

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

Tablet with IEEE 802.11a/b/g/n (MIMO 2x2) and Bluetooth radio

Model: A1474

FCC ID: BCGA1474 IC: 579C-A1474

REPORT NUMBER: 13U15555-4

ISSUE DATE: SEPTEMBER 17, 2013

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Issue Rev. Date Revisio		Revisions	Revised By
	09/17/13	Initial Issue	T. Chan

Page 2 of 56

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS 4
2.	TEST METHODOLOGY
5.	EQUIPMENT UNDER TEST
5	DESCRIPTION OF EUT
5	<i>MAXIMUM OUTPUT POWER</i>
5	3. DESCRIPTION OF AVAILABLE ANTENNAS
5	<i>.4.</i> SOFTWARE AND FIRMWARE
5	5.5. WORST-CASE CONFIGURATION AND MODE7
5	6. DESCRIPTION OF TEST SETUP
6.	TEST AND MEASUREMENT EQUIPMENT11
7.	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS12
7	C.1. ON TIME AND DUTY CYCLE RESULTS
7	<i>MEASUREMENT METHODS</i>
7	<i>DUTY CYCLE PLOTS</i> 13
8.	ANTENNA PORT TEST RESULTS14
8	2.1. 6 dB BANDWIDTH
8	2.2. 99% BANDWIDTH
8	2.3. OUTPUT POWER
8	.4. AVERAGE POWER
8	2.5. POWER SPECTRAL DENSITY
8	6. CONDUCTED SPURIOUS EMISSIONS
9.	RADIATED TEST RESULTS
9	1. LIMITS AND PROCEDURE
9	2. TRANSMITTER ABOVE 1 GHz
9	.3. WORST-CASE ABOVE 18 GHz42
9	.4. WORST-CASE BELOW 1 GHz43
10.	AC POWER LINE CONDUCTED EMISSIONS46
11.	SETUP PHOTOS

Page 3 of 56

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.				
EUT DESCRIPTION:	Tablet with IEEE 802.11a/b/g/n (MIMO 2x2) and Bluetooth radio				
MODEL:	A1474				
SERIAL NUMBER:	DLXKW04QFMN4				
DATE TESTED:	AUGUST 20 – AUGUST 26, 2013				
	APPLICABLE STANDARDS				
ST	ANDARD	TEST RESULTS			
CFR 47 P	art 15 Subpart C	Pass			
INDUSTRY CANADA	A RSS-210 Issue 8 Annex 8	Pass			
INDUSTRY CAN	ADA RSS-GEN Issue 3	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

Thu Chan WiSE Operations Manager UL Verification Services Inc.

-Dony Wang

TONY WANG WiSE Technician UL Verification Services Inc

Page 4 of 56

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A	Chamber D
Chamber B	🛛 Chamber E
Chamber C	🛛 Chamber F

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 5 of 56

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Tablet with IEEE 802.11a/b/g/n (MIMO 2x2) and Bluetooth radio

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	BLE	8.19	6.59

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PiFA antenna, with a maximum gain of 0.5dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Broadcom Broadcom Bluetool 1.5.6.2.

Page 6 of 56

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-position was the EUT with highest emissions. To determine the worst-case, the EUT is a portable device that has three orientations; therefore X, Y and Z orientations have been investigated with AC adapter and Headset, and the worst case was found to be at X position without AC adapter and headset.

The worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was including headset and AC charger.

Page 7 of 56

5.6. DESCRIPTION OF TEST SETUP

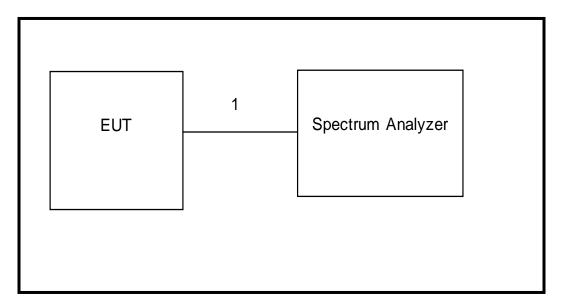
SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
AC/DC adapter	Apple	A1401	60812	NA				
Earphone	Apple	NA	NA	NA				

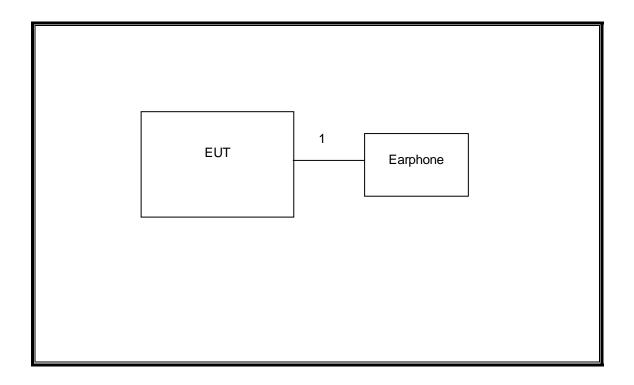
I/O CABLES (CONDUCTED TEST)

I/O Cable List							
Cable	Cable Port # of identical Connector				Cable	Remarks	
No		ports	Туре		Length (m)		
1	Antenna	1	SMA	Un-Shielded	0.1m	To Spectrum Analyzer	

I/O CABLES (RADIATED TEST)

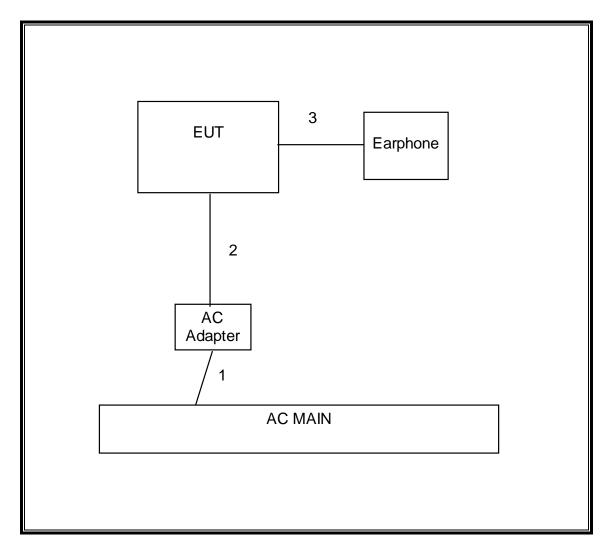

	I/O Cable List							
Cable	Port # of identical		Connector	Cable Type	Cable	Remarks		
No		ports	Туре		Length (m)			
1	Audio	1	Jack	Un-Shielded	0.5m	NA		

