

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

The Apple iPad is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, and Bluetooth radio functions

MODEL NUMBER: A1458, A1459, A1460*

FCC ID: BCGA1458

IC: 579C-A1458

REPORT NUMBER: 12U14507-4

ISSUE DATE: AUGUST 15, 2012

Prepared for APPLE, INC. 1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A

Prepared by UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

*Models differences are detailed within the body of this report

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	08/15/12	Initial Issue	F. Ibrahim

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 47

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS4	4
2. TE	ST METHODOLOGY	5
3. FA	CILITIES AND ACCREDITATION	5
4. CA	LIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. EQ	UIPMENT UNDER TEST	ô
5.1.	DESCRIPTION OF EUT	6
5.2.	DESCRIPTION OF MODELS DIFFERENCES	6
5.3.	MAXIMUM OUTPUT POWER	7
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.5.	SOFTWARE AND FIRMWARE	
5.6.	WORST-CASE CONFIGURATION AND MODE	
5.7.	DESCRIPTION OF TEST SETUP	9
0.71		-
-	ST AND MEASUREMENT EQUIPMENT12	
6. TE		2
6. TE	ST AND MEASUREMENT EQUIPMENT12	2 3
6. TE 7. AN	ST AND MEASUREMENT EQUIPMENT12 TENNA PORT TEST RESULTS	2 3 3
 6. TE 7. AN 7.1. 	ST AND MEASUREMENT EQUIPMENT	2 3 3
 6. TE 7. AN 7.1. 7.2. 	ST AND MEASUREMENT EQUIPMENT 12 TENNA PORT TEST RESULTS 13 6 dB BANDWIDTH 13 99% BANDWIDTH 16	2 3 6
 6. TE 7. AN 7.1. 7.2. 7.3. 	ST AND MEASUREMENT EQUIPMENT 12 TENNA PORT TEST RESULTS 13 6 dB BANDWIDTH 13 99% BANDWIDTH 16 OUTPUT POWER 20	2 3 3 6 0 3
 TE AN 7.1. 7.2. 7.3. 7.4. 	ST AND MEASUREMENT EQUIPMENT 12 TENNA PORT TEST RESULTS 13 6 dB BANDWIDTH 13 99% BANDWIDTH 16 OUTPUT POWER 20 AVERAGE POWER 23	2 3 6 0 3 4
 TE AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 	ST AND MEASUREMENT EQUIPMENT 12 TENNA PORT TEST RESULTS 13 6 dB BANDWIDTH 13 99% BANDWIDTH 16 OUTPUT POWER 20 AVERAGE POWER 23 POWER SPECTRAL DENSITY 24	2 3 3 6 0 3 4 8
 TE AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 	ST AND MEASUREMENT EQUIPMENT 12 TENNA PORT TEST RESULTS 13 6 dB BANDWIDTH 13 99% BANDWIDTH 16 OUTPUT POWER 20 AVERAGE POWER 23 POWER SPECTRAL DENSITY 24 CONDUCTED SPURIOUS EMISSIONS 28	2 3 3 6 0 3 4 8 2
 TE AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 8. RA 	ST AND MEASUREMENT EQUIPMENT12TENNA PORT TEST RESULTS136 dB BANDWIDTH1399% BANDWIDTH160UTPUT POWER20AVERAGE POWER23POWER SPECTRAL DENSITY24CONDUCTED SPURIOUS EMISSIONS28DIATED TEST RESULTS32	2 3 <i>6</i> <i>0</i> <i>3</i> <i>4</i> <i>8</i> 2 <i>2</i>
 6. TE 7. AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 8. RA 8.1. 	ST AND MEASUREMENT EQUIPMENT12TENNA PORT TEST RESULTS136 dB BANDWIDTH1399% BANDWIDTH16OUTPUT POWER20AVERAGE POWER23POWER SPECTRAL DENSITY24CONDUCTED SPURIOUS EMISSIONS28DIATED TEST RESULTS32LIMITS AND PROCEDURE32	2 3 3 6 0 3 4 8 2 3
 TE AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 8. RA 8.1. 8.2. 8.3. 	ST AND MEASUREMENT EQUIPMENT12TENNA PORT TEST RESULTS136 dB BANDWIDTH1399% BANDWIDTH16OUTPUT POWER20AVERAGE POWER21POWER SPECTRAL DENSITY24CONDUCTED SPURIOUS EMISSIONS28DIATED TEST RESULTS32LIMITS AND PROCEDURE32TRANSMITTER ABOVE 1 GHz33	2 3 3 6 0 3 4 8 2 3 8

1. ATTESTATION OF TEST RESULTS

MODEL: SERIAL NUMBER:	A1458, A1459, A1460 20558					
DATE TESTED:	AUGUST 03-15, 2012					
ST/	APPLICABLE STANDARDS STANDARD TEST RESULTS					
		TEST RESULTS				

CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR UL CCS

The

TOM CHEN EMC ENGINEER UL CCS

Page 4 of 47

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a iPad tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, and Bluetooth radio functions.

5.2. DESCRIPTION OF MODELS DIFFERENCES

FCC ID: BCGA1458 IC ID: 579C-A1458 Model #: A1458

Model A1458, is a tablet with multimedia functions (music, application support, and video) IEEE 802.11a/b/g/n radio and Bluetooth radio. The rechargeable battery is not user accessible.

FCC ID: BCGA1459 IC ID: 579C-A1459 Model #: A1459

Model A1459, is a tablet with multimedia functions (music, application support, and video), cellular GSM/GPRS/EGPRS/WCDMA/HSPA+/DC-HSDPA/LTE radio, IEEE 802.11a/b/g/n and Bluetooth radio. The rechargeable battery is not user accessible.

