9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

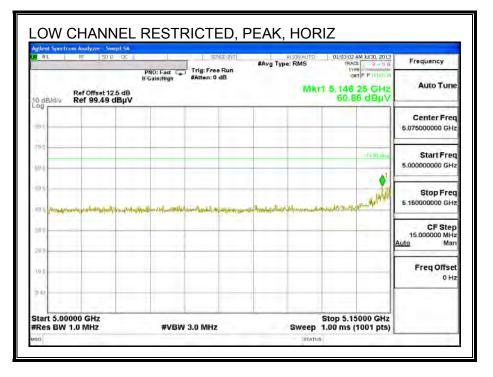
TEST PROCEDURE

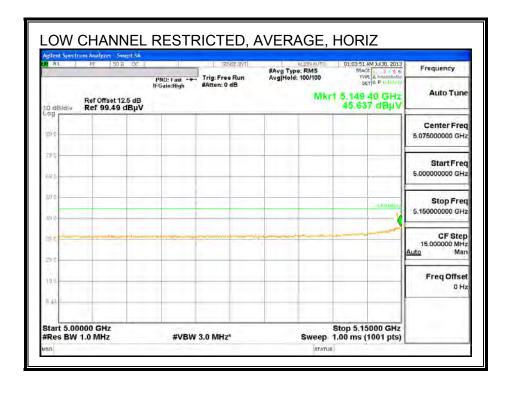
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

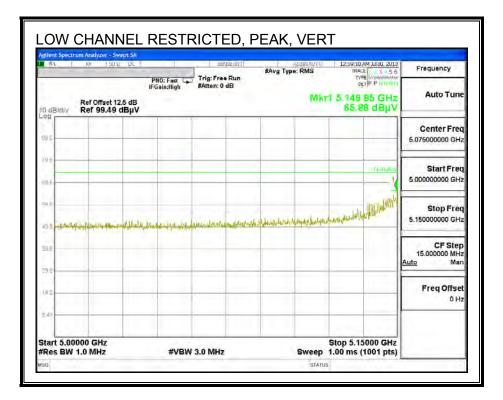
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

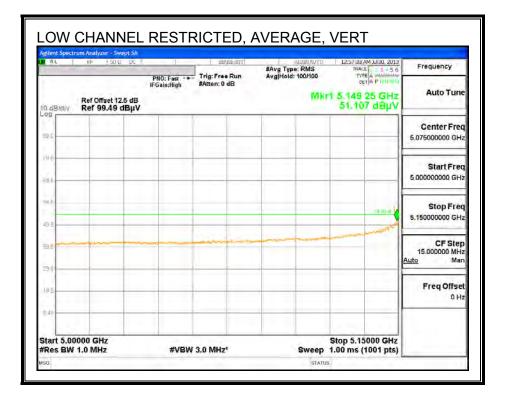
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

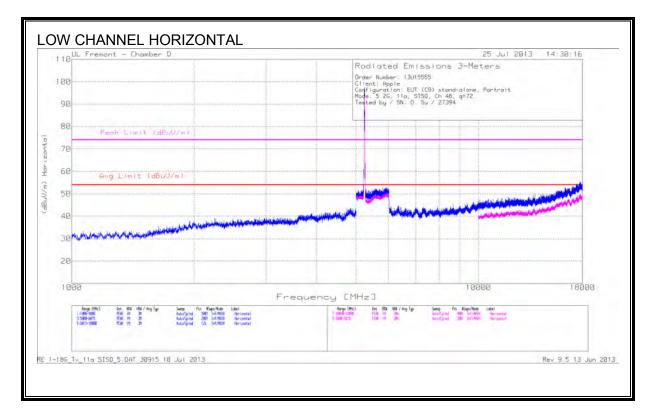

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

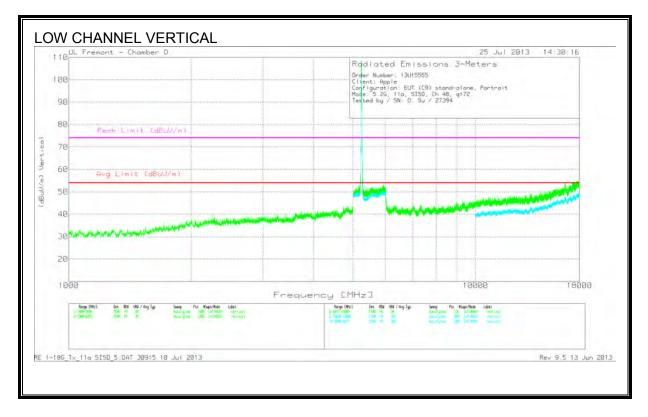

Page 188 of 341

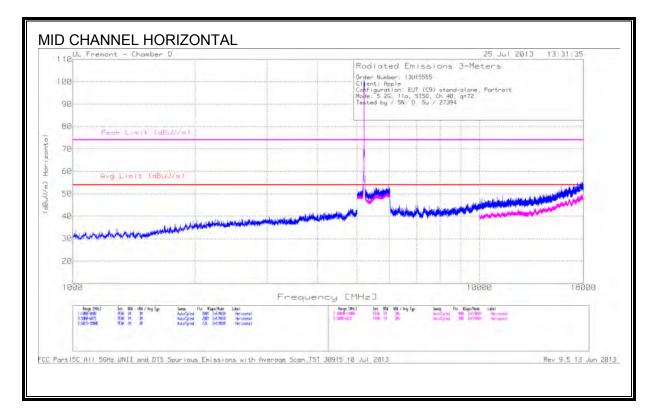
9.2. TRANSMITTER ABOVE 1 GHz

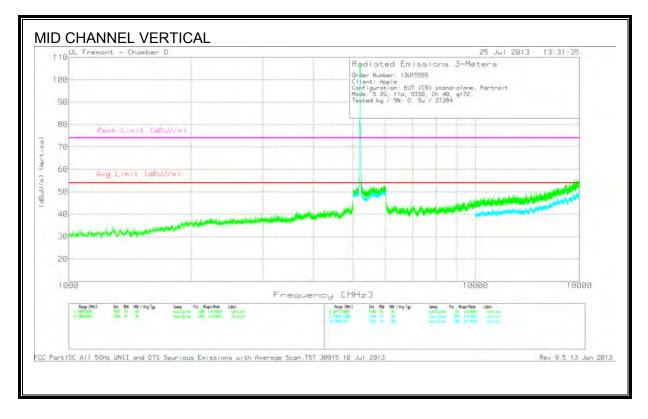

9.2.1. 802.11a SISO MODE IN THE 5.2 GHz BAND

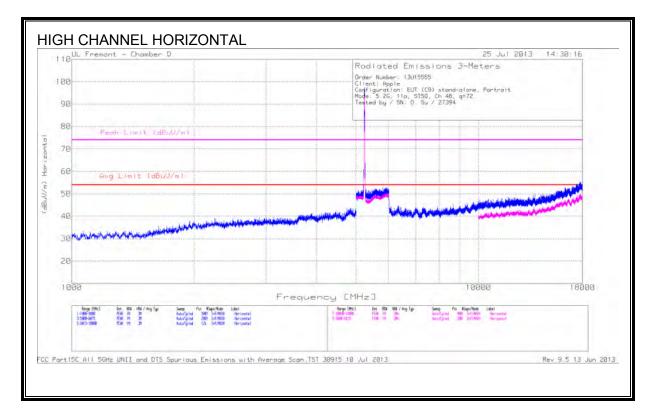

RESTRICTED BANDEDGE (LOW CHANNEL)

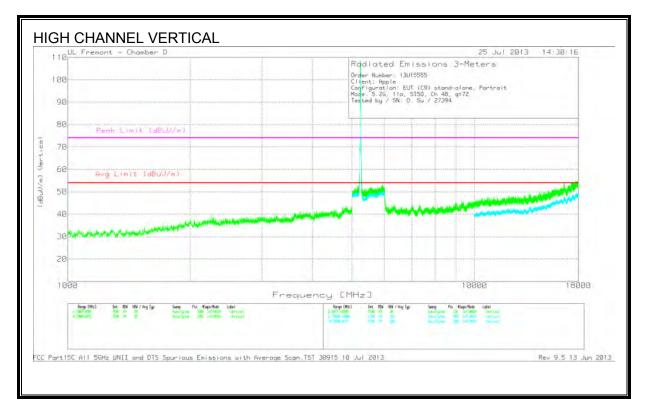



Page 189 of 341



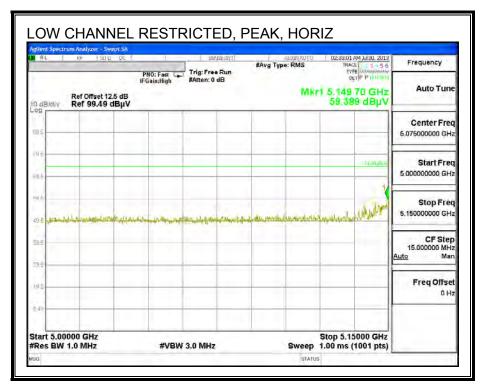

Page 190 of 341

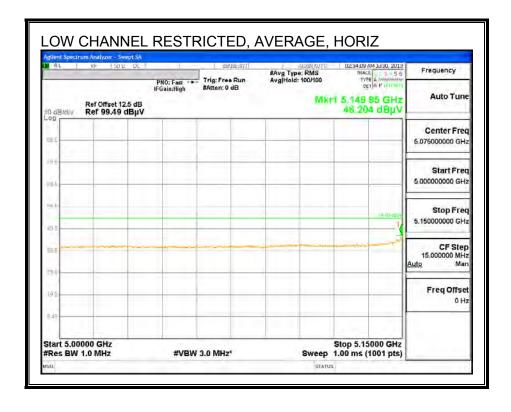

Page 191 of 341



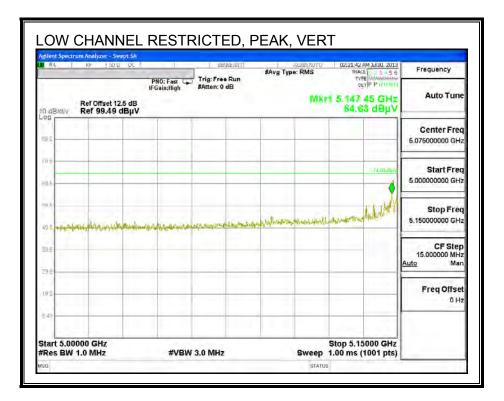
Page 192 of 341

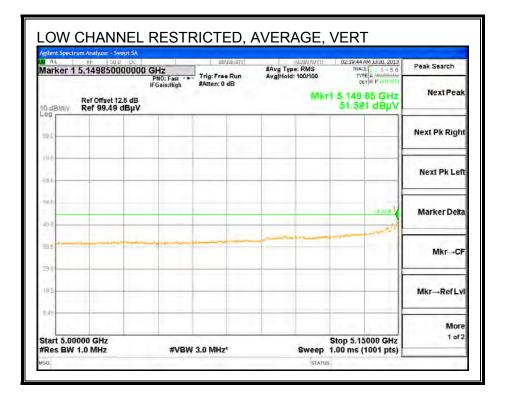
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

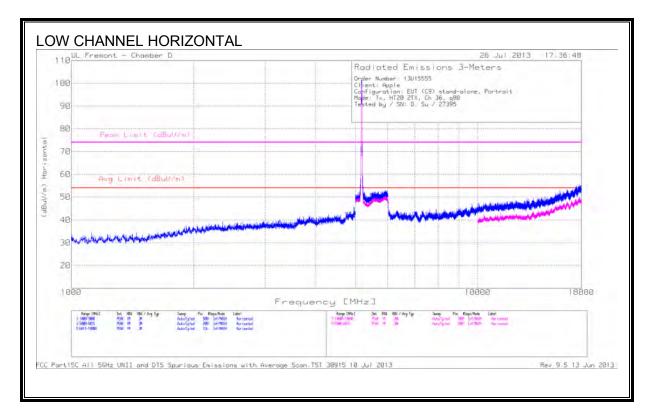


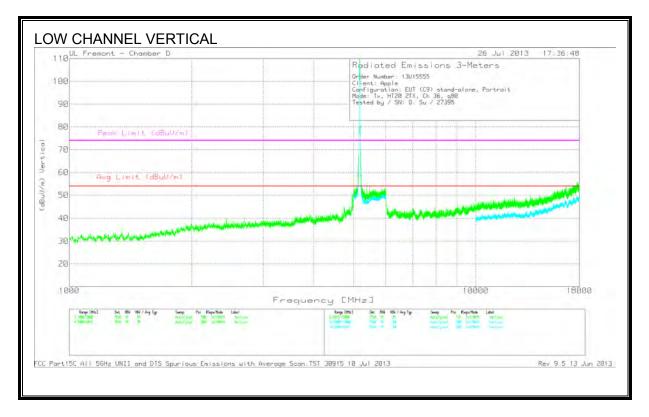


Page 193 of 341


9.2.2. 802.11n HT20 2TX CDD MODE IN THE 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL)



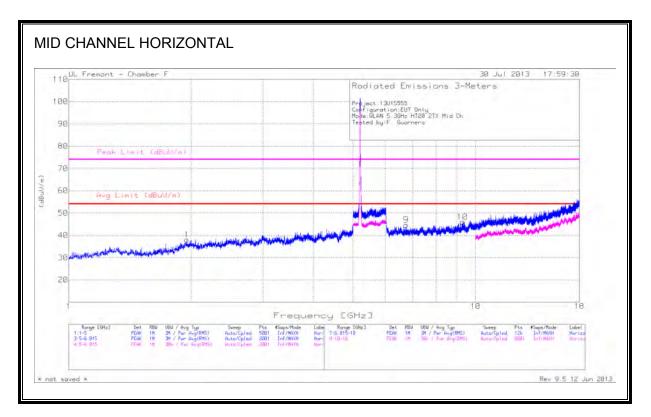

Page 194 of 341

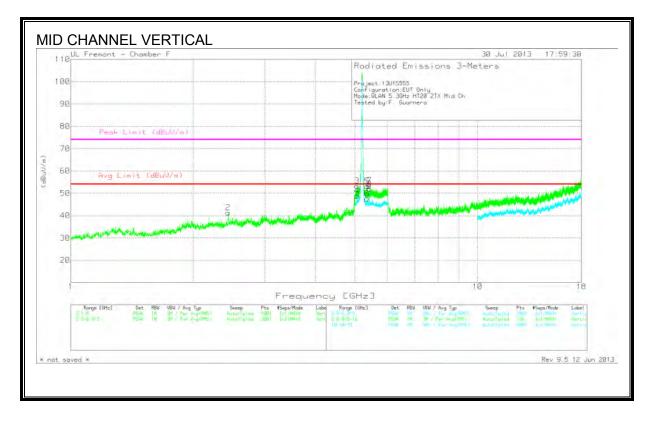
Page 195 of 341

Page 196 of 341

Frequency (GHz)	Meter Reading	Det	AF T344 (db/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr [dB]	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
	(dBuV)					(dBuV/m)						
4.958	47.5	РК	34.3	-30.8	0	51	-	-	74	-23	201	V
5.099	41.98	РК	34.5	-21.8	0	54.68	-	-	74	-19.32	201	V
5.396	42.91	РК	34.8	-22.1	0	55.61	-	-	74	-18.39	201	V

PK - Peak detector


Radiated Emissions


Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl /Fitr/Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4.961	26.33	Av	34.3	-30.8	0	29.83	53.97	-24.14	74	-44.17	293	279	V
5.099	22.92	Av	34.5	-21.8	0	35.62	53.97	-18.35	74	-38.38	300	333	V
5.396	20.14	Av	34.8	-22.1	0	32.84	53.97	-21.13	74	-41.16	296	361	V

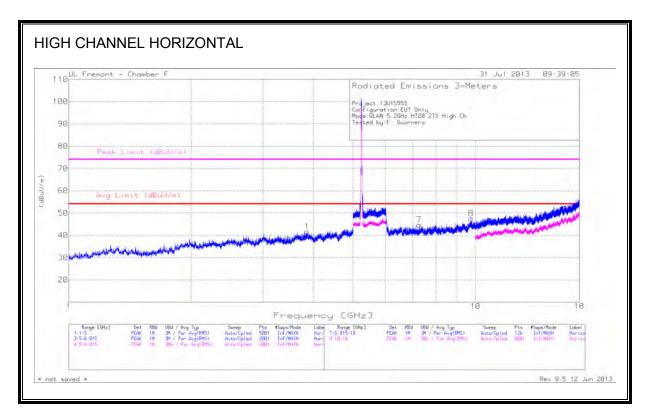
Av - average detection

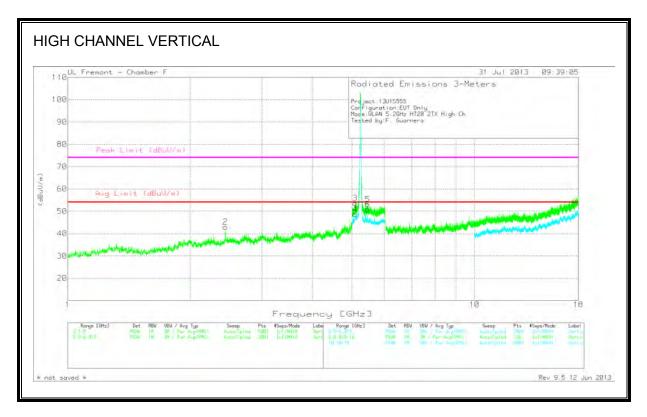
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 197 of 341

Page 198 of 341

Marker	Frequency (GHz)	Meter Reading	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	1.951	40.26	РК	31.4	-33.6	38.06	53.97	-15.91	74	-35.94	0-360	199	H
2	2.436	42.47	РК	32.3	-33.4	41.37	53.97	-12.6	74	-32.63	0-360	101	V
3	5.057	41.33	РК	34.1	-22.1				74	-20.67	0-360	201	V
4	5.057	36.82	PK (VB)	34.1	-22.1	48.82	53.97	-5.15			0-360	199	v
5	5.352	40.92	РК	34.5	-22.2				74	-20.78	0-360	101	v
6	5.349	35.35	PK (VB)	34.5	-22.2	47.65	53.97	-6.32			0-360	100	V
7	5.419	40.82	РК	34.6	-22				74	-20.58	0-360	201	v
8	5.416	39.33	PK (VB)	34.6	-22	51.93	53.97	-2.04			0-360	199	v
9	6.748	38.78	РК	35.8	-29.9	44.68	53.97	-9.29	74	-29.32	0-360	100	Н
10	9.287	35.52	РК	36.7	-26.2	46.02	53.97	-7.95	74	-27.98	0-360	100	Н


Notes: PK: Peak detector


Radiated Emissions

Frequency	Meter	Det	AF T120	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	Margin	Azimuth	Height	Polarity
			(dB/m)	Fltr/Pad		(dBuV/m)	(dB)	(dBuV/m)	(dB)			
(GHz)	Reading			(dB)	Reading					(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
5.417	34.61	Av	34.6	-22	47.21	53.97	-6.76	74	-26.79	10	218	V

Av - Average detection

Page 199 of 341

Page 200 of 341

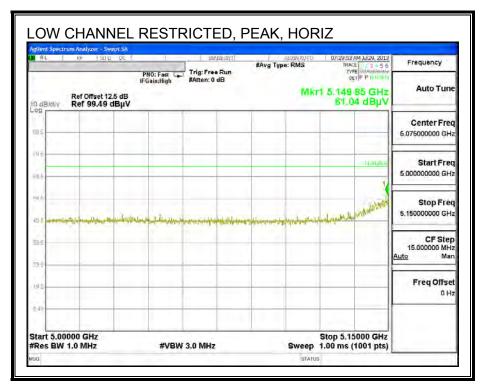
Marker	Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit	Margin (dB)	Azimuth	Height	Polarity
	(GHz)	Reading			(dB)	Reading			(dBuV/m)		(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
1	3.853	40.08	РК	33.5	-31.8	41.78	53.97	-12.19	74	-32.22	0-360	98	Н
2	2.441	44.08	РК	32.3	-33.4	42.98	53.97	-10.99	74	-31.02	0-360	101	V
3	5.086	41.3	РК	34.1	-21.8				74	-20.4	0-360	199	V
4	5.087	36.35	PK (VB)	34.1	-21.8	48.65	53.97	-5.32			0-360	199	v
5	5.456	40.14	РК	34.7	-21.8				74	-20.96	0-360	199	v
6	5.458	37.94	PK (VB)	34.7	-21.8	50.84	53.97	-3.13			0-360	199	v
7	7.267	38.12	РК	35.7	-29.1	44.72	53.97	-9.25	74	-29.28	0-360	199	H
8	9.748	35.83	РК	37.4	-25.7	47.53	53.97	-6.44	74	-26.47	0-360	100	Н