I/O CABLES (AC POWER CONDUCTED TEST)


	I/O Cable List								
Cable	Port	# of identical	Connector	Cable	Remarks				
No		ports	Туре		Length (m)				
1	AC	1	US115	Un-Shielded	2m	NA			
2	DC	1	USB	Un-Shielded	2m	NA			
3	Audio	1	Jack	Un-Shielded	0.5m	NA			

Page 8 of 56

SETUP DIAGRAM FOR CONDUCTED TESTS


SETUP DIAGRAM FOR RADIATED TESTS

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 9 of 56

SETUP DIAGRAM FOR BELOW 1GHz & AC POWER CONDUCTED TESTS

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 10 of 56

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Due				
Antenna, Horn, 18 GHz	ETS Lindgren	3117	F00131	02/19/14				
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	04/28/14				
Peak / Average Power Sensor	Agilent / HP	N1911A	F00153	04/05/14				
Peak Power Meter	Agilent / HP	E9323A	F00025	04/03/14				
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	F00126	02/22/14				
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	F00168	03/07/14				
Preamplifier, 1300 MHz	Sonoma	310	F00008	11/06/13				
Preamplifier, 26.5 GHz	Agilent / HP	8449B	F00165	03/18/14				
EMI Test Receiver, 9 kHz-7 GHz	R & S	ESHS20	N02396	08/15/14				
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	04/17/14				

Page 11 of 56

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
BLE 2441MHZ	2.875	3.750	0.767	76.7%	1.154	0.348

7.2. MEASUREMENT METHODS

<u>6 dB BW</u>: KDB 558074 D01.

Output Power: KDB 558074 D01.

Power Spectral Density: KDB 558074 D01.

Out-of-band emissions in non-restricted bands: KDB 558074 D01.

Out-of-band emissions in restricted bands: KDB 558074 D01.

Page 12 of 56

7.3. DUTY CYCLE PLOTS

	∆ 3.75000 m	PHO Fast -+	Trig Free Run	#Avg Type: RMS	12-42-55 AM Aug 20, 2013 TRACE 1 2 3 4 5 5 Trifle AM Aug 20, 2013	Marker
vibieb o	Ref Offset 10.9 d Ref 30.90 dBr		Atten: 30 dB		Mkr3 3,750 ms 0.00 dB	Select Marker 3
99 5.5 0.0	Xe			\$ ^{1/42}	264	Norma
					+	Delt
						Fixed
es BW 3	441000000 GHz 3.0 MHz		3.0 MHz*	and the second state of th	Span 0 Hz 5.000 ms (1001 pts)	or
1 Δ2 2 F Δ Δ4 4 F 5	t (Δ) t (Δ) t (Δ)	2.875 ms (Δ) 441.0 us 3.760 ms (Δ) 440.0 us	0.26 dB 13.91 dBm 0.00 dB 13.91 dBm	ALTER ALLER VIDTO	FUMETION VALUE	Properties
						Mor 1 of

Page 13 of 56

8. ANTENNA PORT TEST RESULTS

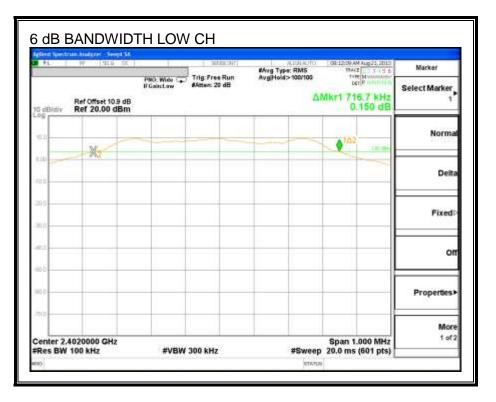
8.1. 6 dB BANDWIDTH

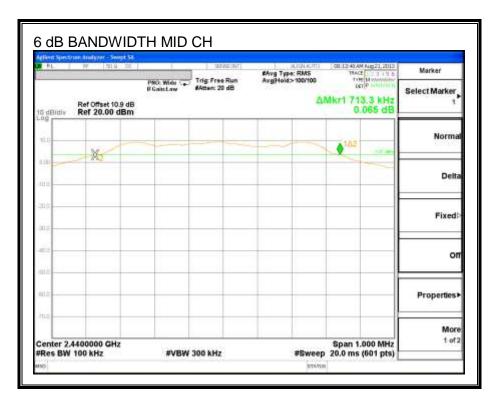
<u>LIMITS</u>

FCC §15.247 (a) (2)

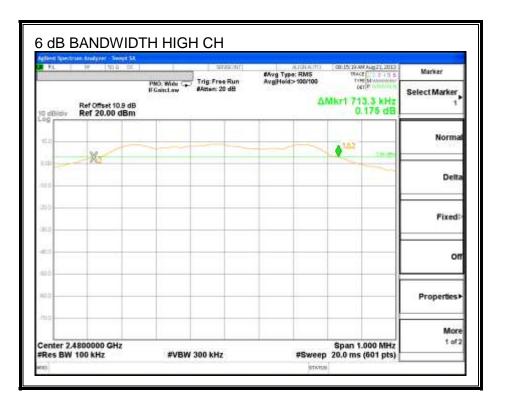
The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE


KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".


