

FCC 47 CFR PART 15 SUBPART E

CERTIFICATION TEST REPORT

FOR

TABLET DEVICE

MODEL NUMBER: A1550

FCC ID: BCGA1550

REPORT NUMBER: 14U19187-E5, REVISION B

ISSUE DATE: JUNE 01, 2015

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	04/21/2015	Initial Issue	M. Mekuria
A	05/18/2015	Revised report to address TCB questions	T. Chu
В	06/01/2015	Revised Section 2	T. Chu

Page 2 of 699

TABLE OF CONTENTS

1.		ATTESTATION OF TEST RESULTS	. 9
2.		TEST METHODOLOGY	10
3.		FACILITIES AND ACCREDITATION	10
4.		CALIBRATION AND UNCERTAINTY	11
	4.	1. MEASURING INSTRUMENT CALIBRATION	11
	4.	2. SAMPLE CALCULATION	11
	4.	3. MEASUREMENT UNCERTAINTY	11
5.		EQUIPMENT UNDER TEST	12
	5.	1. DESCRIPTION OF EUT	12
	5.	2. MAXIMUM OUTPUT POWER	12
	5.	3. DESCRIPTION OF AVAILABLE ANTENNAS	14
	5.	4. SOFTWARE AND FIRMWARE	14
	5.	5. WORST-CASE CONFIGURATION AND MODE	15
	5.	6. DESCRIPTION OF TEST SETUP	16
6.		TEST AND MEASUREMENT EQUIPMENT	20
7.		ON TIME, DUTY CYCLE AND MEASUREMENT METHODS	21
	7.	1. ON TIME AND DUTY CYCLE	21
	7.	2. MEASUREMENT METHODS	25
8.		ANTENNA PORT TEST RESULTS	26
	8.	1. 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND	26
		8.1.1. 26 dB BANDWIDTH	
		8.1.2. 99% BANDWIDTH	
		8.1.4. OUTPUT POWER AND PSD	
	-	2. 802.11n HT20 2Tx CDD MODE IN THE 5.2 GHz BAND	
		8.2.1. 26 dB BANDWIDTH	
		8.2.3. AVERAGE POWER	43
		8.2.4. OUTPUT POWER AND PSD	44
	-	3. 802.11n HT20 2Tx STBC MODE IN THE 5.2 GHz BAND	
		8.3.1. 26 dB BANDWIDTH	
		8.3.3. AVERAGE POWER	58
		8.3.4. OUTPUT POWER AND PSD	
		4. 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND 8.4.1. 26 dB BANDWIDTH	
		Page 3 of 699	

8.4.3.	99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	. 69
8.5.1. 8.5.2. 8.5.3.	<i>11n HT40 2Tx CDD MODE IN THE 5.2 GHz BAND</i> 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	. 73 . 76 . 79
8.6.1. 8.6.2. 8.6.3.	11n HT40 2Tx STBC MODE IN THE 5.2 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	. 85 . 88 . 91
8.7.1. 8.7.2. 8.7.3.	11ac VHT80 SISO MODE IN THE 5.2 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	. 97 . 98 . 99
8.8.1. 8.8.2. 8.8.3.	11ac VHT80 2Tx CDD MODE IN THE 5.2 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	103 105 107
8.9.1. 8.9.2. 8.9.3.	11n HT20 SISO MODE IN THE 5.3 GHz BAND 26 dB BANDWIDTH	112 115 118
8.10.1. 8.10.2. 8.10.3.	22.11n HT20 2Tx CDD MODE IN THE 5.3 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD	123 127 131
8.11. 80 8.11.1. 8.11.2. 8.11.3. 8.11.4.	02.11n HT20 2Tx STBC MODE IN THE 5.3 GHz BAND 26 dB BANDWIDTH	137 141 145
8.12. 80 8.12.1. 8.12.2. 8.12.3. 8.12.4.	02.11n HT40 SISO MODE IN THE 5.3 GHz BAND 26 dB BANDWIDTH	151 153 155
8.13. 80 8.13.1. 8.13.2. 8.13.3. 8.13.4.	22.11n HT40 2Tx CDD MODE IN THE 5.3 GHz BAND 26 dB BANDWIDTH 99% BANDWIDTH AVERAGE POWER OUTPUT POWER AND PSD Page 4 of 699	159 162 165

8.14. 802.11n HT40 2Tx STBC MODE IN THE 5.3 GHz BAND 1 8.14.1. 26 dB BANDWIDTH 1 8.14.2. 99% BANDWIDTH 1 8.14.3. AVERAGE POWER 1 8.14.4. OUTPUT POWER AND PSD 1	170 173 176
8.15. 802.11ac VHT80 SISO MODE IN THE 5.3 GHz BAND 1 8.15.1. 26 dB BANDWIDTH 1 8.15.2. 99% BANDWIDTH 1 8.15.3. AVERAGE POWER 1 8.15.4. OUTPUT POWER AND PSD 1	181 183 185
8.16. 802.11ac VHT80 2Tx CDD MODE IN THE 5.3 GHz BAND 1 8.16.1. 26 dB BANDWIDTH 1 8.16.2. 99% BANDWIDTH 1 8.16.3. AVERAGE POWER 1 8.16.4. OUTPUT POWER AND PSD 1	189 191 193
8.17. 802.11n HT20 SISO MODE IN THE 5.6 GHz BAND 1 8.17.1. 26 dB BANDWIDTH 1 8.17.2. 99% BANDWIDTH 2 8.17.3. AVERAGE POWER 2 8.17.4. OUTPUT POWER AND PSD 2	197 200 203
8.18. 802.11n HT20 2Tx CDD MODE IN THE 5.6 GHz BAND 2 8.18.1. 26 dB BANDWIDTH 2 8.18.2. 99% BANDWIDTH 2 8.18.3. AVERAGE POWER 2 8.18.4. OUTPUT POWER AND PSD 2	213 218 223
8.19. 802.11n HT20 2Tx STBC MODE IN THE 5.6 GHz BAND 2 8.19.1. 26 dB BANDWIDTH 2 8.19.2. 99% BANDWIDTH 2 8.19.3. AVERAGE POWER 2 8.19.4. OUTPUT POWER AND PSD 2	235 240 245
8.20. 802.11n HT40 SISO MODE IN THE 5.6 GHz BAND 2 8.20.1. 26 dB BANDWIDTH 2 8.20.2. 99% BANDWIDTH 2 8.20.3. AVERAGE POWER 2 8.20.4. OUTPUT POWER AND PSD 2	257 260 263
8.21. 802.11n HT40 2Tx CDD MODE IN THE 5.6 GHz BAND 2 8.21.1. 26 dB BANDWIDTH 2 8.21.2. 99% BANDWIDTH 2 8.21.3. AVERAGE POWER 2 8.21.4. OUTPUT POWER AND PSD 2	273 278 283
8.22. 802.11n HT40 2Tx STBC MODE IN THE 5.6 GHz BAND 2 8.22.1. 26 dB BANDWIDTH 2 8.22.2. 99% BANDWIDTH 3 8.22.3. AVERAGE POWER 3 8.22.4. OUTPUT POWER AND PSD 3	295 300 305
8.23. 802.11ac HT80 SISO MODE IN THE 5.6 GHz BAND	317

8.23.3. 8.23.4.	AVERAGE POWER OUTPUT POWER AND PSD	
8.2 <i>4.</i> 802 8.24.1.	2.11ac HT80 2Tx CDD MODE IN THE 5.6 GHz BAND 26 dB BANDWIDTH	332
8.24.2.	99% BANDWIDTH	337
8.24.3.		
8.24.4.	OUTPUT POWER AND PSD	
	11n HT20 SISO MODE IN THE 5.8 GHz BAND	
8.25.1. 8.25.2.	6 dB BANDWIDTH	
6.25.2. 8.25.3.	26 dB BANDWIDTH	
8.25.4.	AVERAGE POWER	
8.25.5.	OUTPUT POWER	363
8.25.6.	Maximum Power Spectral Density (PSD)	365
	.11n HT20 2Tx CDD MODE IN THE 5.8 GHz BAND	
8.26.1.	6 dB BANDWIDTH	
8.26.2.	26 dB BANDWIDTH	
8.26.3. 8.26.4.	99% BANDWIDTH AVERAGE POWER	
8.26.5.	OUTPUT POWER	
8.26.6.	Maximum Power Spectral Density (PSD)	
8.27. 802	.11n HT40 SISO MODE IN THE 5.8 GHz BAND	389
8.27.1.	6 dB BANDWIDTH	389
8.27.2.	26 dB BANDWIDTH	
8.27.3.	99% BANDWIDTH	
8.27.4. 8.27.5.	AVERAGE POWER	
8.27.6.	Maximum Power Spectral Density (PSD)	
	1.11n HT40 2Tx CDD MODE IN THE 5.8 GHz BAND	
8.28.1.	6 dB BANDWIDTH	
8.28.2.	26 dB BANDWIDTH	
8.28.3.	99% BANDWIDTH	
8.28.4.		
8.28.5. 8.28.6.	OUTPUT POWER Maximum Power Spectral Density (PSD)	411 /13
8.29. 802 8.29.1.	.11ac VHT80 SISO MODE IN THE 5.8 GHz BAND 6 dB BANDWIDTH	
8.29.2.	26 dB BANDWIDTH	
8.29.3.	99% BANDWIDTH	
8.29.4.	AVERAGE POWER	
8.29.5.	OUTPUT POWER	
8.29.6.	Maximum Power Spectral Density (PSD)	
	2.11ac VHT80 2Tx CDD MODE IN THE 5.8 GHz BAND	
8.30.1. 8.30.2.	6 dB BANDWIDTH	
8.30.2. 8.30.3.	99% BANDWIDTH	
8.30.4.	AVERAGE POWER	
8.30.5.	OUTPUT POWER	
8.30.6.	Maximum Power Spectral Density (PSD)	
	Page 6 of 699	

9. RAI	DIATED TEST RESULTS	441
9.1.	LIMITS AND PROCEDURE	441
9.2.	802.11n HT20 SISO MODE IN THE 5.2 GHz BAND	442
9.3.	802.11n HT20 2Tx CDD MODE IN THE 5.2 GHz BAND	450
9.4.	802.11n HT40 SISO MODE IN THE 5.2 GHz BAND	458
9.5.	802.11n HT40 2Tx CDD MODE IN THE 5.2 GHz BAND	464
9.6.	802.11ac VHT80 1TX SISO MODE IN THE 5.2 GHz BAND	470
9.7.	802.11ac VHT80 2TX CDD MODE IN THE 5.2 GHz BAND	474
9.8.	802.11n HT20 SISO MODE IN THE 5.3 GHz BAND	478
9.9.	802.11n HT20 2Tx CDD MODE IN THE 5.3 GHz BAND	486
9.10.	802.11n HT40 SISO MODE IN THE 5.3 GHz BAND	494
9.11.	802.11n HT40 2Tx CDD MODE IN THE 5.3 GHz BAND	500
9.12.	802.11ac VHT80 SISO MODE IN THE 5.3 GHz BAND	506
9.13.	802.11ac VHT80 2TX CDD MODE IN THE 5.3 GHz BAND	510
9.14.	802.11n HT20 SISO MODE IN THE 5.6 GHz BAND	514
9.15.	802.11n HT20 2Tx CDD MODE IN THE 5.6 GHz BAND	526
9.16.	802.11n HT40 SISO MODE IN THE 5.6 GHz BAND	538
9.17.	802.11n HT40 2Tx CDD MODE IN THE 5.6 GHz BAND	550
9.18.	802.11ac VHT80 SISO MODE IN THE 5.6 GHz BAND	562
9.19.	802.11ac VHT80 2TX CDD MODE IN THE 5.6 GHz BAND	570
9.20.	802.11n HT20 SISO MODE IN THE 5.8 GHz BAND	578
9.21.	802.11n HT20 2Tx CDD MODE IN THE 5.8 GHz BAND	588
9.22.	802.11n HT40 SISO MODE IN THE 5.8 GHz BAND	598
9.23.	802.11n HT40 2Tx CDD MODE IN THE 5.8 GHz BAND	606
9.24.	802.11ac 80Mhz 1Tx SISO MODE IN THE 5.8 GHz BAND	614
9.25.	802.11ac 80Mhz 2Tx CDD MODE IN THE 5.8 GHz BAND	620
9.26.	WORST-CASE BELOW 1 GHz	626
9.27.	WORST-CASE ABOVE 18 GHz	628
10. A	C POWER LINE CONDUCTED EMISSIONS	630
11. D	YNAMIC FREQUENCY SELECTION	635
11.1.	OVERVIEW	635
11.′ 11.′		
	1.2. SETUP OF EUT (CLIENT MODE)	
11.1	1.3. SETUP OF EUT (CLIENT-TO-CLIENT COMMUNICATIONS MODE)	643
11.1		
11.2.	CLIENT MODE RESULTS FOR 20 MHz BANDWIDTH Page 7 of 699	646
	FICATION SERVICES INC. FORM NO: CCSUP4701J	
	ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.	

11.2.1. TEST CHANNEL	646
11.2.2. RADAR WAVEFORM AND TRAFFIC	646
11.2.3. OVERLAPPING CHANNEL TESTS	
11.2.4. MOVE AND CLOSING TIME	649
11.3. CLIENT MODE RESULTS FOR 40 MHz BANDWIDTH	653
11.3.1. TEST CHANNEL	653
11.3.2. RADAR WAVEFORM AND TRAFFIC	653
11.3.3. OVERLAPPING CHANNEL TESTS	
11.3.4. MOVE AND CLOSING TIME	656
11.4. CLIENT MODE RESULTS FOR 80 MHz BANDWIDTH	660
11.4.1. TEST CHANNEL	660
11.4.2. RADAR WAVEFORM AND TRAFFIC	660
11.4.3. OVERLAPPING CHANNEL TESTS	663
11.4.4. MOVE AND CLOSING TIME	
11.4.5. 10-MINUTE BEACON MONITORING PERIOD	667
11.5. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 20 MHz BANDWI	DTH 668
11.5.1. TEST CHANNEL	
11.5.2. RADAR WAVEFORM AND TRAFFIC	668
11.5.3. OVERLAPPING CHANNEL TESTS	671
11.5.4. MOVE AND CLOSING TIME	671
11.6. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 40 MHz BANDWI	DTH 675
11.6.1. TEST CHANNEL	675
11.6.2. RADAR WAVEFORM AND TRAFFIC	675
11.6.3. OVERLAPPING CHANNEL TESTS	678
11.6.4. MOVE AND CLOSING TIME	678
11.7. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 80 MHz BANDWI	DTH 683
11.7.1. TEST CHANNEL	
11.7.2. RADAR WAVEFORM AND TRAFFIC	
11.7.3. OVERLAPPING CHANNEL TESTS	
11.7.4. MOVE AND CLOSING TIME	
11.7.5. 10-MINUTE BEACON MONITORING PERIOD	690
12. SETUP PHOTOS	691

Page 8 of 699

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.	
EUT DESCRIPTION:	TABLET DEVICE	
MODEL:	A1550	
SERIAL NUMBER:	F4KPC009GJK2 (CONDUCTED); F4KP604KGJK5 (RADIATED); F4KNX021GG40 (DFS)	
DATE TESTED:	FEBRUARY 16, 2015- MAY 07, 2015	
	APPLICABLE STANDARDS	
ST	ANDARD	TEST RESULTS
CFR 47 F	Part 15 Subpart E	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

MEMGISTU MEKURIA SENIOR ENGINEER UL VERIFICATION SERVICES INC.