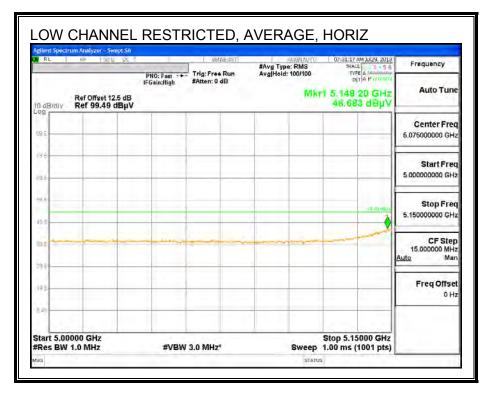
Notes: PK: Peak detector

Frequency	Meter	Det	AF T120	Amp/Cbl/	Corrected	Avg Limit	Margin	Peak Limit	Margin	Azimuth	Height	Polarity
(GHz)	Reading		(dB/m)	Fltr/Pad (dB)	Reading	(dBuV/m)	(dB)	(dBuV/m)	(dB)	(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
5.458	33.86	RMS	34.7	-21.8	46.76	53.97	-7.21	74	-27.24	4	363	V

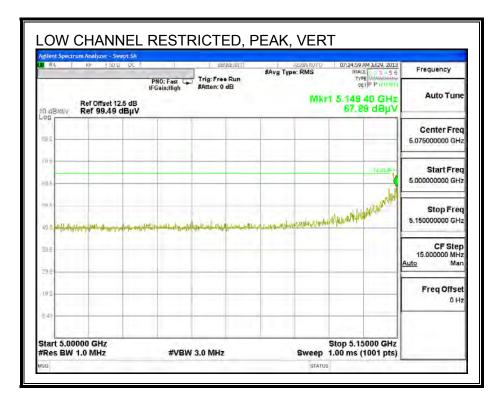
RMS - RMS detection

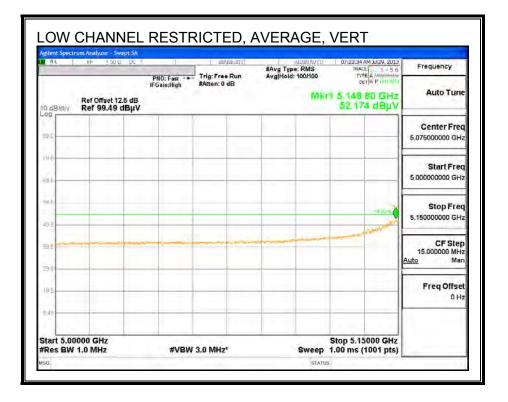
Page 201 of 341

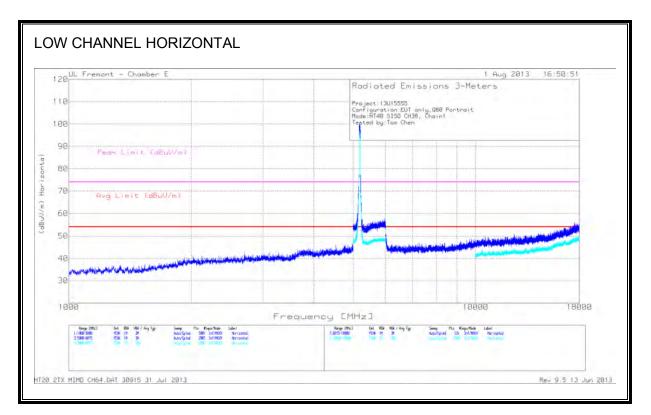

9.2.3. 802.11n HT20 2TX STBC MODE IN THE 5.2 GHz BAND

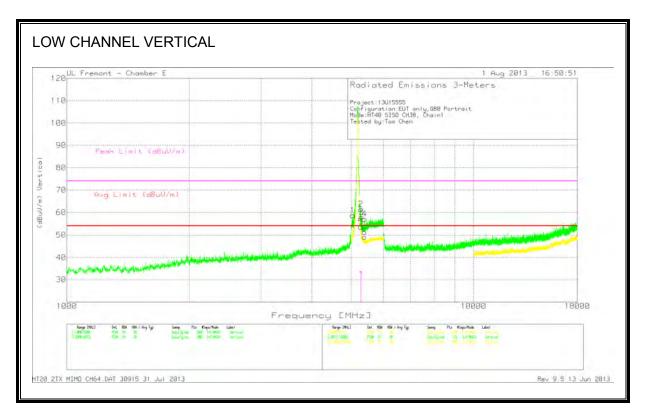

Covered by testing 11n HT20 CDD 2TX, total power across the two chains is higher than the power level the device will operate at.

Page 202 of 341

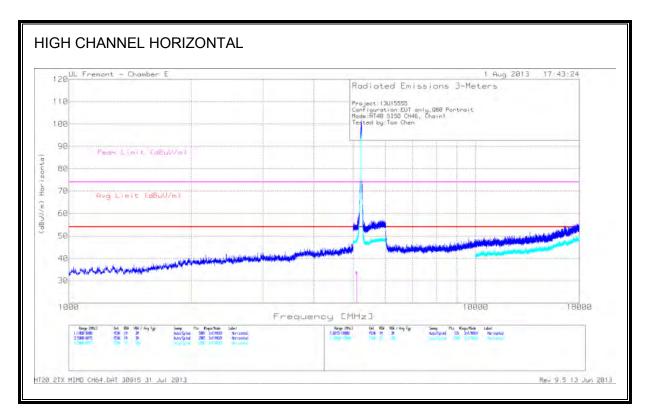

9.2.4. 802.11n HT40 SISO MODE IN THE 5.2 GHz BAND

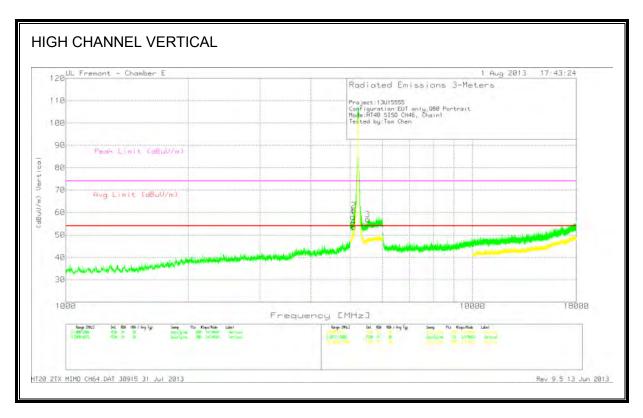

RESTRICTED BANDEDGE (LOW CHANNEL)




Page 203 of 341

Page 204 of 341


Page 205 of 341


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	5.047	46.39	РК	34.5	-22.2	0	58.69			74	-15.31	100	V
	5.047	35.30	Av	34.5	-22.2	0	47.60	54	-6.40			100	V
*2	5.281	48.59	РК	34.7	-21.9	0	61.39	-	-	68.2	-6.8	200	V
*3	5.307	45.22	РК	34.7	-21.9	0	58.02	-	-	68.2	-10.2	100	V
4	5.396	44.39	РК	34.8	-22.1	0	57.09	-	-	74	-16.91	100	V
*5	5.285	40.78	PK (VB)	34.7	-21.9	0	53.58					100	v
6	5.394	36.42	PK (VB)	34.8	-22.1	0	49.12	54	-4.88			199	v

Notes: * : Not in Restricted Band

PK: Peak detector

Page 206 of 341

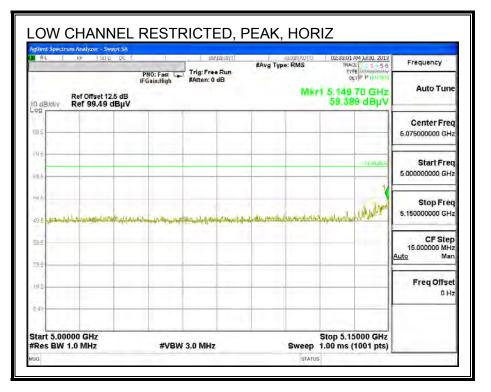
Page 207 of 341

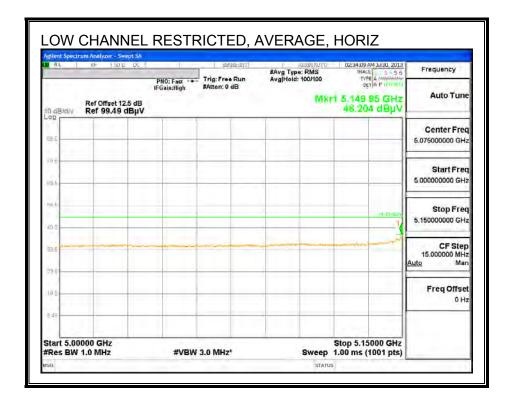
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	5.081	45.43	РК	34.5	-21.9	0	58.03			74	-15.97	199	V
	5.081	34.33	Av	34.5	-21.9	0	46.87	54	-7.13			199	V
2	5.104	48.17	РК	34.5	-21.8	0	60.87			74	-13.13	100	V
*3	5.528	43.33	РК	34.9	-21.4	0	56.83	-	-	68.2	-11.37	199	V
4	5.104	40.82	PK (VB)	34.5	-21.8	0	53.52	54	-0.48			200	v

Notes: * : Not in Restricted Band

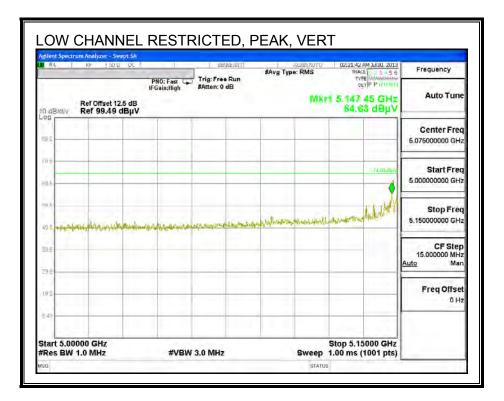
PK: Peak detector

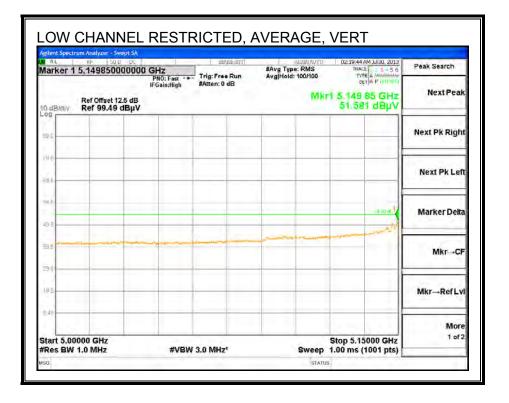
Radiated Emissions

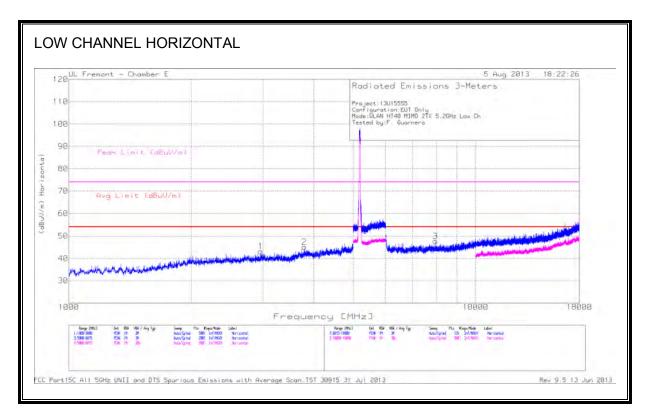

Frequency	Meter	Det	AF T346	Amp/Cbl	DC Corr	Correcte	Avg	Margin	Peak	Margin	Azimuth	Height	Polarity
			(dB/m)	/10dB	[dB]	d	Limit	(dB)	Limit	(dB)	(Degs)	(cm)	
(GHz)	Reading			Pad			(dBuV/m		(dBuV/m				
				(dB)		Reading))				
	(dBuV)												
						(dBuV/m							
)							
5.104	20.72	Av	34.5	-21.8	.1	33.52	53.97	-20.45			195	303	V

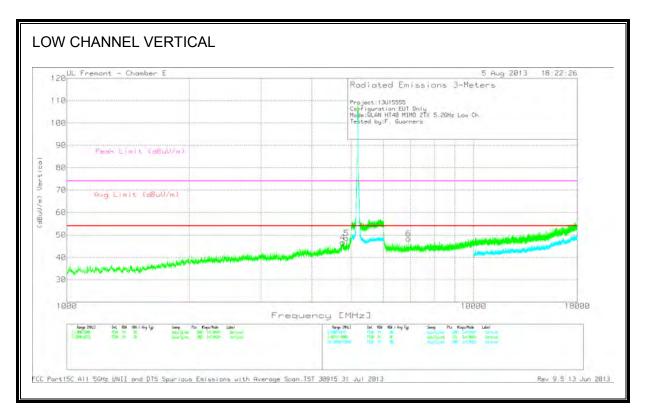

Av - average detection

Page 208 of 341


9.2.5. 802.11n HT40 2TX CDD MODE IN THE 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL)




Page 209 of 341

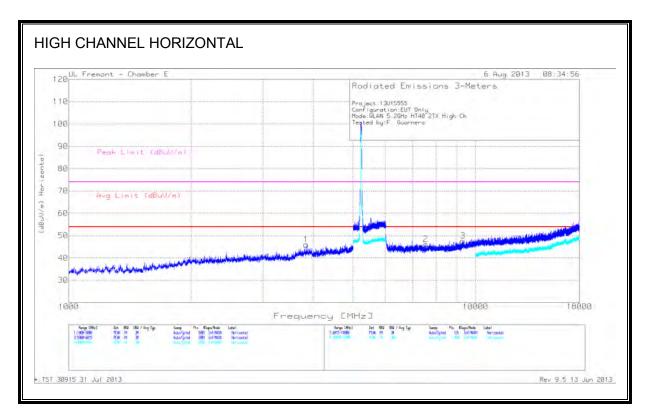
Page 210 of 341

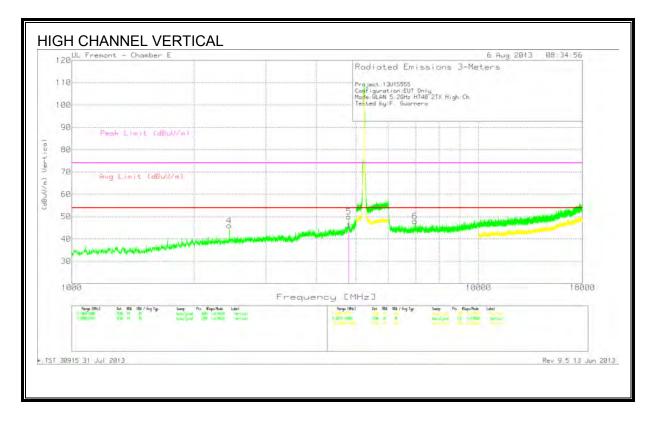
Page 211 of 341

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Marker	Frequency (GHz)	Meter Reading	Det	AF T346 (dB/m)	Amp/Cbl 5GHz LPF dB	DC Corr [dB]	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	2.964	(dBuV) 42.63	РК	33.2	-32.7	0	(dBuV/m) 43.13	53.97	-10.84	74	-30.87	100	н
2	3.796	43.86	РК	33.7	-32.5	0	45.06	53.97	-8.91	74	-28.94	199	н
3	7.966	39.67	РК	36.2	-28.2	0	47.67	53.97	-6.3	74	-26.33	199	н

PK - Peak detector


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /6GHz HPF (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
4	4.769	42.94	РК	34.4	-30.7	0	46.64	53.97	-7.33	74	-27.36	100	V
5	4.872	45.04	РК	34.4	-30.9	0	48.54	53.97	-5.43	74	-25.46	100	V
*6	6.921	42	РК	35.9	-29.5	0	48.4			68.2	-19.8	100	V


Notes: *: Not in Restricted Band

PK - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 212 of 341

Page 213 of 341

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl 5GHz LPF dB	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	3.833	44.28	РК	33.7	-32	0	45.98	53.97	-7.99	74	-28.02	199	Н
2	7.542	39.05	РК	36.1	-29	0	46.15	53.97	-7.82	74	-27.85	100	н
3	9.31	36.6	РК	37.2	-26.1	0	47.7	53.97	-6.27	74	-26.3	199	н

PK - Peak detector

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /6GHz HPF (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
4	2.438	46.81	РК	32.6	-33.4	0	46.01	53.97	-7.96	74	-27.99	199	V
5	4.795	46.39	РК	34.4	-30.8	0	49.99	53.97	-3.98	74	-24.01	100	V
6	6.974	41.05	РК	36	-29.1	0	47.95	53.97	-6.02	74	-26.05	100	V

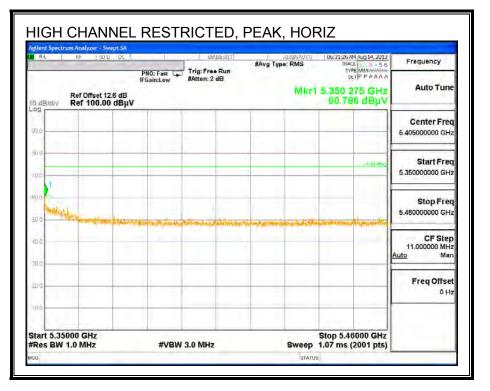
PK - Peak detector

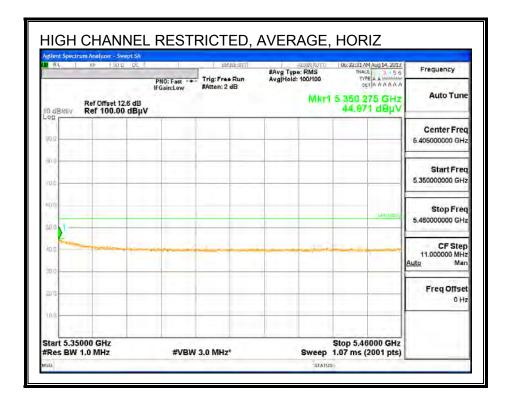
Radiated Emissions

Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl 5GHz LPF dB	DC Corr [dB]	Correcte d Reading (dBuV/m	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4.794	42.96	RMS	34.4	-30.8	.1) 46.66	53.97	-7.31	74	-27.34	210	218	V

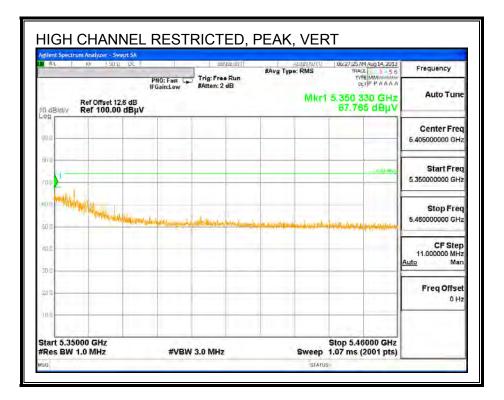
RMS - RMS detection

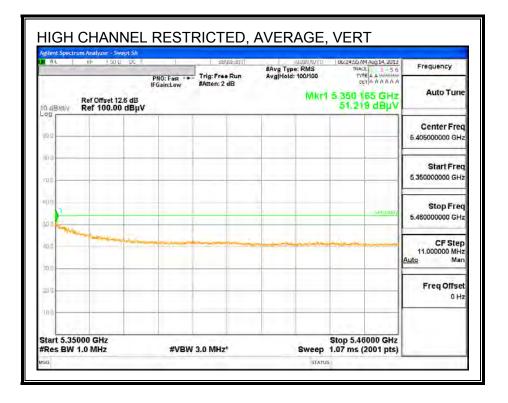
Page 214 of 341

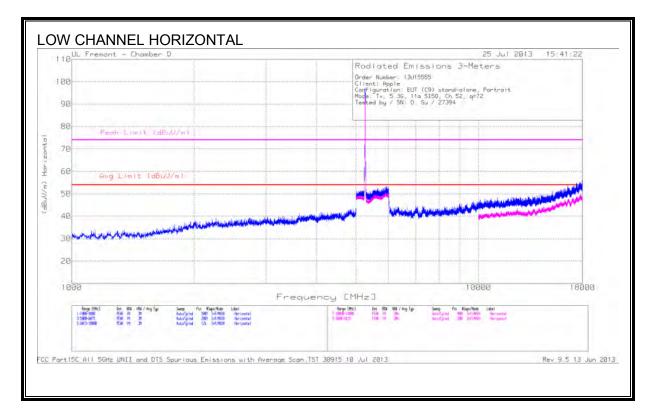

9.2.6. 802.11n HT40 2TX STBC MODE IN THE 5.2 GHz BAND

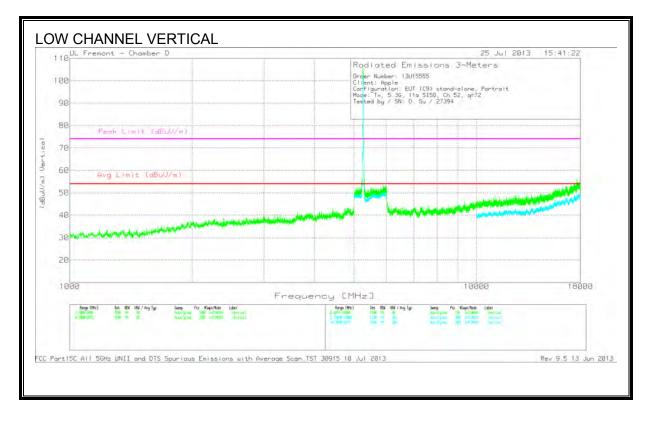

Covered by testing 11n HT40 CDD 2TX, total power across the two chains is higher than the power level the device will operate at.