FCC ID: BCGA1460 IC ID: 579C-A1460 Model #: A1460

Model A1460, is a tablet with multimedia functions (music, application support, and video), cellular GSM/GPRS/EGPRS/WCDMA/HSPA+/DC-HSDPA/CDMA1xRTT/ EV-DO Rev 0, A, B / LTE radio, IEEE 802.11a/b/g/n radio and Bluetooth radio. The rechargeable battery is not user accessible.

Page 6 of 47

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Bluetooth LE	10.74	11.86

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum gain as shown below:

Frequency Band (GHz)	Antenna Gain (dBi)
2.4-2.4835	-0.26
5.15-5.25	4.63
5.25-5.35	4.25
5.5-5.7	4.51
5.725-5.85	4.90

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 10A378

The EUT driver software installed during testing was Broadcom_Rel_6_10_56_172

The test utility software used during testing was BlueTool

The EUT is also linked in Bluetooth Enable Test mode with Rohde & Schwarz CBT Test box

Page 7 of 47

5.6. WORST-CASE CONFIGURATION AND MODE

For the fundamental investigation, since the EUT is a portable device that has three orientations; X, Y and Z orientations have been investigated, also with AC/DC adapter, and earphone, and the worst case was found to be at Y orientation without AC adapter and earphone for both 2.4GHz and 5GHz band.

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as a worst-case scenario.

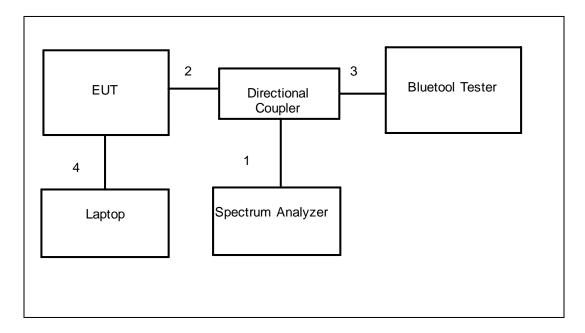
Page 8 of 47

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
AC Adapter	Apple	A1344	N/A	N/A		
Laptop PC	Apple	MacBook Pro	N/A	N/A		
Directional Coupler	RF-Lambda	RFDC5M06G15	N/A	N/A		
Headset	Apple	NA	N/A	N/A		
BT Tester	Rohde & Schwarz	CBT	100429	N/A		

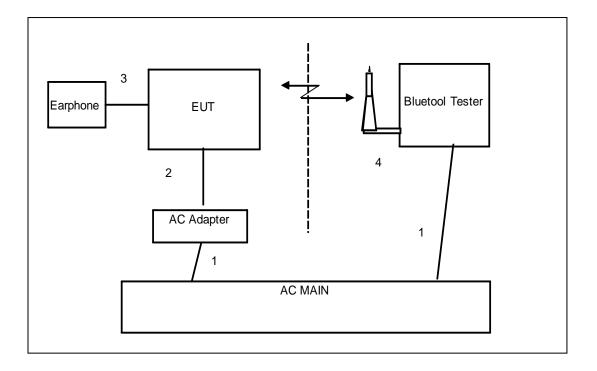
I/O CABLES (Conducted Setup)


Cable No.		# of Identical Ports	Connector Type		Cable Length	Remarks
1	In/Out	1	SMA	Shielded	0.2m	NA
2	In/Out	1	SMA	Shielded	0.6m	NA
3	Antenna Port	1	SMA	Shielded	0.1m	NA
4	Laptop	1	USB	Un-shielded	1m	NA

I/O CABLES (Radiated Setup)

	I/O CABLE LIST							
Cable No.		# of Identical Ports		Cable Type	Cable Length	Remarks		
1	AC	1	US115VAC	Un-Shielded	2m	NA		
2	DC	1	DC	Un-Shielded	1m	NA		
3	Jack	1	Earphone	Shielded	0.5m	NA		
4	Antenna Port	1	Horn	Un-shielded	2m	NA		

Page 9 of 47


SETUP DIAGRAM FOR CONDUCTED TESTS

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 10 of 47

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 11 of 47

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/13	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/13	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	11/11/12	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/12/13	
Horn Antenna, 26.5 GHz	ARA	MWH-1826/B	C00589	07/28/13	
Horn Antenna, 40 GHz	ARA	MWH-2640/B	C00981	05/10/13	
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	03/14/13	
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR	
High Pass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	04/09/13	
CBT Bluetooth tester	Rohde Schwarz	CBT	10090	05/15/2013	
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02676	CNR	
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR	
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR	
EMI Test Receiver, 30MHz	R&S	ESHS 20	N02396	08/19/13	
LISN, 30 MHz	FCC	LISN-50/250-25- 2	N02625	12/13/12	