TRI PHAM LAB TECHNICIAN UL VERIFICATION SERVICES INC.

Page 9 of 699

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 14-30, FCC KDB 662911 D01 v02r01, FCC KDB 905462 D02 v01r01/D03 v01r01/D06 v01, FCC KDB 789033 D02, FCC KDB 644545 D03 v01 ANSI C63.10-2009.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	🛛 Chamber E
Chamber C	Chamber F
	Chamber G
	Chamber H

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B - 1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 10 of 699

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 11 of 699

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a tablet with multimedia functions (music, application support, and video), Cellular GSM/GPRS/EGPRS/CDMA2000 1xRTT/1x Advanced/EVDO Rev.A/EVDO Rev.B /WCDMA /HSPA+/DC-HSDPA/LTE FDD & Carrier Aggregation/TDD/TD-SCDMA radio, IEEE 802.11a/b/g/n/ac radio, and Bluetooth radio. The rechargeable battery is not user accessible.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Antenna	Output Power	Output Power	
(MHz)			(dBm)	(mW)	
	802.11a SISO	Cov	Covered by 802.11n HT20 SISO		
	802.11a CDD 2TX	Cover	ed by 802.11n HT2	20 CDD 2TX	
5180 - 5240	802.11n HT20 SISO	Antenna B	17.87	61.24	
5160 - 5240	802.11n HT20 CDD 2TX	Antenna B + A	18.88	77.27	
	802.11n HT20 STBC 2TX	Antenna B + A	19.88	97.27	
	802.11n HT20 SDM 2TX	Covered by 802.11n HT20 STBC 2TX			
	802.11n HT40 SISO	Antenna B	17.94	62.23	
	802.11n HT40 CDD 2TX	Antenna B + A	18.96	78.70	
5190 - 5230	802.11n HT40 STBC 2TX	Antenna B + A	20.40	109.65	
	802.11n HT40 SDM 2TX	Cover	ed by 802.11n HT4	0 STBC 2TX	
	802.11ac VHT80 SISO	Antenna B	13.01	20.00	
	802.11ac VHT80 CDD 2TX	Antenna B + A	15.57	36.06	
5210	802.11a c VHT80 STBC 2TX	Covered by 802.11ac VHT80 CDD 2TX		T80 CDD 2TX	
	802.11ac VHT80 SDM 2TX	Covered by 802.11ac VHT80 CDD 2TX			

5.3GHz Band

Frequency Range	Mode	Antenna	Output Power	Output Power	
(MHz)			(dBm)	(mW)	
	802.11a SISO	Covered by 802.11n HT20 SISO			
	802.11a CDD 2TX	Cover	Covered by 802.11n HT20 CDD 2TX		
5260 5220	802.11n HT20 SISO	Antenna B	16.83	48.19	
5260 - 5320	802.11n HT20 CDD 2TX	Antenna B + A	18.42	69.50	
	802.11n HT20 STBC 2TX	Antenna B + A	19.51	89.33	
	802.11n HT20 SDM 2TX	Covered by 802.11n HT20 STBC 2TX			
	802.11n HT40 SISO	Antenna B	16.85	48.42	
	802.11n HT40 CDD 2TX	Antenna B + A	18.50	70.79	
5270 - 5310	802.11n HT40 STBC 2TX	Antenna B + A	19.53	89.74	
	802.11n HT40 SDM 2TX	Covered by 802.11n HT40 STBC 2TX		0 STBC 2TX	
	802.11a c VHT80 SISO	Antenna B	15.01	31.70	
5200	802.11ac VHT80 CDD 2TX	Antenna B + A	15.62	36.48	
5290	802.11ac VHT80 STBC 2TX	Cover	ed by 802.11n HT8	30 CDD 2TX	
	802.11ac VHT80 SDM 2TX	Cover	ed by 802.11n HT8	30 CDD 2TX	

Page 12 of 699

5.6GHz Band

Frequency Range	Mode	Antenna	Output Power	Output Power	
(MHz)		(dBm)		(mW)	
5500 - 5700	802.11a SISO	Covered by 802.11n HT20 SISO			
5720	802.11a SISO	Covered by 802.11n HT20 SISO			
5500 - 5700	802.11a CDD 2TX	Covere	ed by 802.11n HT2	0 CDD 2TX	
5720	802.11a CDD 2TX	Covere	ed by 802.11n HT2	0 CDD 2TX	
5500 - 5700	802.11n HT20 SISO	Antenna B	15.44	34.99	
5720	802.11n HT20 SISO	Antenna B	14.42	27.67	
5500 - 5700	802.11n HT20 CDD 2TX	Antenna B + A	17.77	59.84	
5720	802.11n HT20 CDD 2TX	Antenna B + A	16.75	47.32	
5500 - 5700	802.11n HT20 STBC 2TX	Antenna B + A	18.46	70.15	
5500 - 5700	802.11n HT20 SDM 2TX	Covere	d by 802.11n HT20	D STBC 2TX	
5720	802.11n HT20 STBC 2TX	Antenna B + A 17.45		55.59	
5720	802.11n HT20 SDM 2TX	Covered by 802.11n HT20 STBC 2TX			
5510 - 5670	802.11n HT40 SISO	Antenna B	15.49	35.40	
5710	802.11n HT40 SISO	Antenna B	14.64	29.11	
5510 - 5670	802.11n HT40 CDD 2TX	Antenna B + A	18.00	63.10	
5710	802.11n HT40 CDD 2TX	Antenna B + A	16.60	45.71	
5510 - 5670	802.11n HT40 STBC 2TX	Antenna B + A	18.48	70.47	
5510 - 5670	802.11n HT40 SDM 2TX	Covere	d by 802.11n HT40	D STBC 2TX	
5710	802.11n HT40 STBC 2TX	Antenna B + A	16.59	45.60	
5710	802.11n HT40 SDM 2TX	Covere	d by 802.11n HT40	D STBC 2TX	
5530-5610	802.11ac VHT80 SISO	Antenna B	15.70	37.15	
5690	802.11ac VHT80 SISO	Antenna B	15.52	35.65	
5530-5610	802.11ac VHT80 CDD 2TX	Antenna B + A	18.62	72.78	
5690	802.11a c VHT80 CDD 2TX	Antenna B + A	18.61	72.61	
5530-5610	802.11ac VHT80 STBC 2TX	Covere	ed by 802.11n HT8	0 CDD 2TX	
5530-5610	802.11ac VHT80 SDM 2TX	Covere	ed by 802.11n HT8	0 CDD 2TX	
5690	802.11ac VHT80 STBC 2TX	Covere	ed by 802.11n HT8	0 CDD 2TX	
5690	802.11ac VHT80 SDM 2TX	Covere	ed by 802.11n HT8	0 CDD 2TX	

5.8GHz Band

Frequency Range (MHz)	Mode	Mode Antenna			
((MHz) 802.11a SISO Covered by				
	802.11a CDD 2TX	Covered	d by 802.11n HT20	CDD 2TX	
	802.11n HT20 SISO	Antenna B	16.92	49.20	
5745 - 5825	802.11n HT20 CDD 2TX	Antenna B + A	19.86	96.83	
	802.11n HT20 STBC 2TX	Covered	Covered by 802.11n HT20 CDD 2TX		
	802.11n HT20 SDM 2TX	802.11n HT20 SDM 2TX Covered by 802.11n HT20 CDD 2T			
	802.11n HT40 SISO	Antenna B	16.00	39.81	
	802.11n HT40 CDD 2TX	Antenna B + A	18.05	63.83	
5755 - 5795	802.11n HT40 STBC 2TX	Covered by 802.11n HT40 CDD 2TX			
	802.11n HT40 SDM 2TX	Covered	CDD 2TX		
	802.11ac VHT80 SISO	Antenna B	14.02	25.23	
	802.11ac VHT80 CDD 2TX	Antenna B + A	16.04	40.18	
5775	802.11ac VHT80 STBC 2TX	Covered	by 802.11ac VHT8	0 CDD 2TX	
	802.11ac VHT80 SDM 2TX	Covered	by 802.11ac VHT8	0 CDD 2TX	

Page 13 of 699

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Band	Antenna Peak Gain					
(GHz)	Antenna B	Antenna D	Antenna A			
5.2G	3.2	-	2.1			
5.3G	3.3	-	3.1			
5.5G	3.9	-	3.2			
5.8G	3.7	-	3.4			

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 12H33.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 14 of 699

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The following configurations were investigated and EUT powered by AC/DC adapter was the worst-case scenario. AC power line and below 1G radiated tests were conducted on configuration 1.

Configuration	Descriptions
1	EUT powered by AC/DC adapter via USB cable
2	EUT powered by host PC via USB cable

For SISO modes, there are two transmission antennas. The antenna used in any given time can be either antenna A or antenna B. For MIMO modes, both antenna A and antenna B used at the same time.

The fundamental of the EUT was investigated in three orthogonal orientations X/Y/Z. After the investigation it was determined that the below orientations was considered as the worst-case for each mode. Then all final radiated testing was performed with the EUT at the worst-case orientation

Frequency Band (GHz)	Mode	Antenna Port	Worst-case Orientation
	1TX SISO	Antenna A	X-Flatbed
5.2-5.8	11X 3130	Antenna B	Y-Landscape
	2TX MIMO	Antenna A + Antenna B	Y-Landscape

Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ac VHT80 mode: MCS0

802.11ac VHT20 and VHT40 mode are different from 802.11nHT20 and HT40 only in control messages and have the same power settings.

Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

For the co-located test, no other emissions were found after have been investigated from the conducted measurement with all different combination frequencies between BT & 5GHz bands.

Page 15 of 699

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description	Manufacturer	Model	Serial Number	FCC ID	
Laptop AC/DC adapter	Lenovo	92P1160	11S92P1160Z1ZBGH798B12	NA	
Laptop	Lenovo	7659	L3-AL664 08/03	NA	
Earphone	Apple	NA	NA	NA	
EUT AC/DC adapter	Apple	MD836LL/A	NA	NA	

I/O CABLES (CONDUCTED TEST)

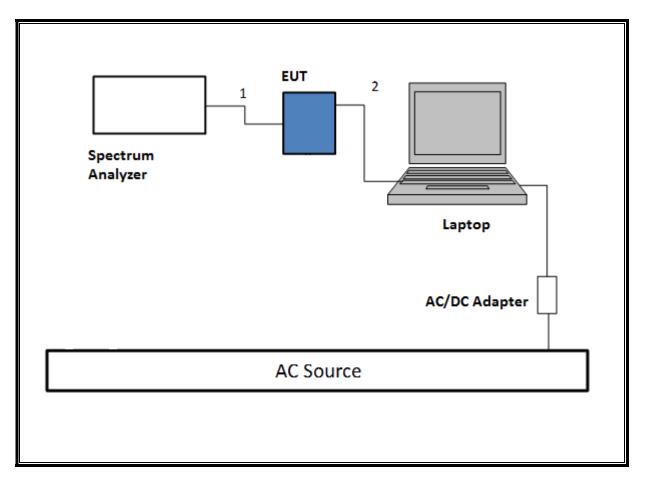
	I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks			
1	Antenna	1	SMA	Un-Shielded	0.2	To spectrum Analyzer			
2	USB	1	USB	Shielded	1	N/A			

I/O CABLES (RADIATED ABOVE 1 GHZ)

I/O Cable List								
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
Nonou	cod	-		-				

None used

I/O CABLES (AC POWER CONDUCTED TEST and below 1 GHZ)

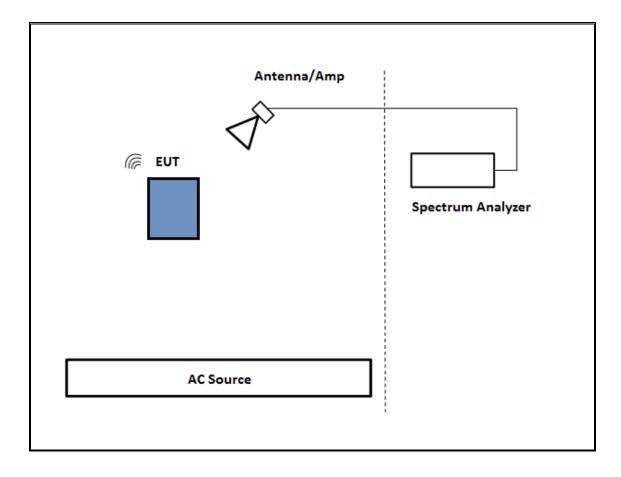

	I/O Cable List							
Cable	Port	# of identical			Cable	Remarks		
No		ports	Туре		Length (m)			
1	AC	1	US115	Un-Shielded	0.8	NA		
2	DC	1	lightning	Un-Shielded	1	NA		
3	Audio	1	Jack	Un-Shielded	0.5	NA		

Page 16 of 699

TEST SETUP- CONDUCTED PORT

The EUT was tested connected to a host Laptop via USB cable adapter and spectrum analyzer to antenna port. Test software exercised the EUT.