Page 215 of 341

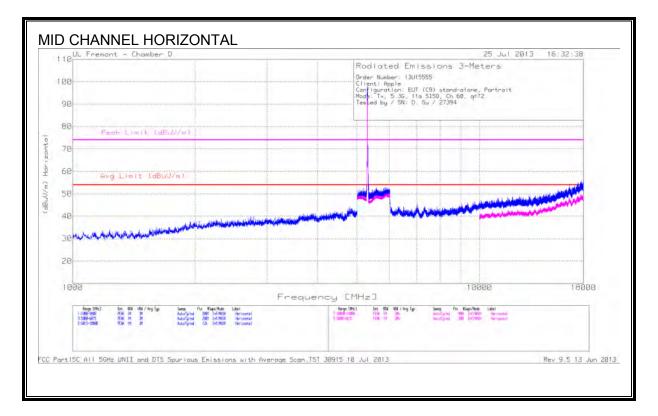

9.2.7. 802.11a SISO MODE IN THE 5.3 GHz BAND

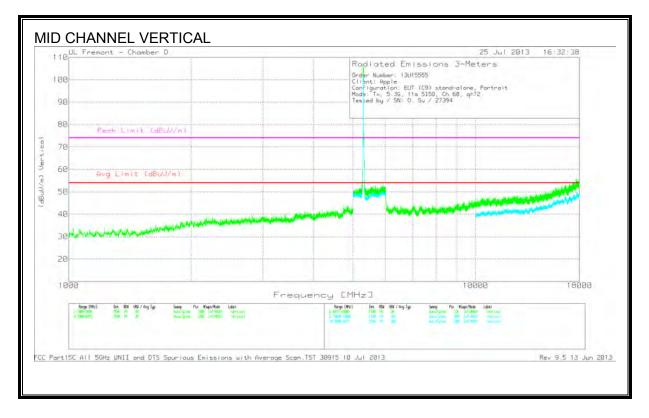

RESTRICTED BANDEDGE (HIGH CHANNEL)




Page 216 of 341

Page 217 of 341

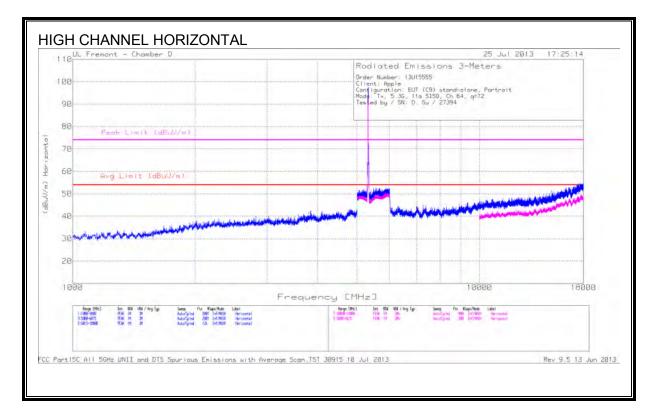

Page 218 of 341

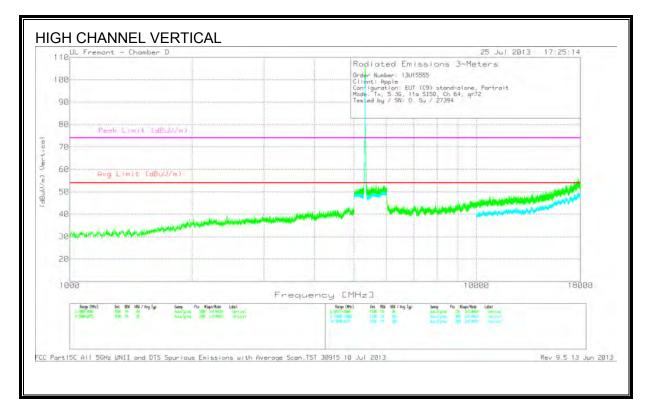

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*5.889	39.15	РК	35.5	-21	0	53.65	-	-	68.2	-14.55	100	V

Notes: * : Not in Restricted Band

PK - Peak detector

Page 219 of 341


Page 220 of 341


Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*5.929	39.4	РК	35.6	-21	0	54	-	-	68.2	-14.2	201	V

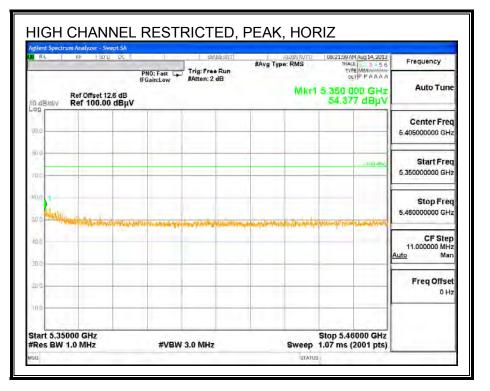
Notes: * : Not in Restricted Band

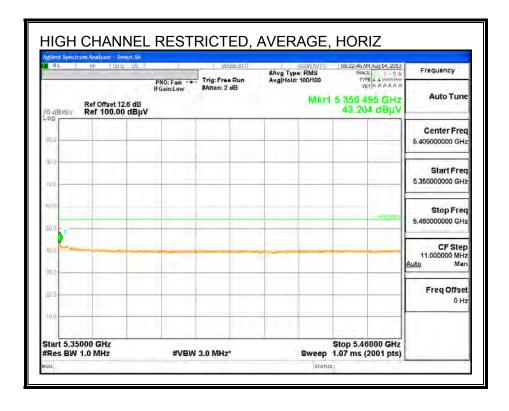
PK - Peak detector

Page 221 of 341

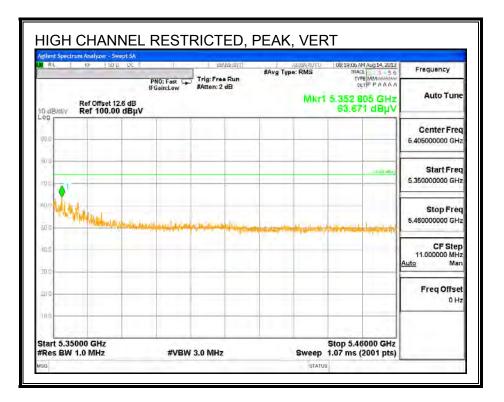
Page 222 of 341

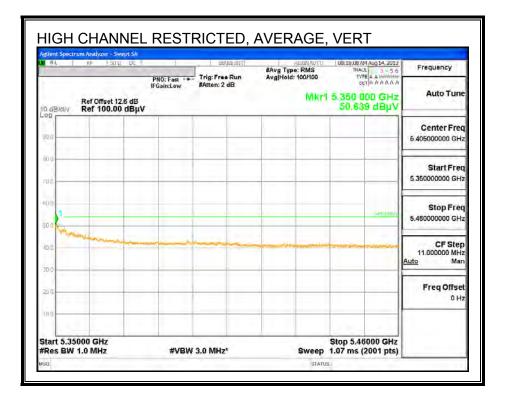
Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*5.678	39.67	РК	35.2	-21.6	0	53.27	-	-	68.2	-14.93	100	v

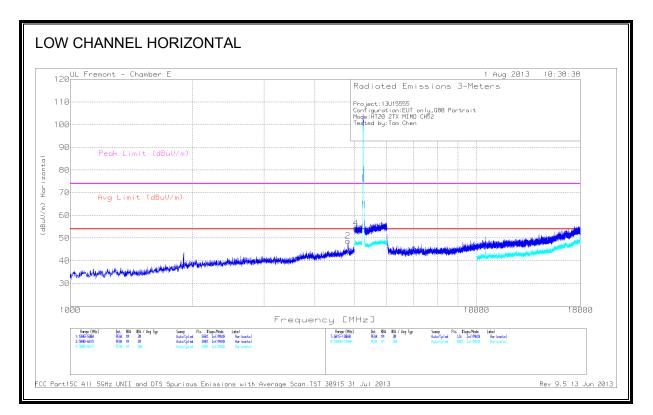

Notes: * : Not in Restricted Band

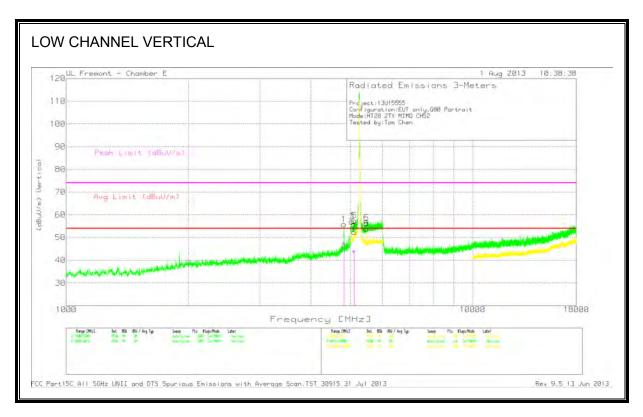

PK - Peak detector

Page 223 of 341


9.2.8. 802.11n HT20 2TX CDD MODE IN THE 5.3 GHz BAND


RESTRICTED BANDEDGE (HIGH CHANNEL)




Page 224 of 341

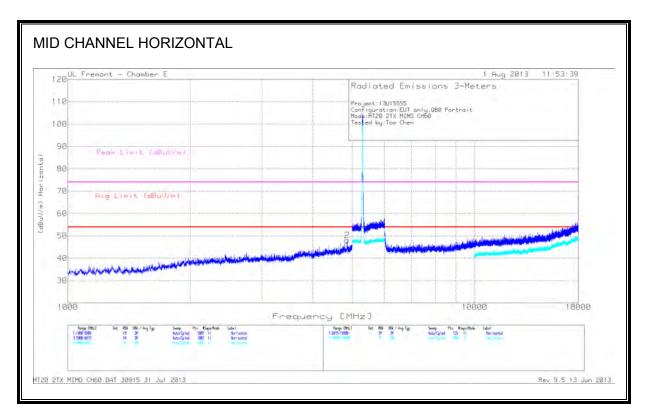
Page 225 of 341

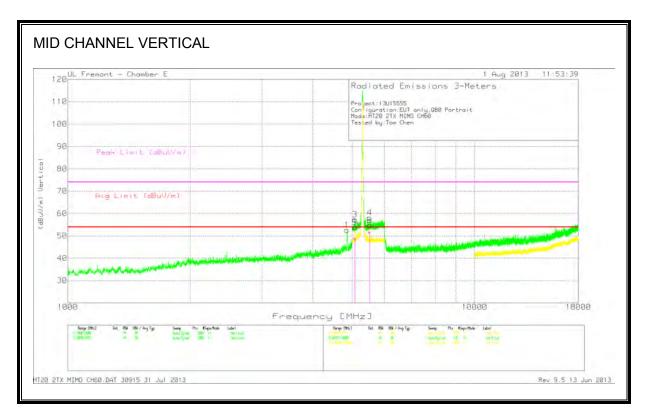
Page 226 of 341

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Marker	Frequency (GHz)	Meter Reading	Det	AF T346 (dB/m)	Amp/Cbl/1 OdB Pad (dB)	DC Corr [dB]	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
		(dBuV)					(dBuV/m)						
2	4.822	45.05	РК	34.4	-30.7	0	48.75	54	-5.25	74	-25.25	199	н
1	4.822	52.1	РК	34.4	-30.7	0	55.8			74	-18.2	200	v
4	5.041	42.13	РК	34.4	-22.2	0	54.33			74	-19.67	199	Н
	5.041	31.03	Av	34.4	-22.2	0	43.23	54	-10.77			199	Н
3	5.041	44.79	РК	34.4	-22.2	0	56.99			74	-17.01	199	V
	5.041	35.09	Av	34.4	-22.2	0	47.29	54	-6.71			199	V
5	5.111	44.72	РК	34.5	-21.8	0	57.42			74	-16.58	100	V
*6	5.479	43.37	РК	34.8	-21.7	0	56.47			68.2	-11.73	100	V
7	5.111	39.7	PK (VB)	34.5	-21.8	0	52.4	54	-1.60			199	V

Note: * : Not in restricted band


PK: Peak detector


Radiated Emissions

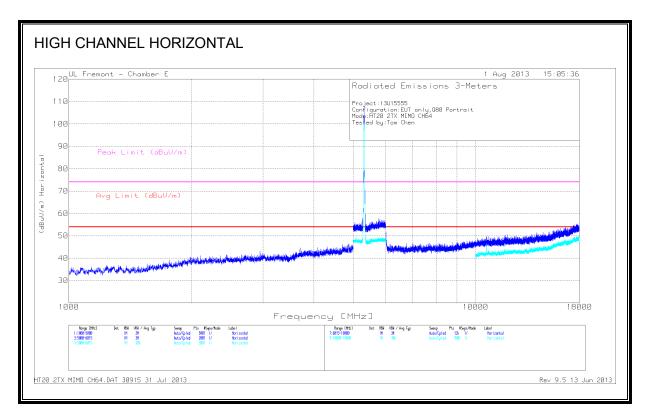
Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl 5GHz LPF dB	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4.822	43.52	Av	34.4	-30.7	.1	47.32	53.97	-6.65			202	335	V
5.105	31.12	Av	34.5	-21.8	.1	43.92	53.97	-10.05			239	367	V

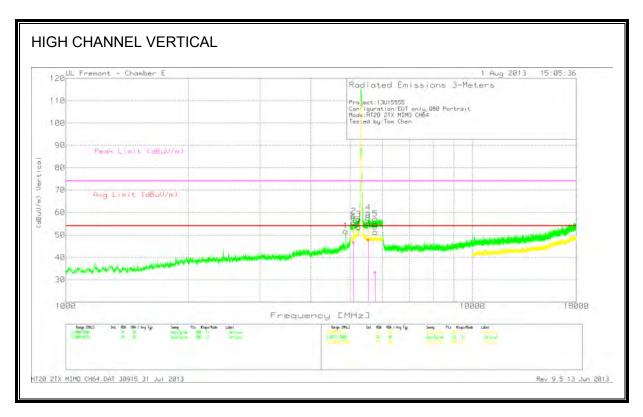
Av - average detection

Page 227 of 341

Page 228 of 341

Marker	Frequency (GHz)	Meter Readi ng (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl 5GHz LPF dB	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
2	4.859	44.73	РК	34.4	-31.1	0	48.03	54	-5.97	74	-25.97	335	н
1	4.852	49.32	РК	34.4	-31.1	0	52.62	54	-1.38	74	-21.38	200	V


Marker	Frequency (GHz)	Meter Readi ng (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
3	5.079	44.68	РК	34.5	-21.9	0	57.28	-	-	74	-16.72	100	V
*4	5.522	44.74	РК	34.9	-21.5	0	58.14	-	-	68.2	-15.86	199	V
5	5.079	41.21	PK (VB)	34.5	-21.9	0	53.81	54	-0.19			199	V
*6	5.521	41.37	PK (VB)	34.9	-21.5	0	54.77		-			100	V


Notes: * : Not in Restricted Band

PK: Peak detector

Frequen cy (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5.079	36.04	Av	34.5	-21.9	.1	48.74	53.97	-5.23	74	-25.26	235	146	V

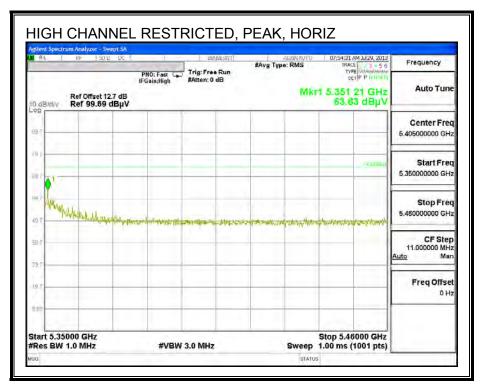
Av - average detection

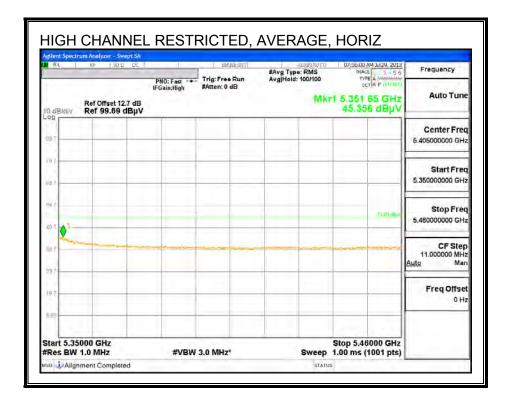
Page 230 of 341

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	4.877	48.28	РК	34.4	-31	0	51.68	54	-2.32	74	-22.32	100	V
2	5.098	45.57	РК	34.5	-21.8	0	58.27			74	-15.73	100	V
*3	5.248	43.82	РК	34.7	-21.6	0	56.92			68.2	-11.25	199	V
*4	5.543	46.32	РК	34.9	-21.3	0	59.92			68.2	-8.28	100	V
*5	5.763	43.4	РК	35.4	-21.7	0	57.1			68.2	-11.1	199	V
6	5.098	42.69	РК	34.5	-21.8	0	55.39			74	-18.61	100	V
*7	5.244	40.25	РК	34.7	-21.5	0	53.45			68.2	-14.75	100	V
*8	5.542	41.65	РК	34.9	-21.4	0	55.15			68.2	-13.05	199	V
*9	5.764	37.62	РК	35.4	-21.7	0	51.32			68.2	-16.88	199	V

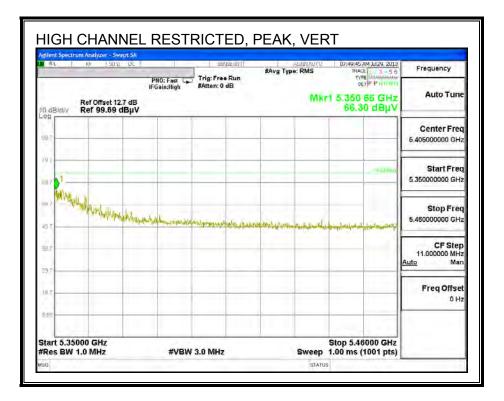
Notes: * : Not in Restricted Band

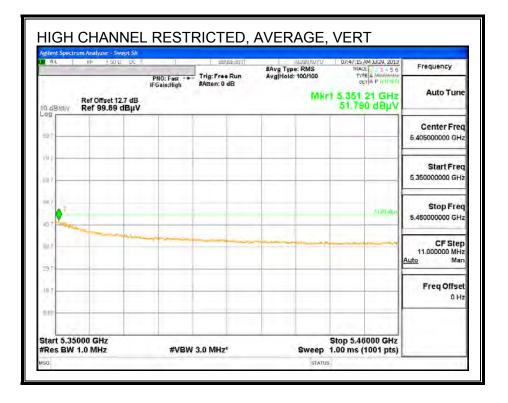
PK: Peak detector

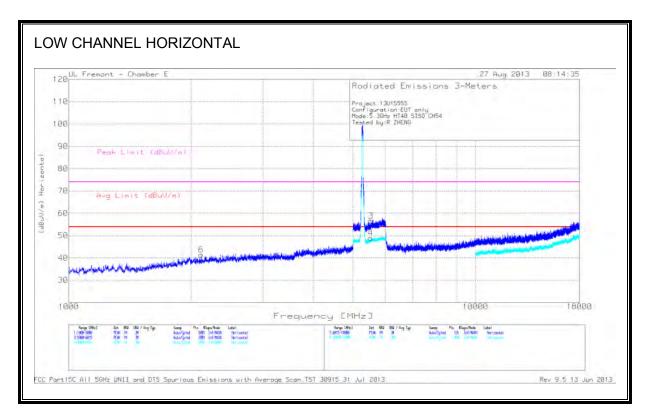

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad (dB)	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
5.097	33.89	Av	34.5	-21.8	.1	46.69	53.97	-7.28			191	170	V

