

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

The Apple iPad is a tablet device with multimedia functions (music, application support, and video), 802.11a/b/g/n radio, and Bluetooth radio functions

MODEL NUMBER: A1432, A1454, & A1455*

FCC ID: BCGA1432 IC: 579C-A1432

REPORT NUMBER: 12U14526-2, Revision A

ISSUE DATE: OCTOBER 3, 2012

Prepared for APPLE, INC.
1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

*Models differences are detailed within the body of this report

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/30/12	Initial Issue	F. Ibrahim
A	10/03/12	Updated Model Differences section	A. Zaffar

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	6
2.	TES	T METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAL	IBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	SAMPLE CALCULATION	7
	4.3.	MEASUREMENT UNCERTAINTY	7
5.	EQI	JIPMENT UNDER TEST	8
,	5.1.	DESCRIPTION OF EUT	8
	5.2.	DESCRIPTION OF MODELS DIFFERENCES	8
	5.3.	MAXIMUM OUTPUT POWER	9
,	5. <i>4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	9
,	5.5.	SOFTWARE AND FIRMWARE	10
	5.6.	WORST-CASE CONFIGURATION AND MODE	10
,	5.7.	DESCRIPTION OF TEST SETUP	11
6.	TES	T AND MEASUREMENT EQUIPMENT	14
7.	ON	TIME, DUTY CYCLE AND MEASUREMENT METHODS	15
	7.1.	ON TIME AND DUTY CYCLE RESULTS	15
	7.2.	MEASUREMENT METHOD FOR POWER AND PPSD	15
	7.3.	MEASUREMENT METHOD FOR AVG SPURIOUS EMISSIONS ABOVE 1 GHz	15
	7.4.	DUTY CYCLE PLOTS	16
8.	AN	TENNA PORT TEST RESULTS	18
	8.1.	802.11a MODE IN THE 5.2 GHz BAND	18
	8.1. 8.1.		
	8.1.		
	8.1.		
	8.1.		
	8.2. 8.2.	802.11n HT20 MODE IN THE 5.2 GHz BAND 1. 26 dB BANDWIDTH	
	8.2.		
	8.2.		
	8.2. 8.2.		
	8.3.	802.11n HT40 MODE IN THE 5.2 GHz BAND	_
	8.3.	1. 26 dB BANDWIDTH	48
		Page 3 of 7/4	

ГС	C ID. BCG	1841432	C. 379C-A1432
	8.3.2.	99% BANDWIDTH	
	8.3.3.	AVERAGE POWER	
	8.3.4.	OUTPUT POWER AND PPSD	
	8.3.5.	PEAK EXCURSION	57
	8.4. 802	2.11a MODE IN THE 5.3 GHz BAND	59
	8.4.1.	26 dB BANDWIDTH	
	8.4.2.	99% BANDWIDTH	
	8.4.3.	AVERAGE POWER	65
	8.4.4.	OUTPUT POWER AND PPSD	66
	8.4.5.	PEAK EXCURSION	70
	8.5. 802	2.11n HT20 MODE IN THE 5.3 GHz BAND	73
	8.5.1.	26 dB BANDWIDTH	
	8.5.2.	99% BANDWIDTH	
	8.5.3.	AVERAGE POWER	_
	8.5.4.	OUTPUT POWER AND PPSD	
	8.5.5.	PEAK EXCURSION	
	0.0		
		2.11n HT40 MODE IN THE 5.3 GHz BAND	
	8.6.1. 8.6.2.	26 dB BANDWIDTH99% BANDWIDTH	
	8.6.3.	AVERAGE POWER	
	8.6.4.	OUTPUT POWER AND PPSD	
	8.6.5.	PEAK EXCURSION	_
		2.11a MODE IN THE 5.6 GHz BAND	
	8.7.1.	26 dB BANDWIDTH	
	8.7.2.	99% BANDWIDTH	
	8.7.3.	AVERAGE POWER	
	8.7.4. 8.7.5.	OUTPUT POWER AND PPSDPEAK EXCURSION	
		2.11n HT20 MODE IN THE 5.6 GHz BAND	
	8.8.1.	26 dB BANDWIDTH	
	8.8.2.	99% BANDWIDTH	
	8.8.3.	AVERAGE POWER	
		OUTPUT POWER AND PPSD	
	8.8.5.	PEAK EXCURSION	
	8.9. 802	2.11n HT40 MODE IN THE 5.6 GHz BAND	133
	8.9.1.	26 dB BANDWIDTH	133
	8.9.2.	99% BANDWIDTH	136
	8.9.3.	AVERAGE POWER	
	8.9.4.	OUTPUT POWER AND PPSD	
	8.9.5.	PEAK EXCURSION	144
_			
9.		TED TEST RESULTS	
	9.1. LIM	/IITS AND PROCEDURE	147
	9.2. TR	ANSMITTER ABOVE 1 GHz	148
	9.2.1.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	
	9.2.2.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND	
	9.2.3.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND	
	9.2.4.	TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	
	9.2.5.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND	
	-		

FCC ID: BCGA1432	IC: 579C-A1432
9.2.6. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND	163
9.2.7. TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND	166
9.2.8. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND	170
9.2.9. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BAND	174
9.2.10. 2.4 GHz and 5GHz band Colocation	178
9.3. WORST-CASE BELOW 1 GHz	181
10. AC POWER LINE CONDUCTED EMISSIONS	184
11. DYNAMIC FREQUENCY SELECTION	188
11.1. OVERVIEW	188
11.1.1. LIMITS	
11.1.2. TEST AND MEASUREMENT SYSTEM	
11.1.3. SETUP OF EUT	
11.1.4. DESCRIPTION OF EUT	196
11.2. CLIENT MODE RESULTS FOR 20 MHz BANDWIDTH	198
11.2.1. TEST CHANNEL	198
11.2.2. RADAR WAVEFORM AND TRAFFIC	
11.2.3. OVERLAPPING CHANNEL TESTS	200
11.2.4. MOVE AND CLOSING TIME	200
11.3. CLIENT MODE RESULTS FOR 40 MHz BANDWIDTH	205
11.3.1. TEST CHANNEL	205
11.3.2. RADAR WAVEFORM AND TRAFFIC	205
11.3.3. OVERLAPPING CHANNEL TESTS	207
11.3.4. MOVE AND CLOSING TIME	
11.3.5. NON-OCCUPANCY PERIOD	212
11.4. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 2	0 MHz
BANDWIDTH	213
11.4.1. TEST CHANNEL	
11.4.2. RADAR WAVEFORM AND TRAFFIC	_
11.4.3. OVERLAPPING CHANNEL TESTS	
11.4.4. MOVE AND CLOSING TIME	215
12. SETUP PHOTOS	220

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 INFINITE LOOP

CUPERTINO, CA 95014, U.S.A.

EUT DESCRIPTION: The Apple iPad is a tablet device with multimedia functions

(music, application support, and video), 802.11a/b/g/n radio, and

Bluetooth radio functions

MODEL: A1432, A1454, & A1455

SERIAL NUMBER: PT758824

DATE TESTED: JULY 15 - AUGUST 22, 2012

APPLICABLE STANDARDS

STANDARD
TEST RESULTS

CFR 47 Part 15 Subpart E
Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 9
Pass

INDUSTRY CANADA RSS-GEN Issue 3
Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM WISE PROJECT LEADER

UL CCS

TOM CHEN EMC ENGINEER UL CCS

Page 6 of 229

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2003, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a iPad tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, and Bluetooth radio functions.

5.2. DESCRIPTION OF MODELS DIFFERENCES

FCC ID: BCGA1432 IC ID: 579C-A1432 Model #: A1432

Model A1432, is a tablet with multimedia functions (music, application support, and video)IEEE 802.11a/b/g/n radio and Bluetooth radio. The rechargeable battery is not user accessible.

FCC ID: BCGA1454 IC ID: 579C-A1454 Model #: A1454

Model A1454 is a tablet with multimedia functions (music, application support, and video), cellular GSM/GPRS/EGPRS/WCDMA/HSPA+/DC-HSDPA/LTE radio, IEEE 802.11a/b/g/n and Bluetooth radio. The rechargeable battery is not user accessible.

FCC ID: BCGA1455 IC ID: 579C-A1455 Model #: A1455

Model A1455, is a tablet with multimedia functions (music, application support, and video), cellular GSM/GPRS/EGPRS/WCDMA/HSPA+/DC-HSDPA/CDMA1xRTT/ EV-DO Rev 0, A, B / LTE radio, IEEE 802.11a/b/g/n radio and Bluetooth radio. The rechargeable battery is not user accessible.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	14.257	26.650
5180 - 5240	802.11n HT20	14.354	27.252
5190 - 5230	802.11n HT40	15.780	37.844
5260 - 5320	802.11a	17.176	52.192
5260 - 5320	802.11n HT20	17.278	53.432
5270 - 5310	802.11n HT40	17.260	53.211
5500 - 5700	802.11a	16.585	45.551
5500 - 5700	802.11n HT20	16.421	43.863
5510 - 5670	802.11n HT40	16.491	44.576

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum gain as shown below:

Frequency Band (GHz)	Antenna Gain (dBi)
2.4-2.4835	1.41
5.15-5.25	4.70
5.25-5.35	5.08
5.5-5.7	5.42
5.725-5.85	5.27

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 10A378

The EUT driver software installed during testing was Broadcom Rel 6 10 56 166

The EUT is connected to the power meter.

5.6. WORST-CASE CONFIGURATION AND MODE

For the fundamental investigation, since the EUT is a portable device that has three orientations; X, Y and Z orientations have been investigated, also with AC/DC adapter, and earphone, and the worst case was found to be at Y orientation without AC adapter and earphone for both 2.4GHz and 5GHz band.

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as a worst-case scenario.

Worst-case data rates as provided by the manufacturer are:

For 802.11a mode: 6Mbps For 802.11n HT20: MCS0 For 802.11n HT40: MCS0

For 2.4 GHz band, an investigation of the fundamental frequency on both Ant0 and Ant1 ports showed that Ant0 is worst-case; therefore, all final radiated testing was performed using Ant0.

For 5 GHz bands, an investigation of the fundamental frequency on both Ant0 and Ant1 ports showed that Ant1 is worst-case; therefore, all final radiated testing was performed using Ant1.

Low channel for both 11a and 11n HT20 in the 5.6 GHz band, was tested for harmonics and BE at the power level of Low1 channel (5520 MHz) as worst-case scenario.

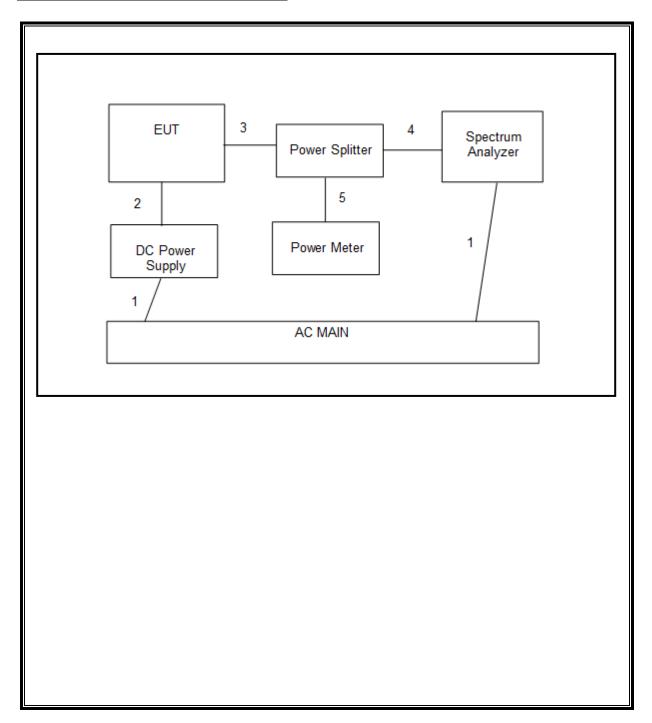
High channel for both 11a and 11n HT20 in the 5.6 GHz band, was tested for harmonics and BE at the power level of High1 channel (5680 MHz) as worst-case scenario.

Page 10 of 229

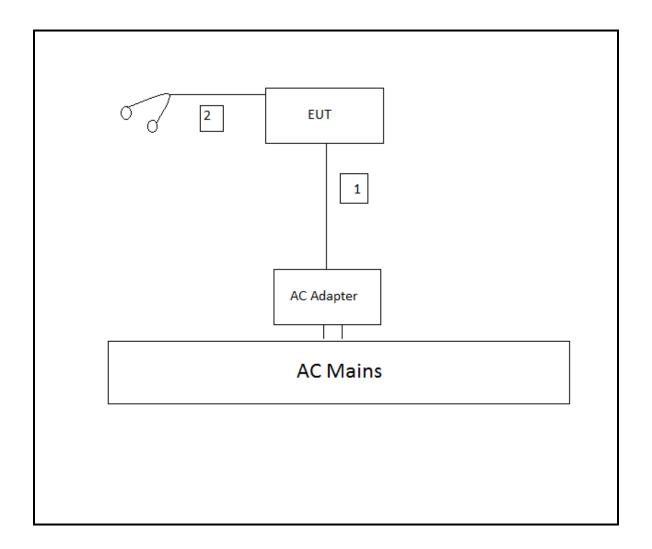
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC							
AC Adapter	Apple	A1401	D060812	DoC			
Power Splitter	Krytar	158010	99250	N/A			
Dc Power Supply	Agilent	E3610A	KR24104150	N/A			
Laptop PC	Apple	MacBook Pro	AOU269116	N/A			


I/O CABLES (CONDUCTED SETUP)

	I/O CABLE LIST								
Cable No.	Port	#of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks			
1	AC	2	AC	Un-shielded	2.0m	N/A			
2	DC	1	DC	Un-shielded	1.0m	N/A			
3	Antenna Port	1	Splitter	Un-shielded	0.1m	N/A			
4	RF out	1	Spectrum Analyzer	Un-Shielded	None	N/A			
5	RF out	1	Power Meter	Shielded	None	NA			


I/O CABLES (RADIATED SETUP)

	I/O Cable List							
Cable No	Cable Port # of identical Connector Cable Type Cable Remarks No Type Length (m)							
1	DC	1	MINI USB	UN-SHELDED	1.0m	N/A		
2	AUDIO	1	MINI JACK	UN-SHELDED	1.0m	N/A		

SETUP DIAGRAM FOR CONDUCTED TEST

SETUP DIAGRAM FOR RADIATED TEST

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	11/11/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	10/06/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	11/11/12		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1		02/07/13		
Horn Antenna, 26.5 GHz	ARA	MWH-1826/B	C00589	04/23/13		
Horn Antenna, 40 GHz	ARA	MWH-2640/B	C00981	06/14/13		
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	03/14/13		
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR		
High Pass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/15/12		
E-Series Power Sensor 9 kHg~18 GHz	Agilent	E9304A	1260847C	05/23/13		
P-Series single channel Power Meter	Agilent / HP	N1911A		07/27/13		
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02676	CNR		
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR		
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR		
EMI Test Receiver, 30MHz	R & S	ESHS 20	N02396	08/19/13		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	12/13/12		

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

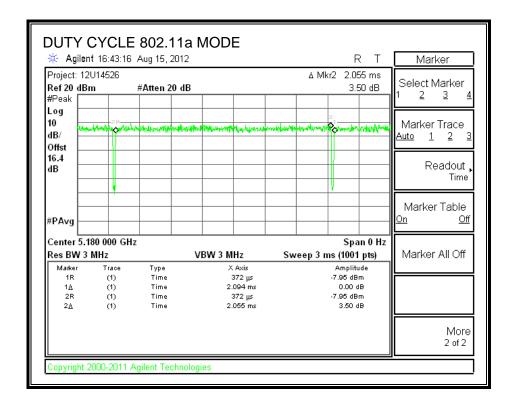
None; for reporting purposes only.