Page 12 of 47

7. ANTENNA PORT TEST RESULTS

7.1. 6 dB BANDWIDTH

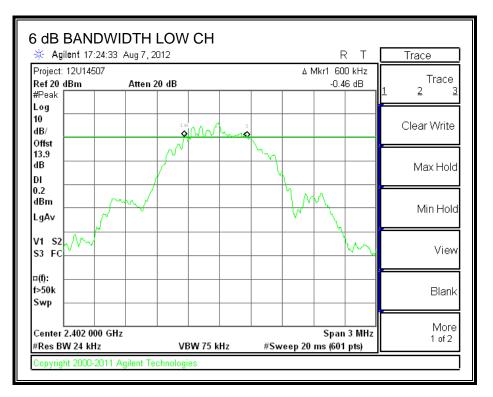
LIMITS

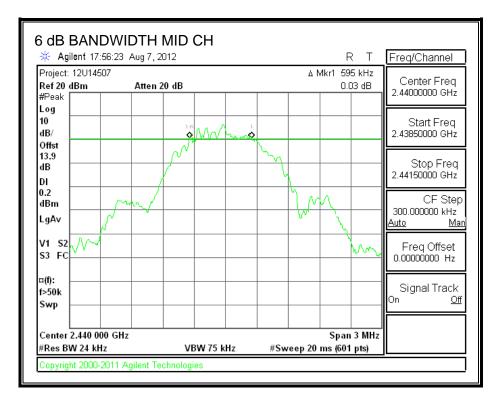
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

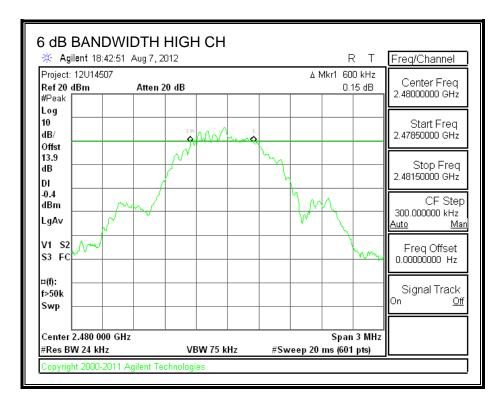
TEST PROCEDURE


KDB 558074 D01 V01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247", dated 01/18/2012.


<u>RESULTS</u>

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.600	0.5
Middle	2440	0.595	0.5
High	2480	0.600	0.5

Page 13 of 47


6 dB BANDWIDTH

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 14 of 47

Page 15 of 47

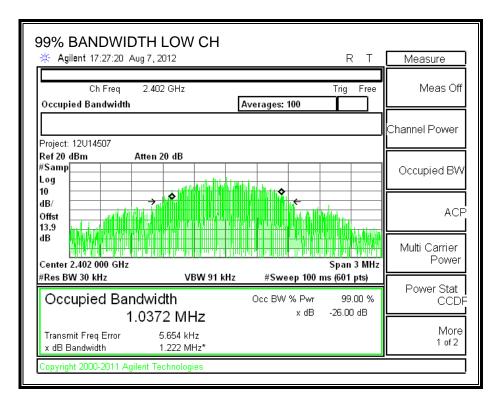
7.2. 99% **BANDWIDTH**

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0372
Middle	2440	1.0382
High	2480	1.0391

UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 16 of 47

99% BANDWIDTH

Page 17 of 47

99% BANDWIDTH M			RТ	Measure
Ch Freq 2.44 GH Occupied Bandwidth	-	Averages: 100	Trig Free	Meas Off
Project: 12U14507				Channel Power
Ref 20 dBm Atten 20 #Samp				Occupied BW
dB/ → 4 1		······ •····• •·····• •······ •········		ACP
Center 2.440 000 GHz Res BW 27 kHz	VBW 82 kHz	#Sweep 100 I	Span 3 MHz ms (601 pts)	Multi Carrier Power
Occupied Bandwidtl 1.0382		Occ BW % Pwr x dB	99.00 % -26.00 dB	Power Stat CCDF
	4.307 Hz 23 MHz*			More 1 of 2
Copyright 2000-2011 Agilent Tech	nologies			

Page 18 of 47

99% BANDWIDTH			RТ	Measure
Ch Freq 2 Occupied Bandwidth	48 GHz	Averages: 100	Trig Free	Meas Off
Project: 12U14507				Channel Power
	n 20 dB			Occupied BW
10 dB/ Offst 13.9		♦		ACF
dB Center 2.480 000 GHz			Span 3 MHz	Multi Carrier Power
#Res BW 30 kHz	VBW 91 kHz	#Sweep 100 ı	ns (601 pts)	Power Stat
Occupied Bandw 1.03	/idth 91 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	CCDF
Transmit Freq Error x dB Bandwidth	-7.592 kHz 1.227 MHz*			More 1 of 2
Copyright 2000-2011 Agilent	Technologies			

Page 19 of 47

7.3. OUTPUT POWER

LIMITS

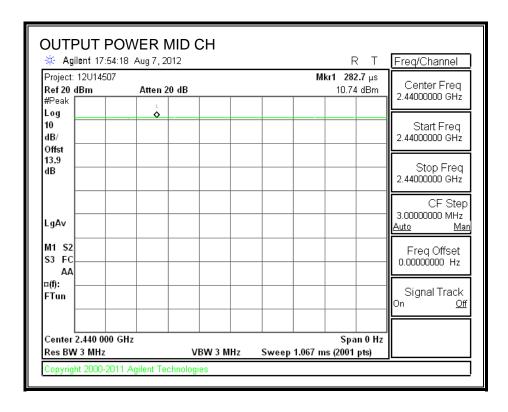
FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

KDB 558074 D01 V01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247", dated 01/18/2012.


RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	10.65	30	-19.35
Middle	2440	10.74	30	-19.26
High	2480	10.13	30	-19.87

Page 20 of 47

OUTPUT POWER

🔆 Agilent 17:48	<u> </u>					х Т	Freq/Channel
Project: 12U14507 Ref 20 dBm #Peak	Atten 20 dB			Mkr1 829.3 μs 10.65 dBm			Center Freq 2.40200000 GHz
l0 lB/				1			Start Freq 2.40200000 GHz
13.9 dB							Stop Freq 2.40200000 GHz
LgAv							CF Step 3.0000000 MHz <u>Auto Ma</u>
/1 S2 S3 FC AA							Freq Offset 0.00000000 Hz
¤(f): =Tun							Signal Track On <u>Of</u> i
Center 2.402 000 Res BW 3 MHz		VBW 3 MHz	Sweep 1	.067 m	•	n 0 Hz pts)	

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 21 of 47

		VER HIG Aug 7, 2012	ЭН СН		RТ	Freq/Channel
Project: 12 Ref 20 dB	2U14507	Atten 20 dE	3	М	l kr1 42.67 μs 10.13 dBm	Center Freq 2.48000000 GHz
Log . 10	1					Start Freq
dB/ Offst 13.9 dB						2.48000000 GHz Stop Freq
						2.48000000 GHz CF Step
LgAv						3.00000000 MHz Auto Man
M1 S2 S3 FC AA						Freq Offset 0.00000000 Hz
¤(f): FTun						Signal Track On <u>Off</u>
Center 2.4 Res BW 3	480 000 GHz		VBW 3 MHz	Sweep 1.067 n	Span 0 Hz ns (2001 pts)	
		gilent Techno		5.105p 1.001 II		

Page 22 of 47

7.4. AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

KDB 558074 D01 V01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247", dated 01/18/2012.

RESULTS

The cable assembly insertion loss of 13.9 dB (including 12.5 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2402	9.6
Middle	2440	10.0
High	2480	9.6

Page 23 of 47

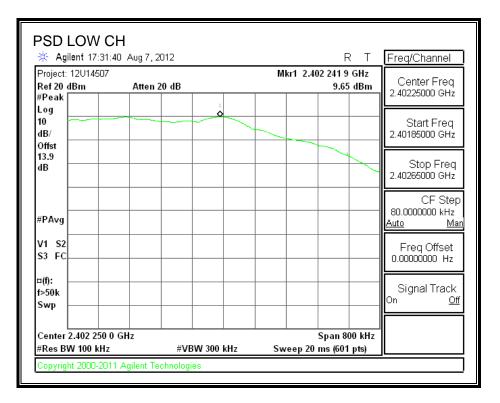
7.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

TEST PROCEDURE

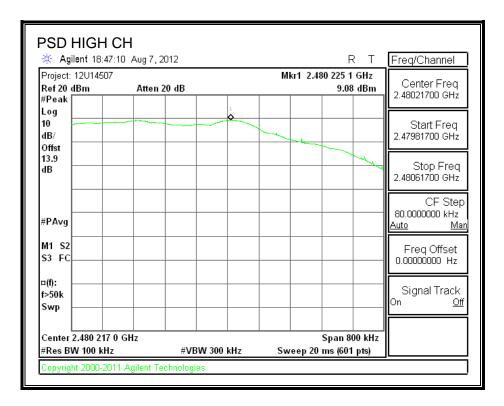

KDB 558074 D01 V01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247", dated 01/18/2012.

RESULTS

Channel	Frequency	PSD	10log(3kHz/100kHz)	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2402	9.65	-15.2	8	-13.55
Middle	2440	9.64	-15.2	8	-13.56
High	2480	9.08	-15.2	8	-14.12

Page 24 of 47

POWER SPECTRAL DENSITY



UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 25 of 47

🔆 Agilent 18:01	:45 Aug 7, 2012			RΤ	Freq/Channel
Project: 12U14507 Ref 20 dBm #Peak	Atten 20 dB		Mkr1 2.440) 226 3 GHz 9.64 dBm	Center Freq 2.44022500 GHz
Log 10 dB/					Start Freq 2.43982500 GHz
Offst 13.9 dB					Stop Freq 2.44062500 GHz
#PAvg					CF Step 80.0000000 kHz <u>Auto Mar</u>
M1 S2 S3 FC					Freq Offset 0.00000000 Hz
¤(f): f>50k Swp					Signal Track On <u>Off</u>
Center 2.440 225 #Res BW 100 kHz		BW 300 kHz	Sweep 20 n	ipan 800 kHz ns (601 pts)	

Page 26 of 47

Page 27 of 47

7.6. CONDUCTED SPURIOUS EMISSIONS

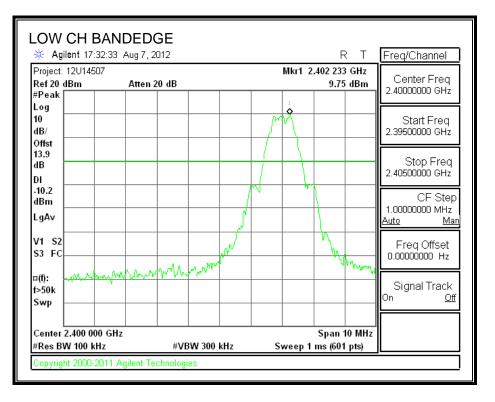
<u>LIMITS</u>

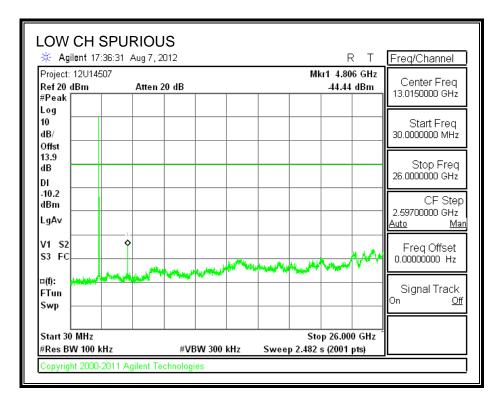
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