SETUP DIAGRAM

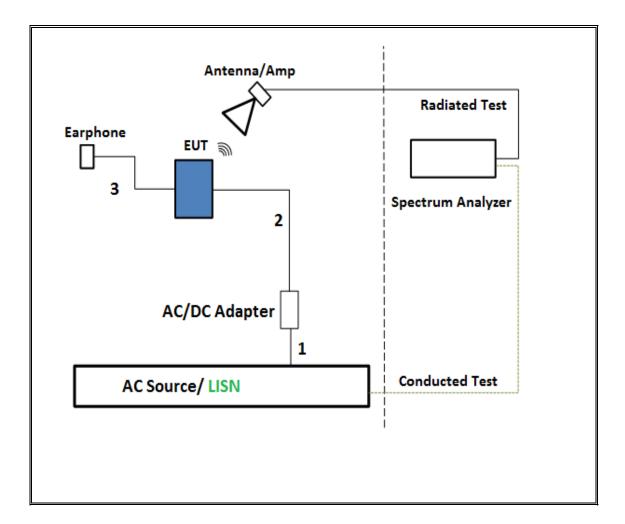


Page 17 of 699

TEST SETUP- RADIATED-ABOVE 1 GHZ

The EUT was tested battery powered. Test software exercised the EUT.

SETUP DIAGRAM


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 18 of 699

TEST SETUP- BELOW 1GHZ & AC LINE CONDUCTED TESTS

The EUT was tested with earphone connected and powered by AC adapter. Test software exercised the EUT.

SETUP DIAGRAM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 19 of 699

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equ	uipment List		
Description	Manufacturer	Model	Asset	Cal Due
Antenna, Horn 1-18GHz	ETS Lindgren	3117	00143449	2/10/2016
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences	JB3	A022813-1	1/14/2016
Amplifier, 1 - 18GHz	Miteq	AFS42-00101800- 25-S-42	1782153	6/23/2015
Amplifier, 10KHz to 1GHz, 32dB	Sonoma	310N	323561	5/28/2015
*Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	US51350187	5/2/2015
Power Meter, P-series single channel	Agilent	N1911A	MY53060010	4/7/2016
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Agilent	N1921A	MY53260010	7/12/2015
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826	1049	12/17/2015
Spectrum Analyzer, 40 GHz	Agilent	8564E	3943A01643	8/6/2015
Amplifier, 1 to 26.5GHz, 23.5dB Gain minimum	Agilent	8449B	3008A04710	4/13/2016
Horn Antenna, 40GHz	ARA	MWH-2640/B	1029	7/15/2015
Amplifier, 26 to 40GHz	Miteq	NSP4000-SP2	1029	9/3/2015
	AC Line	Conducted		
EMI Test Receiver 9Khz-7GHz	Rohde & Schwarz	ECSI7	100935	09/16/15
LISN for Conducted Emissions CISPR-16	FCC	50/250-25-2	114	01/16/16
Power Cable, Line Conducted Emissions ANSI 63.4	UL	PG1	N/A	7/28/2015
	UL SC	OFTWARE		
Radiated Software	UL	UL EMC	Ver 9.5, Ju	
Conducted Software	UL	UL EMC	•	rch 31, 2015
AC Line Conducted Software	UL	UL EMC	Ver 9.5, A	oril 3, 2015

* Equipment was used before expiration date.

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

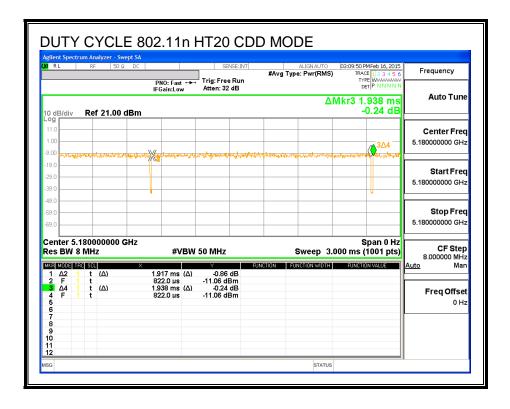
7.1. ON TIME AND DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

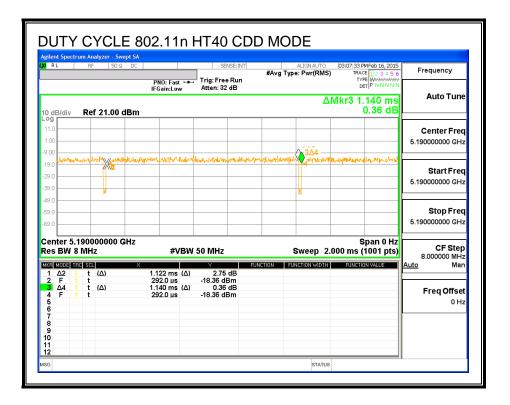
PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

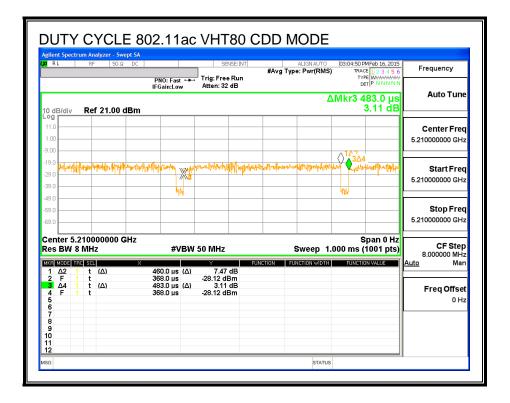

<u>RESULTS</u>

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11n HT20 1TX	1.920	1.941	0.989	98.92%	0.00	0.010
802.11n HT20 CDD	1.917	1.938	0.989	98.92%	0.00	0.010
802.11n HT40 1TX	1.124	1.142	0.984	98.42%	0.00	0.010
802.11n HT40 CDD	1.122	1.140	0.984	98.42%	0.00	0.010
802.11ac VHT80 1TX	0.458	0.481	0.952	95.22%	0.21	2.183
802.11ac VHT80 CDD	0.460	0.483	0.952	95.24%	0.21	2.174

Page 21 of 699


DUTY CYCLE PLOTS

		PNO: Fast +			#Avg Typ	ALIGNAUTO e: Pwr(RMS)	02:56:26 PM Feb 16 TRACE 1 2 3 TYPE WWW DET P N N	456 Frequency
0 dB/div	Ref 21.00 dBi	IFGain:Low	Atten: v	2 00		Δ	Mkr3 1.941 0.26	ms Auto Tune
og 1.0 .00			Lean-Jorna Ma	tage of the second second second	Liftman, effermantes	adderer salter tae faith		Center Freq 5.180000000 GHz
9.0								5.180000000 GHz
9.0 9.0 9.0								Stop Freq 5.18000000 GHz
enter 5.1 es BW 8 ε 2005 μετ 1 Δ2 1			W 50 MH:			Sweep 3.	Span (000 ms (1001 FUNCTION VALUE	pts) CF Step 8.000000 MHz
2 F 1 3 Δ4 1 4 F 1 5 6 7 8 9	t t t (Δ) t	984.0 µs 1.941 ms (/ 984.0 µs	-7.77	dBm 6 dB				Freq Offset 0 Hz


Page 22 of 699

gilent Spectrum Analyzer - RL RF 5	οΩ DC PNO: Fast ←	SENSE:INT	ALIGNAUTO #Avg Type: Pwr(RMS)	02:59:20 PMFeb 16, 2015 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	Frequency
0 dB/div Ref 21.0	IFGain:Low	Atten: 32 dB	Δ	Mkr3 1.142 ms 0.79 dB	Auto Tune
og 11.0 2.00					Center Fred 5.190000000 GH;
9.0 <mark>ohitiyeler.xhiMaqabiler.</mark> 29.0 39.0	104-1441 101-101-101-101-101-101-101-101-101-10	water a second	Baganda and a same and a same and	3∆4 Ann ian manal balanya	Start Free 5.190000000 GHz
19.0 59.0 59.0					Stop Fred 5.19000000 GHz
Senter 5.19000000 Less BW 8 MHz Liss Model 168 Set 1 Δ2 F 1 t Δ4 1 t Δ 5 1 t 5 6 7 9 9 9 9 9 10 12 2 1 <th1< th=""> <th1< th=""> <th< td=""><td></td><td>3.46 dB -24.25 dBm</td><td>Sweep 2.</td><td>Span 0 Hz 000 ms (1001 pts) FUNCTION VALUE</td><td>CF Step 8.00000 MH3 <u>Auto</u> Mar Freq Offset 0 Hz</td></th<></th1<></th1<>		3.46 dB -24.25 dBm	Sweep 2.	Span 0 Hz 000 ms (1001 pts) FUNCTION VALUE	CF Step 8.00000 MH3 <u>Auto</u> Mar Freq Offset 0 Hz

Page 23 of 699

Agilent Spectrum Analyzer - S	LE 802.11ac VHT80 1	ALIGN AUTO 03:01:46 PM Feb 16,	2015
	PNO: Fast ↔→ IFGain:Low Atten: 32 dB	#Avg Type: Pwr(RMS) TRACE 123 TYPE WWW DET P NNT	IN N
10 dB/div Ref 21.00	dBm	∆Mkr3 481.0 0.53 0	
.00 1.00 9.00			Center Freq 5.210000000 GHz
19.0 29.0 Ганных толого (1911) Ал ен 39.0 49.0		สุราชสาวประหา} สุราชสาวประหา	Start Freq 5.210000000 GHz
59.0 69.0			Stop Freq 5.210000000 GHz
Center 5.210000000 Res BW 8 MHz IKR MODE TRO SCL	#VBW 50 MHz	Span 0 Sweep 1.000 ms (1001 p INCTION FUNCTION WIDTH FUNCTION VALUE	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	458.0 μs (Δ) 1.81 dB 254.0 μs -28.30 dBm 481.0 μs (Δ) 0.53 dB 254.0 μs -28.30 dBm		Freq Offset 0 Hz
9 10 11 12			

Page 24 of 699

7.2. MEASUREMENT METHODS

26 dB Emission BW: KDB 789033 D02 v01, Section C.

<u>99% Occupied BW</u>: KDB 789033 D02 v01, Section D.

Conducted Output Power: KDB 789033 D02 v01, Section E.3.a (Method PM).

Power Spectral Density: KDB 789033 D02 v01, Section F.

Unwanted emissions in restricted bands: KDB 789033 D02 v01, Sections G.3, G.4, G.5, and G.6.

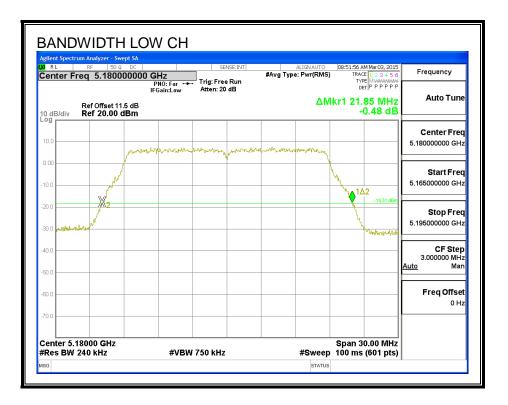
Unwanted emissions in non-restricted bands: KDB 789033 D02 v01, Sections G.3, G.4, and G.5.

Page 25 of 699

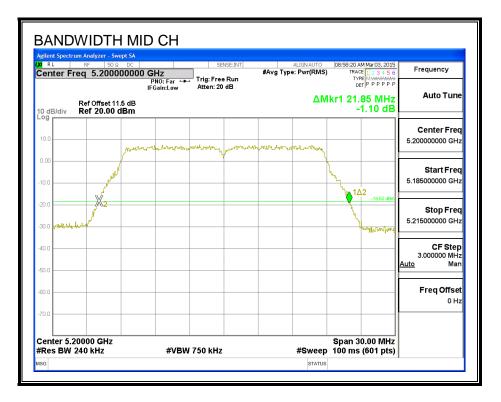
8. ANTENNA PORT TEST RESULTS

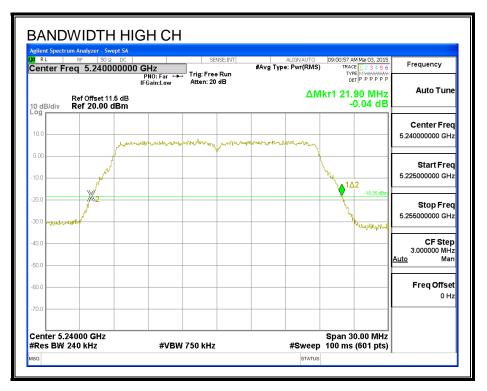
8.1. 802.11n HT20 SISO MODE IN THE 5.2 GHz BAND

8.1.1. 26 dB BANDWIDTH


<u>LIMITS</u>

None; for reporting purposes only.


RESULTS

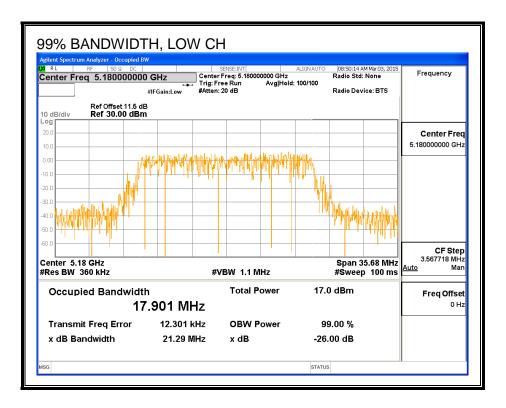

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	21.85
Mid	5200	21.85
High	5240	21.90

26 dB BANDWIDTH

Page 26 of 699

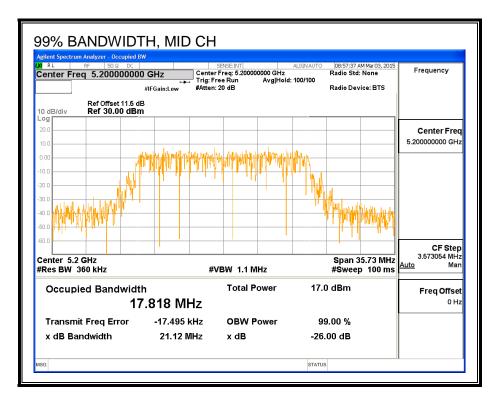
Page 27 of 699

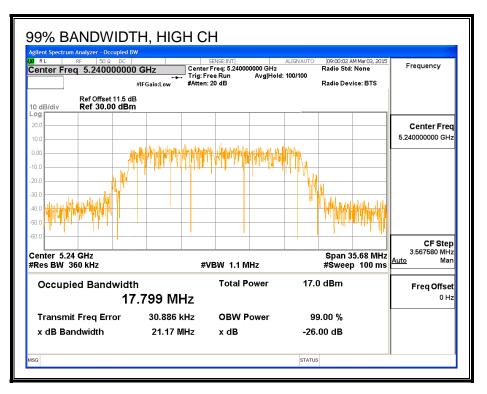
8.1.2. 99% BANDWIDTH


<u>LIMITS</u>

None; for reporting purposes only.