<u>RESULTS</u>

Channel	Frequency	6 dB Bandwidth	Minimum Limit	
	(MHz)	(KHz)	(KHz)	
Low	2402	716.700	500.0	
Middle	2440	713.300	500.0	
High	2480	713.300	500.0	


Page 14 of 56

6 dB BANDWIDTH

Page 15 of 56

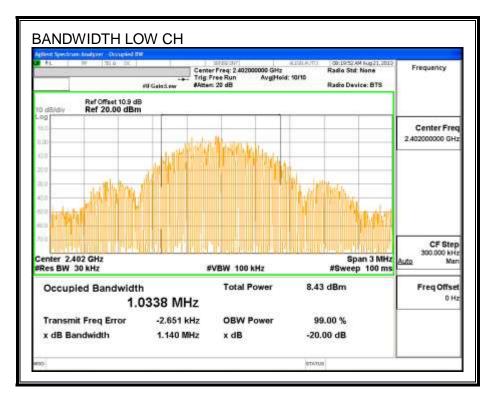
Page 16 of 56

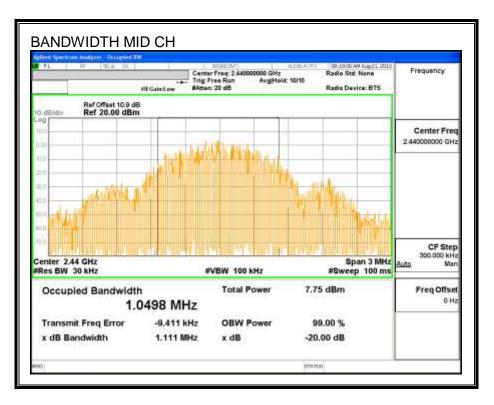
8.2. 99% **BANDWIDTH**

<u>LIMIT</u>

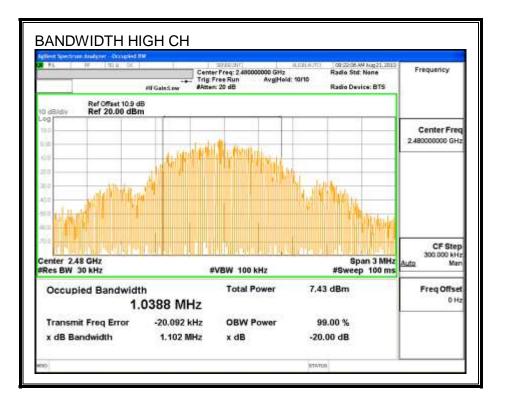
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2402	1.0338
Middle	2440	1.0498
High	2480	1.0388


Page 17 of 56

99% BANDWIDTH

Page 18 of 56

Page 19 of 56

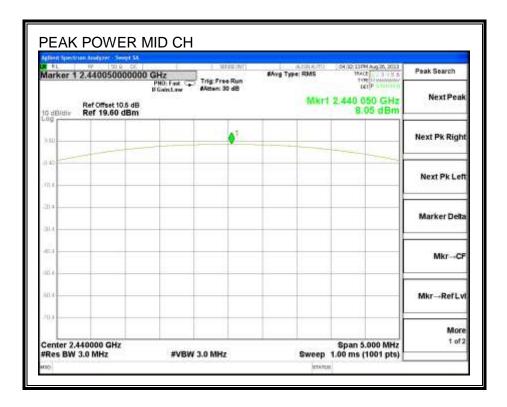
8.3. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE


KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

RESULTS

Channel	Frequency	uency Output Power		Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.860	30	-22.14
Middle	2440	8.050	30	-21.95
High	2480	8.187	30	-21.81

Page 20 of 56

Aglient Spectrum Analyzer - Sweg R.L. 1977 - 1920 -	Tri	g: Free Run	Marg Type: RMS	COH 30 13 PM Aug 20, 2013 TRACE 12 3 3 15 5 Trate 14 warmship DET P	Peak Search
Ref Offset 10.5	If GaintLow AA	ten: 30 dB	Mkrt	2.402 180 GHz 7.86 dBm	Next Peak
940		•			Next Pk Righ
0.45					Next Pk Lef
31+					Marker Delt
424					Mkr→Cf
(0)F					Mkr→RefLv
Center 2,402000 GHz				Span 5.000 MHz	Mon tof:

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 21 of 56

Den Spectrum Andreas - Sweet St RL IV 197 193 0 . DC	PNO: Fast Car	Trig Free Run AAmen: 30 dB	#Avg Type: RMS	COLOR: 25:25 PM Aug 25, 2013 MACE 1, 3 -1 5 -5 Tarte M Wantshine COT P	Trace/Detector
Ref Offset 10.5 dE 0 dB/div Ref 19.60 dBm		BATTER: 30 GD	Mkri	2.479 885 GHz 8.187 dBm	Select Trace
10	_	•			Clear Write
11 A					Trace Average
0.4					Max Hold
					Min Hold
0.4					View Blank View
enter 2.480000 GHz Res BW 3.0 MHz		3.0 MHz		Span 5.000 MHz 1.00 ms (1001 pts)	More 1 of 3

Page 22 of 56

8.4. AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	7.45
Middle	2440	7.49
High	2480	7.44

Page 23 of 56

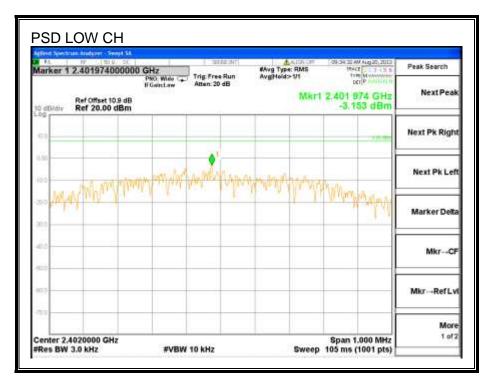
8.5. POWER SPECTRAL DENSITY

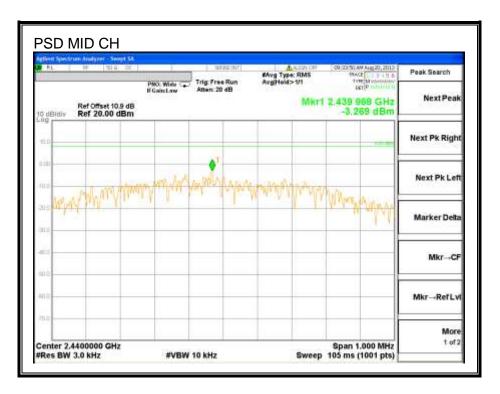
LIMITS

FCC §15.247 (e)