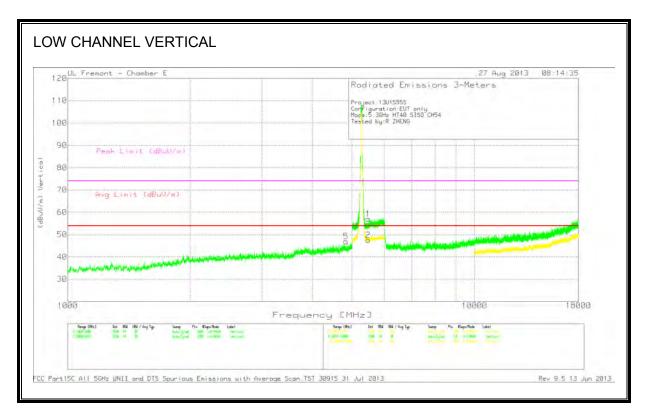

Av - average detection

Page 231 of 341


9.2.9. 802.11n HT40 SISO MODE IN THE 5.3 GHz BAND


RESTRICTED BANDEDGE (HIGH CHANNEL)

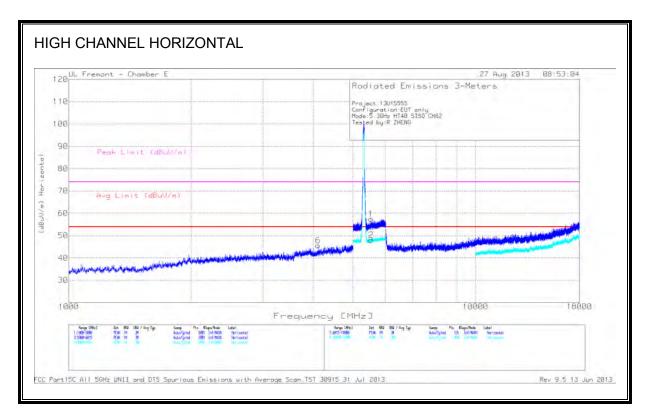


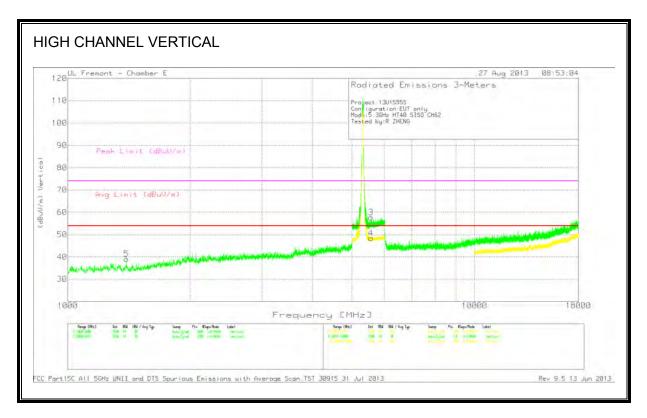

Page 232 of 341

Page 233 of 341

Page 234 of 341

Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /5GHz LPF	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*6	2.116	43.14	РК	32.2	-33.9	0	41.44			68.2	-26.76	99	н
5	4.831	42.94	РК	34.4	-30.4	0	46.94	54	-7.06	74	-27.06	200	V


Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*3	5.526	42.72	РК	34.9	-21	0	56.62			68.2	-11.94	100	н
*4	5.525	35.01	PK (VB)	34.9	-21	0	48.91			68.2	-19.29	200	н
*1	5.477	43.45	Pk	34.8	-21.2	0	57.05			68.2	-11.15	199	V
*2	5.476	33.94	Pk (VB)	34.8	-21.2	0	47.54			68.2	-20.66	100	v


Notes: * : Not in Restricted Band

PK: Peak detector

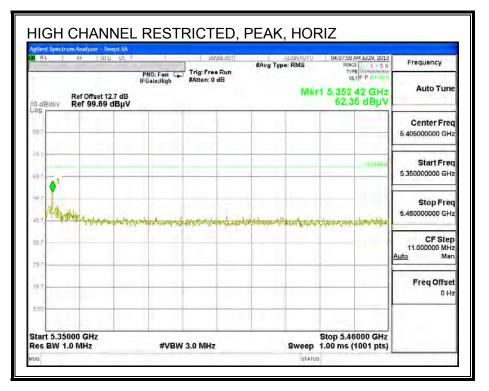
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

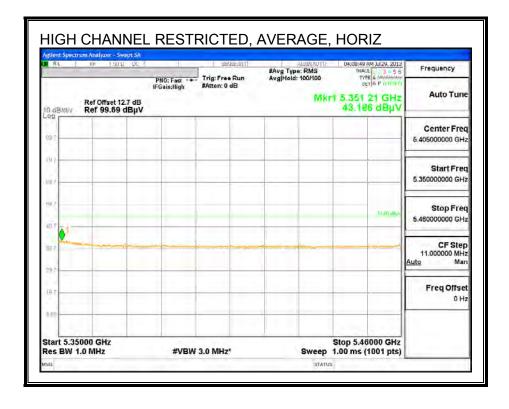
Page 235 of 341

Page 236 of 341

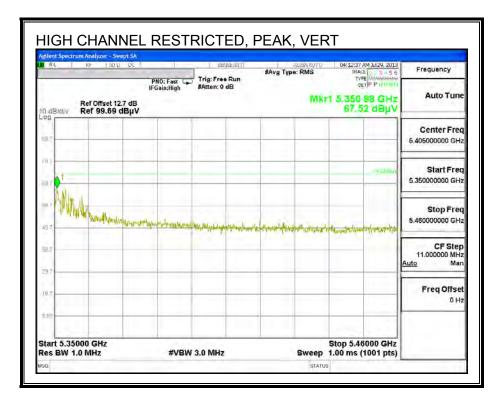
Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /5GHz LPF	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
6	4.102	42.5	РК	33.9	-30.8	0	45.6	54	-8.4	74	-28.4	199	н
5	1.394	44.29	РК	29	-34.2	0	39.09	54	-14.91	74	-34.91	200	V

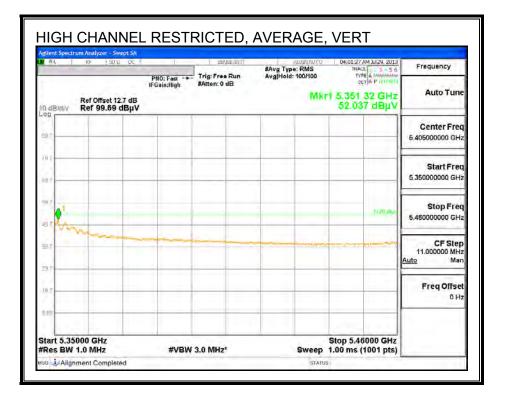
Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*1	5.537	43.56	РК	34.9	-21	0	57.46	-	-	68.2	-10.74	100	н
*2	5.539	34.13	PK (VB)	34.9	-21	0	48.03	-	-	68.2	-20.17	100	Н
*3	5.564	43.58	РК	35	-20.9	0	57.68	-	-	68.2	-10.52	199	V
*4	5.564	34.26	PK (VB)	35	-20.9	0	48.36	-	-	68.2	-19.84	200	V

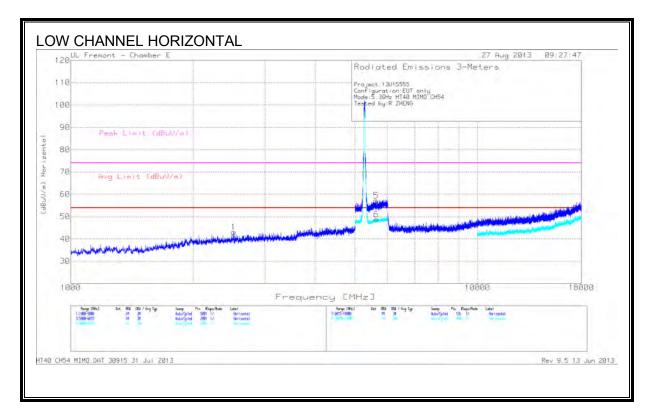

Notes: * : Not in Restricted Band

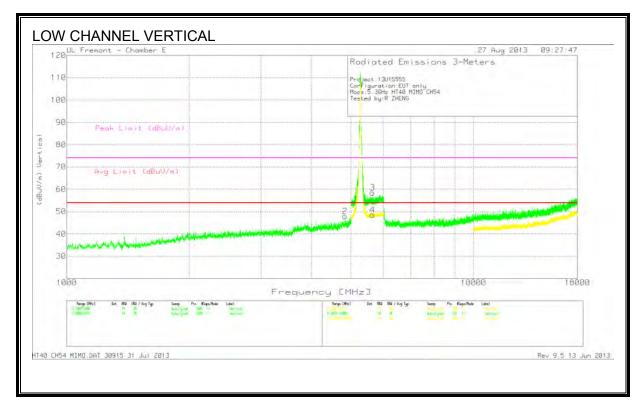

PK: Peak detector

Page 237 of 341


9.2.10. 802.11n HT40 2TX CDD MODE IN THE 5.3 GHz BAND


RESTRICTED BANDEDGE (HIGH CHANNEL)

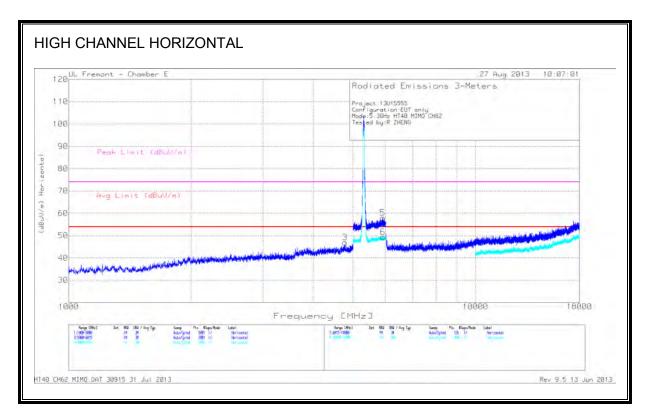


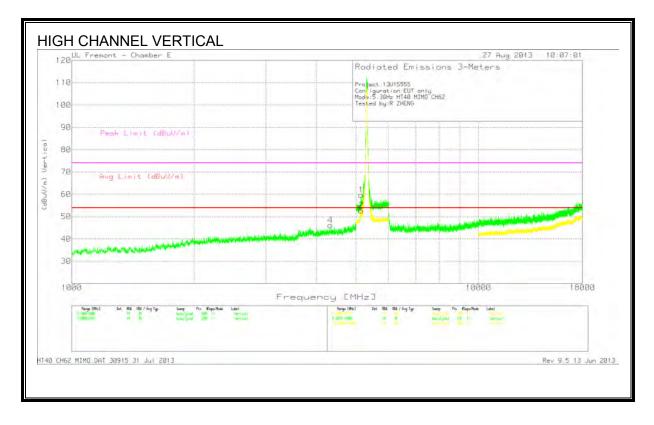

Page 238 of 341

Page 239 of 341

Page 240 of 341

Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /5GHz LPF	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
1	2.514	42.72	РК	32.7	-32.4	0	43.02	54	-10.98	74	-30.98	100	н
2	4.832	43.93	РК	34.4	-30.4	0	47.93	54	-6.07	74	-26.07	200	V


Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*5	5.634	43.04	РК	35.1	-21	0	57.14			68.2	-11.06	199	н
*6	5.636	34.64	Pk (VB)	35.1	-21	0	48.74			68.2	-19.46	101	Н
*3	5.644	44.5	РК	35.1	-21.1	0	58.5			68.2	-9.70	101	v
*4	5.643	34.54	(Pk (VB)	35.1	-21.1	0	48.54			68.2	-19.66	100	V


Notes: * : Not in Restricted Band

PK: Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 241 of 341

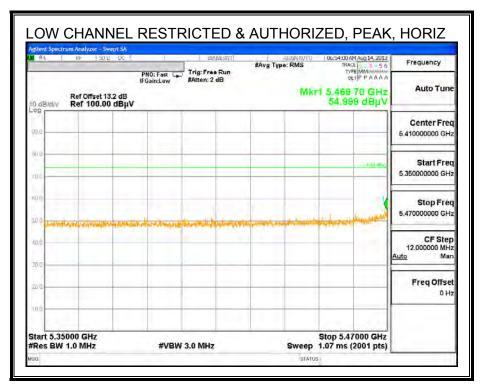
Page 242 of 341

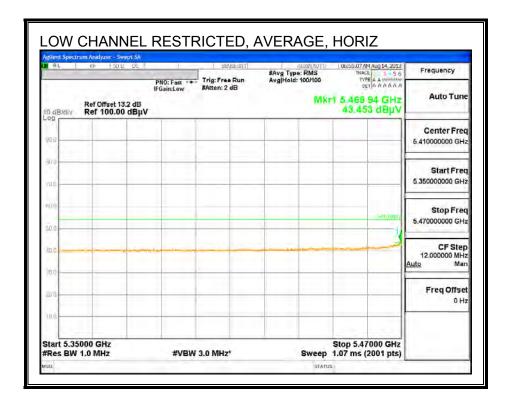
Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /5GHz LPF	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
3	4.777	42.62	РК	34.4	-30.1	0	46.92	54	-7.08	74	-27.08	199	н
4	4.324	43	РК	34.1	-31	0	46.1	54	-7.9	74	-27.9	101	V

Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl /10dB Pad	DC Corr [dB]	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*5	5.912	42.63	РК	35.7	-20.4	0	57.93			68.2	-10.27	199	н
*6	5.915	33.99	PK (VB)	35.7	-20.3	0	49.39					200	Н
1	5.143	46.53	РК	34.6	-21.4	0	59.73			74	-14.27	199	V
2	5.143	39.51	РК	34.6	-21.4	0	52.71	54	-1.29			199	V

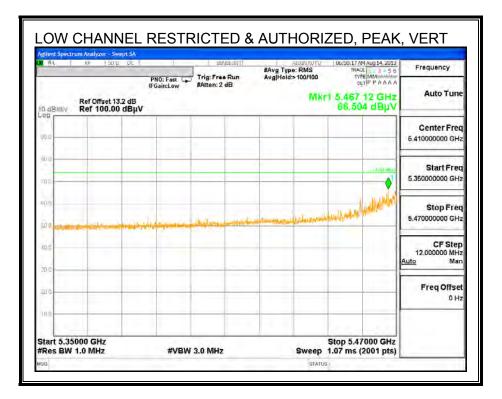
Notes: *: Not in Restricted Band

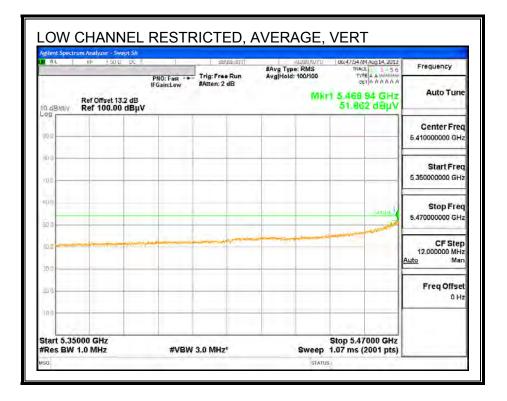
PK: Peak detector

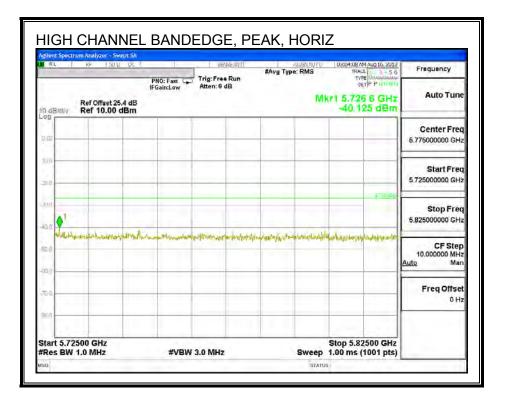

Horizontal 50	000 - 6015N	ЛНz											
	Meter			Amp/Cbl		Corrected							
Test	Reading		AF T346	/10dB	DC Corr	Reading	Avg Limit	Margin	Peak Limit	Margin	Azimuth	Height	
Frequency	(dBuV)	Detector	(dB/m)	Pad	[dB]	(dBuV/m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	[Degs]	[cm]	Polarity
5144.2095	32.57	Av	34.6	-21.4	0.1	45.87	53.97	-8.1	74	-28.13	360	166	Н

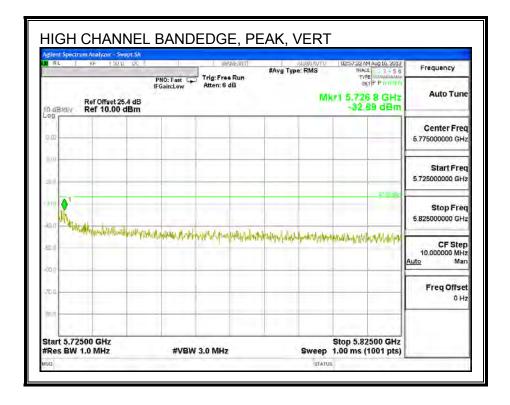

Av - Average detector

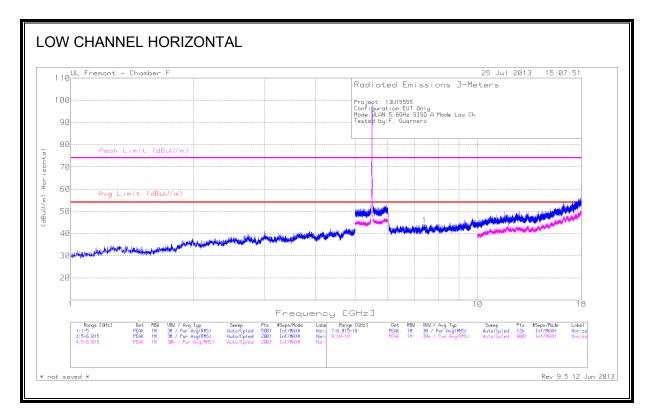
Page 243 of 341

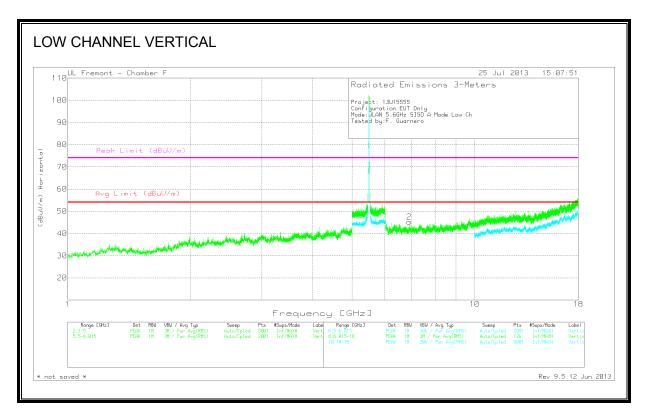

9.2.11. 802.11a SISO MODE IN THE 5.6 GHz BAND


RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)