<u>RESULTS</u>


Channel	Frequency	99% BW
	(MHz)	(MHz)
Low	5180	17.9010
Mid	5200	17.8180
High	5240	17.7990


99% BANDWIDTH, ANTENNA A

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 28 of 699

Page 29 of 699

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	15.88
Mid 5200		17.87
High 5240		17.74

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 30 of 699

8.1.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Page 31 of 699

Antenna Gain and Limits

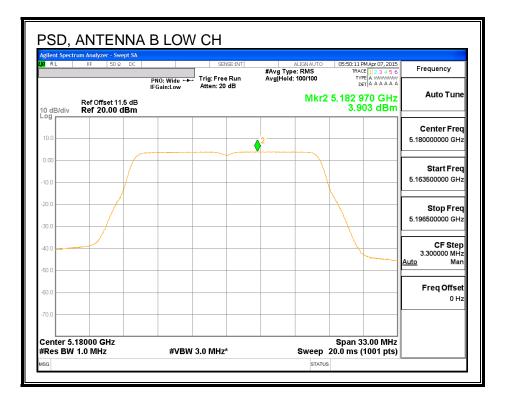
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	3.20	3.20	24.00	11.00
Mid	5200	3.20	3.20	24.00	11.00
High	5240	3.20	3.20	24.00	11.00

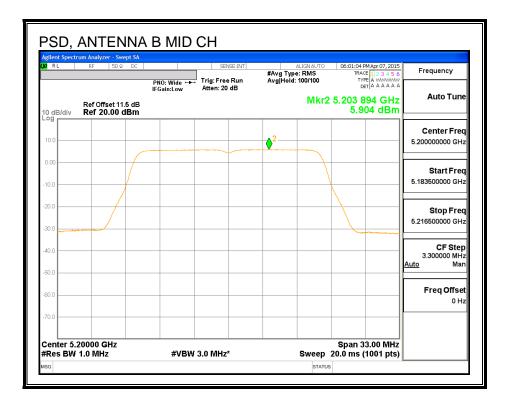
0.00

Duty Cycle CF (dB)

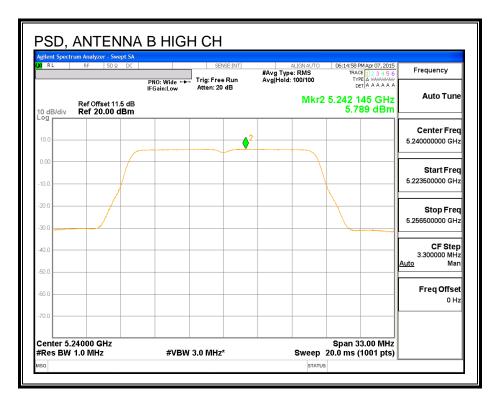
Included in Calculations of Corr'd Power & PSD

Output Power Results


Channel	Frequency	Antenna B	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	15.88	15.88	24.00	-8.12
Mid	5200	17.87	17.87	24.00	-6.13
High	5240	17.74	17.74	24.00	-6.26


PSD Results

Channel	Frequency	Antenna B	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	3.90	3.90	11.00	-7.10
Mid	5200	5.90	5.90	11.00	-5.10
High	5240	5.79	5.79	11.00	-5.21


Page 32 of 699

PSD, ANTENNA B

Page 33 of 699

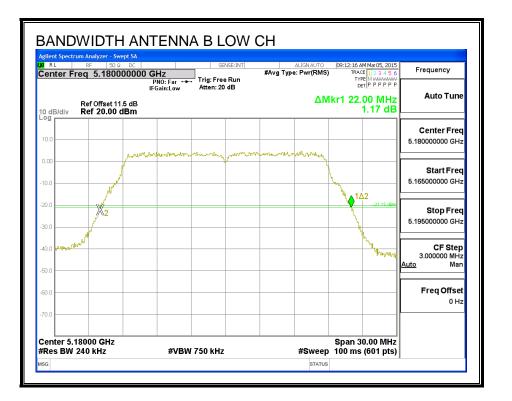
Page 34 of 699

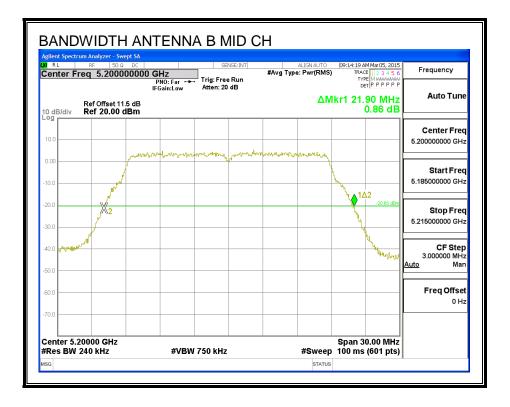
8.2. 802.11n HT20 2Tx CDD MODE IN THE 5.2 GHz BAND

8.2.1. 26 dB BANDWIDTH

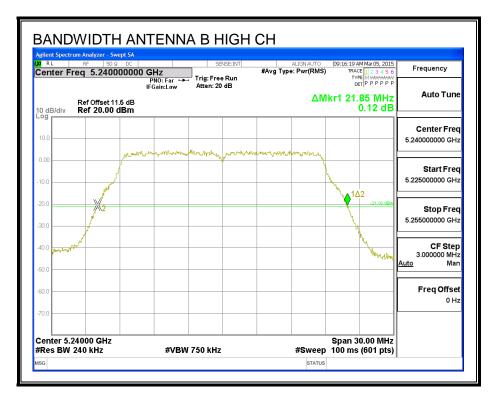
LIMITS

None; for reporting purposes only.

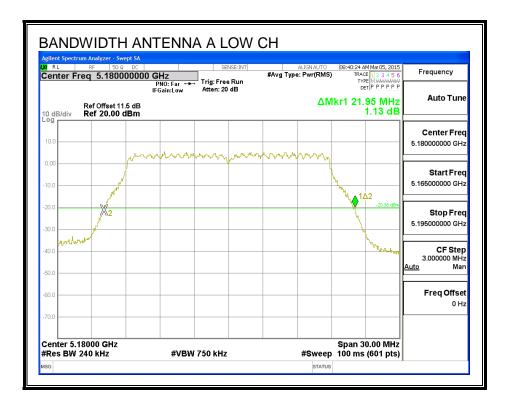

RESULTS

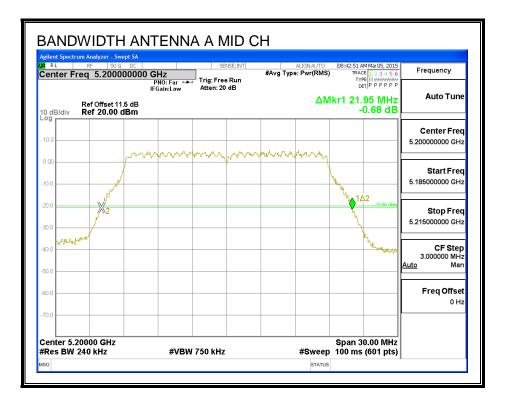

Channel	Frequency	26 dB BW	26 dB BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5180	22.00	21.95
Mid	5200	21.90	21.95
High	5240	21.85	21.80

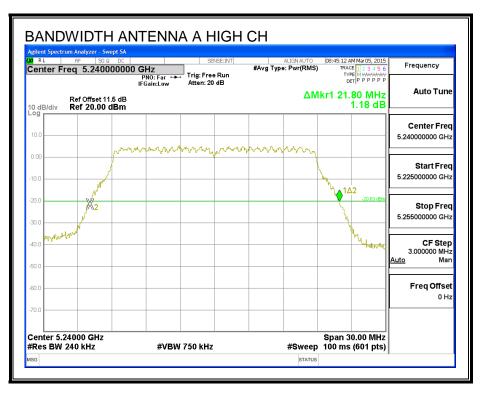
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


Page 35 of 699

26 dB BANDWIDTH, ANTENNA B




Page 36 of 699



26 dB BANDWIDTH, ANTENNA A

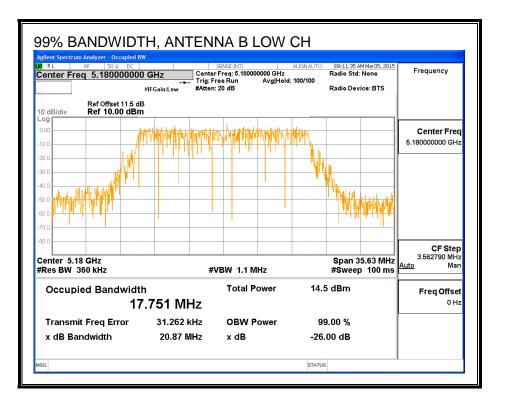
Page 37 of 699

Page 38 of 699

8.2.2. 99% BANDWIDTH

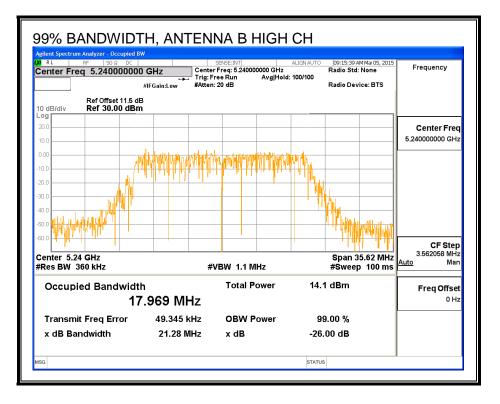
LIMITS

None; for reporting purposes only.

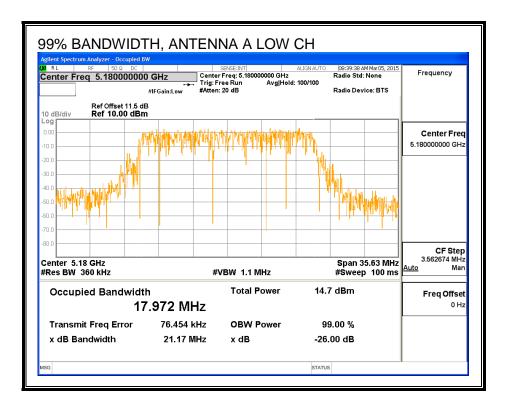

<u>RESULTS</u>

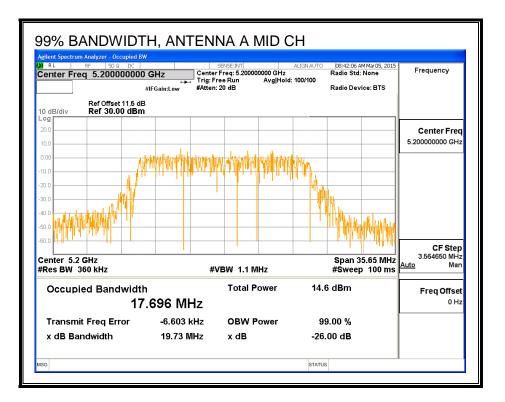
Channel	Frequency	99% BW	99% BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5180	17.75	17.97
Mid	5200	17.98	17.70
High	5240	17.97	17.81

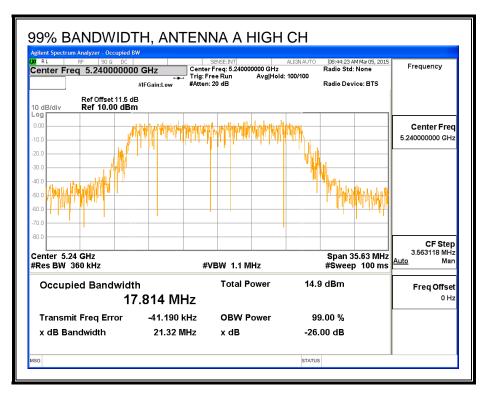
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


Page 39 of 699

99% BANDWIDTH, ANTENNA B




Page 40 of 699



99% BANDWIDTH, ANTENNA A

Page 41 of 699

Page 42 of 699

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Average Power Results

Channel	Frequency	Antenna B	Antenna A	Total
	(MHz)	Power (dBm)	Power (dBm)	Power (dBm)
Low	5180	14.87	14.97	17.93
Mid	5200	15.90	15.84	18.88
High	5240	15.75	15.92	18.85

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 43 of 699

8.2.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 44 of 699

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Uncorrelated Chains
		Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	2.68

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Correlated Chains
		Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	5.68

Page 45 of 699

RESULTS

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	2.68	5.68	24.00	11.00
Mid	5200	2.68	5.68	24.00	11.00
High	5240	2.68	5.68	24.00	11.00

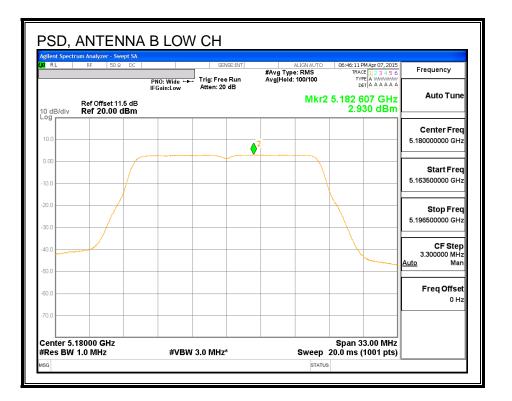
0.00

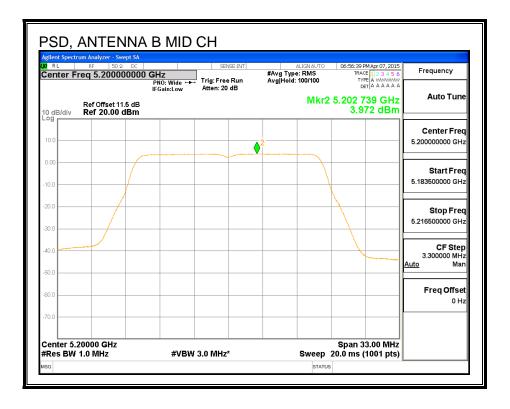
Duty Cycle CF (dB)