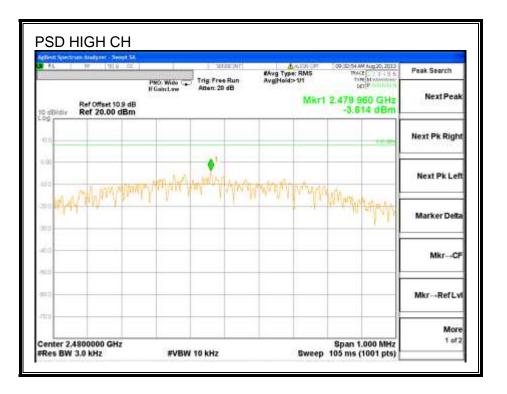
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE


KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".


<u>RESULTS</u>

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	-3.15	8	-11.15
Middle	2440	-3.27	8	-11.27
High	2480	-3.81	8	-11.81


Page 24 of 56

POWER SPECTRAL DENSITY

Page 25 of 56

Page 26 of 56

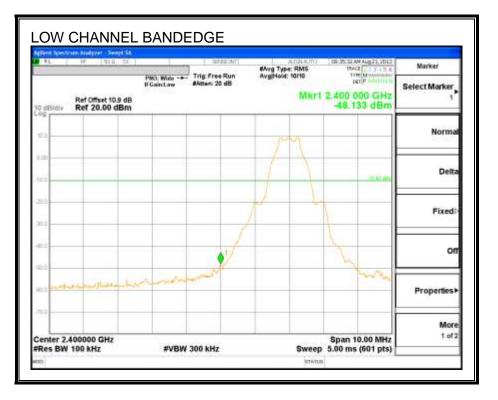
8.6. CONDUCTED SPURIOUS EMISSIONS

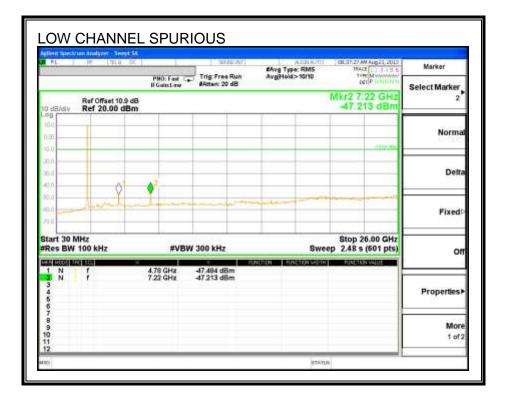
LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

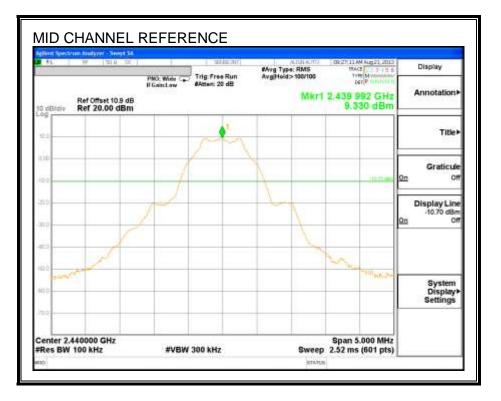
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

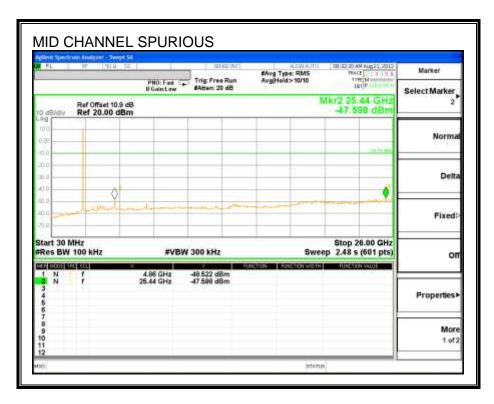

TEST PROCEDURE


KDB 558074 D01 v01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247".

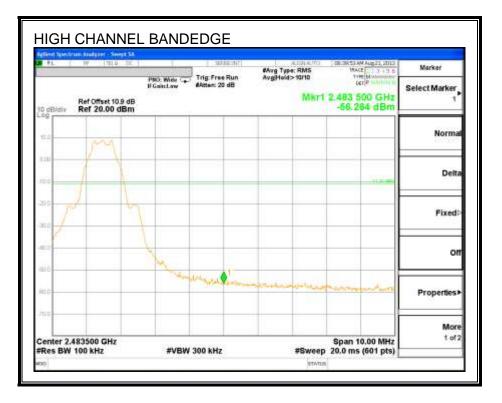
Page 27 of 56

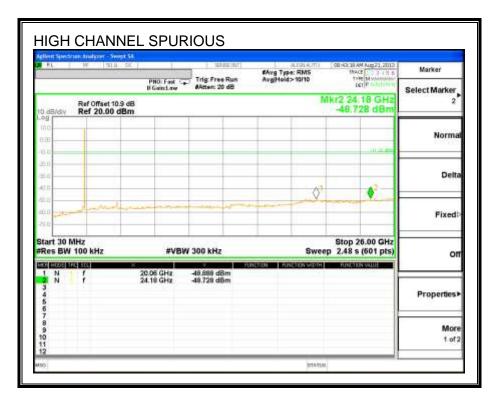
RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL



Page 28 of 56


SPURIOUS EMISSIONS, MID CHANNEL



Page 29 of 56

SPURIOUS EMISSIONS, HIGH CHANNEL

Page 30 of 56

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

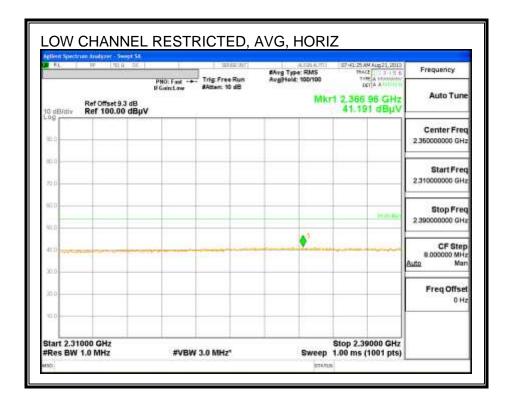
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

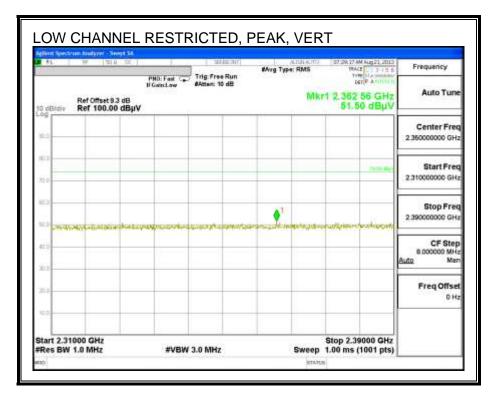
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

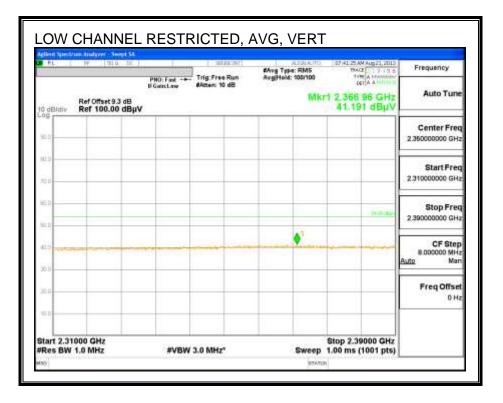
For 2.4 GHz band, the spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 31 of 56

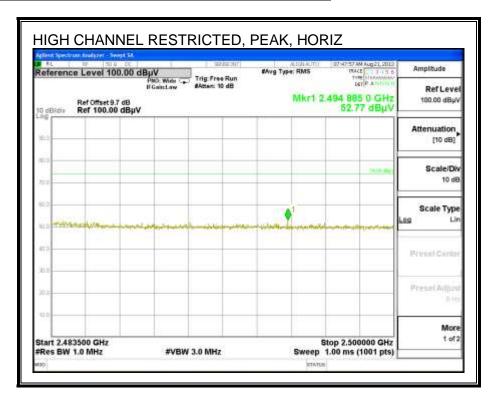
9.2. TRANSMITTER ABOVE 1 GHz

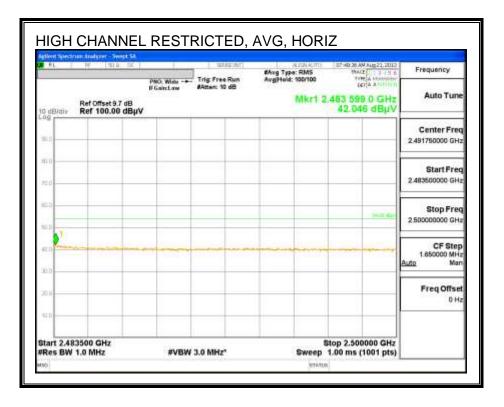

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


LOW CHANNEL RESTRICTED, PEAK, HORIZ 21 AM AUG 23, 2013 MACE 1, 2, 4, 5, 5 Frequency Myg Type: RMS PNO: Fast 😱 Trig Free Run AAtten: 10 dB DET P ATH 41 Mkr1 2.376 00 GHz 53.25 dBµV Auto Tun Ref Offset 9.3 dB Ref 100.00 dBµV Center Freq 2.35000000 GHz Start Freq 2.310000000 GHz Stop Freq ٠ 2.390000000 GHz CF Step 8.000000 MHz Ma Freq Offset 0 Hz Stop 2.39000 GHz Sweep 1.00 ms (1001 pts) Start 2.31000 GHz Res BW 1.0 MHz #VBW 3.0 MHz

Page 32 of 56

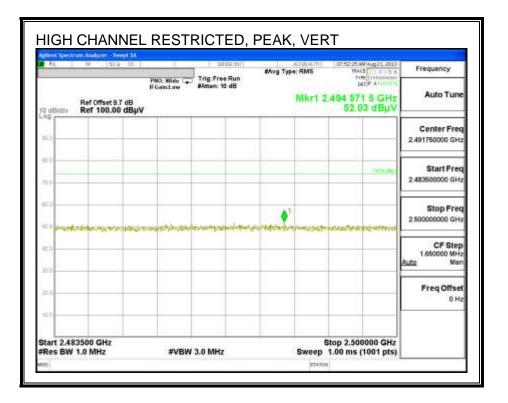
REPORT NO: 13U5555-4 FCC ID: BCGA1474 RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

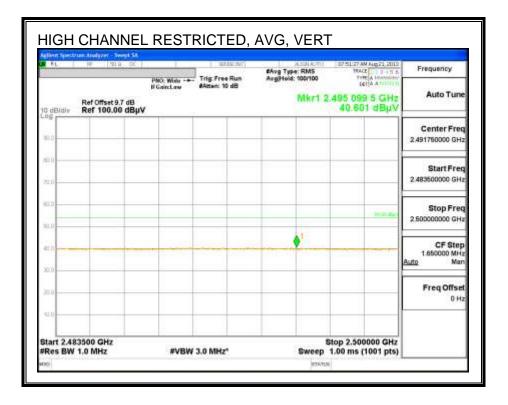




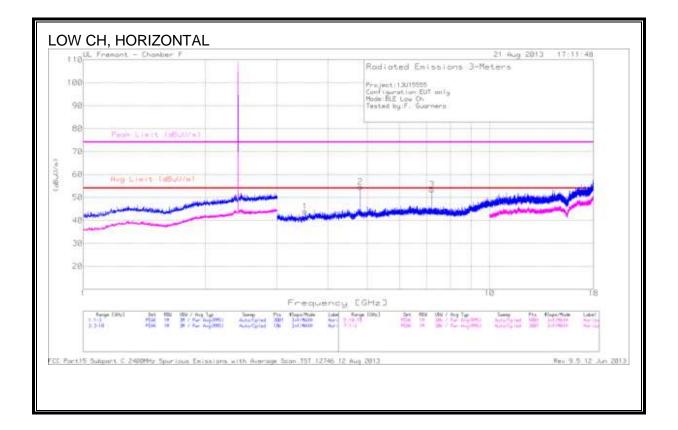
UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