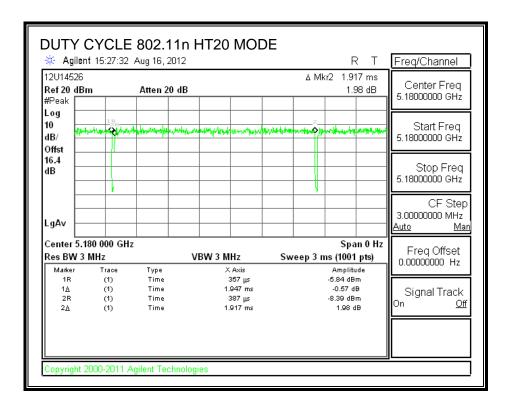
PROCEDURE

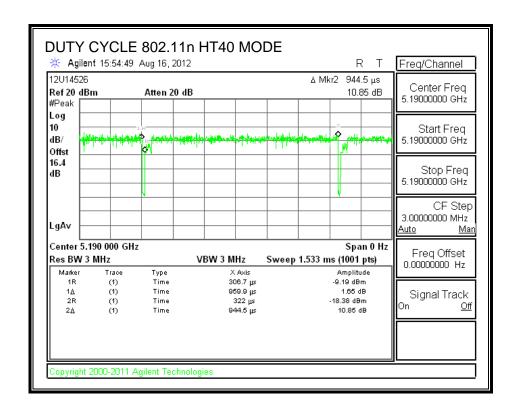
KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 20 MHz	2.055	2.094	0.981	98.1%	0.08	0.487
802.11n HT20	1.917	1.947	0.985	98.5%	0.07	0.522
802.11n HT40	0.9445	0.9599	0.984	98.4%	0.07	1.059


7.2. MEASUREMENT METHOD FOR POWER AND PPSD


The Duty Cycle is greater than or equal to 98% therefore KDB 789033 Method SA-1 is used.


7.3. MEASUREMENT METHOD FOR AVG SPURIOUS EMISSIONS ABOVE 1 GHz

The Duty Cycle is greater than or equal to 98%, KDB 789033 Method VB with Power RMS Averaging is used.

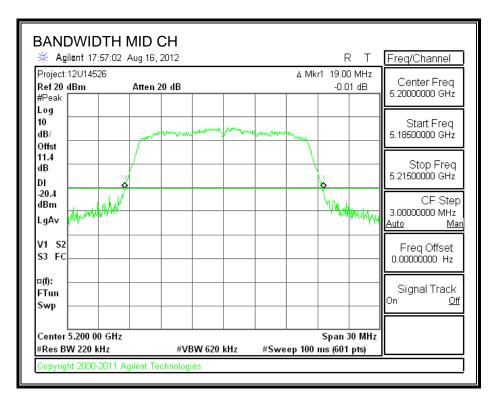
7.4. DUTY CYCLE PLOTS

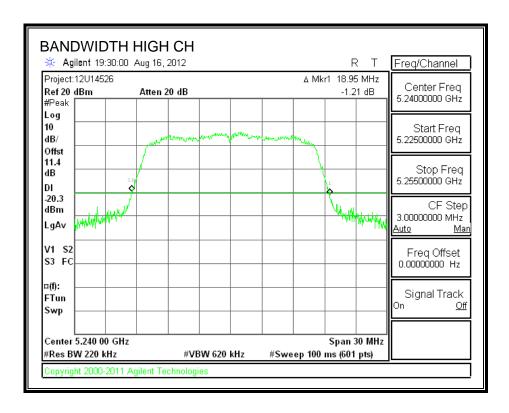
8. ANTENNA PORT TEST RESULTS

8.1. 802.11a MODE IN THE 5.2 GHz BAND

8.1.1. 26 dB BANDWIDTH


LIMITS

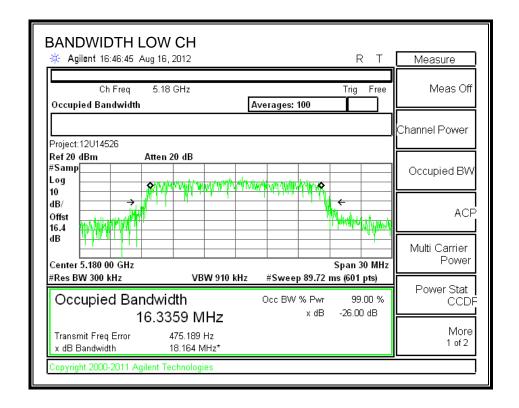

None; for reporting purposes only.

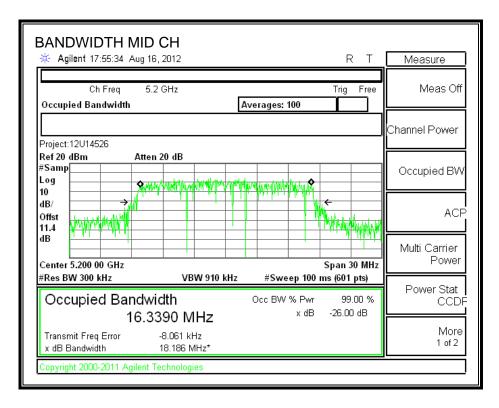

RESULTS

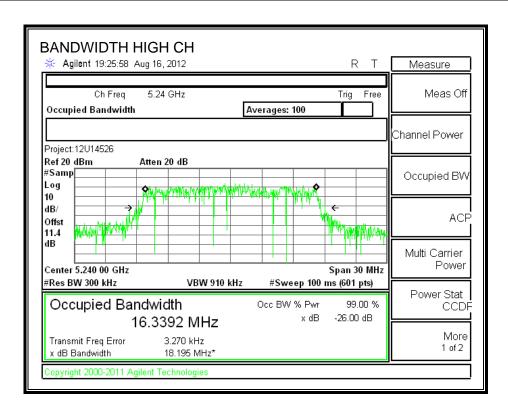
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	18.90
Mid	5200	19.00
High	5240	18.95

26 dB BANDWIDTH

8.1.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	16.3359
Mid	5200	16.3390
High	5240	16.3392

99% BANDWIDTH

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	13.98
Mid	5200	13.93
High	5240	13.85

8.1.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Limits FCC 15.407

Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	18.90	16.76	4.70	16.76	4.00
Mid	5200	17	19.00	16.79	4.70	16.79	4.00
High	5240	17	18.95	16.78	4.70	16.78	4.00

Output Power Results

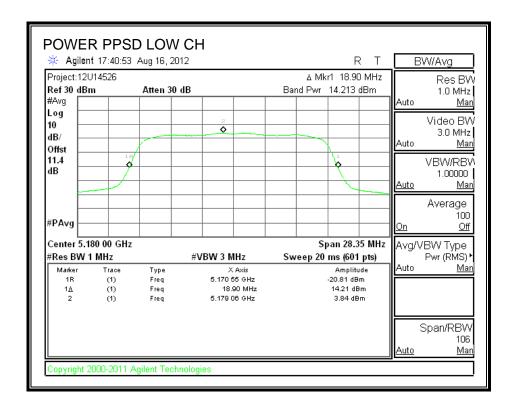
- c.					
Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	14.213	14.213	16.76	-2.552
Mid	5200	14.257	14.257	16.79	-2.531
High	5240	14.124	14.124	16.78	-2.652

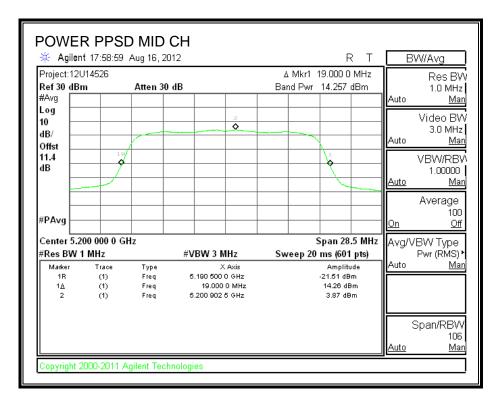
PPSD Results

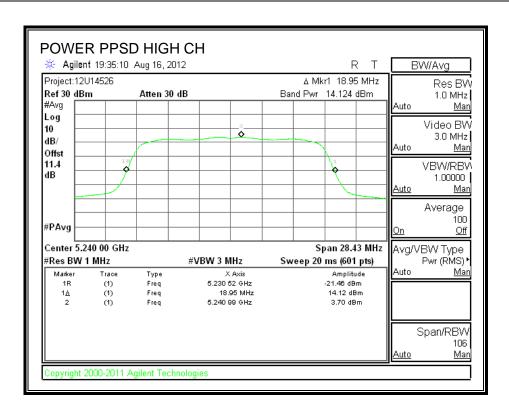
Channel	Frequency	Meas	Corr'd	PPSD	PPSD				
		PPSD	PPSD	Limit	Margin				
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)				
Low	5180	3.84	3.84	4.00	-0.16				
Mid	5200	3.87	3.87	4.00	-0.13				
High	5240	3.70	3.70	4.00	-0.30				

IC RSS-210 A9.2 (1)

Channel	Frequency	Fixed	В	10 + 10 Log B	Directional	Power	PPSD
		EIRP Limit	99%	EIRP Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	23	16.3359	22.1314	4.70	22.1314	10.0000
Mid	5200	23	16.3390	22.1323	4.70	22.1323	10.0000
High	5240	23	16.3392	22.1323	4.70	22.1323	10.0000


Output Power Results


Channel	Frequency	Meas	Corr'd	Directional	Power	Power
		Power	Power	Gain	EIRP Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)
Low	5180	14.21	14.213	4.70	22.1314	-3.2184
Mid	5200	14.26	14.257	4.70	22.1323	-3.1753
High	5240	14.12	14.124	4.70	22.1323	-3.3083

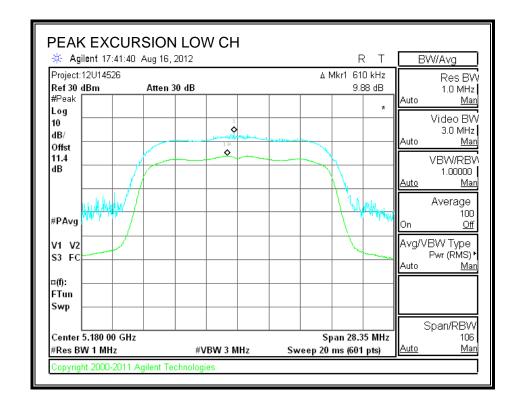

PPSD Results

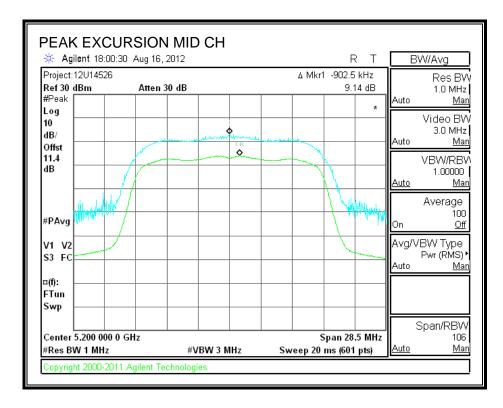
Channel	Frequency	Meas	Corr'd	Directional	PPSD	PPSD	
		PPSD	PPSD	Gain	EIRP Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)	
Low	5180	3.84	3.84	4.70	10.0000	-1.4600	
Mid	5200	3.87	3.87	4.70	10.0000	-1.4300	
High	5240	3.70	3.70	4.70	10.0000	-1.6000	