Included in Calculations of Corr'd Power & PSD

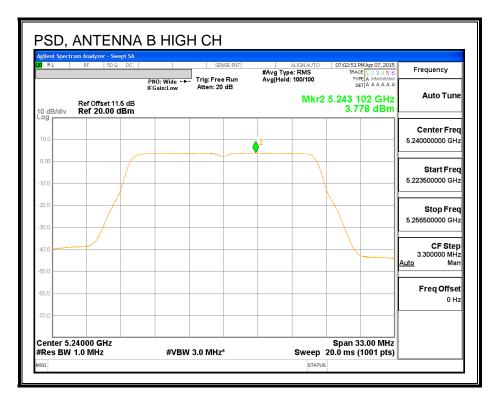
Output Power Results

Channel	Frequency	Antenna B	Antenna A	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	14.87	14.97	17.93	24.00	-6.07
Mid	5200	15.90	15.84	18.88	24.00	-5.12
High	5240	15.75	15.92	18.85	24.00	-5.15

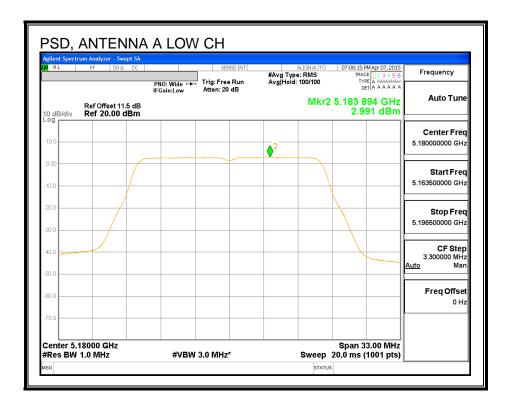

PSD Results

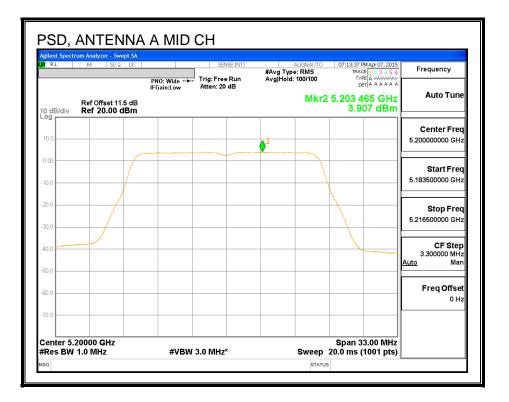

Channel	Frequency	Antenna B	Antenna A	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	2.93	2.99	5.97	11.00	-5.03
Mid	5200	3.97	3.90	6.95	11.00	-4.05
High	5240	3.78	3.94	6.87	11.00	-4.13

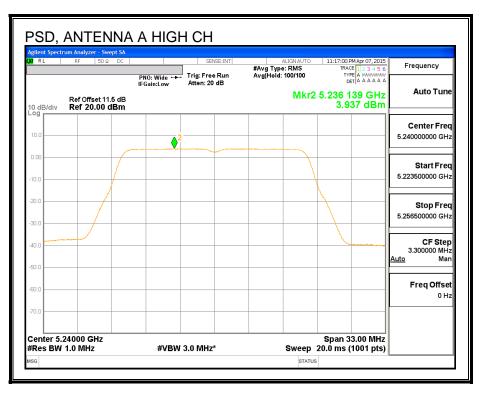
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 46 of 699

PSD, ANTENNA B




Page 47 of 699



PSD, ANTENNA A

Page 48 of 699

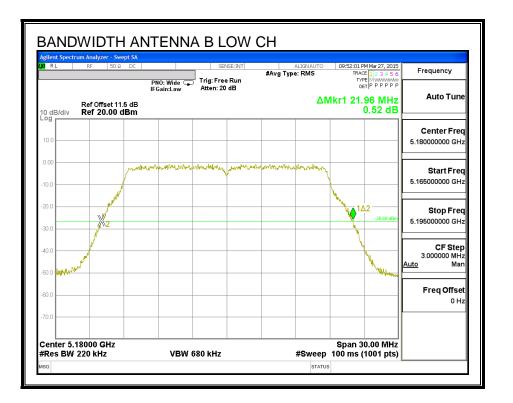
Page 49 of 699

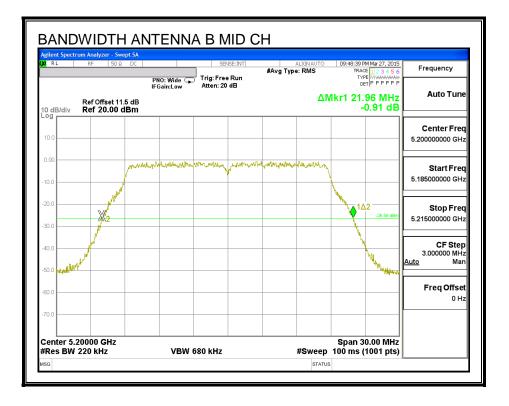
8.3. 802.11n HT20 2Tx STBC MODE IN THE 5.2 GHz BAND

8.3.1. 26 dB BANDWIDTH

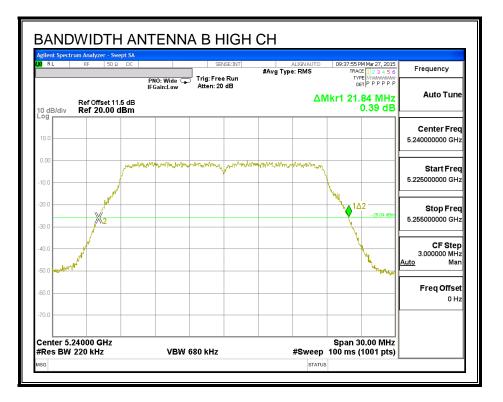
<u>LIMITS</u>

None; for reporting purposes only.

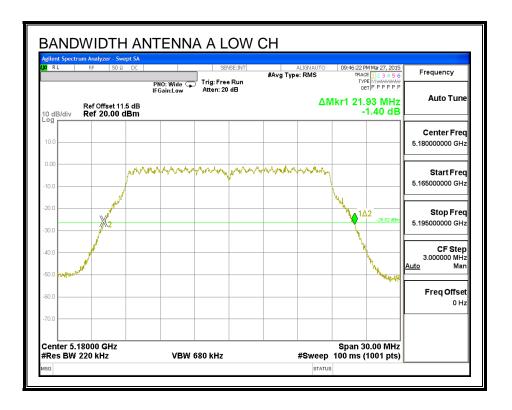

RESULTS

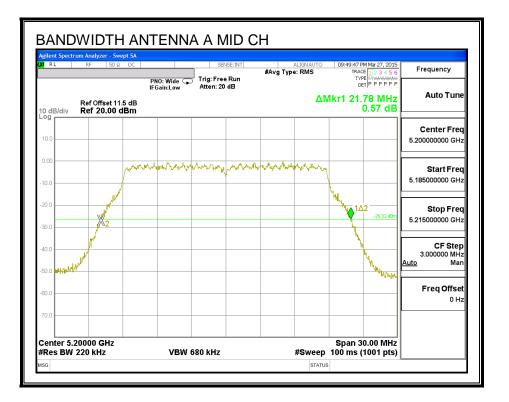

Channel	Frequency	26 dB BW	26 dB BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5180	21.96	21.93
Mid	5200	21.96	21.78
High	5240	21.84	21.96

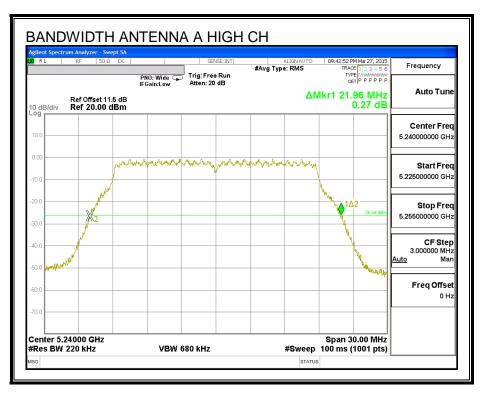
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.


Page 50 of 699

26 dB BANDWIDTH, ANTENNA B




Page 51 of 699



26 dB BANDWIDTH, ANTENNA A

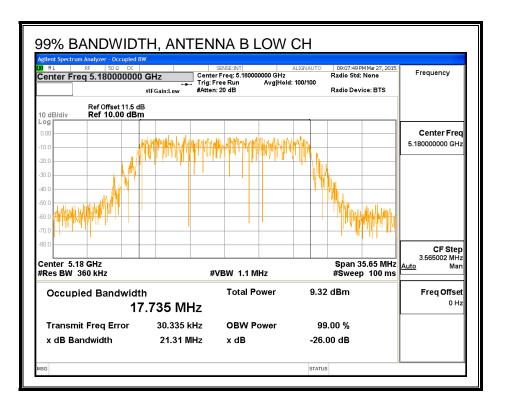
Page 52 of 699

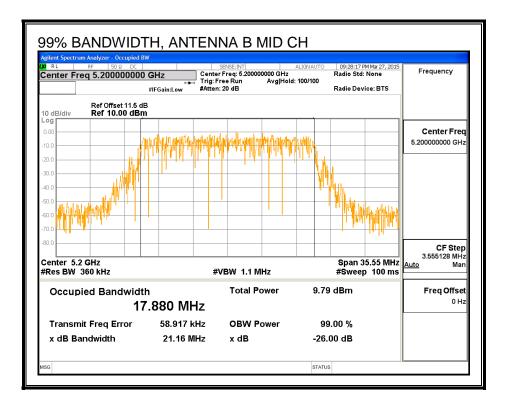
Page 53 of 699

8.3.2. 99% BANDWIDTH

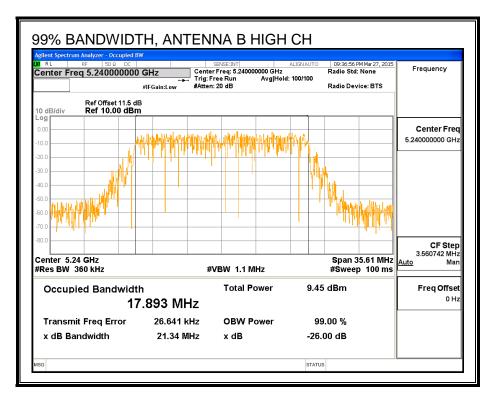
<u>LIMITS</u>

None; for reporting purposes only.

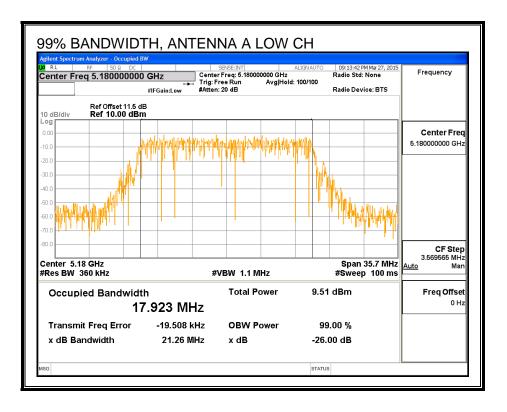

<u>RESULTS</u>

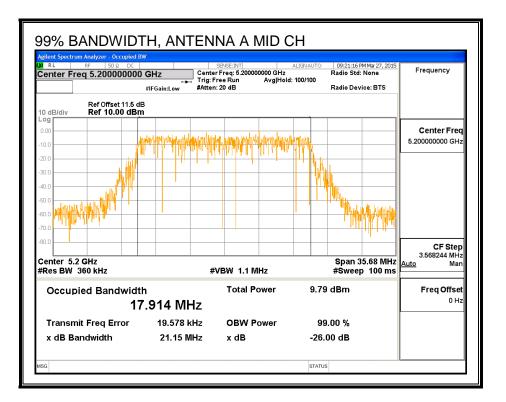

Channel	Frequency	99% BW	99% BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5180	17.735	17.923
Mid	5200	17.880	17.914
High	5240	17.893	17.794

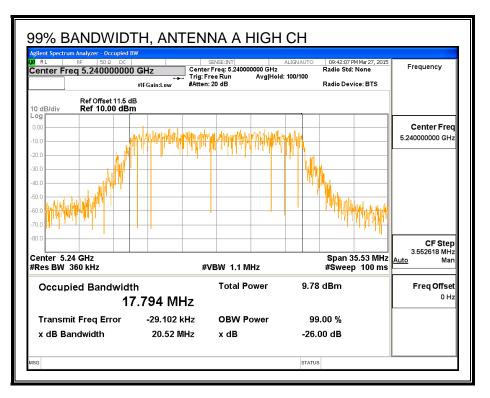
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


Page 54 of 699

99% BANDWIDTH, ANTENNA B




Page 55 of 699



99% BANDWIDTH, ANTENNA A

Page 56 of 699

Page 57 of 699

8.3.3. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

<u>RESULTS</u>

Average Power Results

Channel	Frequency	Antenna B	Antenna A	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	14.95	14.94	17.95
Mid	5200	16.90	16.85	19.88
High	5240	16.81	17.00	19.91

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 58 of 699

8.3.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 59 of 699

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	2.68

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	5.68

Page 60 of 699

RESULTS

Antenna Gain and Limits

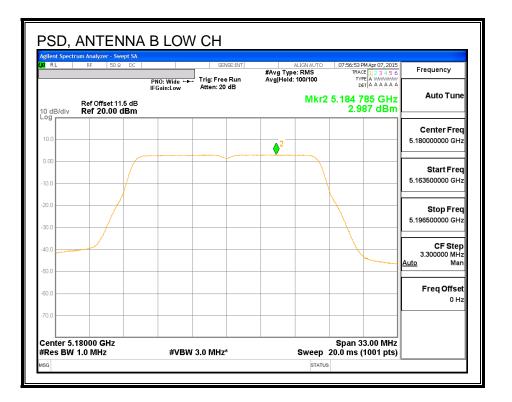
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5180	2.68	2.68	24.00	11.00
Mid	5200	2.68	2.68	24.00	11.00
High	5240	2.68	2.68	24.00	11.00