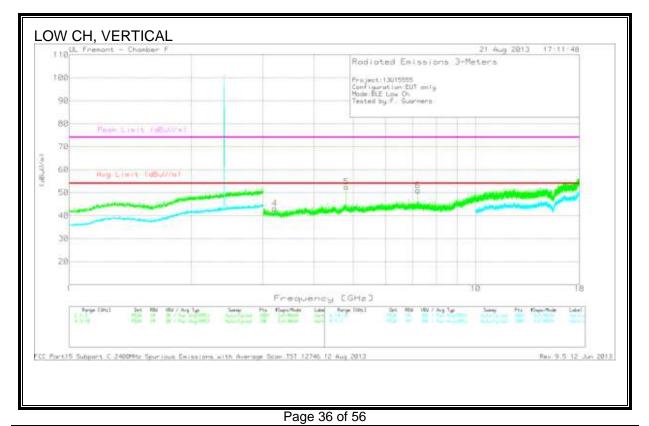
Page 33 of 56


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 34 of 56

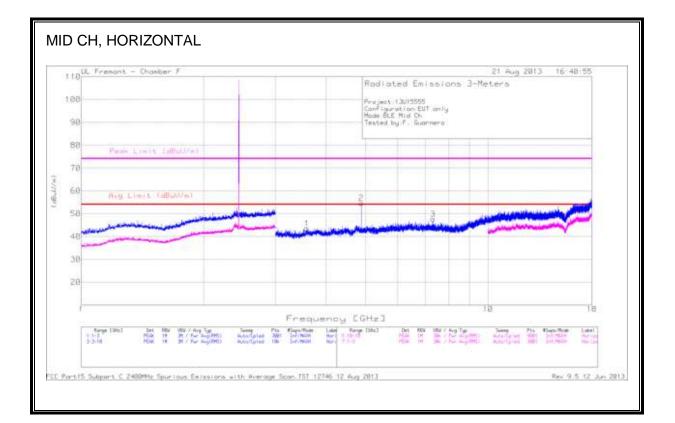

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

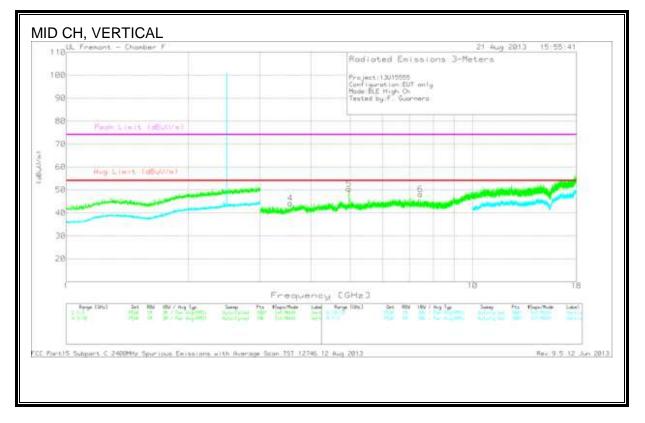


Page 35 of 56

HARMONICS AND SPURIOUS EMISSIONS

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.


Frequency Meter	Meter	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth	Height	Polarity
(GHz)	Reading			(dB)	Reading					(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
*3.514	39.45	РК	33.2	-28.8	43.85					64	101	Н
4.804	41.97	RMS	34.1	-27.6	48.47	53.97	-5.5	74	-25.53	75	103	н
7.206	37.75	RMS	35.7	-27	46.45	53.97	-7.52	74	-27.55	347	172	н
*3.203	39.33	РК	33.2	-29.4	43.13					72	1`00	v
4.804	40.35	RMS	34.1	-27.6	46.85	53.97	-7.12	74	-27.15	87	210	V
7.207	34.36	RMS	35.7	-27	43.06	53.97	-10.91	74	-30.94	71	152	v

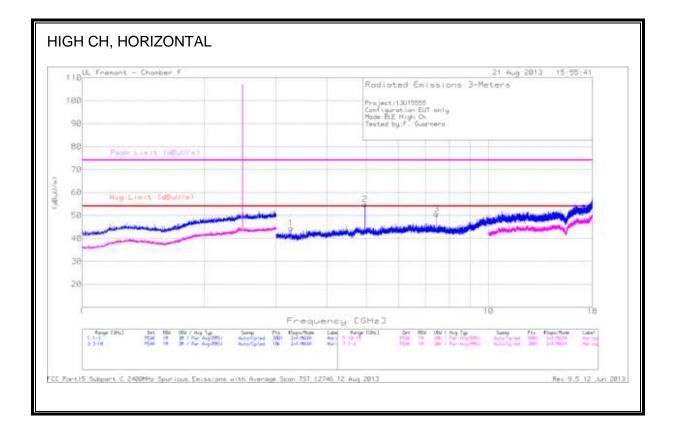

*Not in Restricted Band

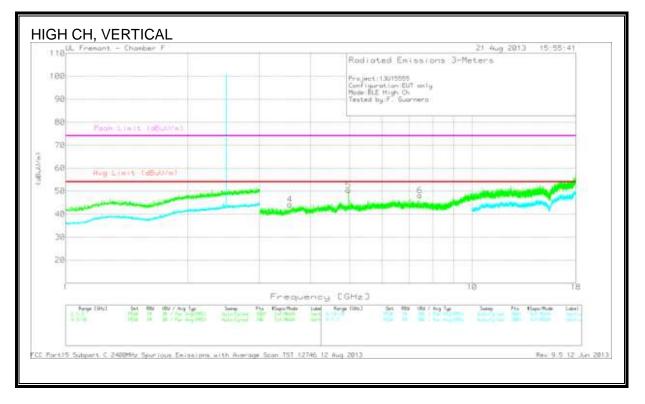
UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 37 of 56

HARMONICS AND SPURIOUS EMISSIONS

Page 38 of 56


UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.