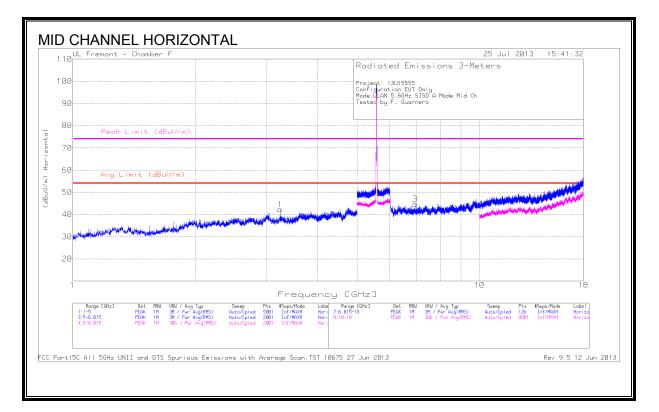

Page 244 of 341

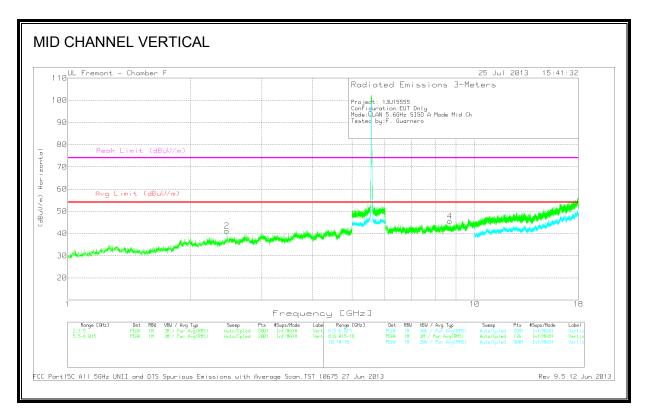



Page 245 of 341


AUTHORIZED BANDEDGE (HIGH CHANNEL)

Page 246 of 341

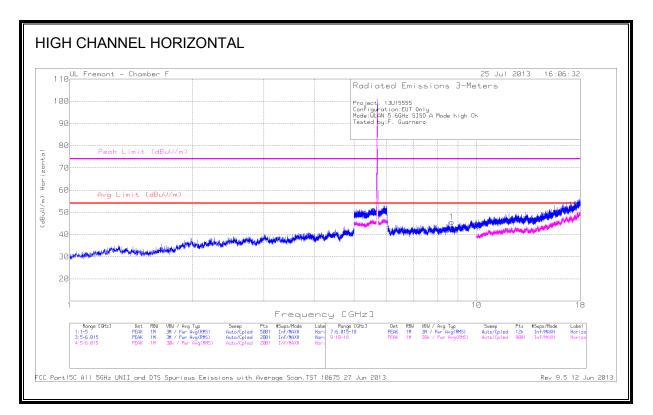


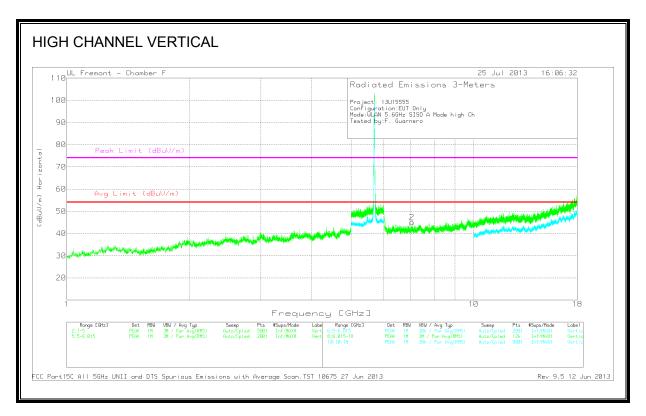

Page 247 of 341

Marker	Frequenc Y (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Correcte d Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	7.415	37	РК	35.8	-29.2	43.6	53.97	-10.37	74	-30.4	0-360	201	н
2	6.905	39.31	РК	35.7	-29.8	45.21	53.97	-8.76	74	-28.79	0-360	199	V

PK - Peak detector

Page 248 of 341


Page 249 of 341


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

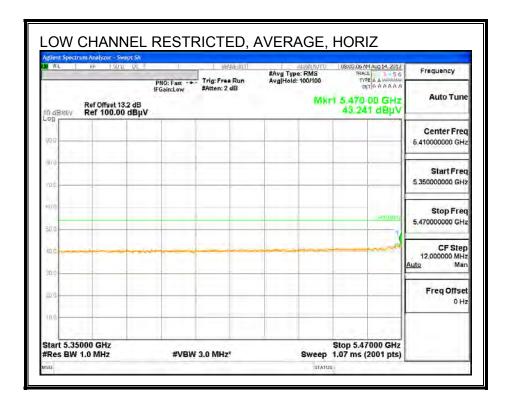
Marker	Frequency (GHz)	Meter Reading	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	3.233	41.8	РК	33.2	-32.7	42.3	53.97	-11.67	74	-31.7	0-360	98	н
2	2.462	42	РК	32.4	-33.2	41.2	53.97	-12.77	74	-32.8	0-360	101	V
3	6.942	38.37	РК	35.7	-29.4	44.67	53.97	-9.3	74	-29.33	0-360	199	Н
4	8.693	36.66	РК	36.1	-27.2	45.56	53.97	-8.41	74	-28.44	0-360	201	V

PK - Peak detector

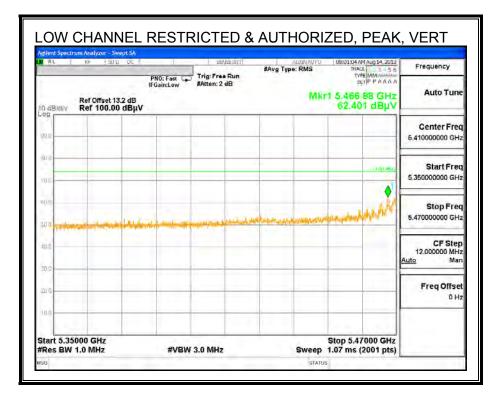
Page 250 of 341

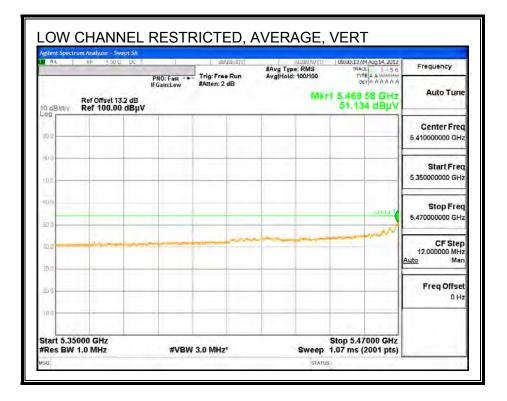
Page 251 of 341

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/C bl/Fltr/ Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	8.689	36.88	РК	36.1	-27.3	45.68	53.97	-8.29	74	-28.32	0-360	100	н
2	7.06	38.41	РК	35.7	-29.1	45.01	53.97	-8.96	74	-28.99	0-360	100	V

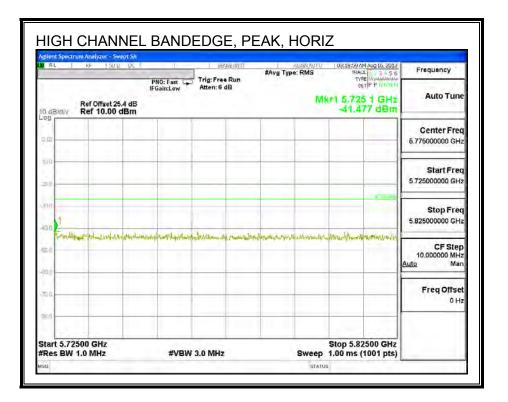

PK - Peak detector

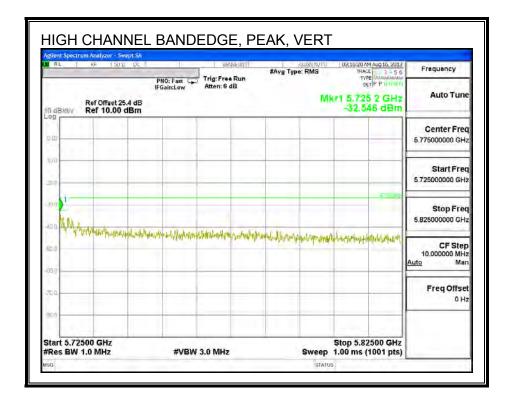
Page 252 of 341

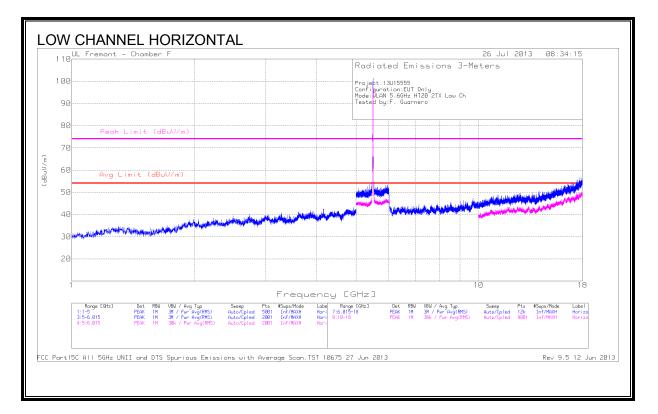

9.2.12. 802.11n HT20 2TX CDD MODE IN THE 5.6 GHz BAND

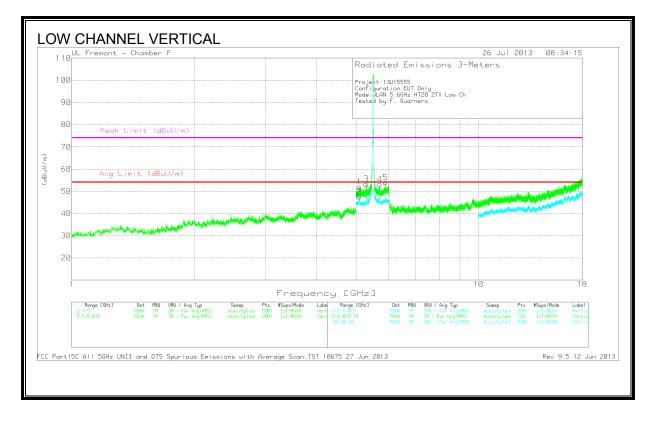

RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)

LOW CHANNEL RESTRICTED & AUTHORIZED, PEAK, HORIZ 08;04:30 AM Aug 14, 2013 #Avg Type: RMS Frequency Trig: Free Run #Atten: 2 dB DET P P A A A PNO: Fast Auto Tune Mkr1 5.467 72 GHz 54.642 dBµV Ref Offset 13.2 dB Ref 100.00 dBµV 0 dB/div Center Freq 5.410000000 GHz Start Freq 5.35000000 GHz Stop Freq (5,470000000 GHz CF Step 12.000000 MHz 10 Mar uto Freq Offset 0 Hz Stop 5.47000 GHz Sweep 1.07 ms (2001 pts) Start 5.35000 GHz #VBW 3.0 MHz #Res BW 1.0 MHz STATUS

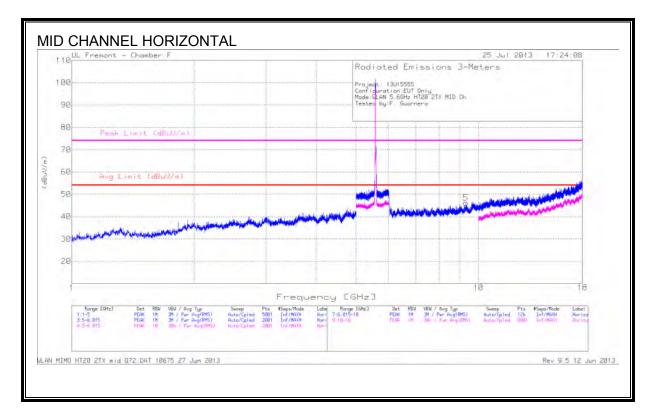

Page 253 of 341

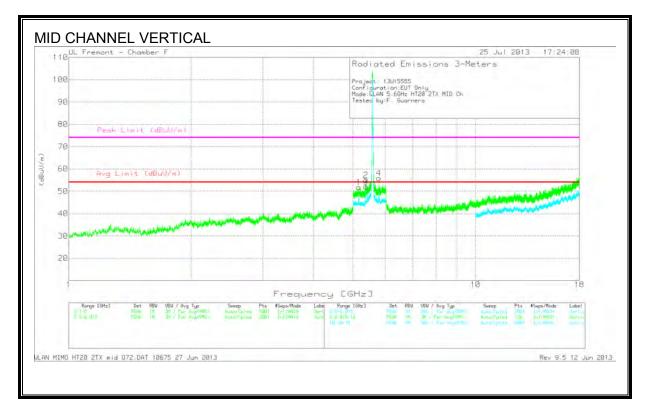



Page 254 of 341


AUTHORIZED BANDEDGE (HIGH CHANNEL)

Page 255 of 341


Page 256 of 341


Marker	Frequency (GHz)	Meter Reading	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
1	5.094	39.6	РК	34.2	-21.8	52			74	-22	0-360	200	V
2	5.092	35.26	PK (VB)	34.1	-21.8	47.56	53.97	-6.41			0-360	199	v
*3	5.296	40.78	РК	34.4	-21.9	53.28			68.2	-14.92	0-360	101	v
*4	5.711	39.93	РК	34.9	-21.7	53.13			68.2	-15.07	0-360	200	v
*5	5.909	39.64	РК	35.2	-20.8	54.04			68.2	-14.16	0-360	200	v

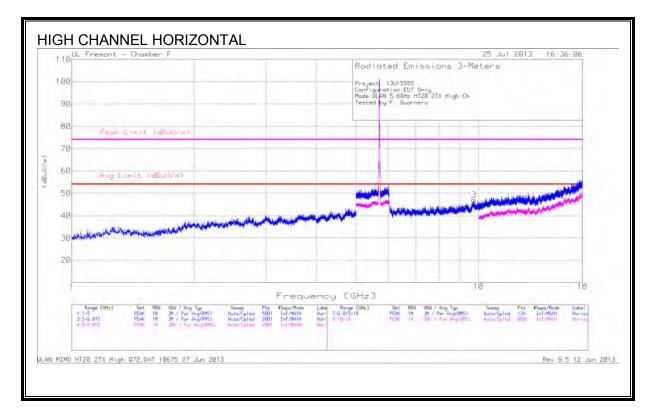
Note: * : Not in restricted band

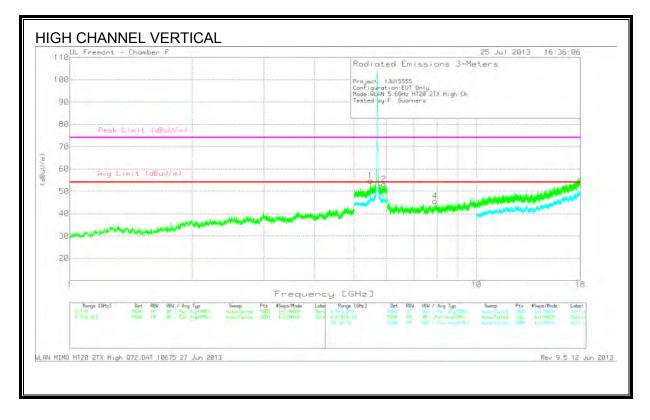
PK: Peak detector

Page 257 of 341

Page 258 of 341

Marker	Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit	Margin (dB)	Azimuth	Height	Polarity
	(GHz)	Reading			(dB)	Reading			(dBuV/m)		(Degs)	(cm)	
		(dBuV)				(dBuV/m)							
*1	5.167	39.12	РК	34.3	-21.6	51.82			68.2	-16.38	0-360	100	V
2	5.373	42.45	РК	34.6	-22.1	54.95			74	-19.05	0-360	199	v
3	5.373	39.56	PK (VB)	34.6	-22.1	52.06	53.97	-1.91			0-360	200	V
*4	5.788	42.73	РК	35	-21.8	55.93			68.2	-12.27	0-360	199	v
5	9.309	35.57	РК	36.7	-26.1	46.17	53.97	-7.8	74	-27.83	0-360	100	н


Note: * : Not in restricted band


PK: Peak detector

Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth	Height	Polarity
(GHz)	Reading			(dB)	Reading					(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
5.373	37.41	Av	34.6	-22.1	49.91	53.97	-4.06	74	-24.09	307	164	v

Av - average detection

Page 259 of 341

Page 260 of 341

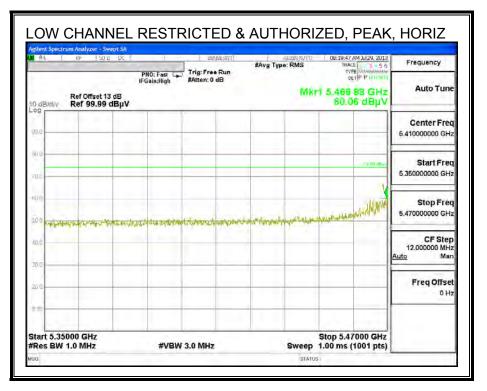
DATA

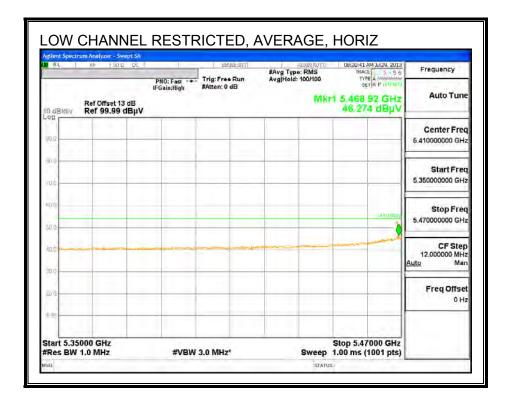
Marker	Frequency (GHz)	Meter Reading	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)				(dBuV/m)							
*1	5.49	41.74	РК	34.7	-21.7	54.74			68.2	-13.46	0-360	199	v
*2	5.915	38.93	РК	35.2	-20.9	53.23			68.2	-21	0-360	100	v
3	9.738	35.29	РК	37.4	-25.7	46.99	53.97	-6.98	74	-27.01	0-360	199	н
4	7.913	37.93	РК	35.9	-28.2	45.63	53.97	-8.34	74	-28.37	0-360	201	V

Note: * : Not in restricted band

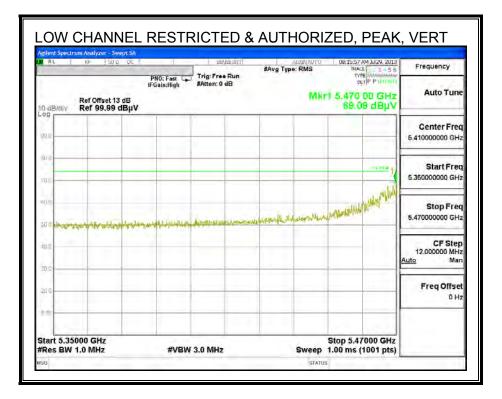
PK: Peak detector

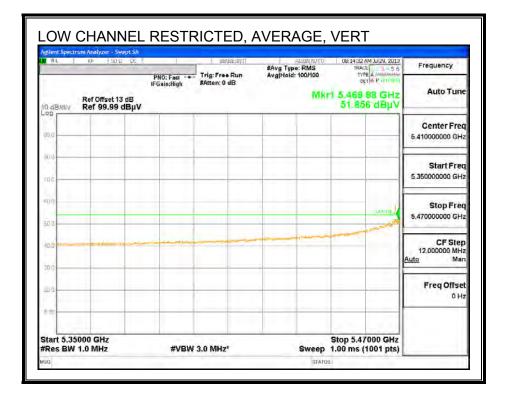
Page 261 of 341

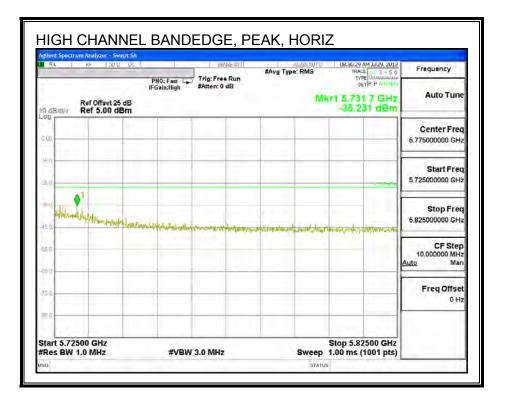

9.2.13. 802.11n HT20 2TX STBC MODE IN THE 5.6 GHz BAND

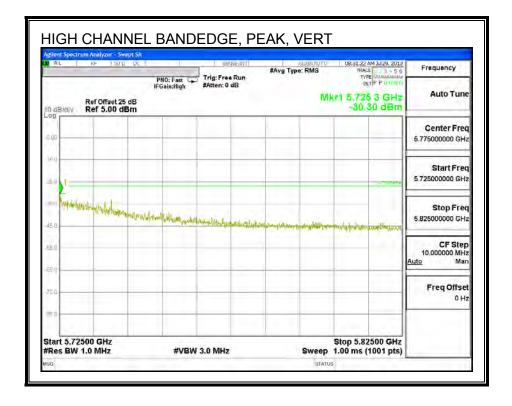

Covered by testing 11n HT20 CDD 2TX, total power across the two chains is higher than the power level the device will operate at