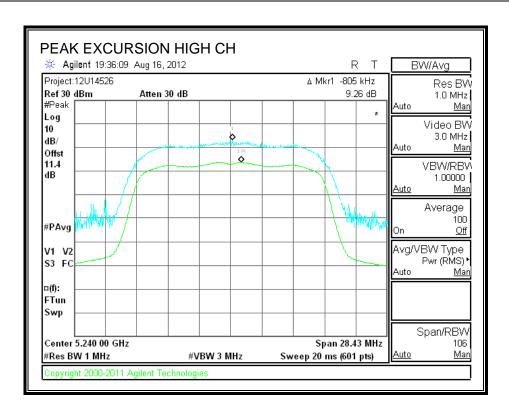
OUTPUT POWER AND PPSD

8.1.5. PEAK EXCURSION

LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

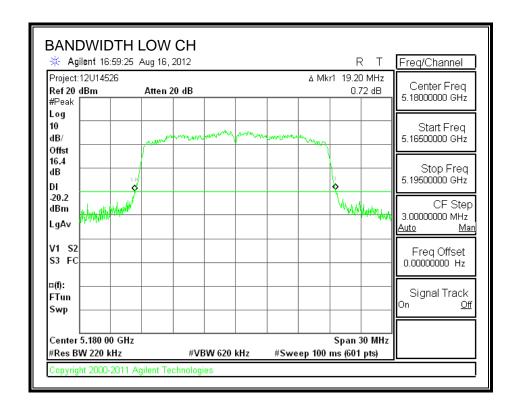

RESULTS

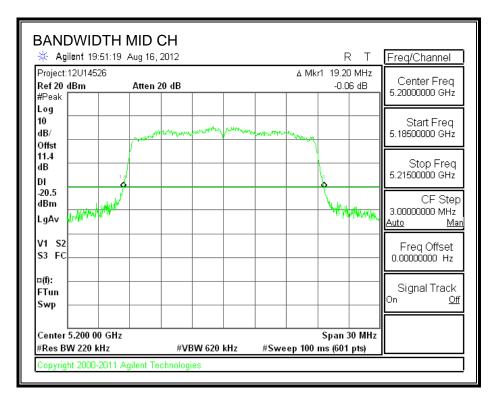
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.88	13	-3.12
Mid	5200	9.14	13	-3.86
High	5240	9.26	13	-3.74

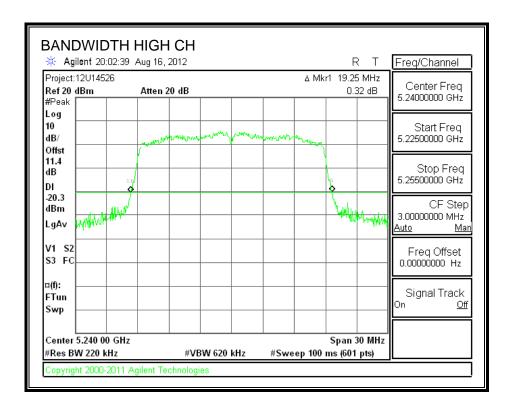
PEAK EXCURSION

8.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

8.2.1. 26 dB BANDWIDTH


LIMITS

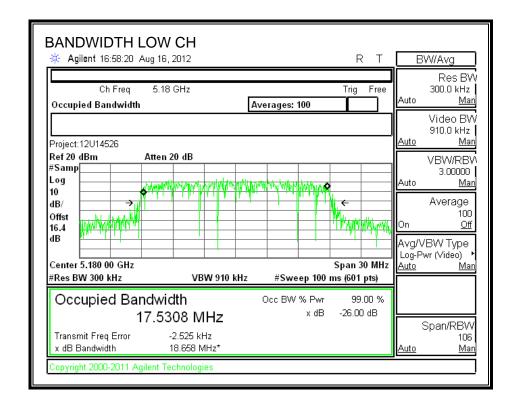

None; for reporting purposes only.

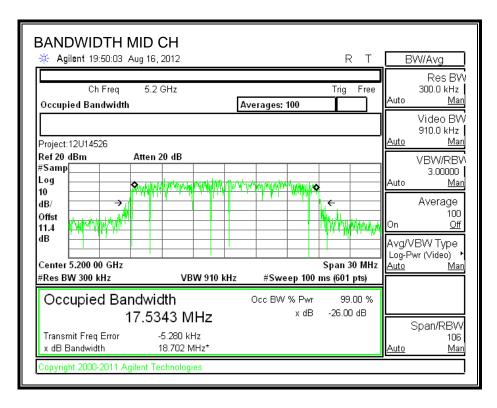

RESULTS

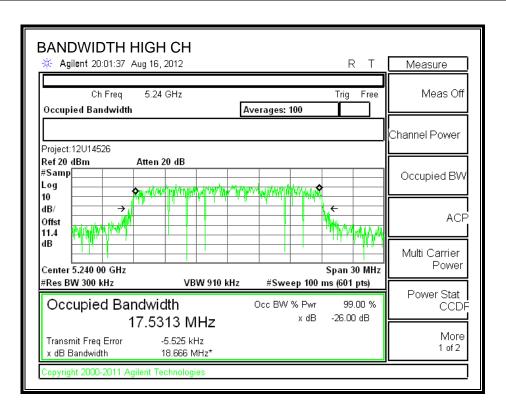
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	19.20
Mid	5200	19.20
High	5240	19.25

26 dB BANDWIDTH

8.2.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.5308
Mid	5200	17.5343
High	5240	17.5313

99% BANDWIDTH

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	13.94
Mid	5200	13.94
High	5240	13.87

8.2.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Limits FCC 15.407

Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	19.20	16.83	4.70	16.83	4.00
Mid	5200	17	19.20	16.83	4.70	16.83	4.00
High	5240	17	19.25	16.84	4.70	16.84	4.00

Output Power Results

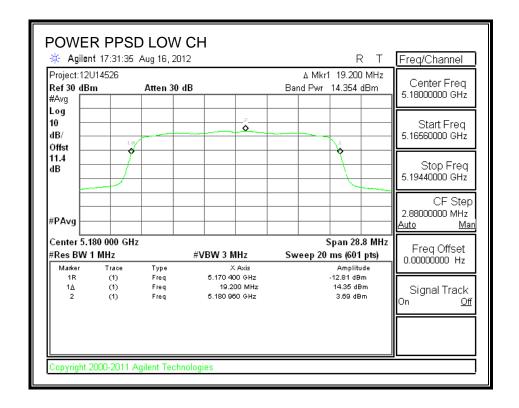
Channel	Frequency	Meas	Corr'd	Power	Power
		Power Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	14.354	14.354	16.83	-2.479
Mid	5200	14.155	14.155	16.83	-2.678
High	5240	14.298	14.298	16.84	-2.546

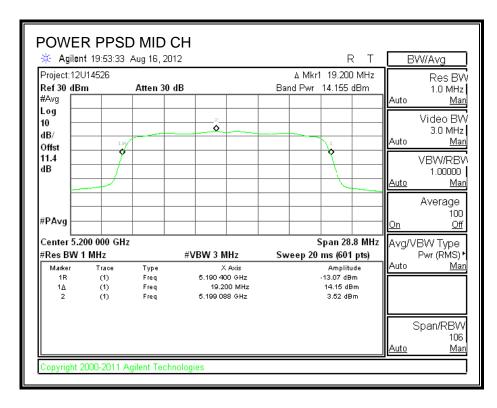
PPSD Results

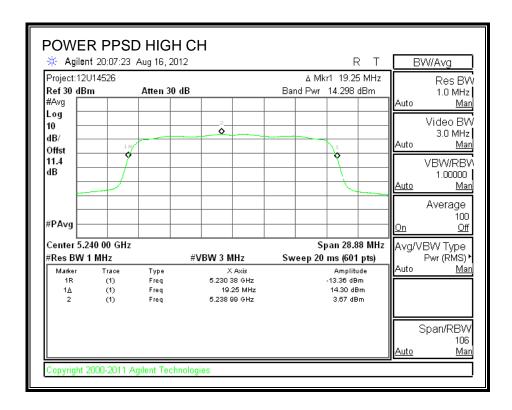
Channel	Frequency	Meas	Corr'd	PPSD	PPSD				
		PPSD	PPSD	Limit	Margin				
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)				
Low	5180	3.69	3.69	4.00	-0.31				
Mid	5200	3.52	3.52	4.00	-0.48				
High	5240	3.67	3.67	4.00	-0.33				

IC RSS-210 A9.2 (1)

Channel	Frequency	Fixed	В	10 + 10 Log B	Directional	Power	PPSD
		EIRP Limit	99%	EIRP Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	23	17.5308	22.4380	4.70	22.4380	10.0000
Mid	5200	23	17.5343	22.4389	4.70	22.4389	10.0000
High	5240	23	17.5313	22.4381	4.70	22.4381	10.0000


Output Power Results

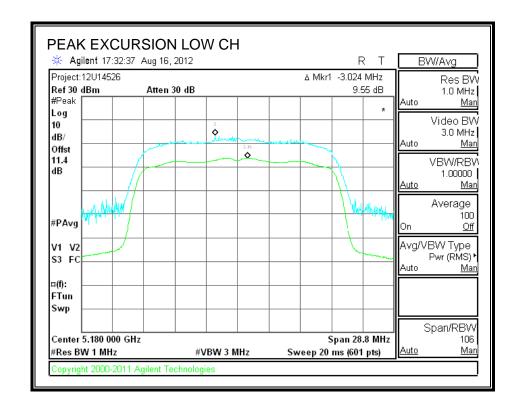

Channel	Frequency	Meas	Corr'd	Directional	Power	Power
		Power	Power	Gain	EIRP Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)
Low	5180	14.354	14.354	4.70	22.4380	-3.3840
Mid	5200	14.155	14.155	4.70	22.4389	-3.5839
High	5240	14.298	14.298	4.70	22.4381	-3.4401

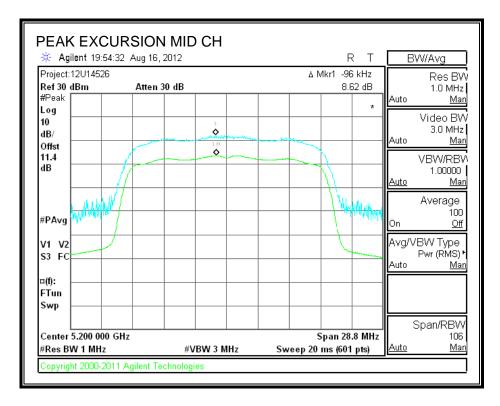

PPSD Results

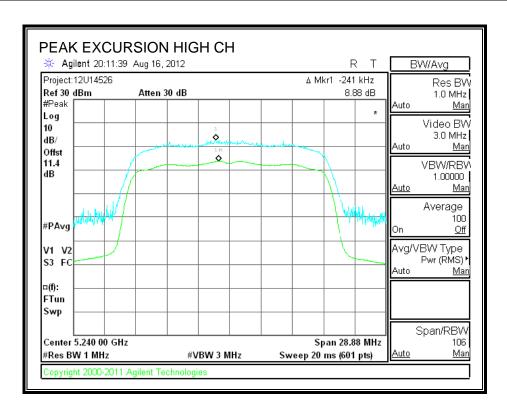
	• • • • • • • • • • • • • • • • • • • •								
Channel	Frequency	Meas	Corr'd	Directional	PPSD	PPSD			
		PPSD	PPSD	Gain	EIRP Limit	Margin			
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)			
Low	5180	3.69	3.69	4.70	10.0000	-1.6100			
Mid	5200	3.52	3.52	4.70	10.0000	-1.7800			
High	5240	3.67	3.67	4.70	10.0000	-1.6300			

OUTPUT POWER AND PPSD

8.2.5. PEAK EXCURSION


LIMITS

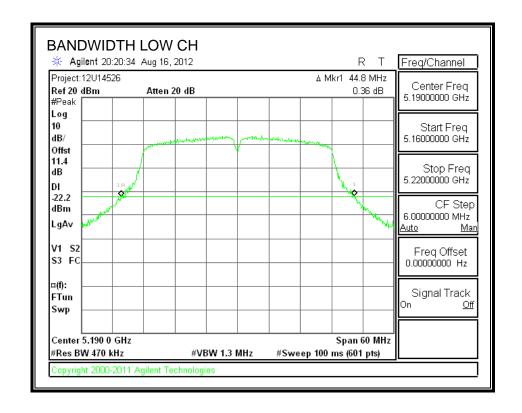

FCC §15.407 (a) (6)

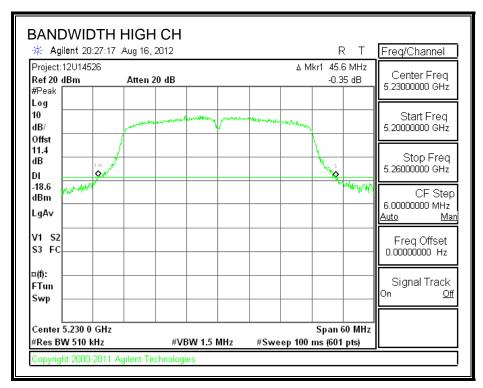

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.55	13	-3.45
Mid	5200	8.62	13	-4.38
High	5240	8.88	13	-4.12

PEAK EXCURSION

8.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

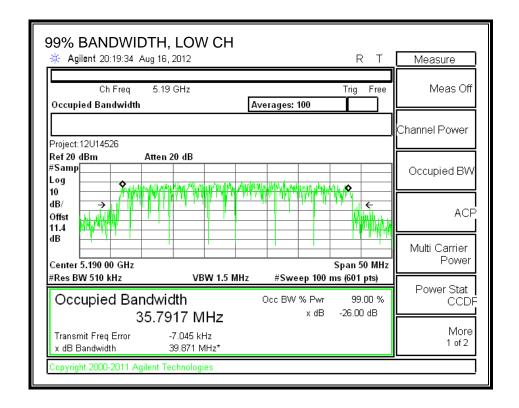

8.3.1. 26 dB BANDWIDTH

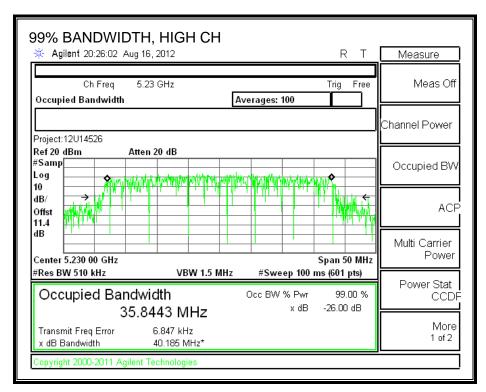

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5190	44.8
High	5230	45.6

26 dB BANDWIDTH


8.3.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5190	35.7917
High	5230	35.8443

99% BANDWIDTH

8.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5190	11.95
High	5230	15.45

8.3.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Limits

Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5190	17	44.8	20.51	4.70	17.00	4.00
High	5230	17	45.6	20.59	4.70	17.00	4.00