(GHz) Meter Reading		Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin Frequency	Peak Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
				()	(dBuV/m)		(dB)			(Degs)	(0.1.)	
	(dBuV)											
*3.585	38.74	РК	33.7	-28.9	43.54					256	100	н
4.88	44.45	RMS	34	-28.4	50.05	53.97	-3.92	74	-23.95	342	102	Н
7.321	39.32	РК	35.7	-27.4	47.62	53.97	-6.35	74	-26.38	79	199	Н
*3.139	39.98	РК	33.3	-30	43.28					137	100	V
4.88	40.28	RMS	34	-28.4	45.88	53.97	-8.09	74	-28.12	103	225	V
*6.613	37.47	РК	35.8	-26.6	46.67					122	100	v

*Not in Restricted Band

Page 39 of 56

HARMONICS AND SPURIOUS EMISSIONS

Page 40 of 56

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

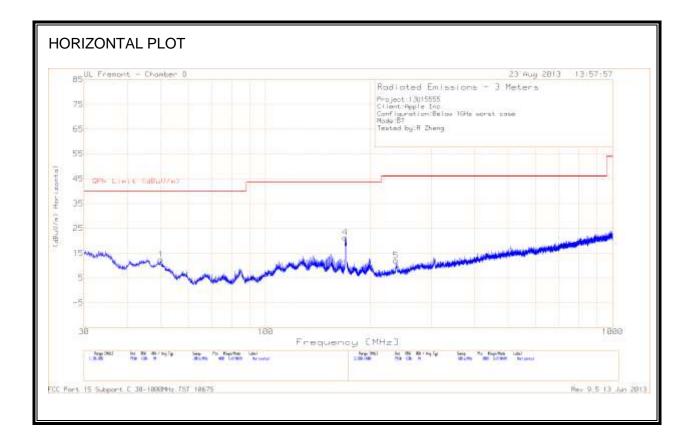
Frequency	Meter	Det	AF T120 (dB/m)	Amp/Cbl/ Fltr/Pad	Corrected	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimuth	Height	Polarity
(GHz)	Reading			(dB)	Reading					(Degs)	(cm)	
	(dBuV)				(dBuV/m)							
3.263	40.31	РК	33.1	-29	44.41	53.97	-9.56	74	-29.59	0-360	201	Н
4.96	44.11	RMS	34	-29.2	48.91	53.97	-5.06	74	-25.09	18	101	Н
7.439	36.8	RMS	35.8	-27.3	45.3	53.97	-8.67	74	-28.7	44	197	Н
*3.564	39.53	РК	33.5	-28.8	44.23					0-360	100	V
4.96	43.01	RMS	34	-29.2	47.81	53.97	-6.16	74	-26.19	24	171	V
7.439	33.82	RMS	35.8	-27.3	42.32	53.97	-11.65	74	-31.68	45	333	V

*Not in Restricted Band

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

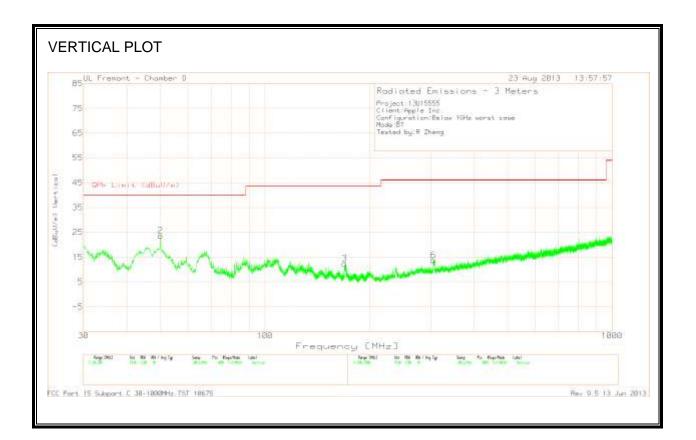
Page 41 of 56

9.3. WORST-CASE ABOVE 18 GHz


SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION, HORIZONTAL & VERTICAL)

05,UL EMC.				27 Aug 2013	13:26:25
aprovine the second			RF Emissions		
95			Project 13015555		
			Configuration:EUT 0 Mode:BLE GESK Mid C	hiy h	
85			Tested by F. Suarne	iro	
75 Peak Lini	t (d5uU/m)		n — n — Al and March and March 11 and		
55					y
Avg Limit	(dBu0/m)				
55					
45					
(18) (32)	-				
35	*******			······································	
			and the second second second	within a state of the state	unenpermit.
DE Solarday Marker	and the second second second	anter and the second	ومعدمين معموم معتد ورديا مهاس شيد الماردي	www.waterson and the desident	handbergalic
25	مرجر علاحات والمرتحان ومعادتهم ومعادي والان	automathina	وعمدوه بالمحر مطعوم ومحمد ومرمو أمنيه محداثهم فالمرون	and the second	the horder was a
15	and a stand of the second stand of the second stand stands of the second	warten and dimension	ويستعلم عليه ومستعرب المراس المنتر المؤوي		handerson
	e.ve.angenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergiesenergie	an an stand and a stand and			the shirt he was to
15	n va sa ga				2608
15 BB20		Frequer	оу СМН≿ј		250E
15 8888					260E
15 BB20	u the the ring for the the the ring for the the ring for the	Frequer	cy [MH≿] INveted in the test topic		260E