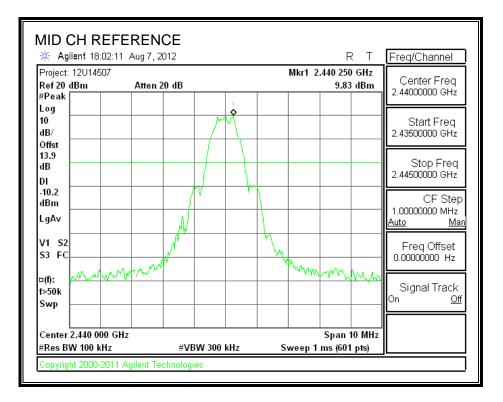
TEST PROCEDURE

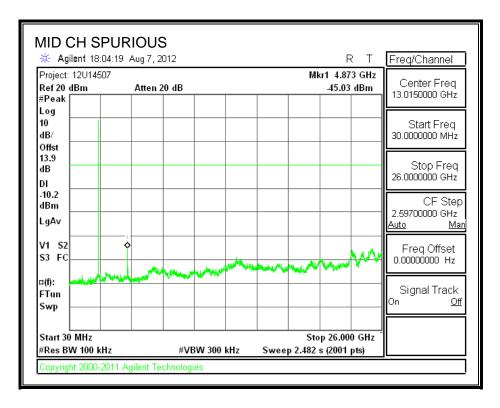

KDB 558074 D01 V01 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under 15.247", dated 01/18/2012.


UL CCS FORM NO: CCSUP4701G 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 28 of 47

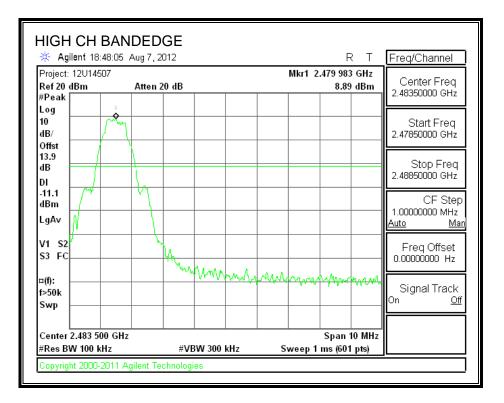
RESULTS

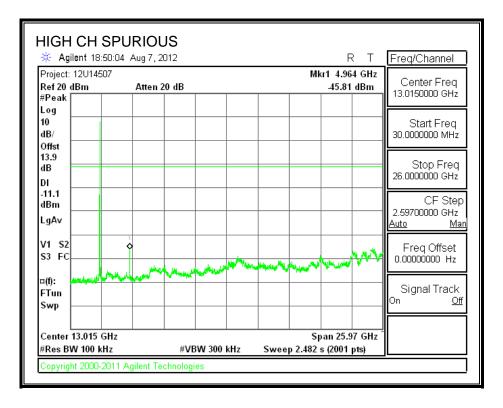

SPURIOUS EMISSIONS, LOW CHANNEL



Page 29 of 47

SPURIOUS EMISSIONS, MID CHANNEL





UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 30 of 47

SPURIOUS EMISSIONS, HIGH CHANNEL

UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TEL: (510) 771-1000 FAX: (510) 661-0888 Without the written approval of UL CCS.

Page 31 of 47

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

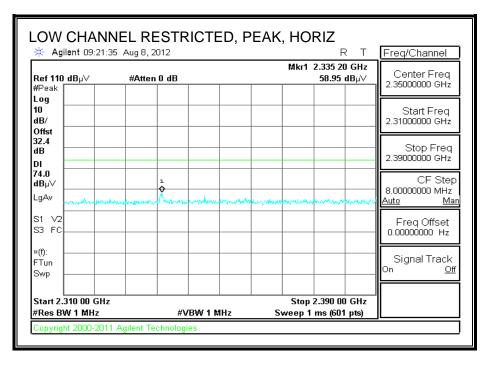
TEST PROCEDURE

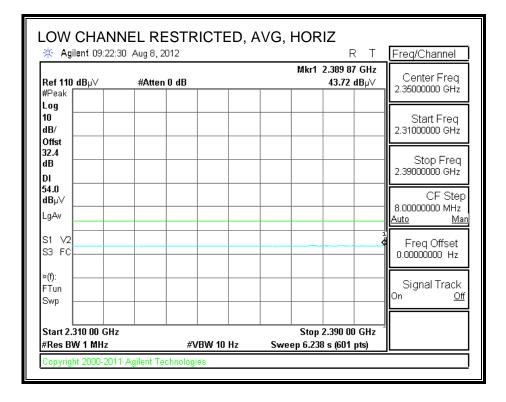
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

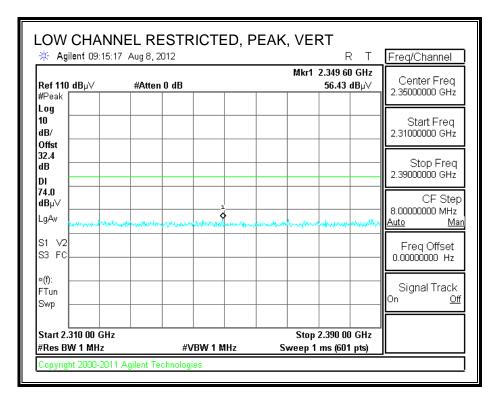
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