Output Power Results

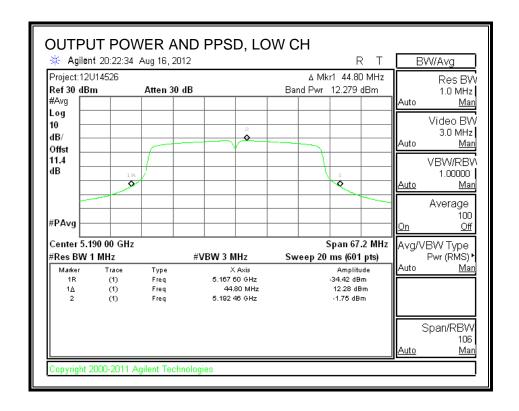
Channel	Frequency		Corr'd	Power	Power
	(MHz)	Power (dBm)	Power (dBm)	Limit (dBm)	Margin (dB)
Low	5190	12.279	12.279	17.00	-4.721
High	5230	15.780	15.780	17.00	-1.220

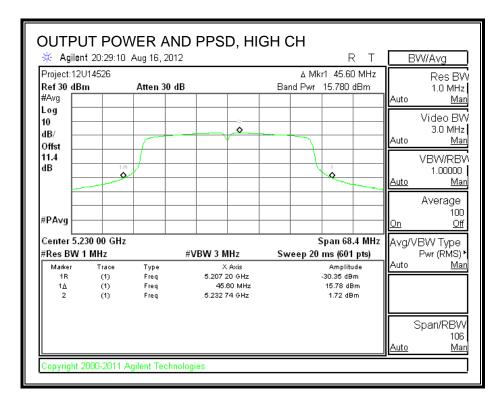
PPSD Results

Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-1.75	-1.75	4.00	-5.75
High	5230	1.72	1.72	4.00	-2.28

IC RSS-210 A9.2 (1)

Channel	Frequency	Fixed	В	10 + 10 Log B	Directional	Power	PPSD
		EIRP Limit	99%	EIRP Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5190	23	35.7917	25.5378	4.70	23.0000	10.0000
High	5230	23	35.8443	25.5442	4.70	23.0000	10.0000


Output Power Results

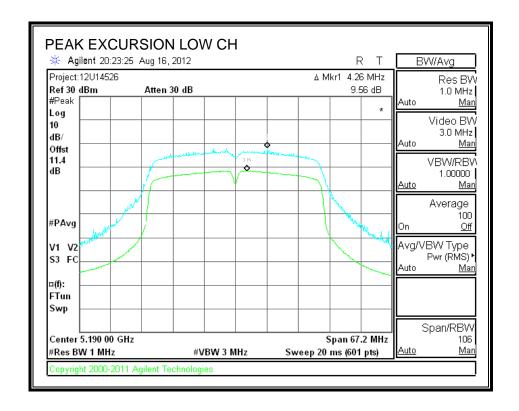

Channel	Frequency	Meas	Corr'd	Directional	Power	Power
		Power	Power	Gain	EIRP Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)
Low	5190	12.280	12.280	4.70	23.0000	-6.0200
High	5230	15.780	15.780	4.70	23.0000	-2.5200

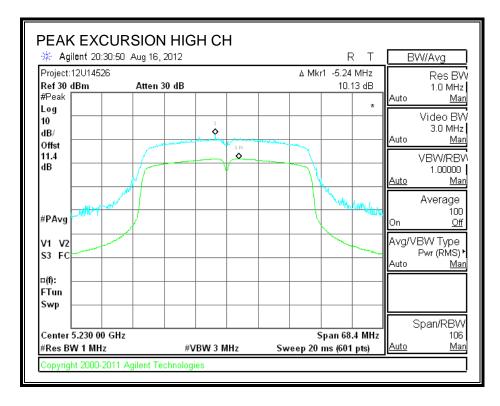
PPSD Results

Channel	Frequency	Meas	Corr'd	Directional	PPSD	PPSD
		PPSD	PPSD	Gain	EIRP Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(dB)
Low	5190	-1.75	-1.75	4.70	10.0000	-7.0500
High	5230	1.72	1.72	4.70	10.0000	-3.5800

OUTPUT POWER AND PPSD

8.3.5. PEAK EXCURSION


LIMITS

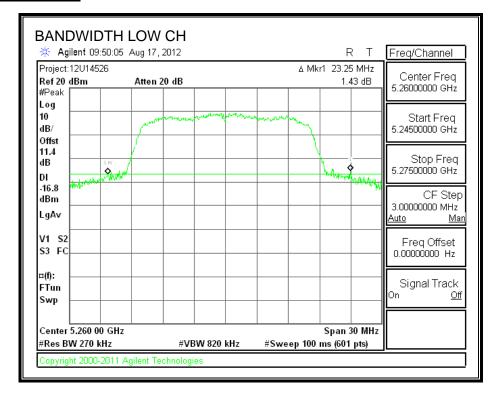

FCC §15.407 (a) (6)

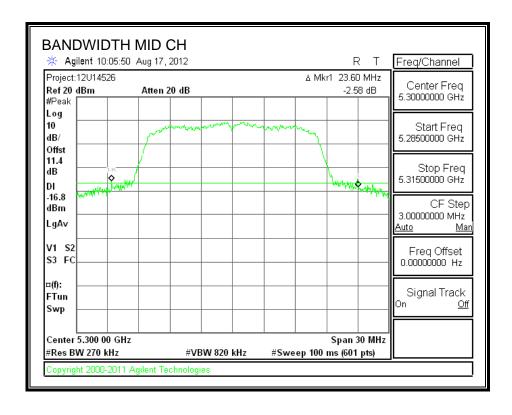
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

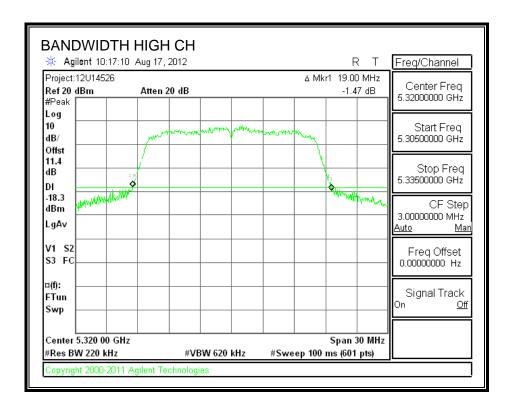
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.56	13	-3.44
High	5230	10.13	13	-2.87

PEAK EXCURSION

8.4. 802.11a MODE IN THE 5.3 GHz BAND

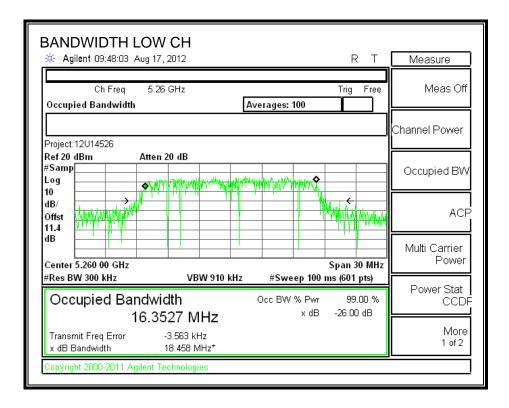

8.4.1. 26 dB BANDWIDTH

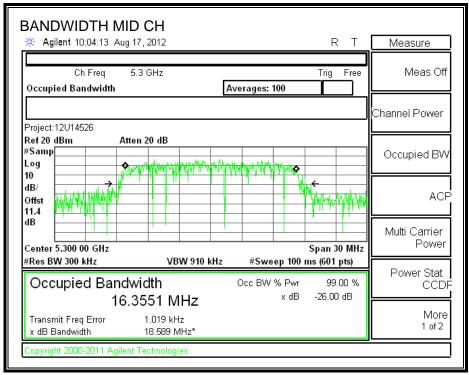

LIMITS


None; for reporting purposes only.

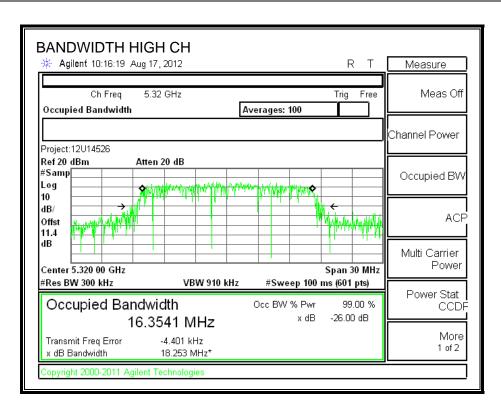
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	23.25
Mid	5300	23.60
High	5320	19.00

26 dB BANDWIDTH


8.4.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.


Frequency	99% Bandwidth
(MHz)	(MHz)
5260	16.3527
5300	16.3551
5320	16.3541

99% BANDWIDTH

REPORT NO: 12U14526-2A FCC ID: BCGA1432

DATE: OCTOBER 3, 2012

IC: 579C-A1432

8.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5260	16.90
Mid	5300	16.87
High	5320	15.97

8.4.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

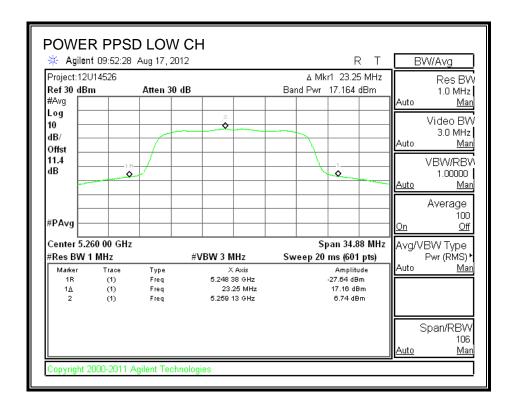
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

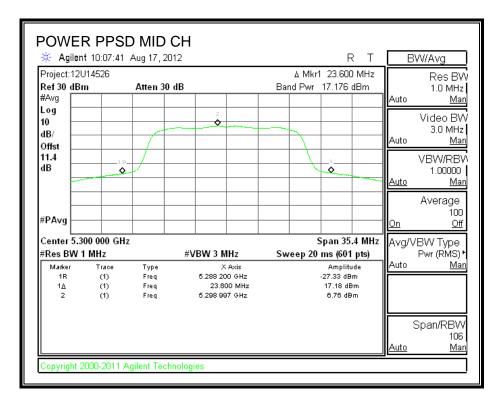
Page 66 of 229

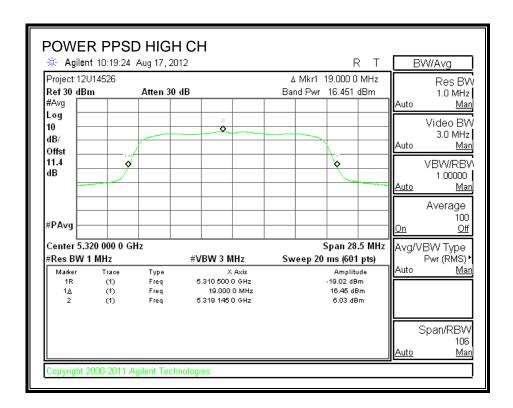
RESULTS

Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5260	24	16.3527	23.14	5.08	23.14	11.00
Mid	5300	24	16.3551	23.14	5.08	23.14	11.00
High	5320	24	16.3541	23.14	5.08	23.14	11.00


Output Power Results

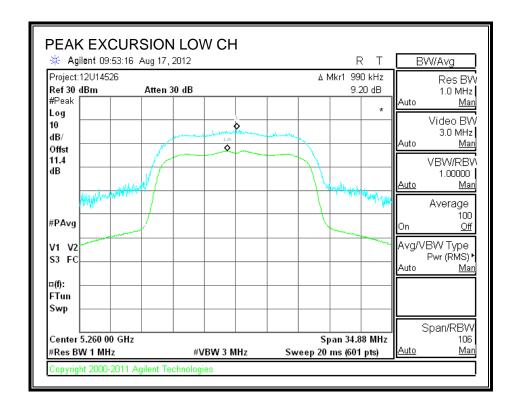

Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.164	17.164	23.14	-5.972
Mid	5300	17.176	17.176	23.14	-5.961
High	5320	16.451	16.451	23.14	-6.685

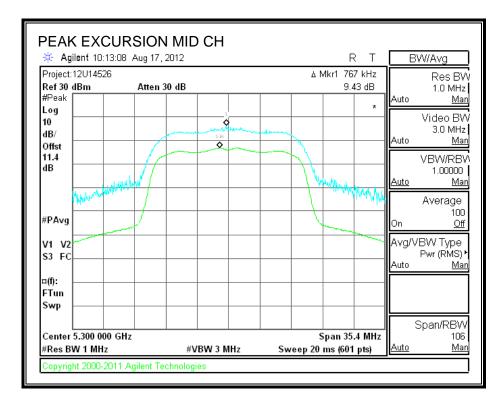

PPSD Results

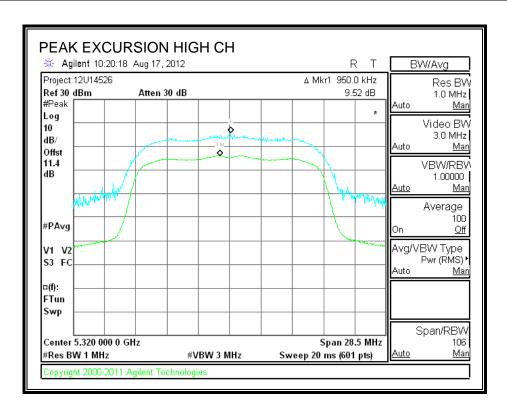
Channel	Frequency	Meas	Corr'd	PPSD	PPSD			
		PPSD	PPSD	Limit	Margin			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)			
Low	5260	6.74	6.74	11.00	-4.26			
Mid	5300	6.76	6.76	11.00	-4.24			
High	5320	6.03	6.03	11.00	-4.97			

OUTPUT POWER AND PPSD

8.4.5. PEAK EXCURSION


LIMITS

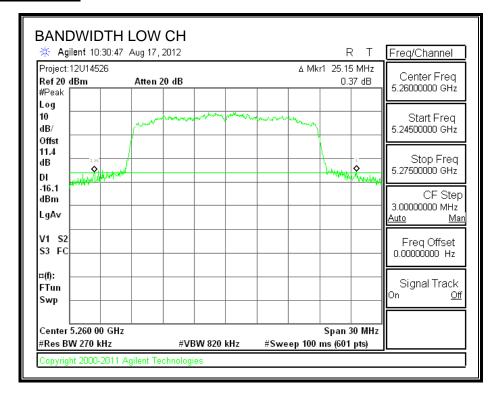

FCC §15.407 (a) (6)