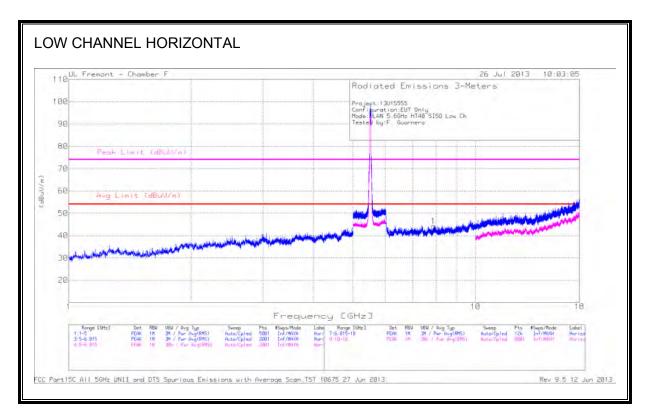
Page 262 of 341

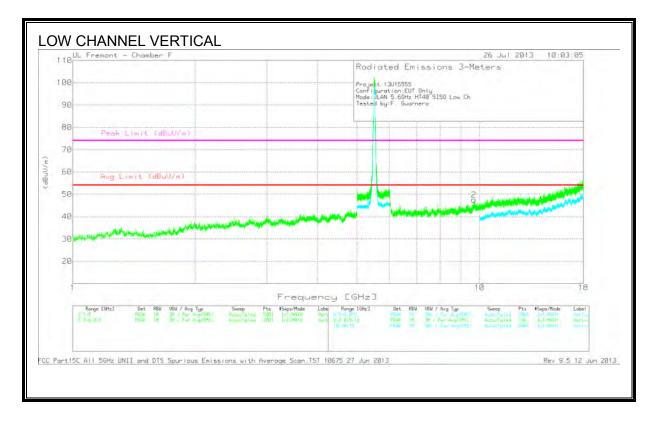

9.2.14. 802.11n HT40 SISO MODE IN THE 5.6 GHz BAND


RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)


Page 263 of 341



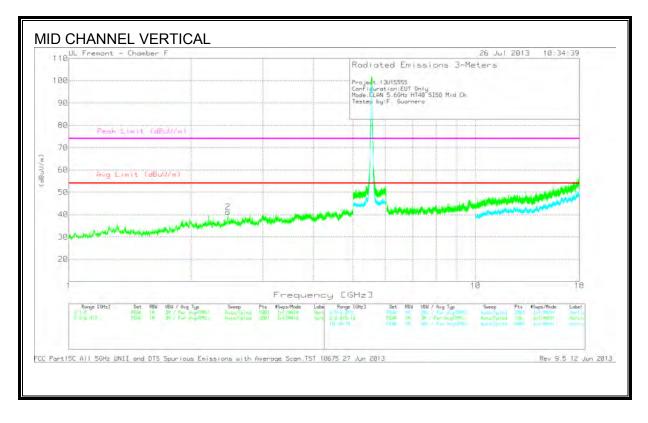

Page 264 of 341


AUTHORIZED BANDEDGE (HIGH CHANNEL)

Page 265 of 341

Page 266 of 341

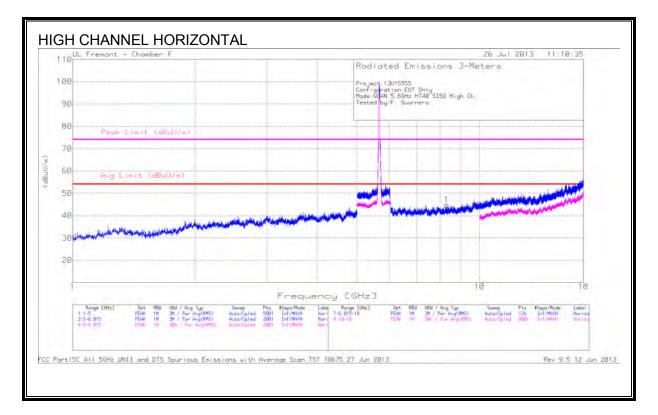
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

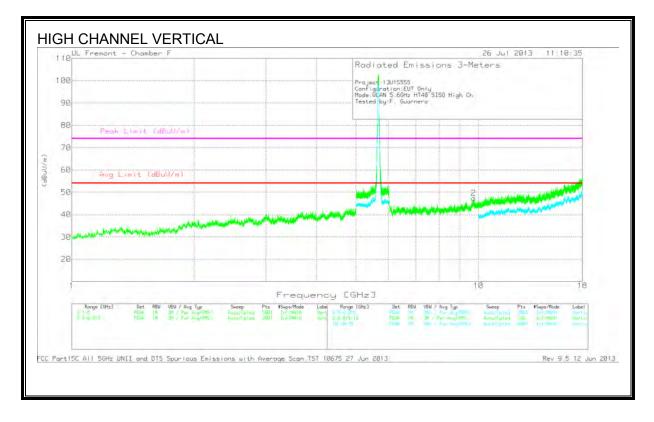

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	7.89	36.71	РК	35.9	-28.4	44.21	53.97	-9.76	74	-29.79	0-360	100	Н
2	9.685	35.92	РК	37.4	-25.8	47.52	53.97	-6.45	74	-26.48	0-360	100	V

PK - Peak detector

Page 267 of 341


Page 268 of 341


<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	2.462	41.99	РК	32.4	-33.2	41.19	53.97	-12.78	74	-32.81	0-360	101	V
1	9.691	35.1	РК	37.4	-25.6	46.9	53.97	-7.07	74	-27.1	0-360	199	н

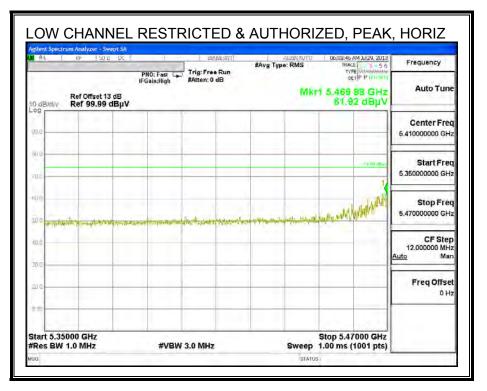
PK - Peak detector

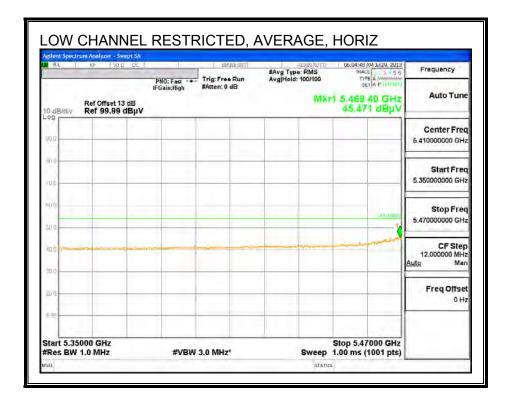
Page 269 of 341

Page 270 of 341

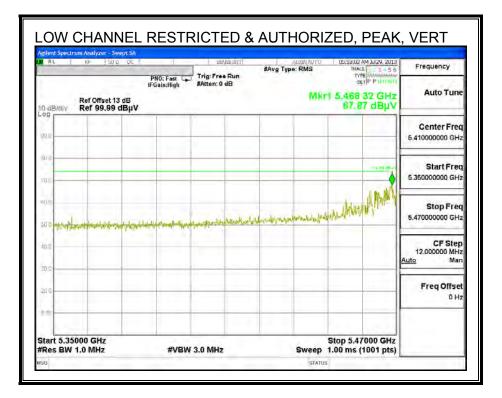
UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

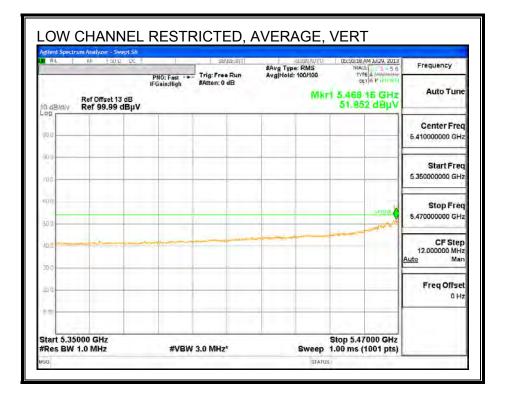
<u>DATA</u>

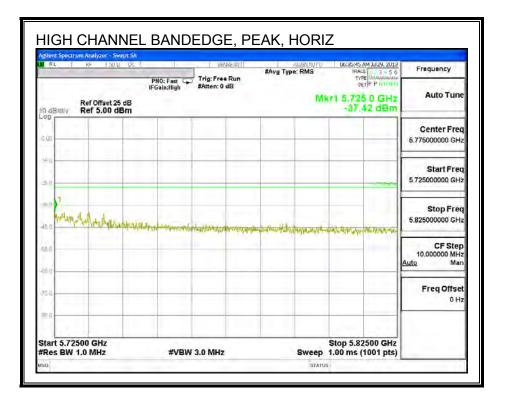

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	8.302	36.7	РК	36	-27.8	44.9	53.97	-9.07	74	-29.1	0-360	199	н
2	9.722	35.54	РК	37.4	-25.6	47.34	53.97	-6.63	74	-26.66	0-360	201	V

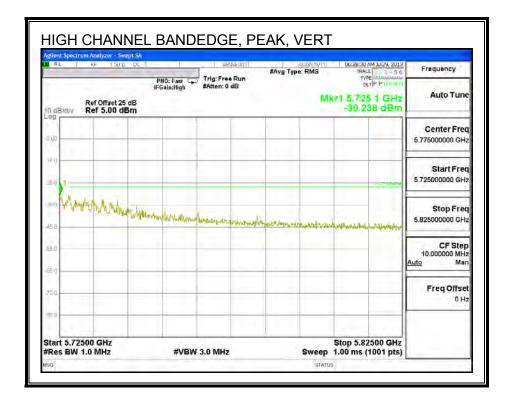

PK - Peak detector

Page 271 of 341

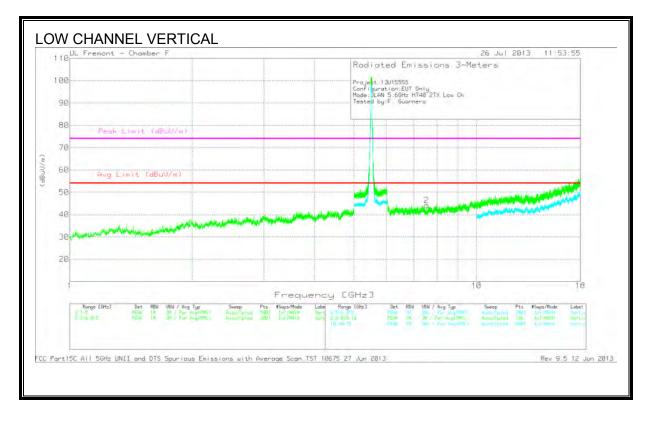

9.2.15. 802.11n HT40 2TX CDD MODE IN THE 5.6 GHz BAND


RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)


Page 272 of 341

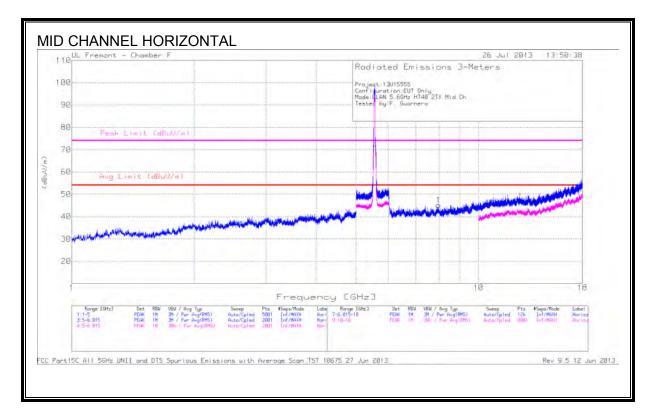


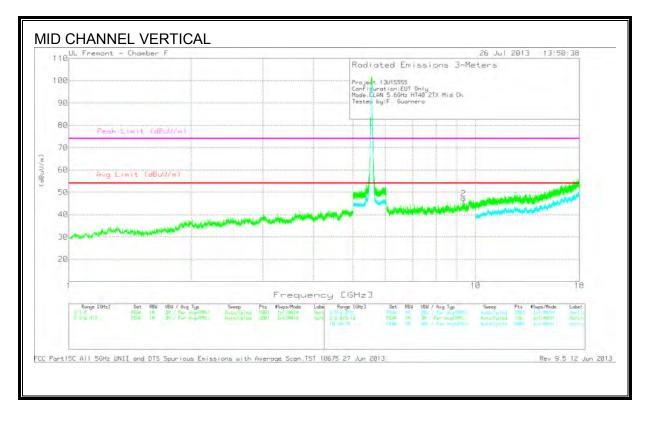
Page 273 of 341


AUTHORIZED BANDEDGE (HIGH CHANNEL)

Page 274 of 341

Page 275 of 341


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

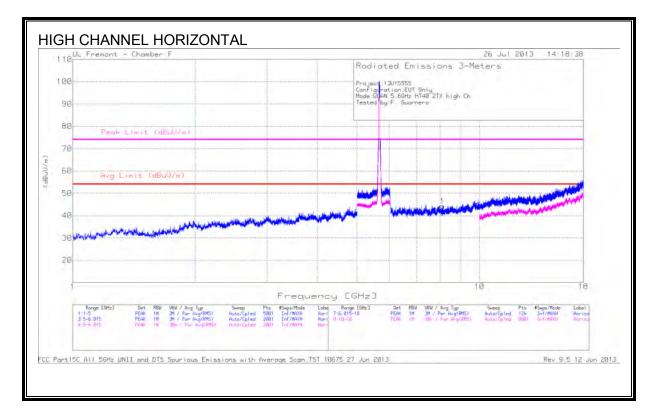

<u>DATA</u>

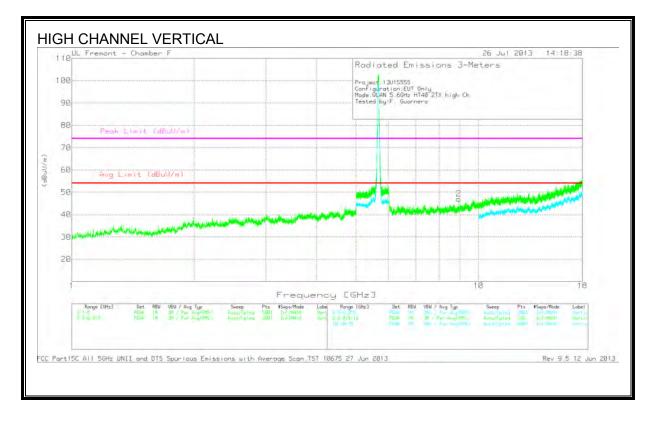
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	9.377	35.53	РК	36.9	-26.3	46.13	53.97	-7.84	74	-27.87	0-360	199	н
2	7.541	37.32	РК	35.8	-29	44.12	53.97	-9.85	74	-29.88	0-360	100	V

PK - Peak detector

Page 276 of 341

Page 277 of 341


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .


<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/ m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	7.974	37.33	РК	36	-28.2	45.13	53.97	-8.84	74	-28.87	0-360	100	н
2	9.339	36.3	РК	36.8	-25.9	47.2	53.97	-6.77	74	-26.8	0-360	100	V

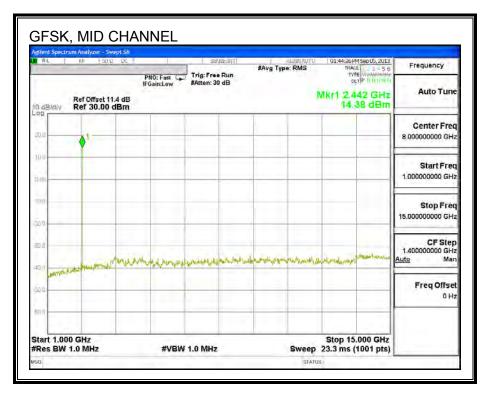
PK - Peak detector

Page 278 of 341

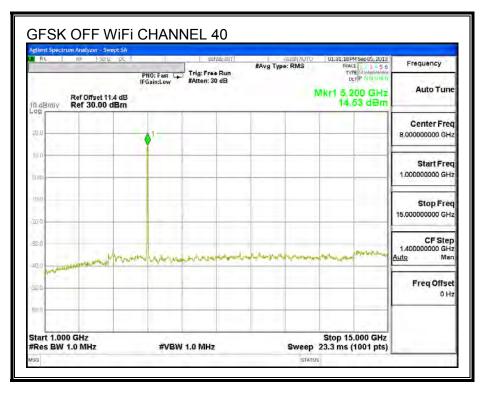
Page 279 of 341

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

<u>DATA</u>

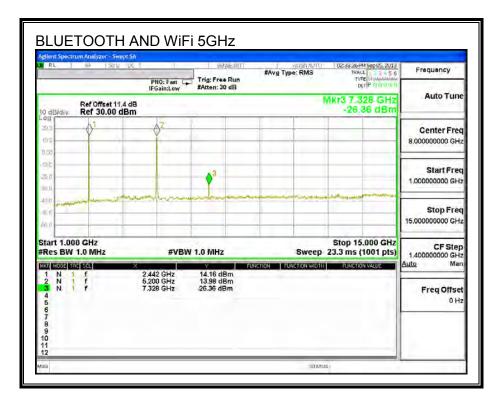

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T120 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	8.107	36.75	РК	36	-28.6	44.15	53.97	-9.82	74	-29.85	0-360	199	н
2	8.937	38.09	РК	36.3	-27.3	47.09	53.97	-6.88	74	-26.91	0-360	101	V

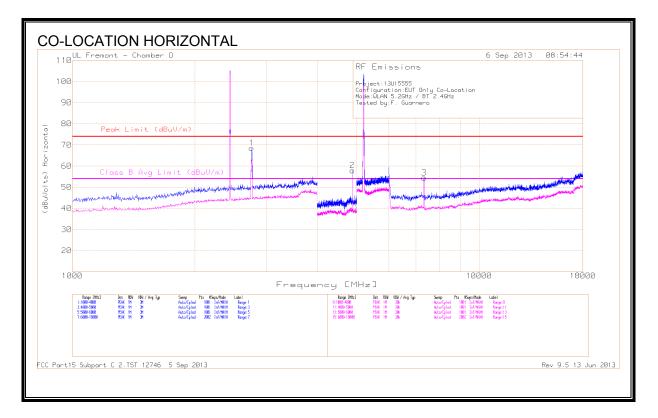
PK - Peak detector

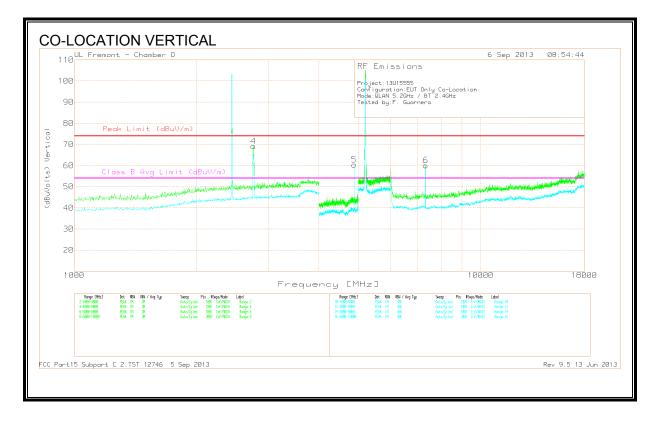

Page 280 of 341

9.2.16. 2.4GHz and 5GHz Band Co-Location

BLUETOOTH ON


BLUETOOTH OFF WIFI ON


Page 281 of 341


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

BLUETOOTH AND WIFI CO-LOCATION

Page 282 of 341

Page 283 of 341

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl/ Pad	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Class B Avg Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*1	2.761	56.19	РК	32.9	-20.6	68.49	74	-5.51	-	-	100	Н
*2	4.883	50.96	РК	34.3	-27.3	57.96	74	-16.04	-	-	100	Н
*3	7.325	44.97	РК	35.9	-26.4	54.47	74	-19.53	-	-	100	Н

PK - Peak detector

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T344 (db/m)	Amp/Cbl/ Fltr/Pad	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Class B Avg Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
*4	2.761	56.84	РК	32.9	-20.6	69.14	74	-4.86	-	-	100	V
*5	4.883	53.39	РК	34.3	-27.3	60.39	74	-13.61	-	-	100	V
*6	7.325	50.52	РК	35.9	-26.4	60.02	74	-13.98	-	-	100	V

PK - Peak detector

For the Harmonics measurement, there is no need for the average reading since the peak reading passed with the peak limit. The average reading = peak reading – $20\log(1/duty \text{ cycle})$, and the $20*\log(1/duty \text{ cycle})$ is greater than 20dB.