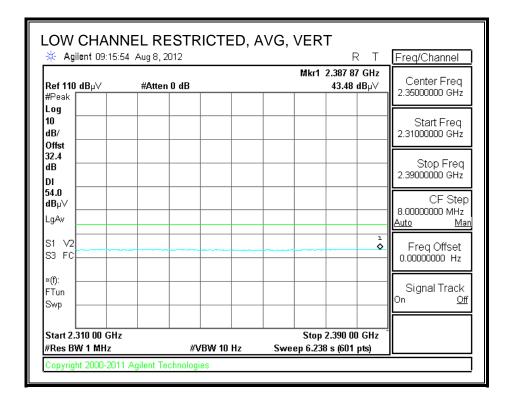

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 32 of 47

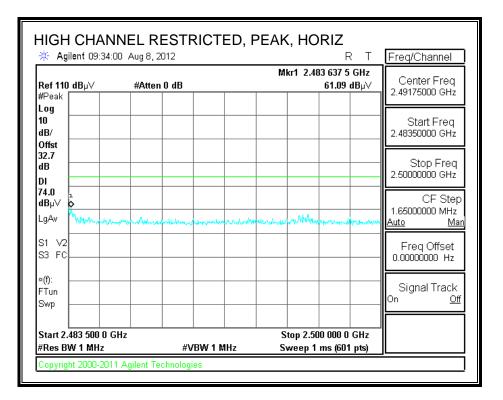
8.2. TRANSMITTER ABOVE 1 GHz

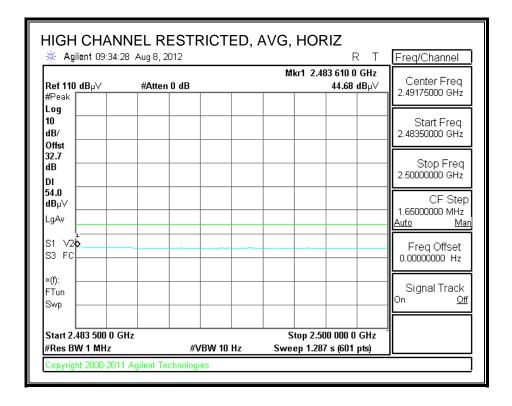

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4701G TABLE 10171-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

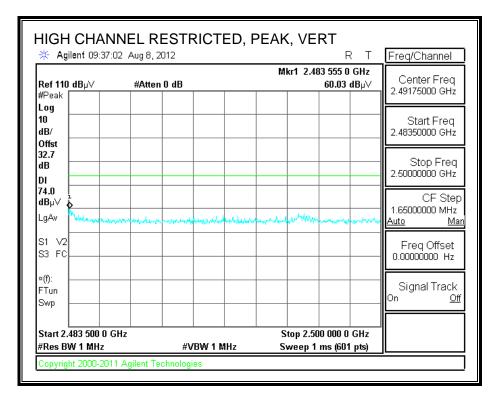


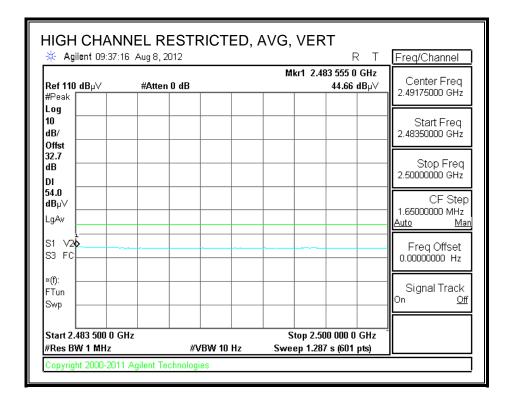


UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 34 of 47

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





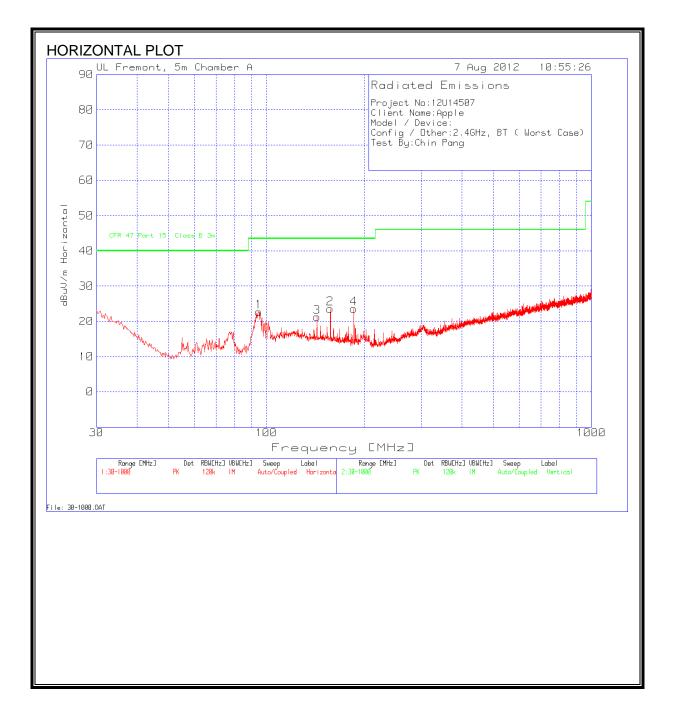
UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 35 of 47