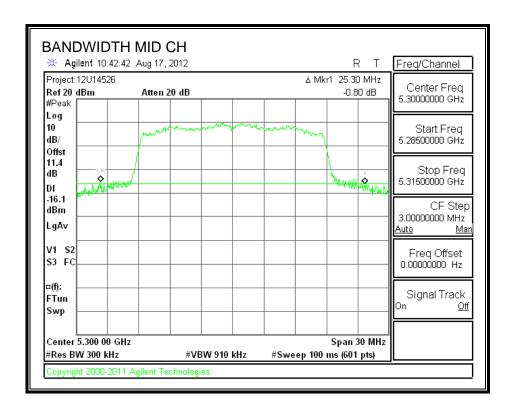

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

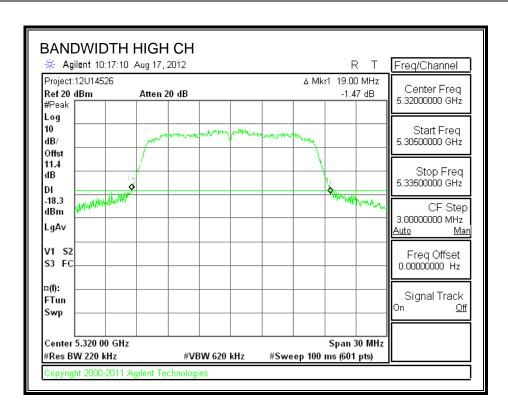
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	9.20	13	-3.80
Mid	5300	9.43	13	-3.57
High	5320	9.52	13	-3.48

PEAK EXCURSION

8.5. 802.11n HT20 MODE IN THE 5.3 GHz BAND

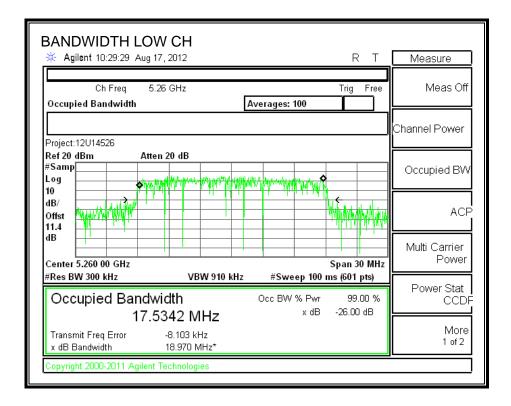

8.5.1. 26 dB BANDWIDTH

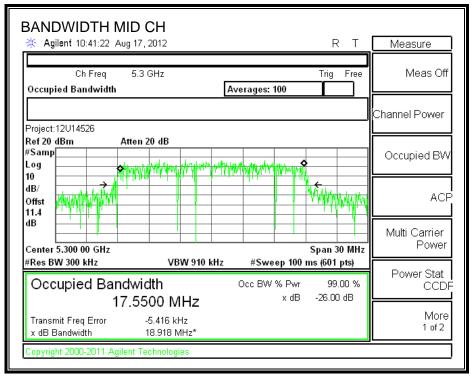

LIMITS


None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5260	25.15
Mid	5300	25.30
High	5320	19.60

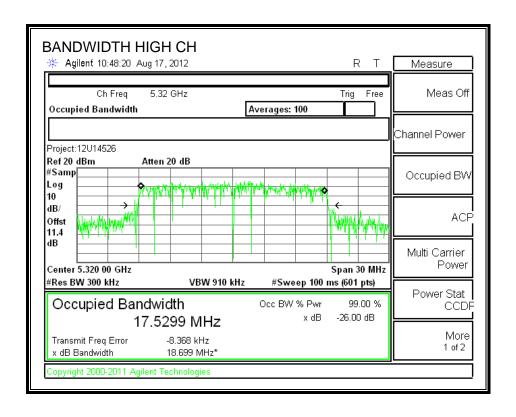
26 dB BANDWIDTH


8.5.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5260	17.5342
Mid	5300	17.5500
High	5320	17.5299


99% BANDWIDTH

REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 FCC ID: BCGA1432

IC: 579C-A1432

8.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5260	16.91
Mid	5300	16.90
High	5320	15.91

8.5.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

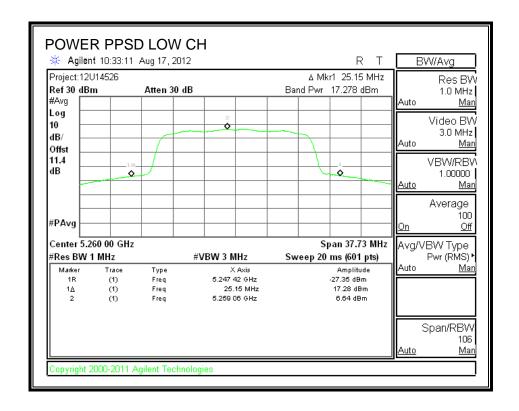
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

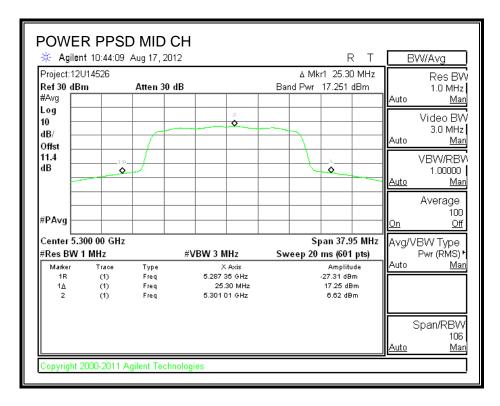
Page 80 of 229

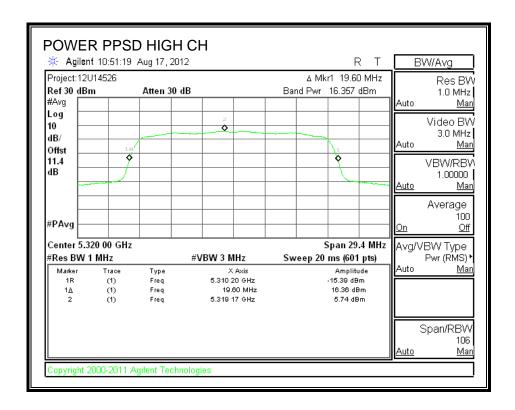
RESULTS

Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5260	24	17.5342	23.44	5.08	23.44	11.00
Mid	5300	24	17.5500	23.44	5.08	23.44	11.00
High	5320	24	17.5299	23.44	5.08	23.44	11.00


Output Power Results

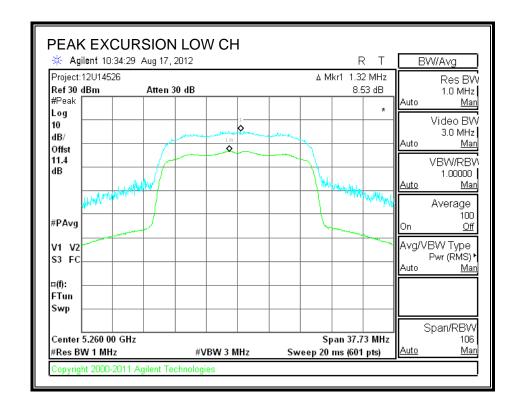

Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.278	17.278	23.44	-6.161
Mid	5300	17.251	17.251	23.44	-6.192
High	5320	16.357	16.357	23.44	-7.081

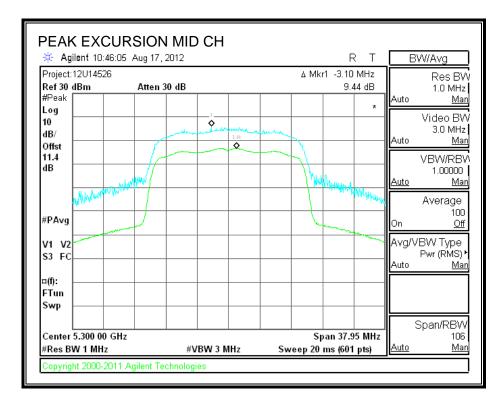

PPSD Results

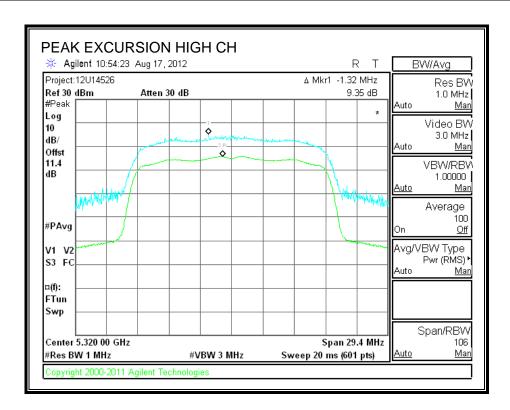
Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	6.64	6.64	11.00	-4.36
Mid	5300	6.62	6.62	11.00	-4.38
High	5320	5.74	5.74	11.00	-5.26

OUTPUT POWER AND PPSD

8.5.5. PEAK EXCURSION


LIMITS

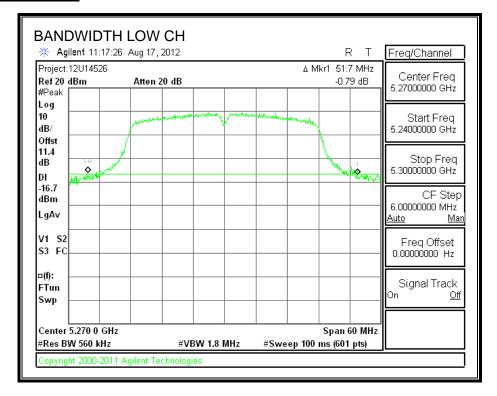

FCC §15.407 (a) (6)

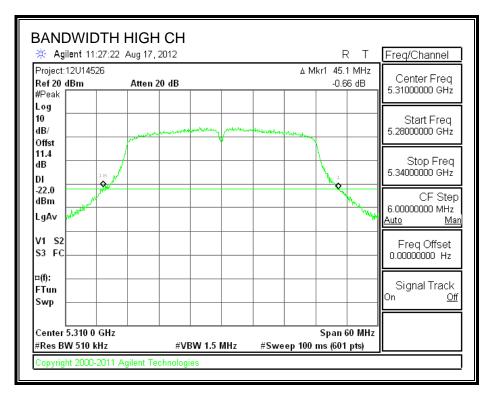

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5260	8.53	13	-4.47
Mid	5300	9.44	13	-3.56
High	5320	9.35	13	-3.65

PEAK EXCURSION

8.6. 802.11n HT40 MODE IN THE 5.3 GHz BAND

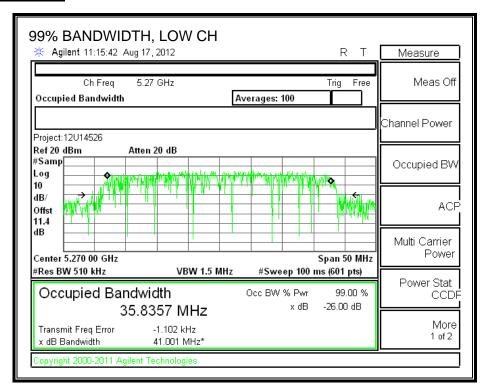

8.6.1. 26 dB BANDWIDTH

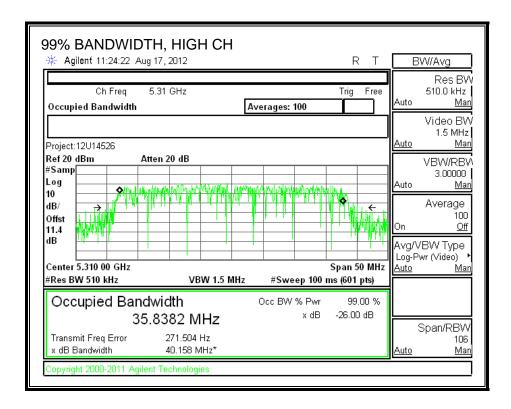

LIMITS

None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5270	51.70
High	5310	45.10

26 dB BANDWIDTH


8.6.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low 5270		35.8357	
High	5310	35.8382	

99% BANDWIDTH

8.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5270	17.0
High	5310	11.9

8.6.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

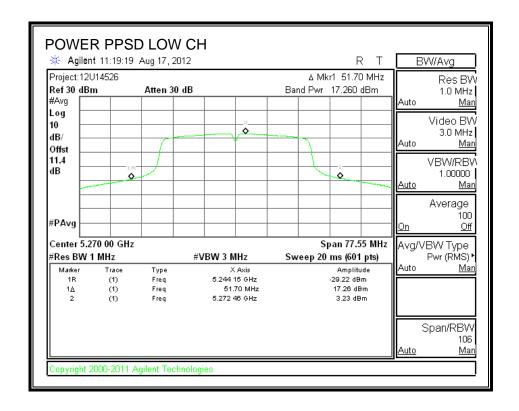
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

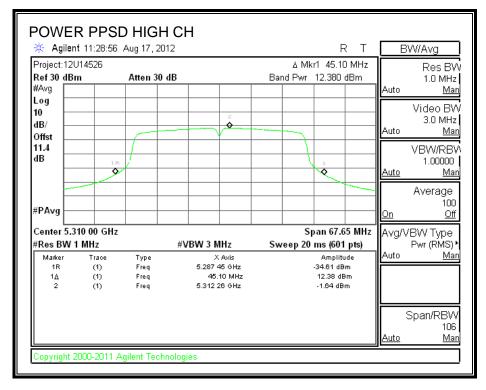
Page 92 of 229

RESULTS

Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5270	24	35.8357	26.54	5.08	24.00	11.00
High	5310	24	35.8380	26.54	5.08	24.00	11.00


Output Power Results

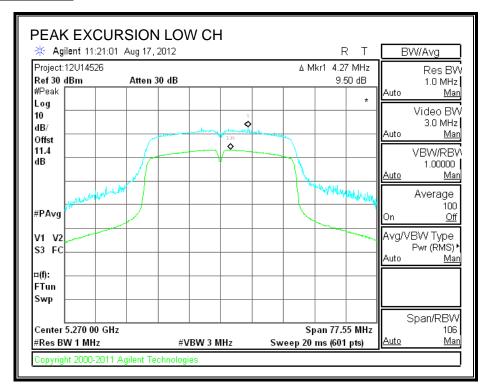

Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	17.260	17.260	24.00	-6.740
High	5310	12.380	12.380	24.00	-11.620