Page 284 of 341

9.3. WORST-CASE ABOVE 18 GHz

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

a5 UL EMC					28 Aug 2013	8 08:18:55
			RF E	missions		
∋5			Proje Confi	ct:13U15555 guration:EUT OM WLAN 5.2GHz HT2		
35			Teste	d by:F. Guarner	20 21X Mid Ch "0	
75 Peak Lim	it (dBuV/m)					
55						
55 <mark></mark>	(dBuV/m)					
45						
35						tadadi na zrvini
mananum	wheneversteristicalement	washinewater	where we wanted the second	hard and hard a show	a be call a fresh and the for a show a stranger	an annet a state that we have
25						
15						
8000		Ener	quency EMHz			2600
Range [NHz] 1:18889-26888	lat MSN UBN ∕Ang Tup Swaap TOK IN 30 Ang Tup	Pts #Seps/Mode Lobel		et RBN UBN / Avg Typ EAK IN 3M	Sweep Pts #Swps/Kode Lobel Auto/Opled 1282 Inf/MRXH Ventical	
1:18888-26888	теяк ім зи — Анко/орі	ed 1282 Inf/MARH Harizontal	2:18888-26888	ERK IN 31	Auto/Opled 1282 Inf/MRCH Ventical	

Page 285 of 341

SPURIOUS EMISSIONS 26 TO 40 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

	5 UL EMC	28 Aug 2013 - 08:26:28
9	5	RF Emissions Project:13U15555 Configuration:EUT ONly Mode:ULAN 5.26Hz HT20 ZTX Mid Ch Tested by:F. Guarnero
8 7		
6		
5	5 Avg Limit (dBuU/m)	
4	5	
	5	an a
1	5	
26	5000 Fred	quency [MHz]
	Rongo (MHZ) Det 1694 / Hoy Typ Sweep Pts KSaper/Made Ladval 1:20088-18808 FE3K IN 3Y Acco/Cpiled 1883 Ter/MNRY Herizontal	Rompu DMLE] Diet (RSU UBM / Ang Typ Sweep, Pils Rompu/Kode Labol 2.235681-68888 FECK IN 38 Ruto/Cpiled IRR3 Tor/ASKR Venticol
SH:	z Test.TST 30915 2 Aug 2013	Rev 9.5 13 Jur

Page 286 of 341

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

5 UL EMC		28 Aug 2013 08:44:57
		RF Emissions
5		Project:13U15555 Configuration:EUT ONly Mode:ULAN 5.36Hz HT20 2TX Mid Ch
5		Mode: LLAN 5.3GHz HT20 2TX Mid Ch Tested by:F. Guarnero
5 Peak Limit (dE	3uU∕m)	
-		
5		
5 Avg Limit (dBu	V/m)	
5		
5		Later of the set of the set
5 march March March	water a second of the second and the second of the second s	and the second and the second and a second second and the second and the second and the second s
5		
3000		268
		Frequency [MHz]
Range [NHz] Det. RSI UBJ 1:18889-26898 IN 34	l∕AvgTyp Sweep Pts ¥Swps/Hode Lobel Auto/Colled 1202 1/ Horizontal	Range (MHz) Det RSV USV / Ang Typ Sweep Pts Kaps/Made Label tal 2:10399-20390 IN 34 Auto-Coled 1282 1/ Ventical

Page 287 of 341

SPURIOUS EMISSIONS 26 TO 40 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

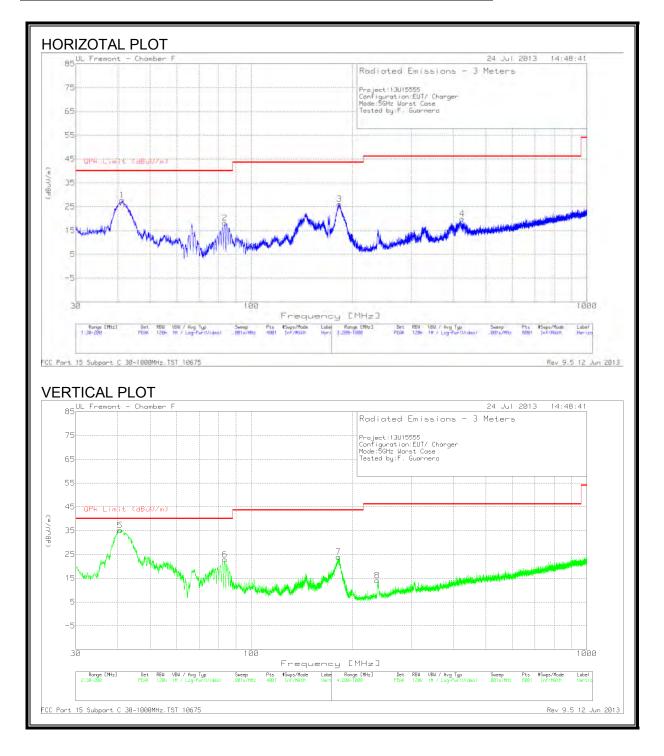
	UL EMC	28 Aug 2013 - 08:37:14
1 Ø 5 95 85		RF Emissions Project:13U15555 Configuration:EUT ONly Mode:BLAN 5.30Hz HT20 2TX Mid Ch Tested by:F. Guarnero
75	Peak Limit (dBuU/m)	
65 55	Avg Limit (dBuU/m)	
45		
35 25		nethy phonetic and a second with a construction of the second and a second a second of second and a second with a second with a second s
15		
26	1 300 Fred	4000 quency [MHz]
	Bange DNH2 Det HBW UBW / Ang Tup Sweep Pits #Samp/Made Label 1:26989-49989 FEHK H 3H Auto/Upited 1083 Inf/MM2H Harizontal	Borge (NHz) Det R8U ISU / File Sense Pts Kingu/Kede Lebel 2:20098-98800 FEWK IM 34 Autor/Cyled 1685 Inf /N901 Vertical

Page 288 of 341

SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

5 UL EMC		28 Aug 2013 - 08:54
		RF Emissions
5		Project:13U15555
		Projest:13U15555 Configuration:EUTONIy Mode:ULAN 5.60Hz HT20 2TX Mid Ch
5		Tested by:F. Guarnero
5 Peak Limit (dBuV/	'm)	
5		
5 Avg Limit (dBuV/m)	
5		
_		
5	, i have	an and and a second
5	constructuation of the state of	a 1999 Na Aurilia an Bandal An Na an
5		
3000	Frequ	ency [MHz]
Range (NHz) Det RBN UBN / Avg Tr 1:13889-26680 IN 34	p Sweep Pts ¥Swps/Mode Lobel Auto/Opied 1282 1/ Horizontol	

Page 289 of 341


SPURIOUS EMISSIONS 26 TO 40 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

Р	5 UL EMC	28 Aug 2013 09:03:29
0		RF Emissions
9	5	Project: 13015555
~	Б	Project:13U15555 Configuration:EUT ONIy Mode:WLAN 5.66Hz HT20 2TX Mid Ch Tested bu;F. Guarnero
8	5	rested by T. Oudmens
7	5 Peak Limit (dBuV/m)	
6	5	
5	5 Avg Limit (dBuV/m)	
4	5	
З	б	
-		and the second
2	5 water and the second and the secon	h man consistent and the descent descent and the descent and the set of the descent of the set of the
	_	
1	5	
26	5000	4000
20		Frequency [MHz]
	Ronge DNtz] Det RBN UBW / Ang Typ Sweep Pits \$Sweep 1:20608-406080 PENK IN 3K Auto/Cpited 1883 Enf/MIXON	Lobal Range (MHL) Det REV 1690 / Ang Typ Sweep Pts Ksapo/Mode Lobal Herizontal 2:26009-46008 PEak IH 34 Autor/piled 1883 Inf /MWH Vertical
SH 2	z Test.TST 30915 2 Aug 2013	Rev 9.5 13 Jun

Page 290 of 341

9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 291 of 341

Trace Markers

Marker	Frequency	Meter	Det	AF T122 (dB/m)	Amp/Cbl (dB)	Corrected	QPk Limit (dBuV/m)	Margin (dB)	Azimuth	Height	Polarity
	(MHz)	Reading				Reading			(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	41.22	46.91	РК	12.9	-32	27.81	40	-12.19	0-360	400	Н
2	83.38	42.49	РК	7.4	-31.7	18.19	40	-21.81	0-360	200	H
3	183.1275	46.16	РК	11.1	-31.1	26.16	43.52	-17.36	0-360	200	Н
5	40.625	53.73	РК	13.4	-32	35.13	40	-4.87	0-360	100	V
6	83.4225	47.16	РК	7.4	-31.7	22.86	40	-17.14	0-360	100	V
7	181.8525	44.05	РК	11.1	-31.2	23.95	43.52	-19.57	0-360	100	V
4	425.3	33.92	РК	16.4	-30.4	19.92	46.02	-26.1	0-360	100	н
8	237.4	33.56	РК	11.5	-31	14.06	46.02	-31.96	0-360	401	V

PK - Peak detector

Radiated Emissions

Frequency	Meter	Det	AF T122 (dB/m)	Amp/Cbl (dl	B) Corrected	QPk Limit (dBuV/m)	Margin (dB)	Azimuth	Height	Polarity
(MHz)	Reading				Reading			(Degs)	(cm)	
	(dBuV)				(dBuV/m)					
40.6027	48.8	QP	13.4	-32	30.2	40	-9.8	62	185	V

QP - Quasi-Peak detector

FCC Part 15 Subpart C 30-1000MHz.TST 10675 Rev 9.5 12 Jun 2013

Page 292 of 341

10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

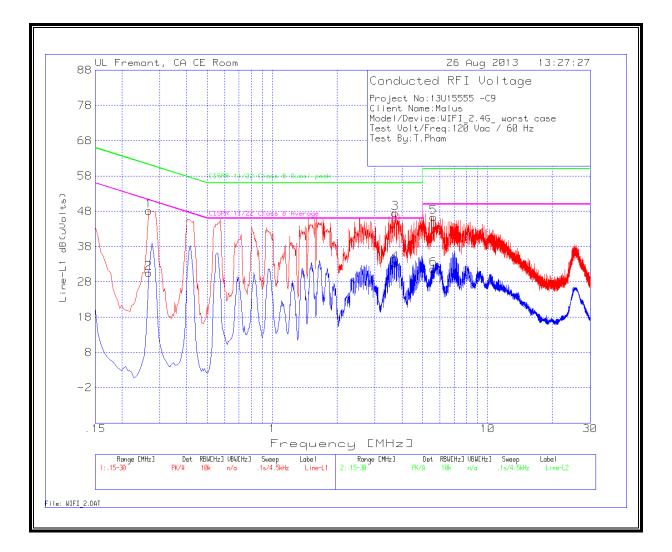
FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.


The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

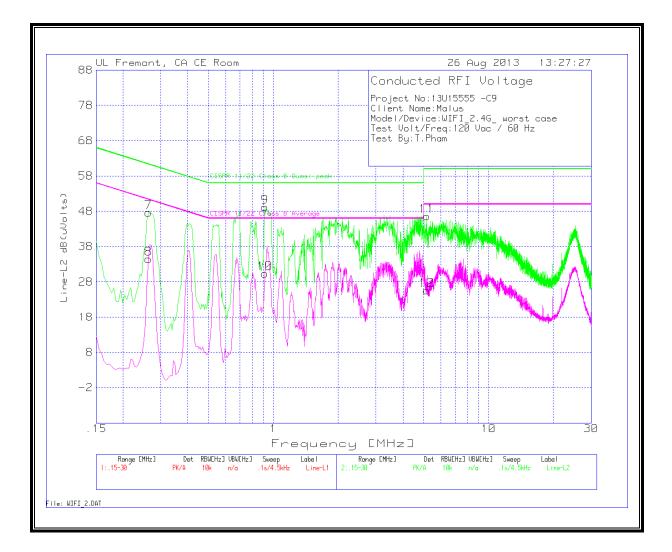
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 293 of 341

LINE 1 RESULTS

WORST EMISSIONS


Line-L1	15 - 30M	Hz								
Trace Markers										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 183 (dB)	Corrected Reading dB(uVolts)	CISPR 11/22 Class B Quasi- peak	Margin to Limit (dB)	CISPR 11/22 Class B Average	Margin to Limit (dB)
1	0.267	48	РК	0.1	0	48.1	61.2	-13.1	-	-
2	0.267	30.46	Av	0.1	0	30.56	-	-	51.2	-20.64
3	3.732	47.28	РК	0.1	0.1	47.48	56	-8.52		-
4	3.732	33.07	Av	0.1	0.1	33.27			46	-12.73
5	5.6175	46.15	РК	0.1	0.1	46.35	60	-13.65		-
6	5.6175	31.4	Av	0.1	0.1	31.6	-	-	50	-18.4

PK - Peak detector

Av - average detection

Page 294 of 341

LINE 2 RESULTS

WORST EMISSIONS

Line-L2 .15 - 30MHz										
Trace Mark	ers									
Marker	Frequency (MH2)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2%3 (dB)	Corrected Reading dB(uVolts)	CISPR 11/22 Class B Quasi- peak	Margin to Limit (dB)	CISPR 11/22 Class B Average	Margin to Limit (dB)
7	0.2625	47.52	РК	0.1	0	47.62	61.4	-13.78	-	
8	0.2625	34.36	Av	0.1	0	34.46			51.4	-16.94
9	0.915	49.08	РК	0.1	0	49.18	56	-6.82		
10	0.915	30.27	Av	0.1	0	30.37			46	-15.63
11	5.163	46.39	РК	0.1	0.1	46.53	60	-13.41	-	
12	5.163	25.35	Av	0.1	0.1	25.55	-	-	50	-24.45

PK - Peak detector

Av - average detection

Page 295 of 341

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 296 of 341

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operatio	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational M	Operational Mode		
	Master	Master Client Client		
		(without DFS)	(with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	

Table 3: Interference Threshold values, Master or Client incorporating In-ServiceMonitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Note 1: This is the level at the input of the receiver as Note 2: Throughout these test procedures an addition of the test transmission waveforms to account for vari- will ensure that the test signal is at or above the detect response.	al 1 dB has been added to the amplitude ations in measurement equipment. This

Page 297 of 341

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

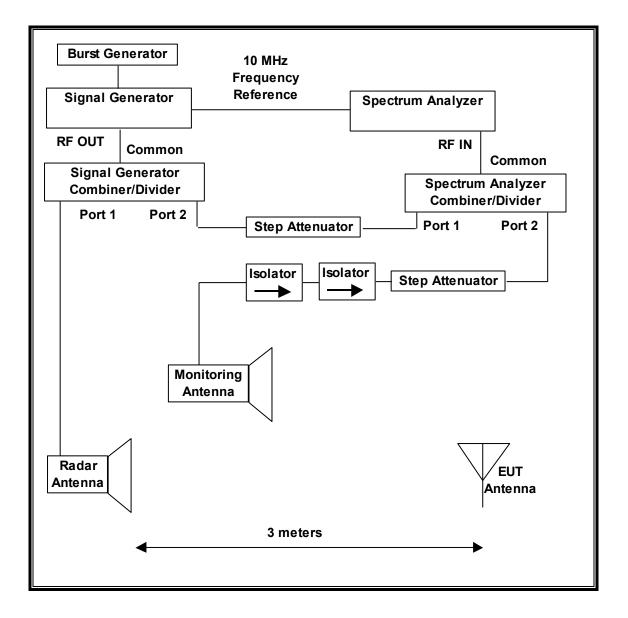
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
-				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (I	Radar Types 1-4)			80%	120

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30


Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width	PRI (µsec)	Burst Length	Pulses per	Hopping Rate	Minimum Percentage of	Minimum Trials
	(µsec)	(i)	(ms)	Нор	(kHz)	Successful Detection	
6	1	333	300	9	.333	70%	30

Page 298 of 341

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 299 of 341

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

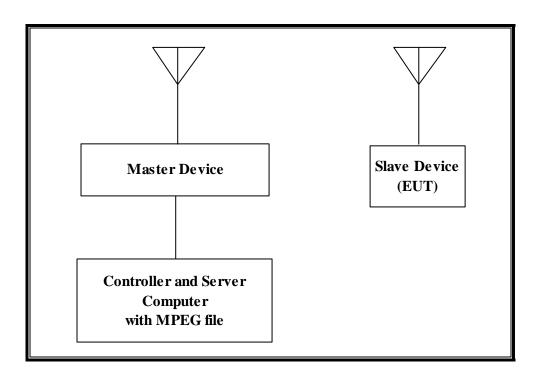
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 300 of 341

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT

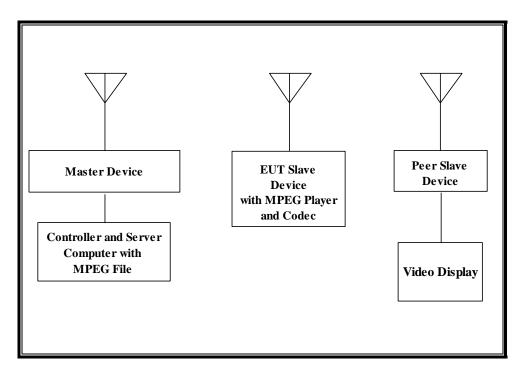

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset Number	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/18/13		
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	11/20/13		

Page 301 of 341

11.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP


SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Wireless Access Point (Master Device)	Cisco	AIR-AP1252AG-A-K9	FTX130390D9	LDK102061		
AC Adapter (AP)	Delta Electronics	EADP-45BB B	DTH1049902N	DoC		
Notebook PC (Controller/Server)	Apple	MacBook Pro A1150	AOU257941	DoC		
AC Adapter (Controller/Server PC)	Delta Electronics	A1330	MV952157KAGKA	DoC		

11.1.4. SETUP OF EUT (CLIENT-TO-CLIENT COMMUNICATIONS MODE)

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

F	PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID			
Wireless Access Point (Master Device)	Cisco	AIR-AP1252AG-A- K9	FTX130390D9	LDK102061			
AC Adapter (AP)	Delta Electronics	EADP-45BB B	DTH1049902N	DoC			
Notebook PC (Controller/Server)	Apple	MacBook Pro A1150	AOU257941	DoC			
AC Adapter (Controller/Server PC)	Delta Electronics	A1330	MV952157KAGKA	DoC			
Apple TV (Peer Slave	Apple	A1469	V07JV1Z7FF54	BCGA1469			
Video Display	Dell	U2410f	CN-0FJ525N- 72872-1B5-AGAL	DoC			

11.1.5. ESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 22.18 dBm EIRP in the 5250-5350 MHz band and 23.57 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly consists of 2 antennas with individual gains of 2.60dBi, and 2.11 dBi in the 5250-5350 MHz band and 3.66 dBi and 3.99 dBi in the 5470-5725 MHz band.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter/receiver chain connected to an antenna to perform radiated tests.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media Safari web browser.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the EUT is 11B451.