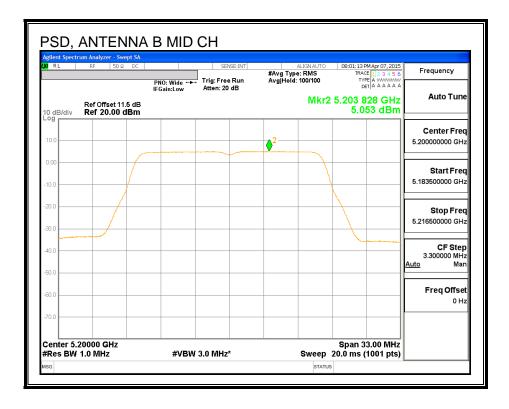
0.00

Duty Cycle CF (dB)

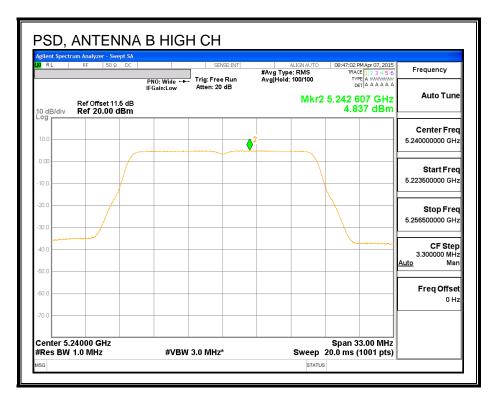
Included in Calculations of Corr'd Power & PSD

Output Power Results

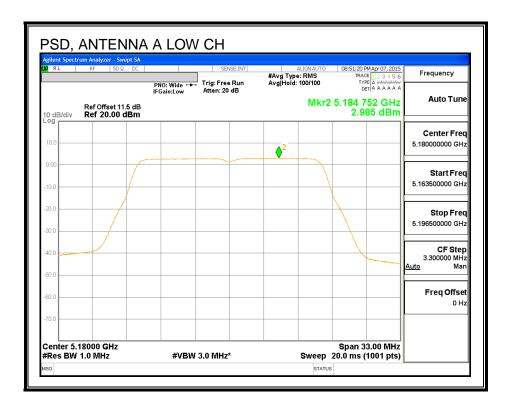

Channel	Frequency	Antenna B	Antenna A	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	14.95	14.94	17.95	24.00	-6.05
Mid	5200	16.90	16.85	19.88	24.00	-4.12
High	5240	16.81	17.00	19.91	24.00	-4.09

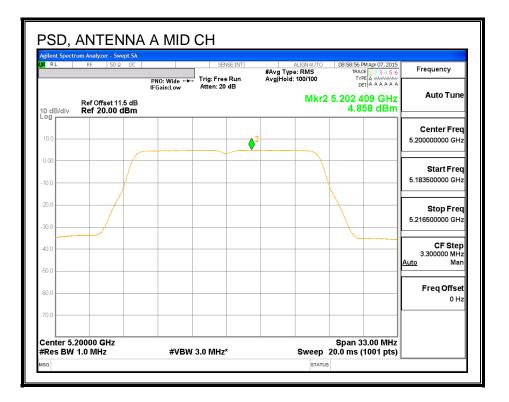

PSD Results

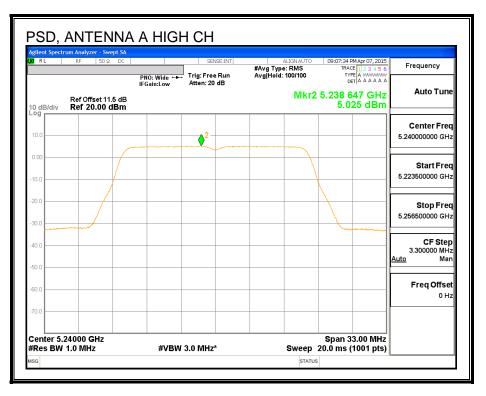
Channel	Frequency	Antenna B	Antenna A	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	2.99	2.99	6.00	11.00	-5.00
Mid	5200	5.05	4.86	7.97	11.00	-3.03
High	5240	4.84	5.03	7.94	11.00	-3.06


Page 61 of 699

PSD, ANTENNA B




Page 62 of 699



PSD, ANTENNA A

Page 63 of 699

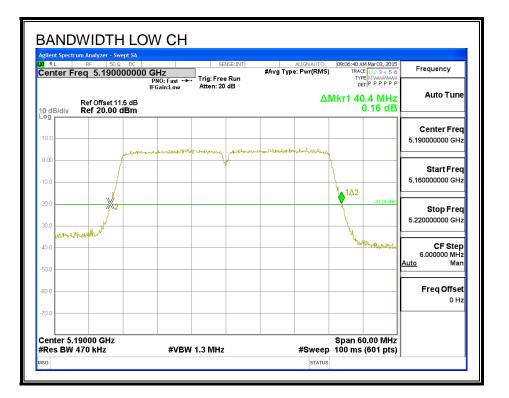
Page 64 of 699

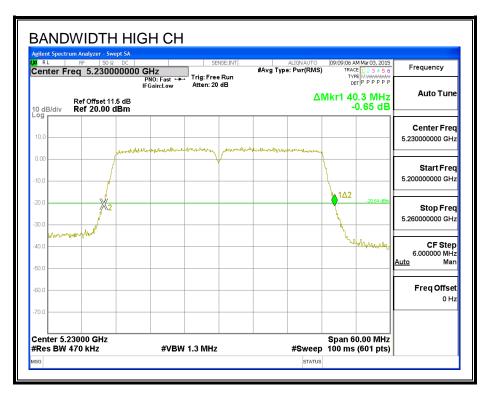
8.4. 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND

8.4.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.


RESULTS


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	40.40
High	5230	40.30

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 65 of 699

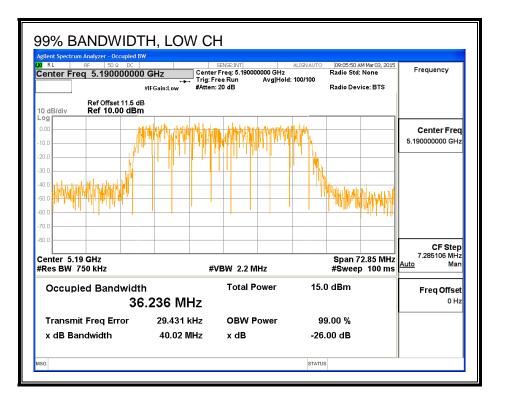
26 dB BANDWIDTH

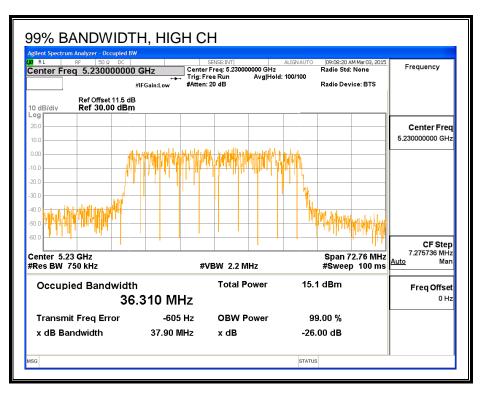
Page 66 of 699

8.4.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


<u>RESULTS</u>


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5190	36.2360
High	5230	36.3100

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 67 of 699

99% BANDWIDTH

Page 68 of 699

8.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5190	14.00
High	5230	17.94

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 69 of 699

8.4.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Page 70 of 699

Antenna Gain and Limits

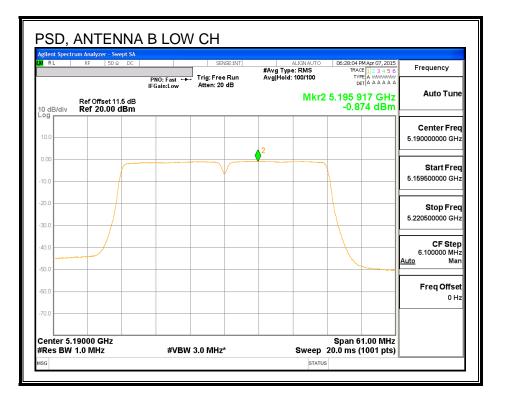
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	3.20	3.20	24.00	11.00
High	5230	3.20	3.20	24.00	11.00

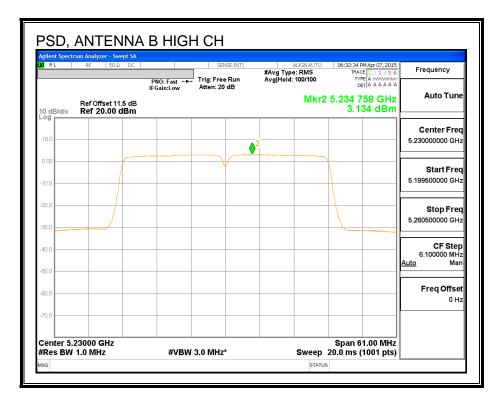
0.00

Duty Cycle CF (dB)

Included in Calculations of Corr'd Power & PSD

Output Power Results


Channel	Frequency	Antenna B	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	14.00	14.00	24.00	-10.00
High	5230	17.94	17.94	24.00	-6.06


PSD Results

Channel	Frequency	Antenna B	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-0.87	-0.87	11.00	-11.87

Page 71 of 699

PSD, ANTENNA B

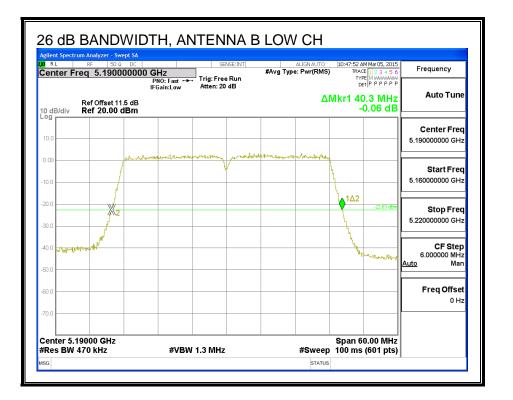
Page 72 of 699

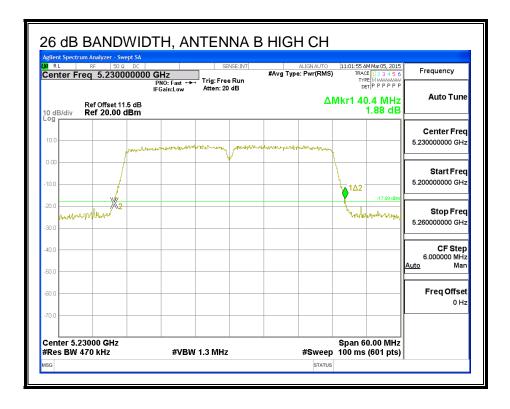
8.5. 802.11n HT40 2Tx CDD MODE IN THE 5.2 GHz BAND

8.5.1. 26 dB BANDWIDTH

LIMITS

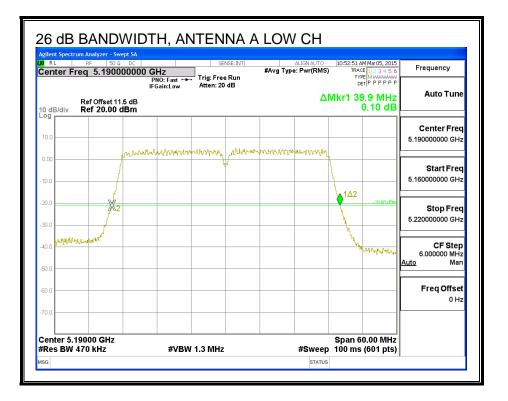
None; for reporting purposes only.

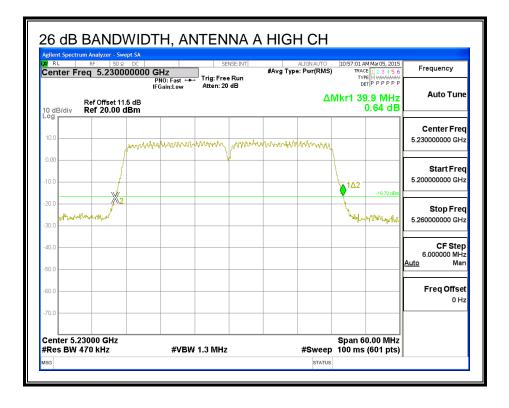

RESULTS


Channel	Frequency	26 dB BW	26 dB BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5190	40.30	39.90
High	5230	40.40	39.90

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 73 of 699


26 dB BANDWIDTH, ANTENNA B



Page 74 of 699

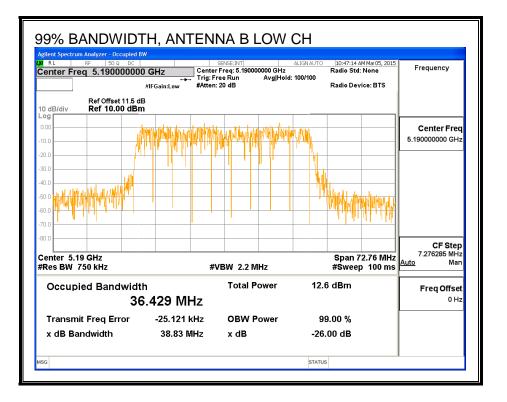
26 dB BANDWIDTH, ANTENNA A

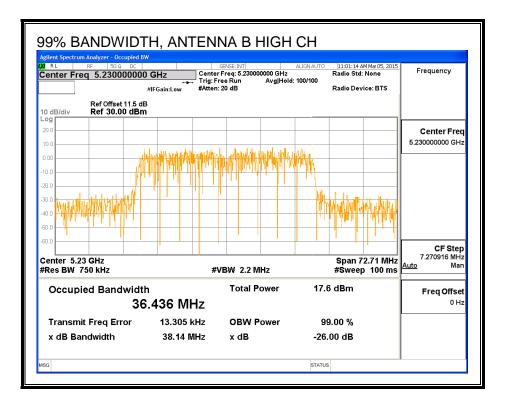
Page 75 of 699

8.5.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

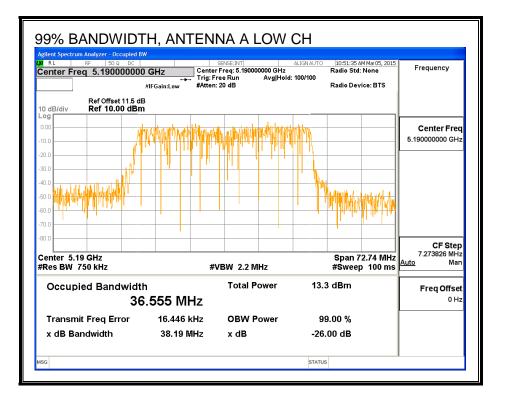

<u>RESULTS</u>

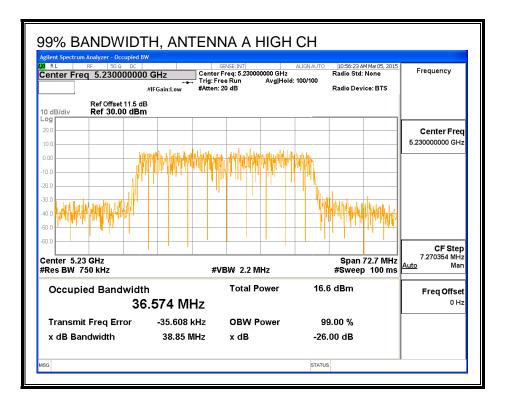

Channel	Frequency	99% BW	99% BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5190	36.43	36.56
High	5230	36.44	36.57