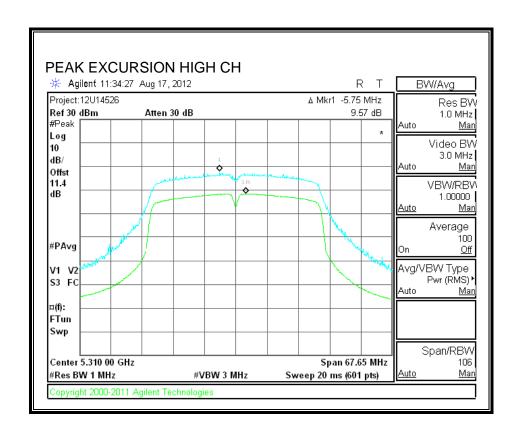
PPSD Results

Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	3.29	3.29	11.00	-7.71
High	5310	-1.64	-1.64	11.00	-12.64

OUTPUT POWER AND PPSD

8.6.5. PEAK EXCURSION


LIMITS

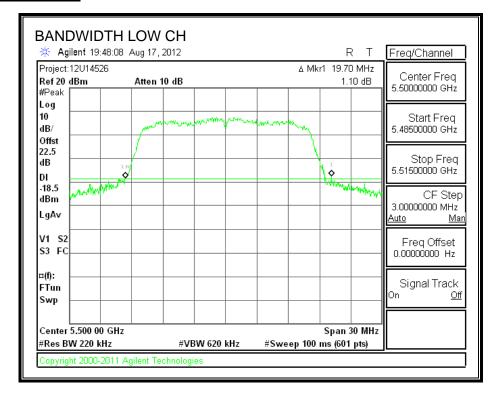

FCC §15.407 (a) (6)

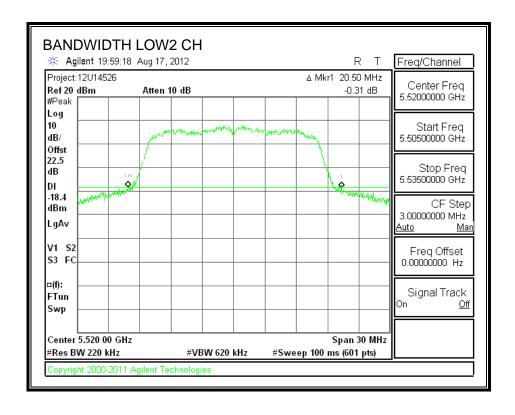
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

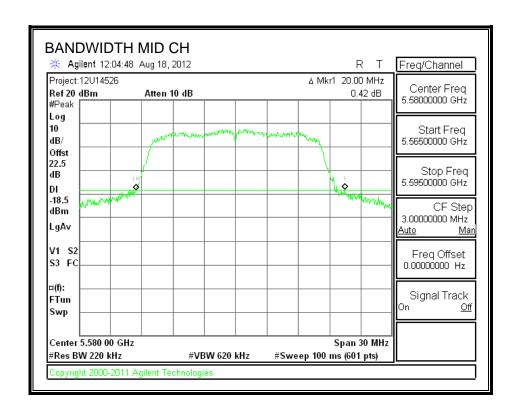
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5270	9.50	13	-3.50
High	5310	9.57	13	-3.43

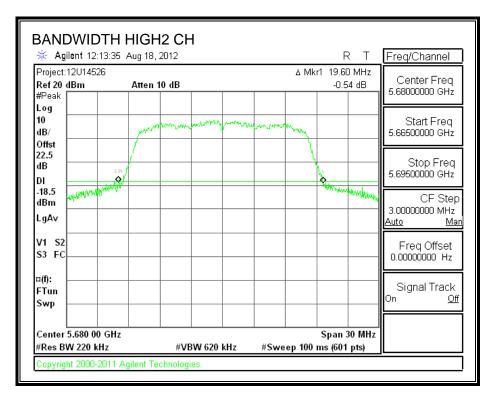
PEAK EXCURSION

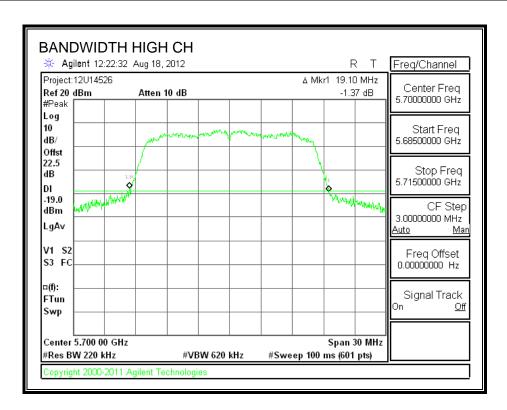
8.7. **802.11a MODE IN THE 5.6 GHz BAND**

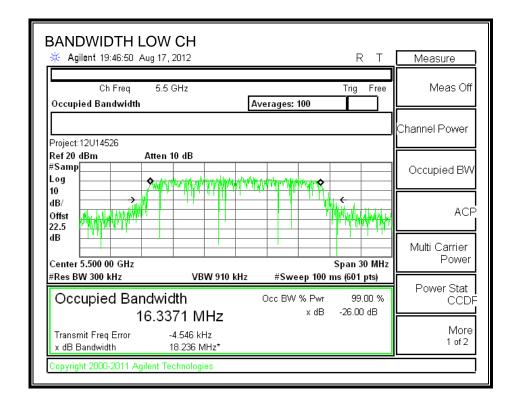

8.7.1. 26 dB BANDWIDTH

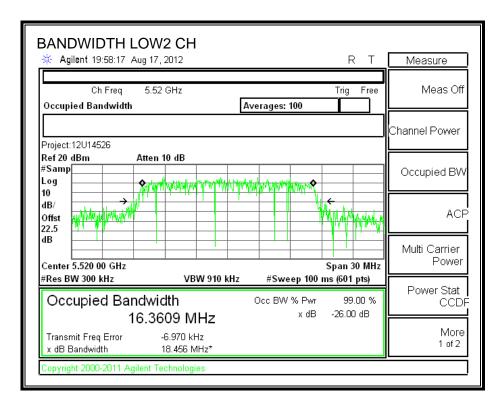

LIMITS

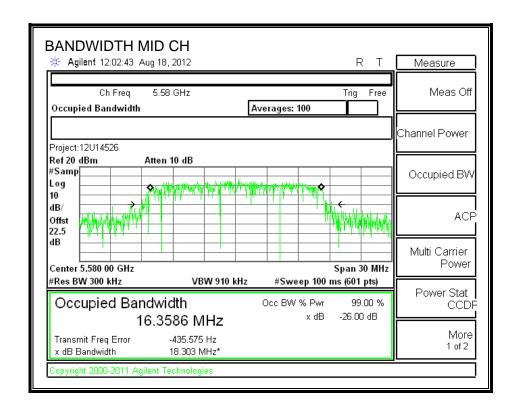

None; for reporting purposes only.

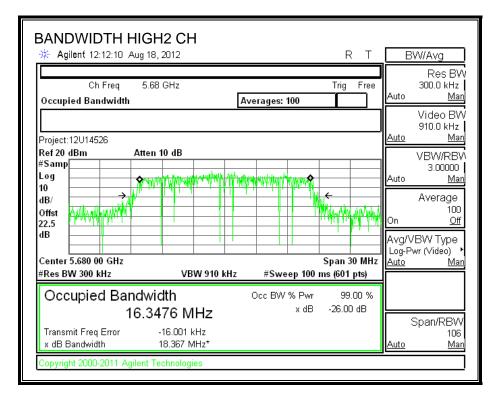

Channel	Frequency	26 dB Bandwidth	
	(MHz)	(MHz)	
Low	5500	19.70	
Low2	5520	20.50	
Mid	5580	20.00	
High2	5680	19.60	
High	5700	19.10	


26 dB BANDWIDTH

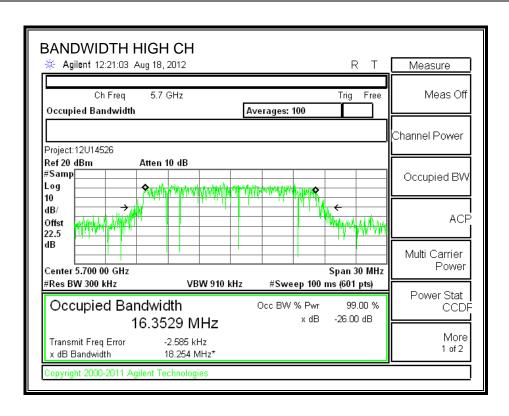

8.7.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	5500	16.3371	
Low2	5520	16.3609	
Mid	5580	16.3586	
High2	5680	16.3476	
High	5700	16.3529	

99% BANDWIDTH



REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 FCC ID: BCGA1432

IC: 579C-A1432

8.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	15.49
Low2	5520	15.97
Mid	5580	15.94
High2	5680	15.97
High	5700	15.50

8.7.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

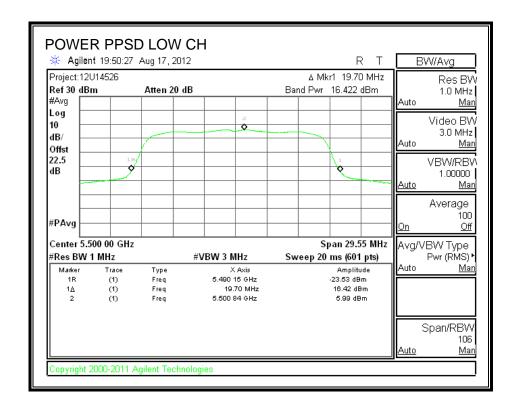
DIRECTIONAL ANTENNA GAIN

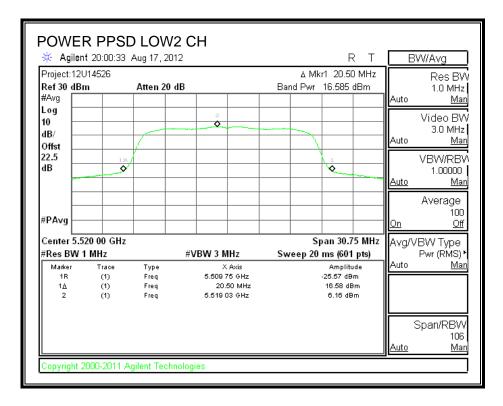
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

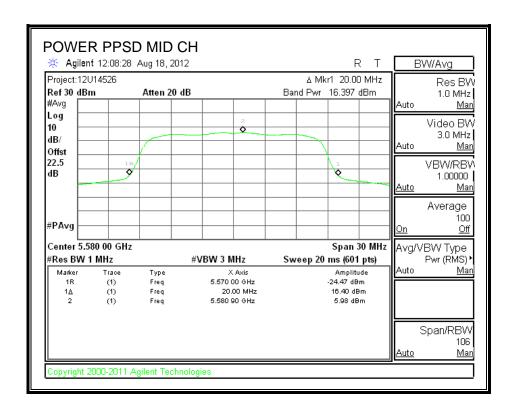
RESULTS

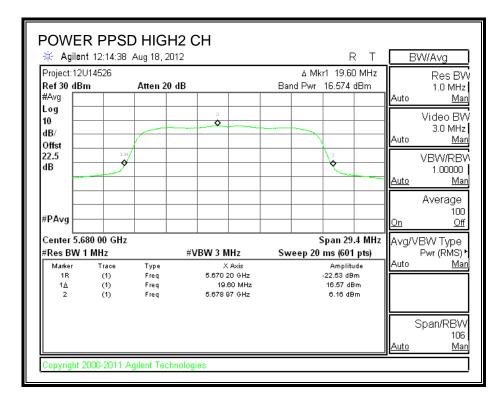
Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5500	24	16.3371	23.13	5.42	23.13	11.00
Low2	5520	24	16.3609	23.14	5.42	23.14	11.00
Mid	5580	24	16.3586	23.14	5.42	23.14	11.00
High2	5680	24	16.3476	23.13	5.42	23.13	11.00
High	5700	24	16.3529	23.14	5.42	23.14	11.00

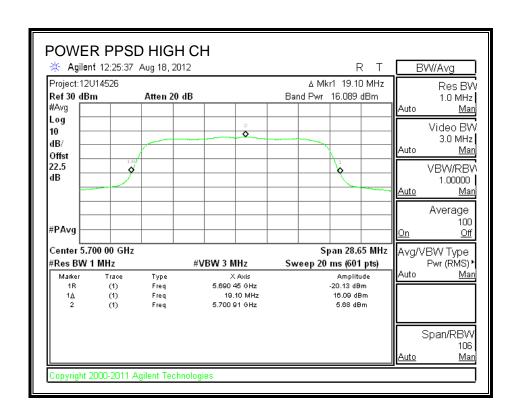

Output Power Results


Calpat : Circ. Rocard						
Channel	Frequency	Meas	Corr'd	Power	Power	
		Power	Power	Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5500	16.422	16.422	23.13	-6.710	
Low2	5520	16.585	16.585	23.14	-6.552	
Mid	5580	16.397	16.397	23.14	-6.740	
High2	5680	16.574	16.574	23.13	-6.561	
High	5700	16.089	16.089	23.14	-7.047	


PPSD Results


Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	5.99	5.99	11.00	-5.01
Low2	5520	6.16	6.16	11.00	-4.84
Mid	5580	5.98	5.98	11.00	-5.02
High2	5680	6.16	6.16	11.00	-4.84
High	5700	5.68	5.68	11.00	-5.32