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

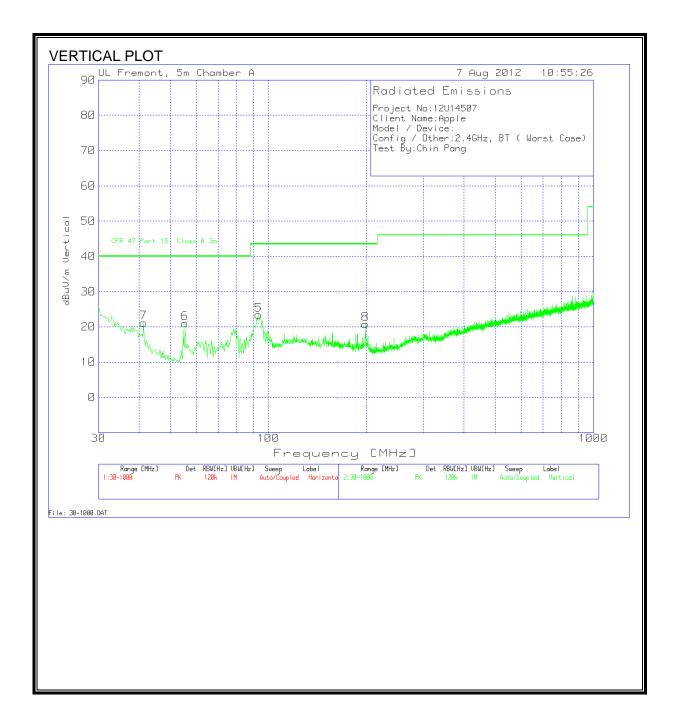
UL CCS 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 36 of 47


HARMONICS AND SPURIOUS EMISSIONS

		61 L B											
Test Engi Date:		Chin Pa 08/08/12	-										
Date: Project #	_	12U14507											
	mpany: Apple												
Company Test Targ		FCC 15.3	247										
Mode Oper: BLE, TX													
Mode Of	er.	blit, IA											
	f	Measuren	nent Freq	Amp	Preamp (Gain			Average	Field Stren	gth Limit		
	Dist	Distance	to Anten	na	D Corr	Distance	Correc	et to 3 me	ters	Peak Fie	ld Strength	Limit	
	Read	Analyzer	-		Avg	Average	Field S	trength @	3 m	_	vs. Average		
	AF	Antenna			Peak			Field Stre	ength	Margin v	rs. Peak Lis	nit	
	CL	Cable Los	88		HPF	High Pas	s Filter	T					
f	Dist	Read AF CL Amp			Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	2402MH												
4.804	3.0	58.1	33.4	6.3	-35.5	0.0	0.0	62.3	74.0	-11.7	H	P	
4.804	3.0	44.1	33.4	6.3	-35.5	0.0	0.0	48.3	54.0	-5.7	H	A	
4.804	3.0	53.3	33.4	6.3	-35.5	0.0	0.0	57.5	74.0	- 16.5	V	Р	
4.804	3.0	41.0	33.4	6.3	-35.5	0.0	0.0	45.2	54.0	- <mark>8.8</mark>	V	A	
Maler	14403-077	L								ļ			
Mid Ch, 4.880	2440MH 3.0	z 58.2	33.5	6.3	-35.5	0.0	0.0	62.5	74.0	-11.5	н	P	
4.880	3.0	44.1	33.5	6.3	-35.5	0.0	0.0	48.4	74.0 54.0	-11.5	н Н	A	
7.320	3.0	46.8	35.7	8.5	-35.4	0.0	0.0	55.6	74.0	-18.4	H	P	
7.320	3.0	34.4	35.7	8.5	-35.4	0.0	0.0	43.2	54.0	-10.8	H	Ā	
4.880	3.0	52.4	33.5	6.3	-35.5	0.0	0.0	56.7	74.0	-17.3	V	P	
4.880	3.0	40.2	33.5	6.3	-35.5	0.0	0.0	44.5	54.0	-9.5	V	A	
7.320	3.0	47.6	35.7	8.5	-35.4	0.0	0.0	56.4	74.0	-17.6	V	P	
7.320	3.0	34.7	35.7	8.5	-35.4	0.0	0.0	43.5	54.0	-10.5	V	A	
High Ch	248010	Iz											
4.960	3.0	55.4	33.6	6.4	-35.5	0.0	0.0	59.8	74.0	-14.2	H	P	
4.960	3.0	42.0	33.6	6.4	-35.5	0.0	0.0	46.4	54.0	-7.6	H	A	
7.440	3.0	52.6	35.9	8.5	-35.5	0.0	0.0	61.6	74.0	-12.4	H	P	
7.440	3.0	38.4	35.9	8.5	-35.5	0.0	0.0	47.4	54.0	- 6.6	H	A	
4.960	3.0	50.7	33.6	6.4	-35.5	0.0	0.0	55.1	74.0	-18.9	V	P	
4.960	3.0	38.6	33.6	6.4	-35.5	0.0	0.0	43.1	54.0	-10.9	V	A	
7.440	3.0	53.9	35.9	8.5	-35.5	0.0	0.0	63.0	74.0	-11.0	V	Р	
7.440	3.0	39.3	35.9	8.5	-35.5	0.0	0.0	48.3	54.0	-5.7	V	A	
			: 1					:					