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 76 of 699

99% BANDWIDTH, ANTENNA B





Page 77 of 699

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

99% BANDWIDTH, ANTENNA A

Page 78 of 699

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

8.5.3. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Average Power Results

Channel	Frequency	Antenna B	Antenna A	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5190	12.85	12.98	15.92
High	5230	15.96	15.94	18.96

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 79 of 699

8.5.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 80 of 699

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	2.68

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	5.68

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 81 of 699

RESULTS

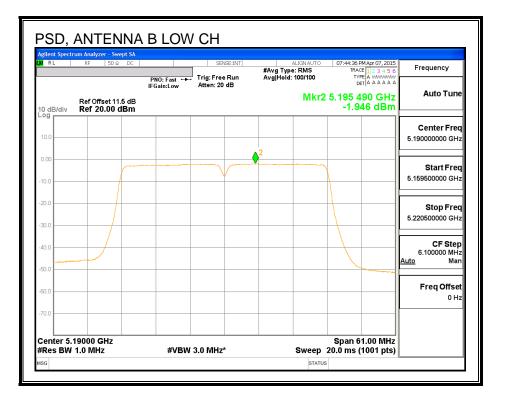
Antenna Gain and Limits

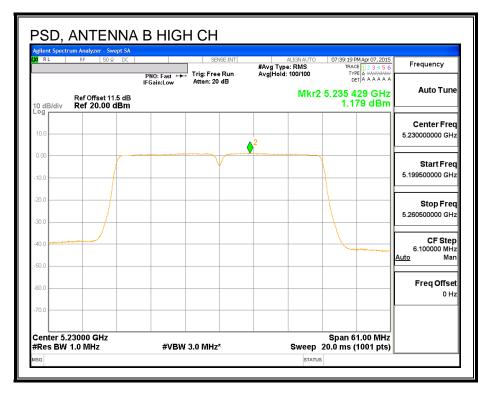
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	2.68	5.68	24.00	11.00
High	5230	2.68	5.68	24.00	11.00

Duty Cycle CF (dB) 0.00

Included in Calculations of Corr'd Power & PSD

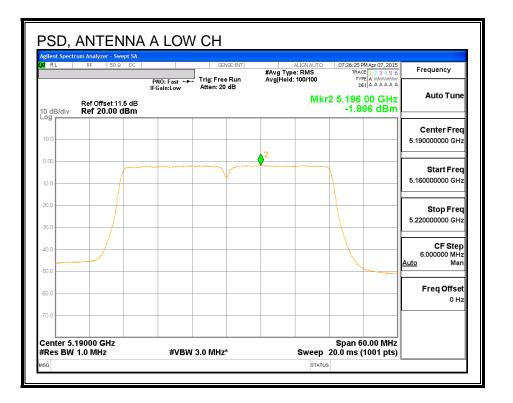
Output Power Results

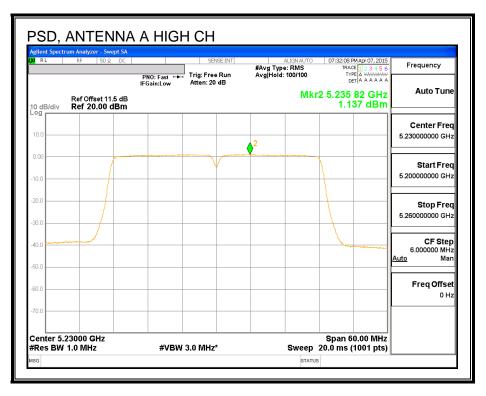

Channel	Frequency	Antenna B	Antenna A	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	12.85	12.98	15.92	24.00	-8.08
High	5230	15.96	15.94	18.96	24.00	-5.04


PSD Results

Channel	Frequency	Antenna B	Antenna A	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.95	-1.90	1.09	11.00	-9.91
High	5230	1.18	1.14	4.17	11.00	-6.83

Page 82 of 699


PSD, ANTENNA B



Page 83 of 699

PSD, ANTENNA A

Page 84 of 699

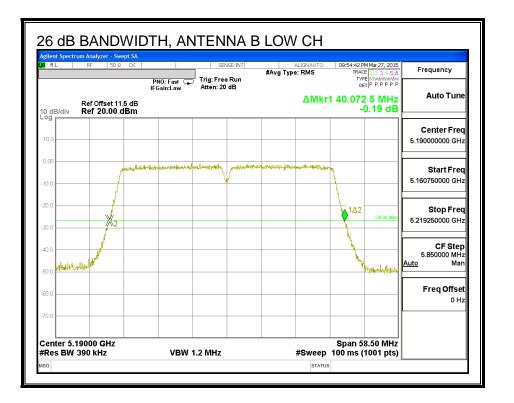
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

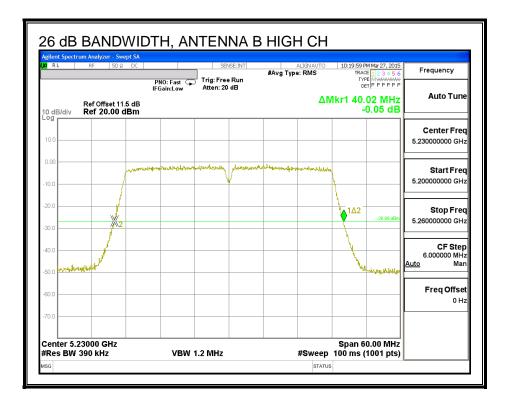
8.6. 802.11n HT40 2Tx STBC MODE IN THE 5.2 GHz BAND

8.6.1. 26 dB BANDWIDTH

<u>LIMITS</u>

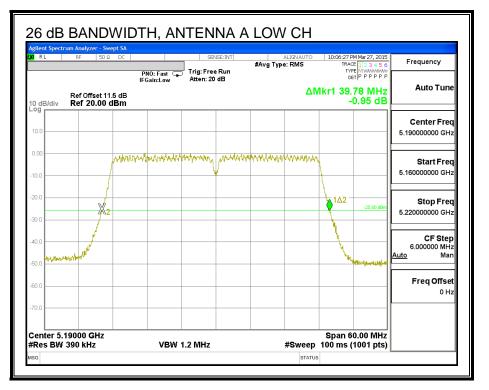
None; for reporting purposes only.

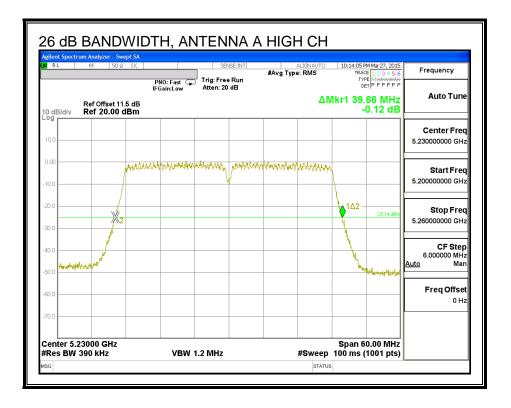

RESULTS


Channel	Frequency	26 dB BW	26 dB BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5190	40.07	39.78
High	5230	40.02	39.66

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 85 of 699


26 dB BANDWIDTH, ANTENNA B



Page 86 of 699

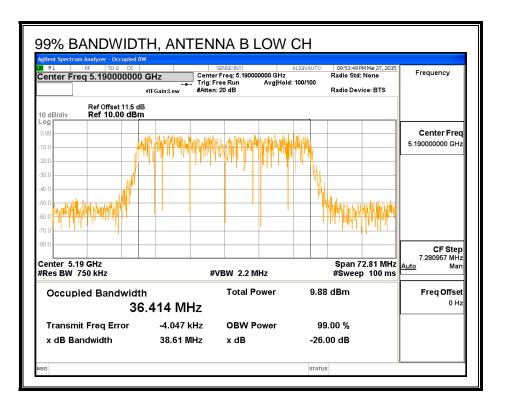
26 dB BANDWIDTH, ANTENNA A

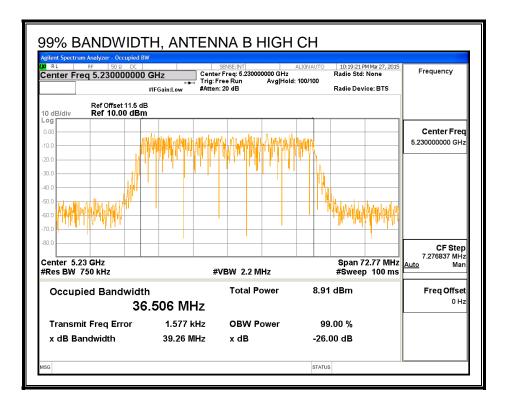
Page 87 of 699

8.6.2. 99% BANDWIDTH

<u>LIMITS</u>

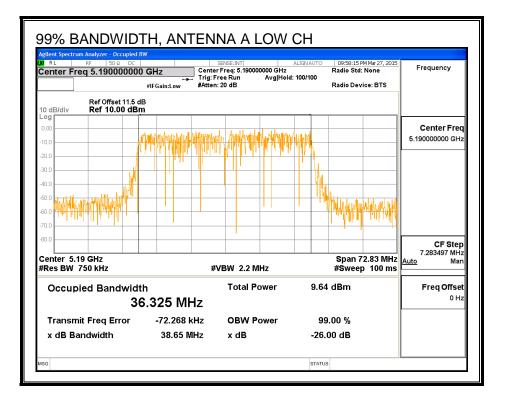
None; for reporting purposes only.

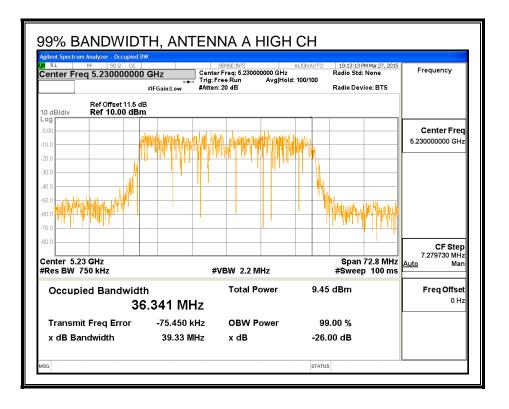

<u>RESULTS</u>


Channel	Frequency	99% BW	99% BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Low	5190	36.414	36.325
High	5230	36.506	36.341

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 88 of 699


99% BANDWIDTH, ANTENNA B



Page 89 of 699

99% BANDWIDTH, ANTENNA A

Page 90 of 699

8.6.3. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

<u>RESULTS</u>

Average Power Results

Channel	Frequency	Antenna B	Antenna B Antenna A	
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5190	12.83	12.95	15.90
High	5230	17.88	16.83	20.40

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 91 of 699

8.6.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 92 of 699

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	2.68

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	5.68

Page 93 of 699

RESULTS

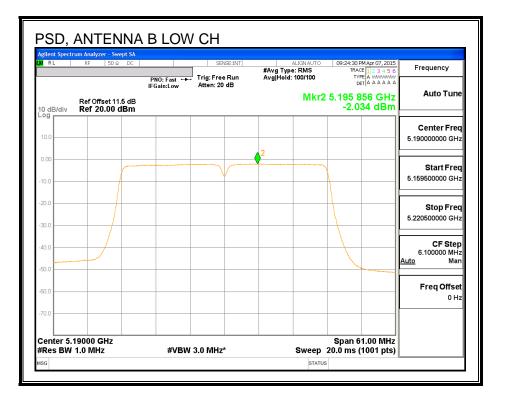
Antenna Gain and Limits

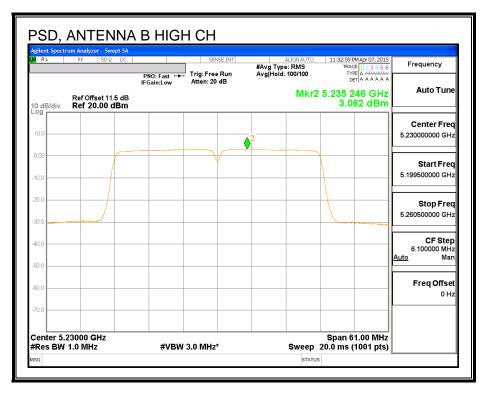
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Low	5190	2.68	2.68	24.00	11.00
High	5230	2.68	2.68	24.00	11.00

Duty Cycle CF (dB) 0.00

Included in Calculations of Corr'd Power & PSD

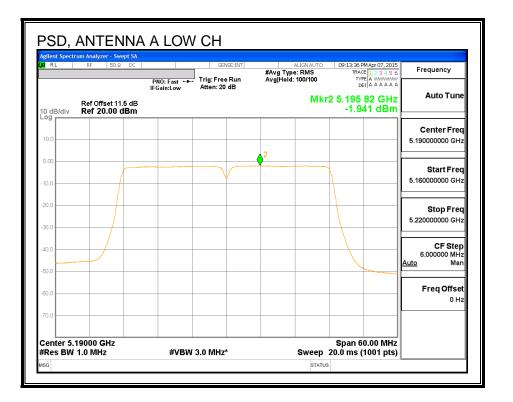
Output Power Results

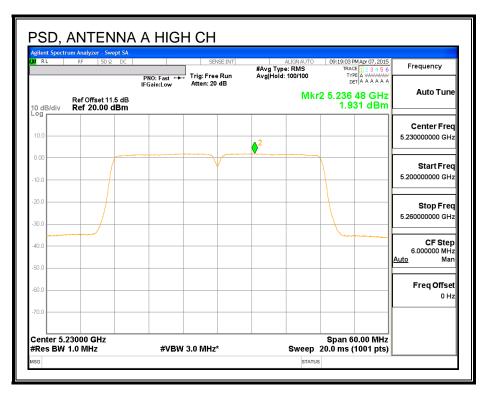

Channel	Frequency	Antenna B	Antenna A	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	12.89	12.87	15.89	24.00	-8.11
High	5230	17.88	16.83	20.40	24.00	-3.60