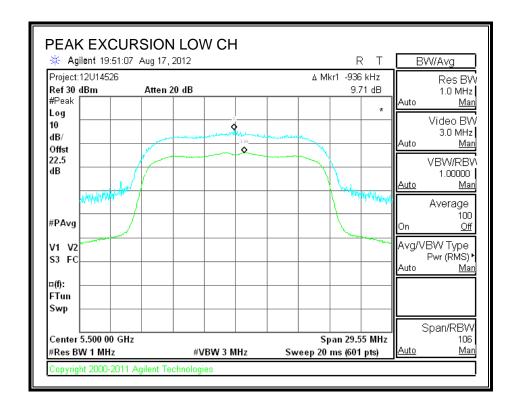
OUTPUT POWER AND PPSD

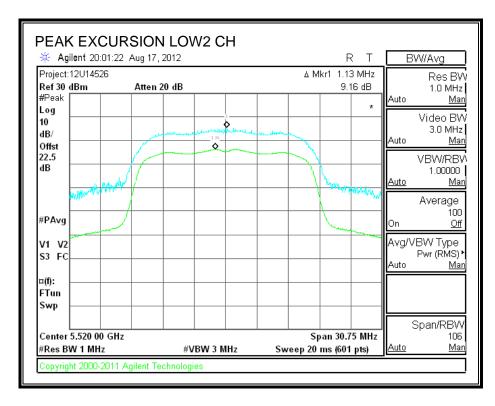


REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 FCC ID: BCGA1432

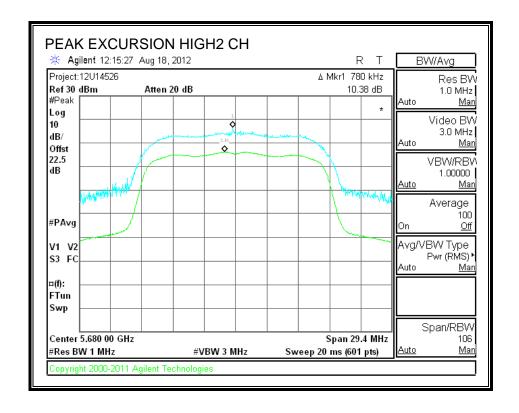
IC: 579C-A1432

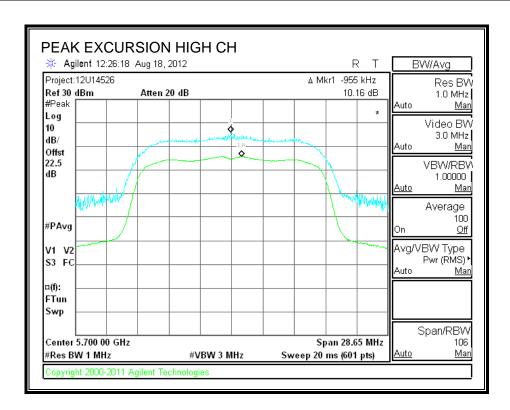
8.7.5. PEAK EXCURSION


LIMITS

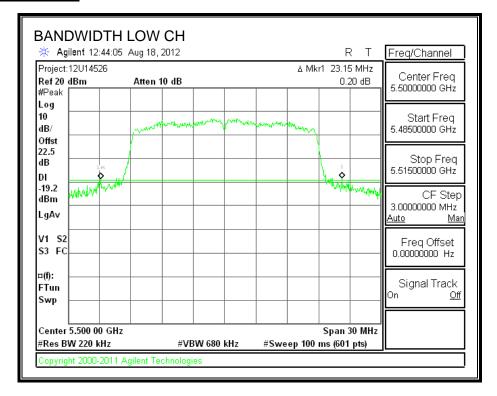

FCC §15.407 (a) (6)

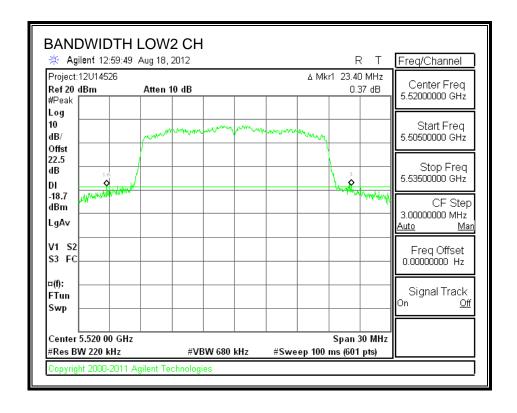
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

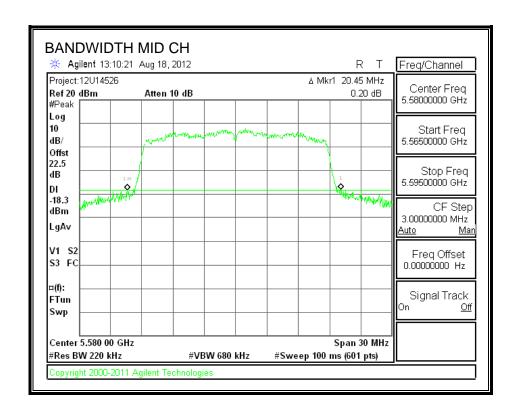

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.71	13	-3.29
Low2	5520	9.16	13	-3.84
Mid	5580	9.30	13	-3.70
High2	5680	10.38	13	-2.62
High	5700	10.16	13	-2.84

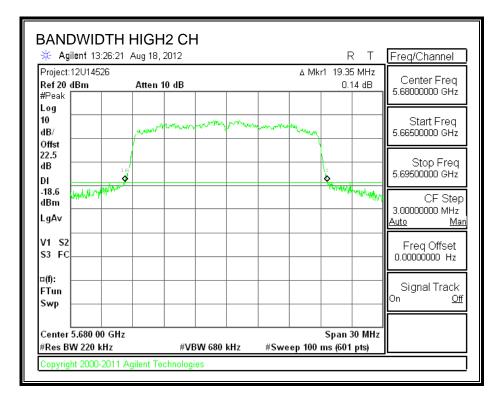

PEAK EXCURSION

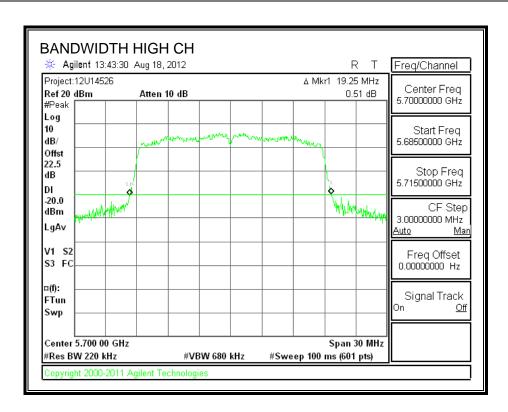
8.8. 802.11n HT20 MODE IN THE 5.6 GHz BAND

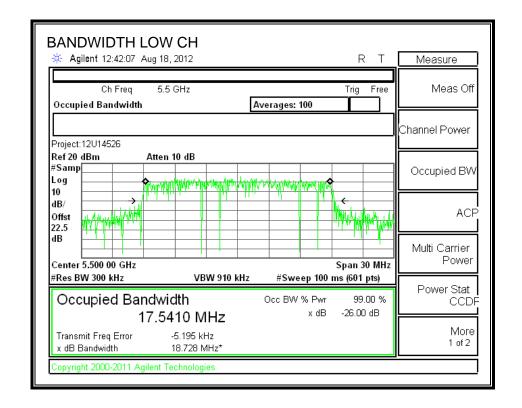

8.8.1. 26 dB BANDWIDTH

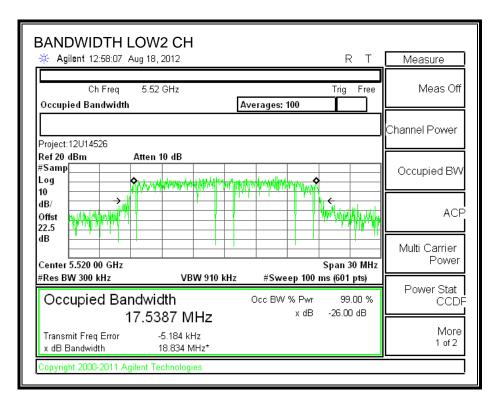

LIMITS

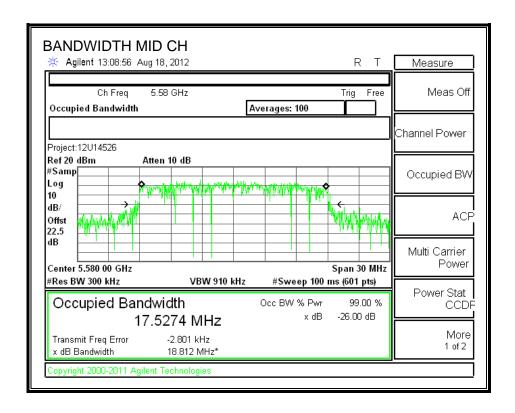

None; for reporting purposes only.

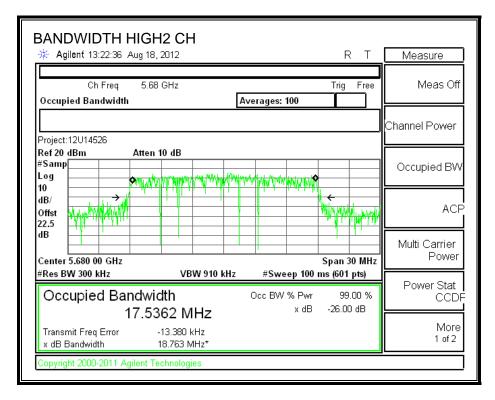

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5500	23.15
Low2	5520	23.40
Mid	5580	20.45
High2	5680	19.35
High	5700	19.25


26 dB BANDWIDTH

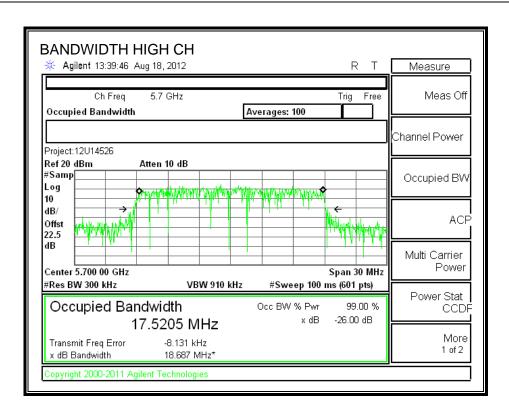

8.8.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5500	17.5410
Low2	5520	17.5387
Mid	5580	17.5274
High2	5680	17.5362
High	5700	17.5205

99% BANDWIDTH



REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 FCC ID: BCGA1432

IC: 579C-A1432

8.8.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5500	15.48
Low2	5520	15.95
Mid	5580	15.93
High2	5680	15.97
High	5700	14.46

8.8.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

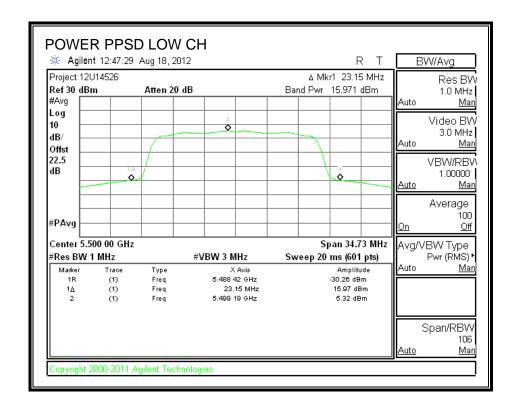
DIRECTIONAL ANTENNA GAIN

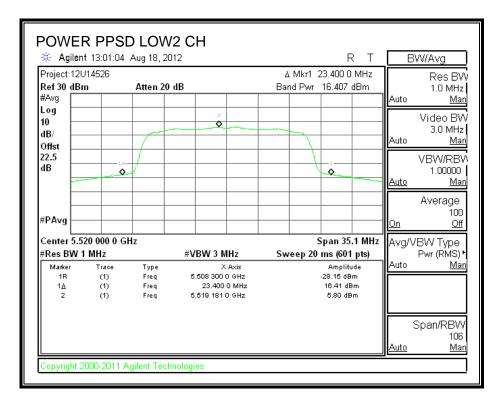
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

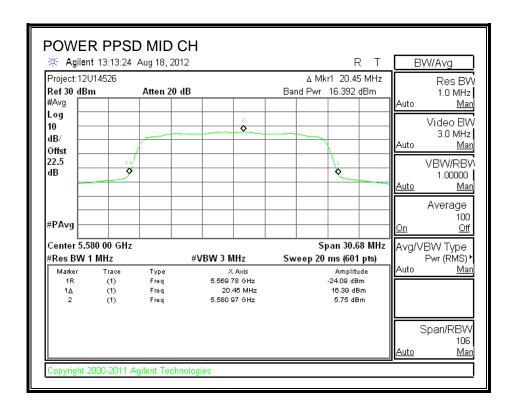
RESULTS

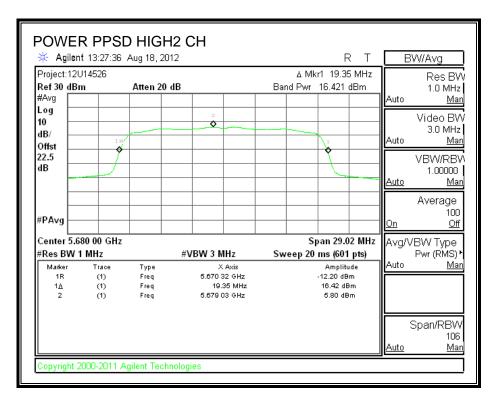
Limits

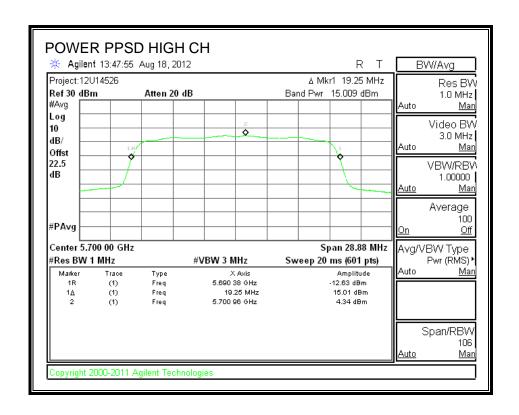
Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5500	24	17.5410	23.44	5.42	23.44	11.00
Low2	5520	24	17.5387	23.44	5.42	23.44	11.00
Mid	5580	24	17.5274	23.44	5.42	23.44	11.00
High2	5680	24	17.5362	23.44	5.42	23.44	11.00
High	5700	24	17.5205	23.44	5.42	23.44	11.00