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices

Page 304 of 341

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

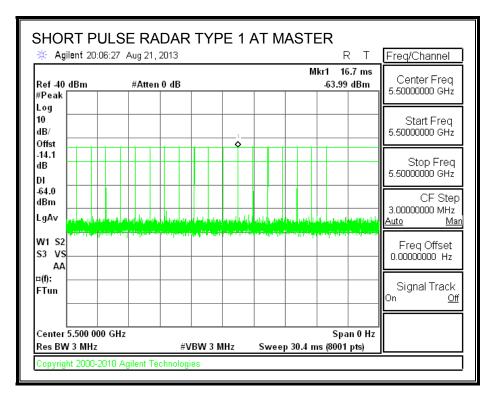
The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

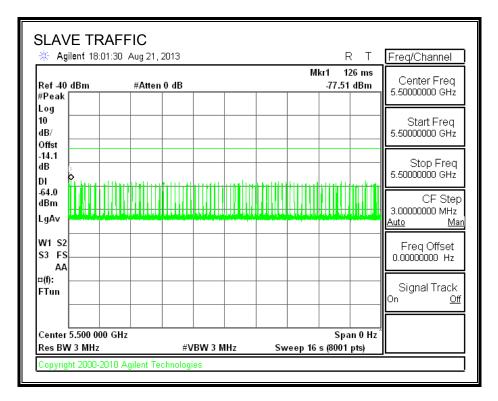
The software installed in the access point is 12.4(25d)JA1.

Page 305 of 341


11.2. RESULTS FOR 20 MHz BANDWIDTH

11.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.


11.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 306 of 341

TRAFFIC

Page 307 of 341 UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

11.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

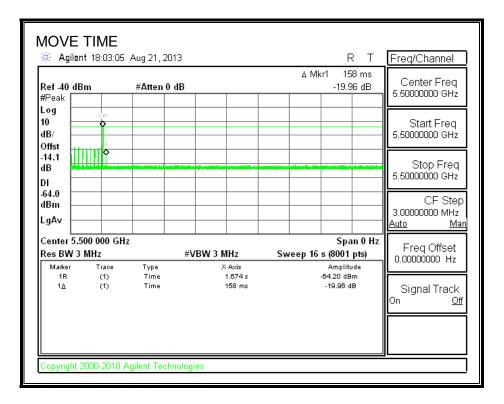
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

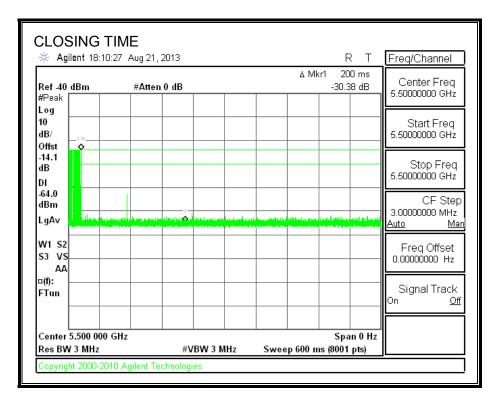
```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

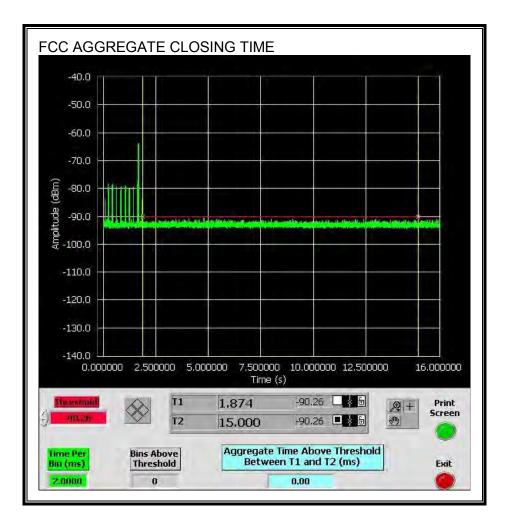
RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.158	10


Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	4.0	260

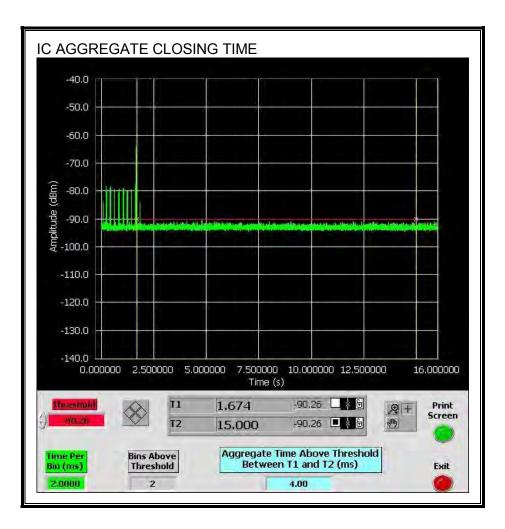
MOVE TIME

Page 309 of 341


CHANNEL CLOSING TIME

Page 310 of 341

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

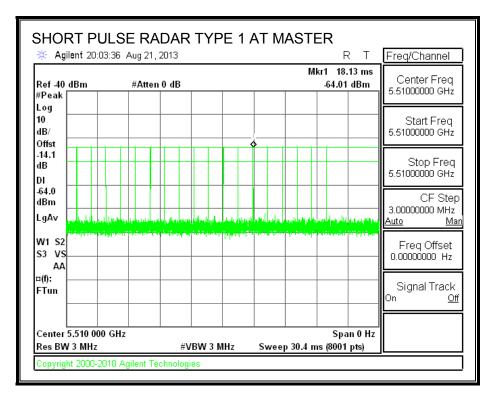

No transmission was observed during the FCC aggregate monitoring period.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 311 of 341

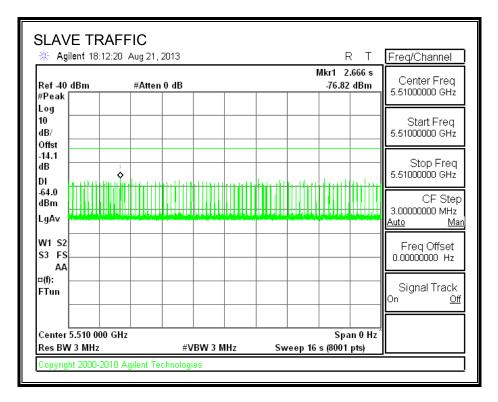
Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 312 of 341


11.3. RESULTS FOR 40 MHz BANDWIDTH

11.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.


11.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 313 of 341

TRAFFIC

Page 314 of 341

11.3.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

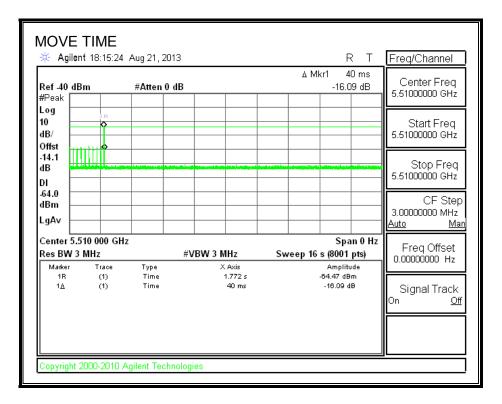
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

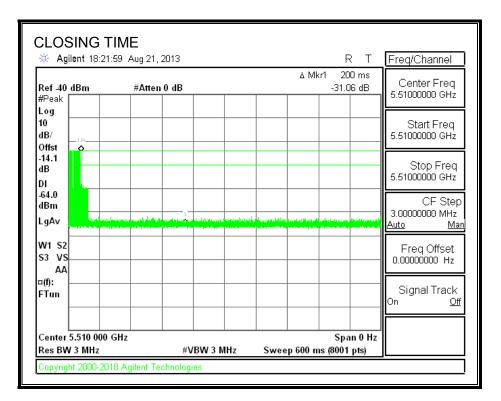
```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

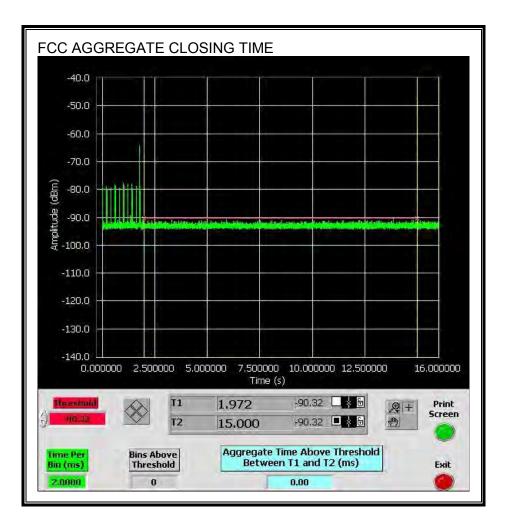
RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.040	10


Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	8.0	260

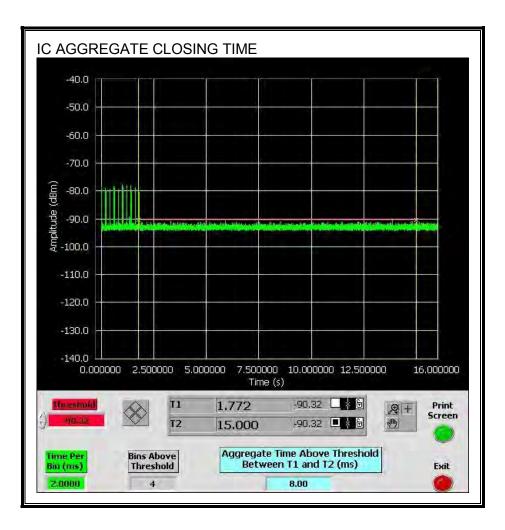
MOVE TIME

Page 316 of 341


CHANNEL CLOSING TIME

Page 317 of 341

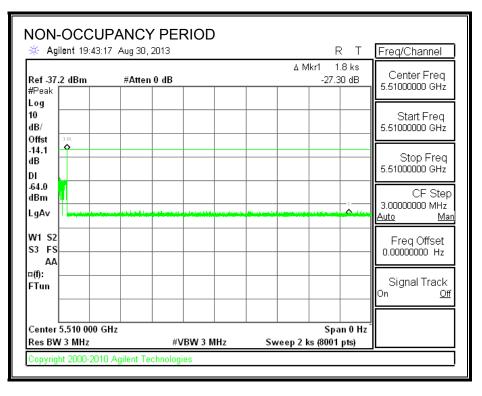
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


No transmission is observed during the FCC aggregate monitoring period.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 318 of 341

Only intermittent transmissions are observed during the IC aggregate monitoring period.



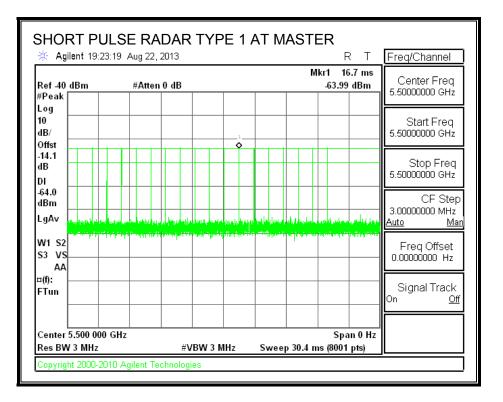
Page 319 of 341

11.3.5. NON-OCCUPANCY PERIOD

RESULTS

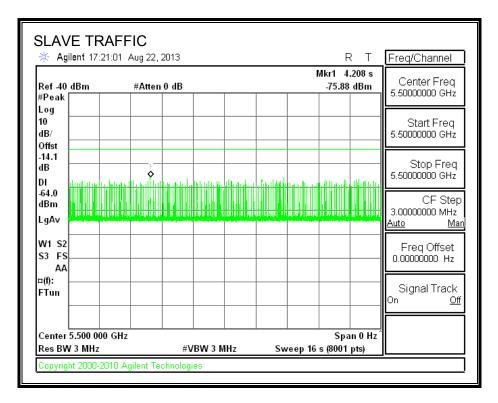
No EUT transmissions were observed on the test channel during the 30-minute observation time.

Page 320 of 341


11.4. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 20 MHz BANDWIDTH

11.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.


11.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 321 of 341

TRAFFIC

Page 322 of 341

11.4.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

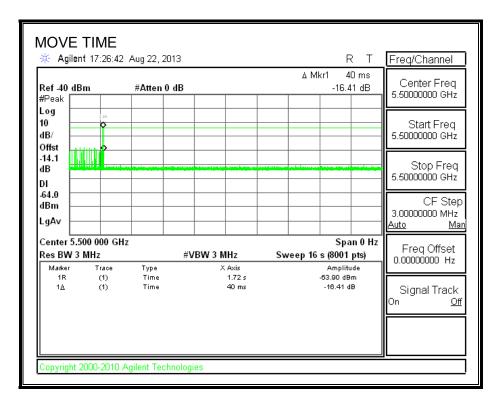
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

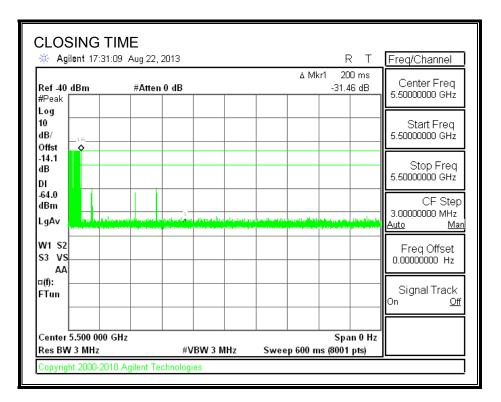
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.040	10

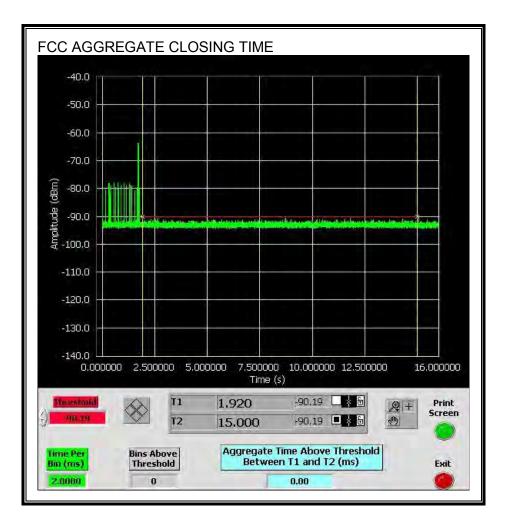
Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	16.0	260

Page 323 of 341


<u>RESULTS</u>

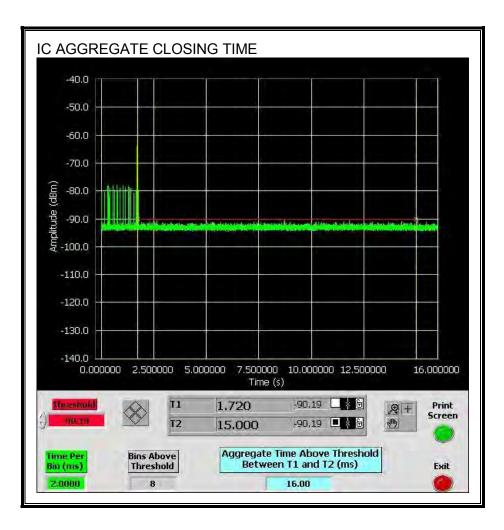
MOVE TIME

Page 324 of 341


CHANNEL CLOSING TIME

Page 325 of 341

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

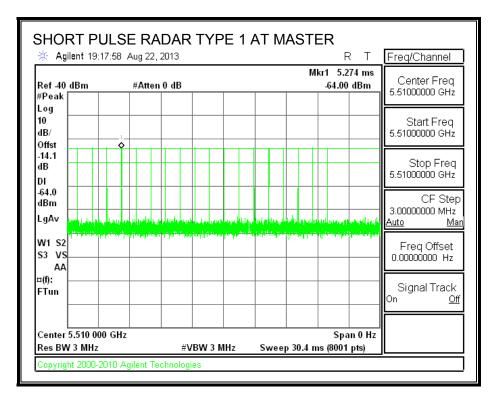

No transmissions are observed during the FCC aggregate monitoring period.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 326 of 341

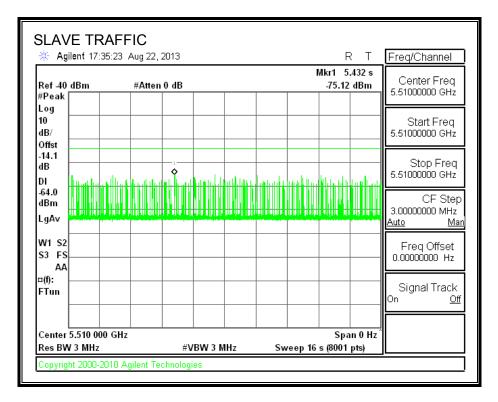
Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 327 of 341


11.5. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 40 MHz BANDWIDTH

11.5.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.


11.5.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 328 of 341

TRAFFIC

Page 329 of 341

11.5.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.5.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

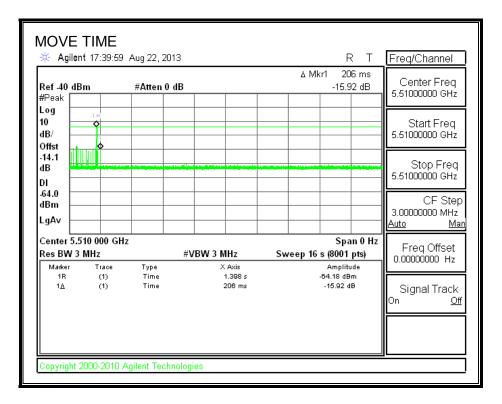
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

```
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)
```

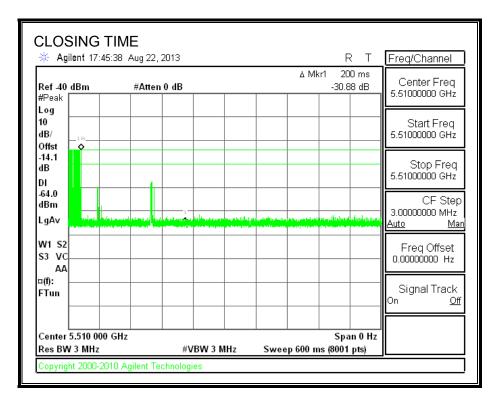
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

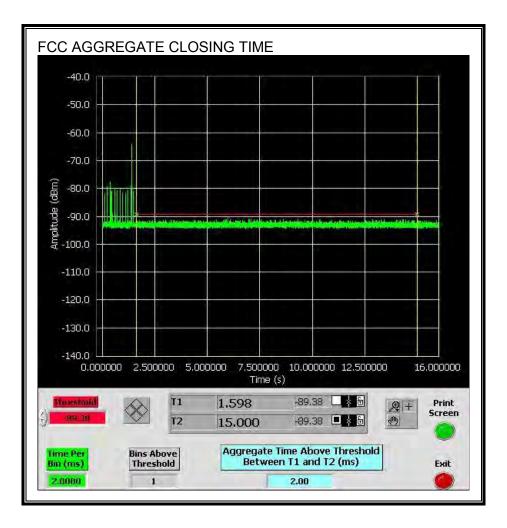
Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.206	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	2.0	60
IC	20.0	260


Page 330 of 341

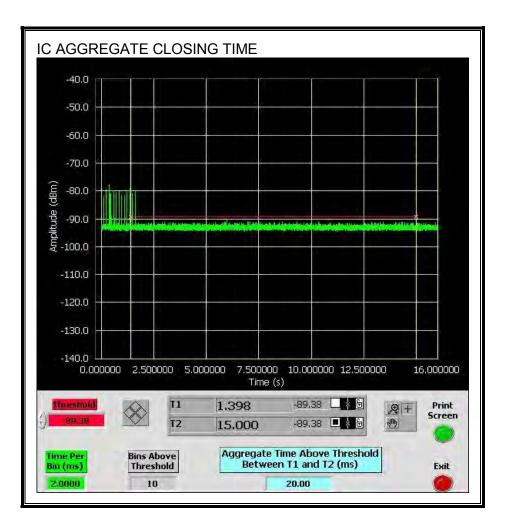
MOVE TIME

Page 331 of 341


CHANNEL CLOSING TIME

Page 332 of 341

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


Only intermittent transmissions are observed during the FCC aggregate monitoring period.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 333 of 341

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 334 of 341