Page 37 of 47


8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 38 of 47

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 39 of 47

Project No	:12U14507	,						
Client Nar	ne:Apple							
Model / D	evice:							
Config / O	ther:2.4GH	lz, BT (Wo	rst Case)					
Test By:Ch	in Pang							
Horizonta	30 - 1000N	ЛHz						
Test Frequ	Meter Rea	Detector	25MHz-1G	T243 Suno	dBuV/m	CFR 47 Par	Margin	Polarity
94.9381	40.85	РК	-27	8.8	22.65	43.5	-20.85	Horz
157.3561	38.12	РК	-26.5	12	23.62	43.5	-19.88	Horz
143.0116	35.22	РК	-26.6	12.6	21.22	43.5	-22.28	Horz
186.0452	38.83	РК	-26.4	11.2	23.63	43.5	-19.87	Horz
Vertical 30) - 1000MH	Z						
Test Frequ	Meter Rea	Detector	25MHz-1G	T243 Suno	dBuV/m	CFR 47 Par	Margin	Polarity
93.3873	42.01	РК	-27	8.4	23.41	43.5	-20.09	Vert
55.3937	41.27	РК	-27.3	7.1	21.07	40	-18.93	Vert
41.243	35.44	РК	-27.4	13.1	21.14	40	-18.86	Vert
199.0328	34.82	РК	-26.2	12.2	20.82	43.5	-22.68	Vert

Page 40 of 47

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 "	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

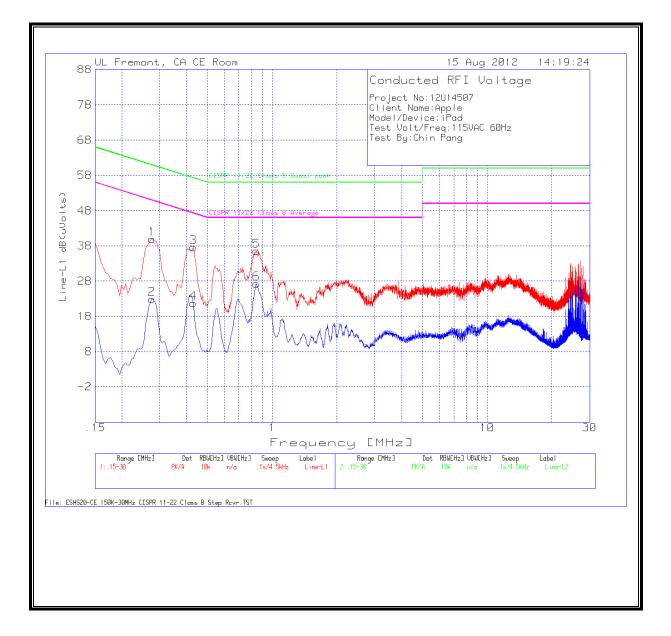
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

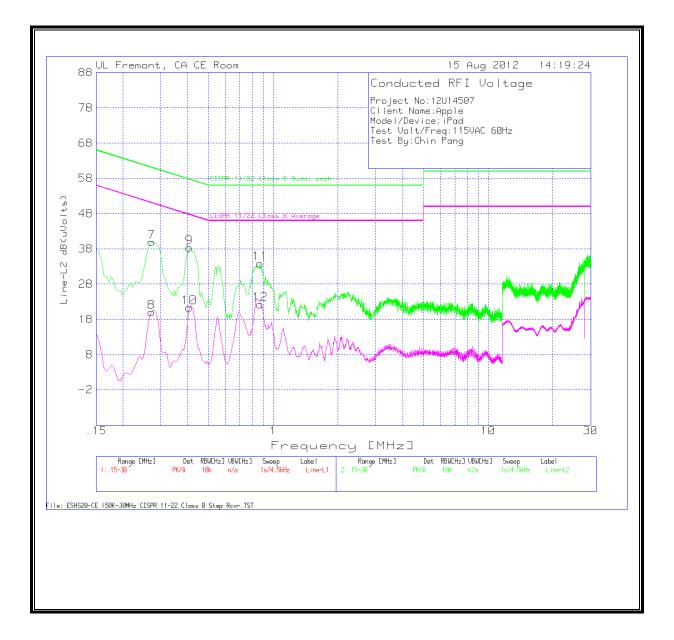
Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 41 of 47


RESULTS

<u>6 WORST EMISSIONS</u>

Project No:	12U14507								
Client Name:Apple									
Model/Device:iPad Test Volt/Freq:115VAC 60Hz									
		C 60Hz							
Test By:Chin Pang									
Line-L1 .15 -	30MHz								
Frequency	Reading	Detector	T24 IL L1.	LC Cables	dB(uVolts	CISPR Class B Q-peak	Margin	CISPR Class B Avg	Margin
0.276	39.77	PK	0.1	0	39.87	60.9	-21.03	-	-
0.276	22.74	Av	0.1	0	22.84	-	-	50.9	-28.06
0.429	37.44	PK	0.1	0	37.54	57.3	-19.76	-	-
0.429	21.62	Av	0.1	0	21.72	-	-	47.3	-25.58
0.843	36.46	PK	0.1	0	36.56	56	-19.44	-	-
0.843	27.17	Av	0.1	0	27.27	-	-	46	-18.73
Line-L2 .15 -	30MHz								
Frequency	Reading	Detector	T24 IL L1.	LC Cables	dB(uVolts	CISPR Class B Q-peak	Margin	CISPR Class B Avg	Margin
0.2715	39.87	PK	0.1	0	39.97	61.1	-21.13	-	-
0.2715	19.94	Av	0.1	0	20.04	-	-	51.1	-31.06
0.4065	38.22	PK	0.1	0	38.32	57.7	-19.38	-	-
0.4065	21.22	Av	0.1	0	21.32	-	-	47.7	-26.38
0.87	33.72	PK	0.1	0	33.82	56	-22.18	-	-
0.87	22.15	Av	0.1	0	22.25	-	-	46	-23.75


Page 42 of 47

LINE 1 RESULTS

Page 43 of 47

LINE 2 RESULTS

Page 44 of 47