHz	95%	±3.92 %
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.65 dB
Radiated Spurious Emissions	1 GHz to 9 GHz	95%	±2.94 dB
Frequency Stability	824 to 849 MHz	95%	±23 Hz

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

UL VS LTD Page 39 of 40

VERSION 2.0

ISSUE DATE: 15 SEPTEMBER 2014

7. Report Revision History

Version Number	Revision Details				
	Page No(s)	Clause	Details		
1.0	-	-	Initial Version		
2.0	-	-	Admin updates		

--- END OF REPORT ---

Page 40 of 40 UL VS LTD