Page 42 of 56


9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 43 of 56

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 44 of 56

Marker	Frequency	Meter	Det	AF T408 (dB/m)	Amp/Cbl (dB)	Corrected	QPk Limit (dBuV/m)	Margin (dB)	Height (cm)	Polarity
	(MHz)	Reading				Reading				
		(dBuV)				(dBuV/m)				
1	49.975	36.49	РК	7.9	-31.9	12.49	40	-27.51	399	Н
4	169.6125	40.91	РК	11.7	-31.3	21.31	43.52	-22.21	98	Н
2	50.0175	47.67	РК	7.9	-31.9	23.67	40	-16.33	100	V
3	169.655	32.02	РК	11.7	-31.3	12.42	43.52	-31.1	100	V
5	237.4	31.64	РК	11.4	-31	12.04	46.02	-33.98	100	Н
6	305.3	31.12	РК	13.3	-30.7	13.72	46.02	-32.3	299	V

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 45 of 56

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

Page 46 of 56

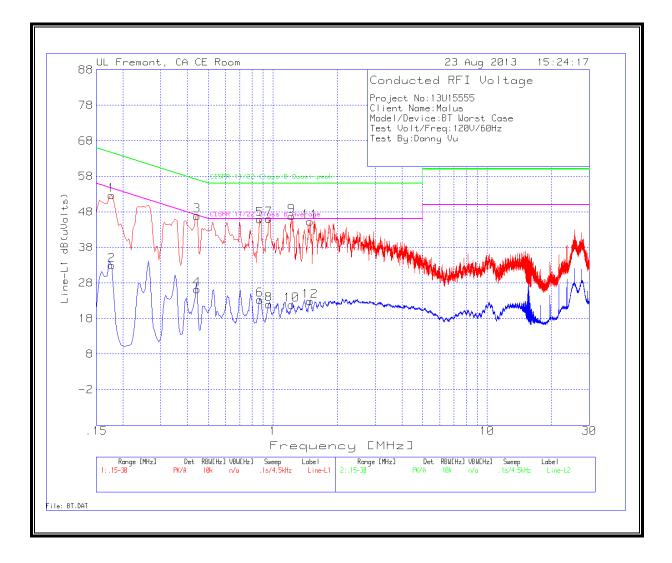
RESULTS

Line-L1 .15 - 30MHz

Trace Markers

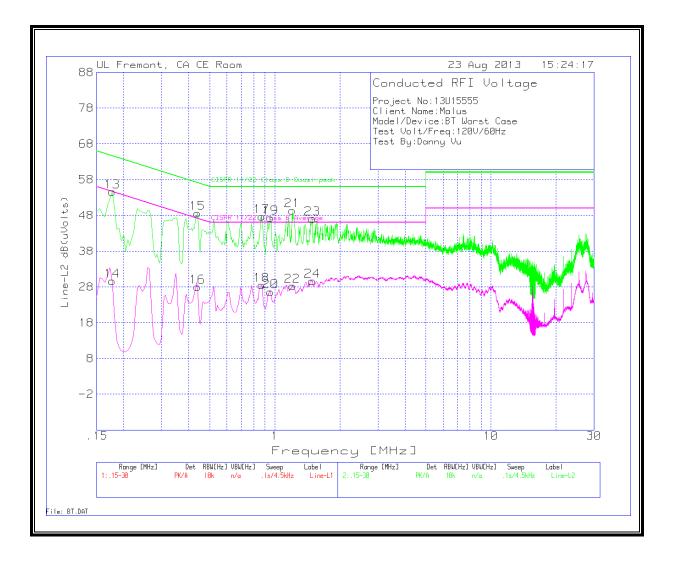
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L1 (dB)	LC Cables 1&3 (dB)	Corrected Reading dB(uVolts)	CISPR 11/22 Class B Quasi- peak	Margin to Limit (dB)	CISPR 11/22 Class B Average	Margin to Limit (dB)
1	.177	52.59	РК	.1	0	52.69	64.6	-11.91	-	-
2	.177	32.86	Av	.1	0	32.96	-	-	54.6	-21.64
3	.4425	46.78	РК	.1	0	46.88	57	-10.12		-
4	.4425	26.14	Av	.1	0	26.24	-	-	47	-20.76
5	.87	45.8	РК	.1	0	45.9	56	-10.1		-
6	.87	23.12	Av	.1	0	23.22	-	-	46	-22.78
7	.96	45.95	РК	.1	0	46.05	56	-9.95	-	-
8	.96	21.94	Av	.1	0	22.04	-	-	46	-23.96
9	1.2255	46.58	РК	.1	.1	46.78	56	-9.22	-	-
10	1.2255	21.61	Av	.1	.1	21.81	-	-	46	-24.19
11	1.491	45.05	РК	.1	.1	45.25	56	-10.75	-	-
12	1.491	22.67	Av	.1	.1	22.87	-	-	46	-23.13

Page 47 of 56


Line-L2 .15 - 30MHz

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dB(uVolts)	CISPR 11/22 Class B Quasi- peak	Margin to Limit (dB)	CISPR 11/22 Class B Average	Margin to Limit (dB)
13	.177	54.56	РК	.1	0	54.66	64.6	-9.94	-	-
14	.177	29.55	Av	.1	0	29.65	-	-	54.6	-24.95
15	.438	48.54	РК	.1	0	48.64	57.1	-8.46	-	
16	.438	27.91	Av	.1	0	28.01	-	-	47.1	-19.09
17	.87	47.63	РК	.1	0	47.73	56	-8.27		
18	.87	28.38	Av	.1	0	28.48	-	-	46	-17.52
19	.9555	47.18	РК	.1	0	47.28	56	-8.72		
20	.9555	26.56	Av	.1	0	26.66	-	-	46	-19.34
21	1.203	49.12	РК	.1	.1	49.32	56	-6.68		
22	1.203	28.09	Av	.1	.1	28.29	-	-	46	-17.71
23	1.491	46.86	РК	.1	.1	47.06	56	-8.94		
24	1.491	29.46	Av	.1	.1	29.66	-	-	46	-16.34


Page 48 of 56

LINE 1 RESULTS

Page 49 of 56

LINE 2 RESULTS

UL Verification Services FORM NO: CCSUP4701D 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services.

Page 50 of 56