PSD Results

Channel	Frequency	Antenna B	Antenna A	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-2.03	-1.94	1.02	11.00	-9.98
High	5230	3.06	1.93	5.54	11.00	-5.46

Page 94 of 699


PSD, ANTENNA B



Page 95 of 699

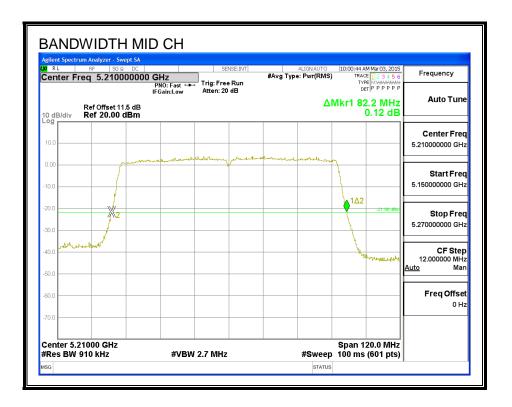
PSD, ANTENNA A

Page 96 of 699

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

8.7. 802.11ac VHT80 SISO MODE IN THE 5.2 GHz BAND

8.7.1. 26 dB BANDWIDTH


<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

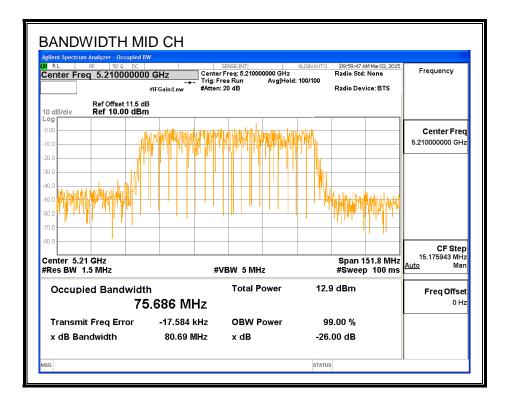
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Mid	5210	82.20

26 dB BANDWIDTH

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 97 of 699

8.7.2. 99% BANDWIDTH


<u>LIMITS</u>

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Mid	5210	75.6860

99% BANDWIDTH

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 98 of 699

8.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	Power
	(MHz)	(dBm)
Mid	5210	12.80

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 99 of 699

8.7.4. OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Page 100 of 699

Antenna Gain and Limits

Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Mid	5210	3.20	3.20	24.00	11.00

 Duty Cycle CF (dB)
 0.21
 Included in Calculations of Corr'd Power & PSD

Output Power Results

Channel	Frequency	Antenna B	Total	Power	Power
		Meas	Corr'd	Limit	Margin
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	12.80	13.01	24.00	-11.00

PSD Results

Channel	Frequency	Antenna B	Total	PSD	PSD
		Meas	Corr'd	Limit	Margin
		PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-4.22	-4.01	11.00	-15.01

Page 101 of 699

PSD, ANTENNA B

RL RF 50 Q DC	PNO: Fast +++	SENSE:INT	ALIGNAU #Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 TYPE A W	3 4 5 6
Ref Offset 11.5 dE 0 dB/div Ref 20.00 dBr	IFGain:Low	Atten: 20 dB		tkr1 5.222 00 0 -4.219 c	GHz Auto Tune
og 10.0					Center Freq 5.210000000 GHz
0.00					Start Freq
20.0					Stop Freq 5.270000000 GHz
10.0					CF Step 12.000000 MHz Auto Man
50.0					Freq Offset
70.0				Span 120.0	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

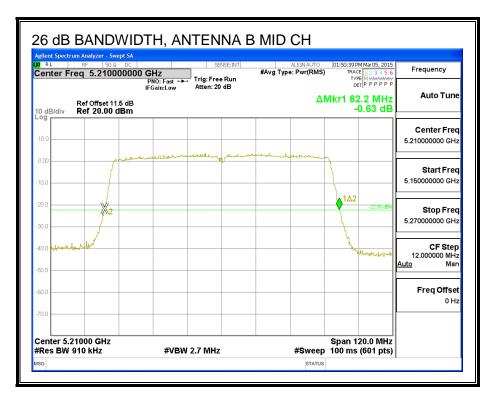
Page 102 of 699

8.8. 802.11ac VHT80 2Tx CDD MODE IN THE 5.2 GHz BAND

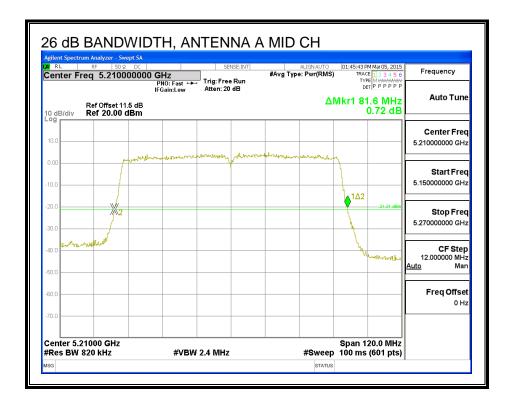
8.8.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.


RESULTS

Channel Frequency		26 dB BW	26 dB BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Mid	5210	82.20	81.60


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 103 of 699

26 dB BANDWIDTH, ANTENNA B

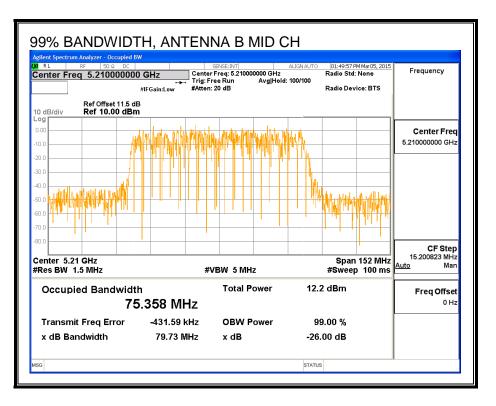
26 dB BANDWIDTH, ANTENNA A

Page 104 of 699

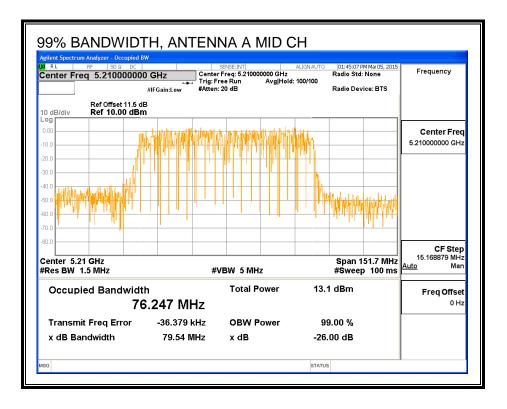
8.8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW
		Antenna B	Antenna A
	(MHz)	(MHz)	(MHz)
Mid	5210	75.3600	76.2500


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 105 of 699

99% BANDWIDTH, ANTENNA B

99% BANDWIDTH, ANTENNA A

Page 106 of 699

8.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Average Power Results

Channel	Frequency	Antenna B	Antenna A	Total
	(MHz)	Power (dBm)	Power (dBm)	Power (dBm)
Mid	5210	12.47	12.23	15.36

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 107 of 699

8.8.4. OUTPUT POWER AND PSD

LIMITS

FCC §15.407 (a) (1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 108 of 699

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	2.68

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Antenna B	Antenna A	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.20	2.10	5.68

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 109 of 699

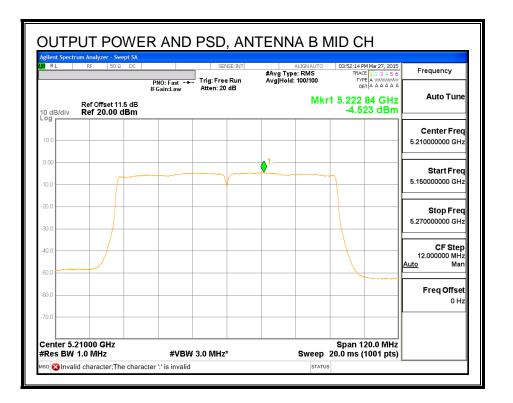
RESULTS

Antenna Gain and Limits

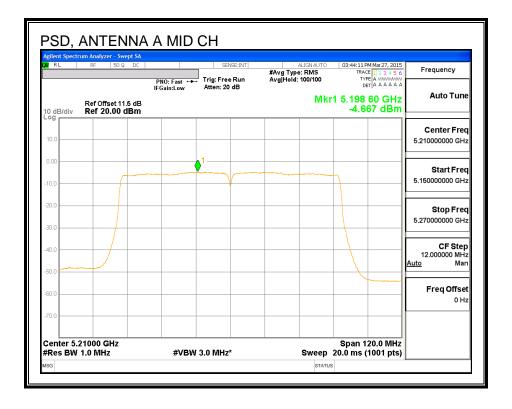
Channel	Frequency	Directional	Directional	Power	PSD
		Gain	Gain	Limit	Limit
		for Power	for PSD		
	(MHz)	(dBi)	(dBi)	(dBm)	(dBm)
Mid	5210	2.68	5.68	24.00	11.00

Duty Cycle CF (dB) 0.21	Included in Calculations of Corr'd Power & PSD
-------------------------	--

Output Power Results


ſ	Channel	Frequency	Antenna B	Antenna A	Total	Power	Power
			Meas	Meas	Corr'd	Limit	Margin
			Power	Power	Power		
		(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
ſ	Mid	5210	12.47	12.23	15.57	24.00	-8.43

PSD Results


Channel	Frequency	Antenna B	Antenna A	Total	PSD	PSD
		Meas	Meas	Corr'd	Limit	Margin
		PSD	PSD	PSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid	5210	-4.52	-4.67	-1.37	11.00	-12.37

Page 110 of 699

PSD, ANTENNA B

PSD, ANTENNA A

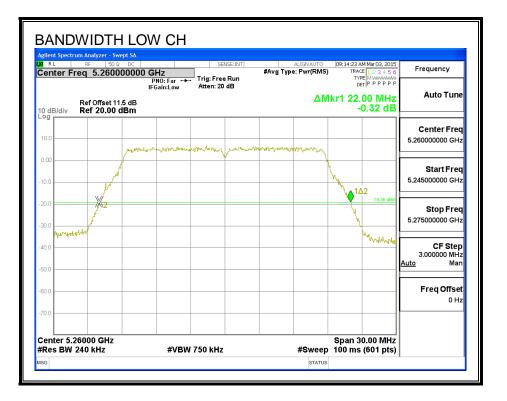
Page 111 of 699

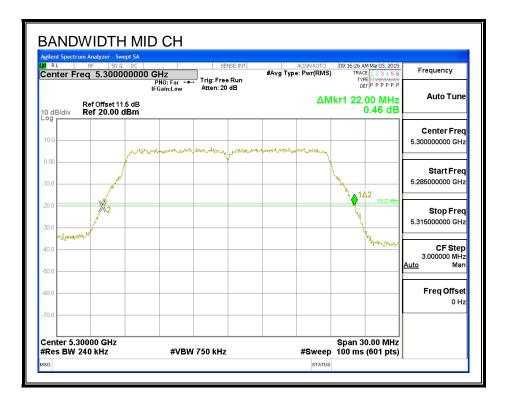
8.9. 802.11n HT20 SISO MODE IN THE 5.3 GHz BAND

8.9.1. 26 dB BANDWIDTH

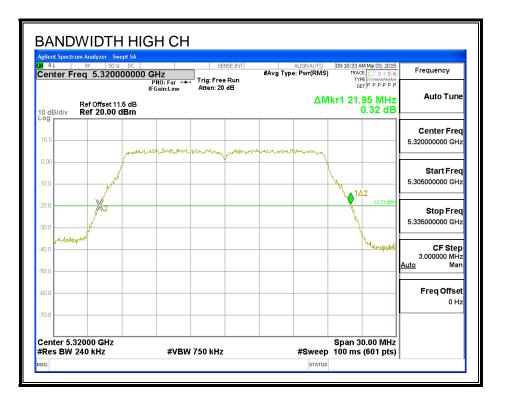
<u>LIMITS</u>

None; for reporting purposes only.


RESULTS


Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	22.00
Mid	5300	22.00
High	5320	21.95

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


Page 112 of 699

26 dB BANDWIDTH

Page 113 of 699

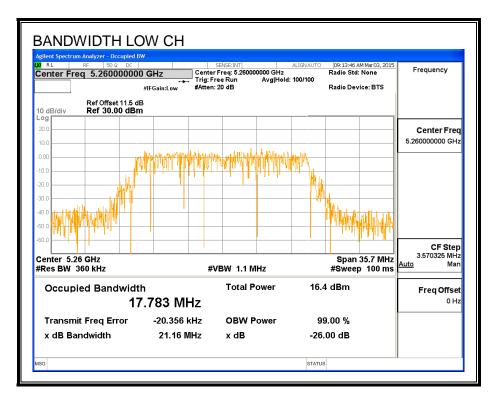
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

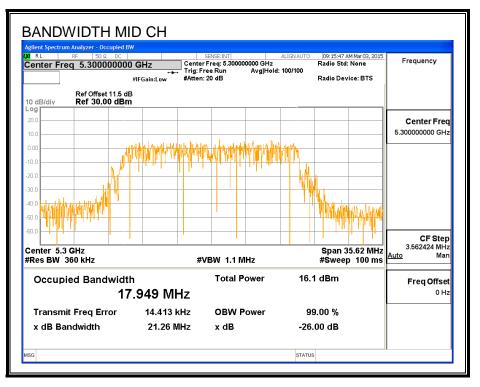
Page 114 of 699

8.9.2. 99% BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.


<u>RESULTS</u>


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5260	17.783
Mid	5300	17.949
High	5320	17.727

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 115 of 699

99% BANDWIDTH

Page 116 of 699