Output Power Results

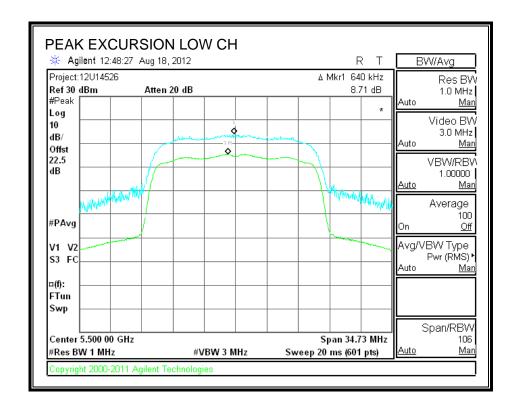

output: ono. Rosano						
Channel	Frequency	Meas	Corr'd	Power	Power	
		Power	Power	Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5500	15.971	15.971	23.44	-7.470	
Low2	5520	16.407	16.407	23.44	-7.030	
Mid	5580	16.392	16.392	23.44	-7.045	
High2	5680	16.421	16.421	23.44	-7.018	
High	5700	15.009	15.009	23.44	-8.426	

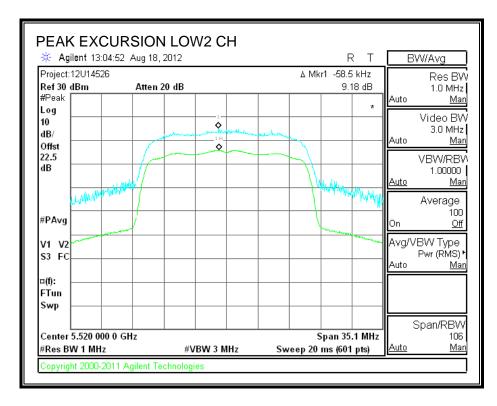

PPSD Results

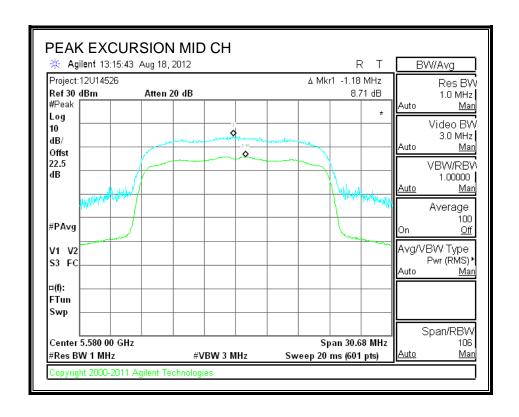

Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	5.32	5.32	11.00	-5.68
Low2	5520	5.80	5.80	11.00	-5.20
Mid	5580	5.75	5.75	11.00	-5.25
High2	5680	5.80	5.80	11.00	-5.20
High	5700	4.34	4.34	11.00	-6.66

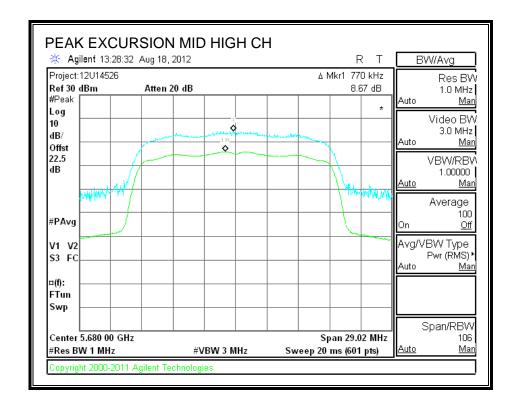

OUTPUT POWER AND PPSD

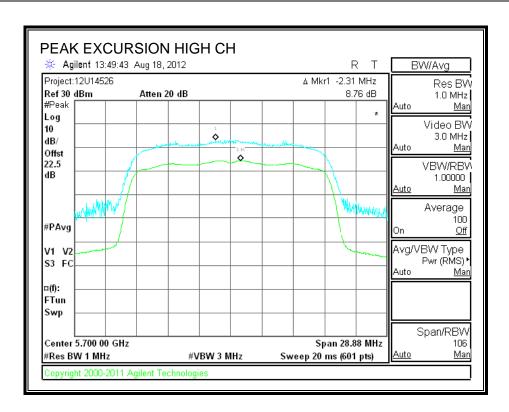
8.8.5. PEAK EXCURSION


LIMITS

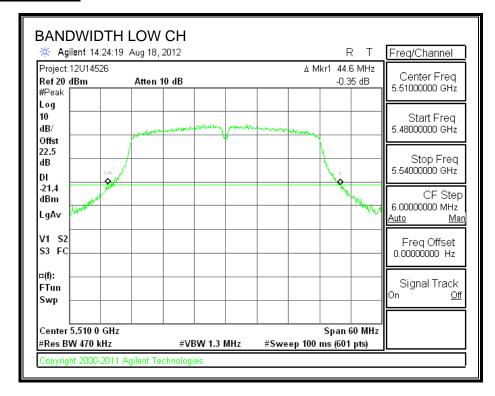

FCC §15.407 (a) (6)

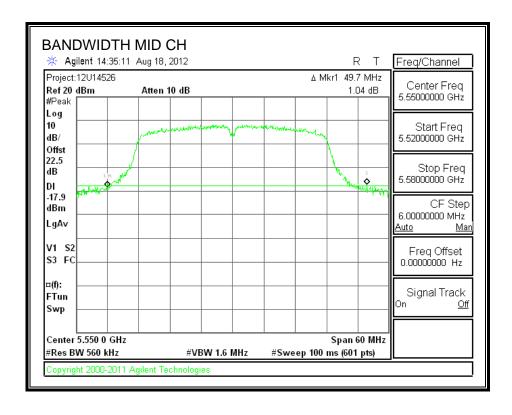

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

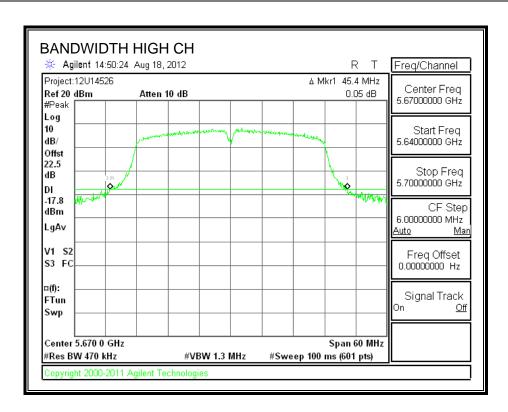

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	8.71	13	-4.29
Low2	5520	9.18	13	-3.82
Mid	5580	8.71	13	-4.29
High2	5680	8.67	13	-4.33
High	5700	8.76	13	-4.24


PEAK EXCURSION

8.9. 802.11n HT40 MODE IN THE 5.6 GHz BAND

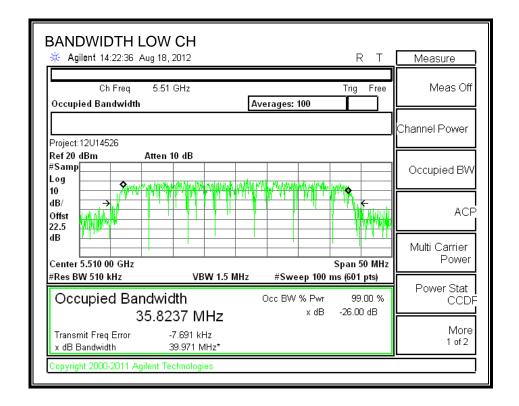

8.9.1. 26 dB BANDWIDTH

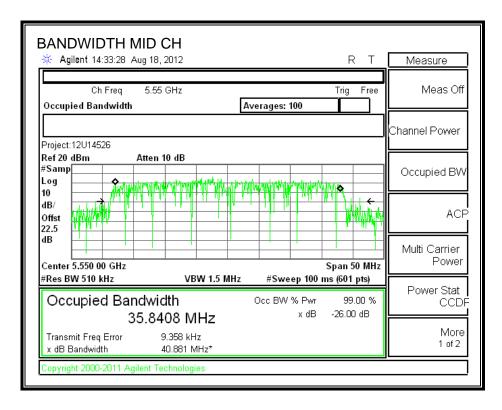

LIMITS


None; for reporting purposes only.

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5510	44.60
Mid	5550	49.70
High	5670	45.40

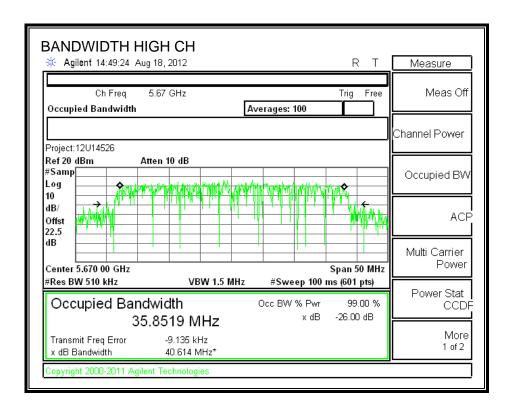
26 dB BANDWIDTH


8.9.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5510	35.8237
Mid	5550	35.8408
High	5670	35.8519


99% BANDWIDTH

REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 FCC ID: BCGA1432

IC: 579C-A1432

8.9.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5510	12.47
Mid	5550	15.99
High	5670	15.96

8.9.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

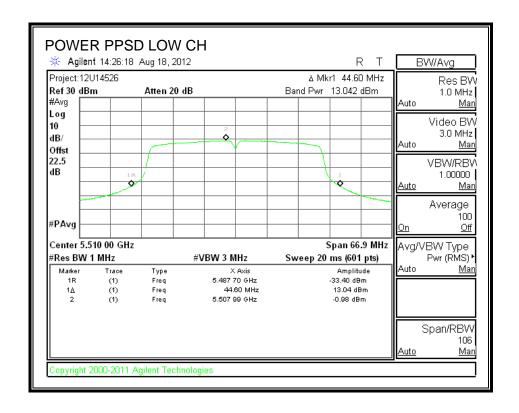
DIRECTIONAL ANTENNA GAIN

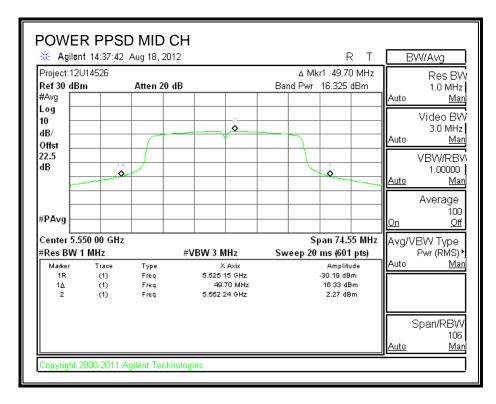
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

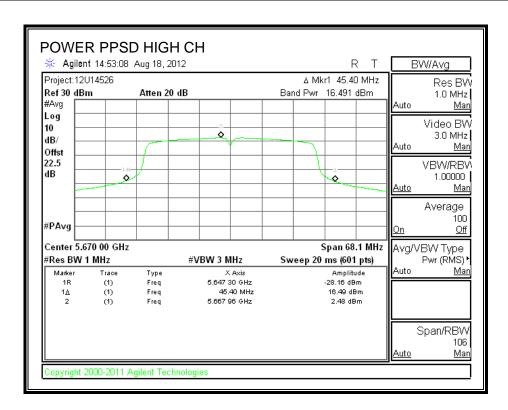
RESULTS

Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5510	24	35.8237	26.54	5.42	24.00	11.00
Mid	5550	24	35.8408	26.54	5.42	24.00	11.00
High	5670	24	35.8519	26.55	5.42	24.00	11.00


Output Power Results

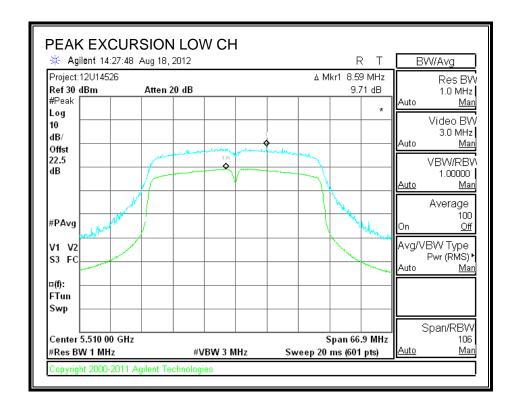

Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	13.042	13.042	24.00	-10.958
Mid	5550	16.325	16.325	24.00	-7.675
High	5670	16.491	16.491	24.00	-7.509

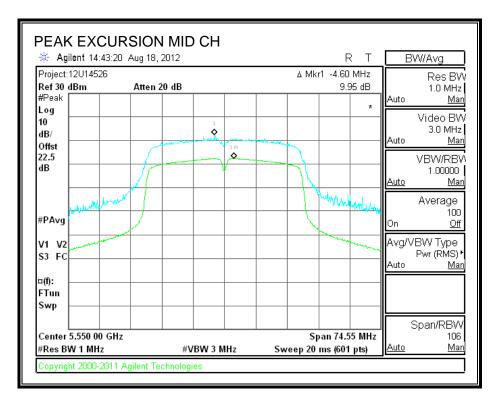

PPSD Results

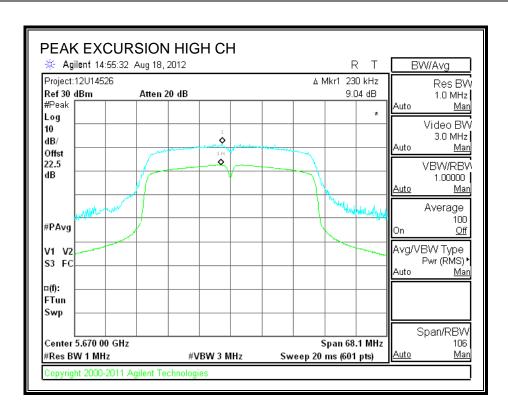
Channel	Frequency	Meas	Corr'd	PPSD	PPSD			
		PPSD	PPSD	Limit	Margin			
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)			
Low	5510	-0.98	-0.98	11.00	-11.98			
Mid	5550	2.27	2.27	11.00	-8.73			
High	5670	2.48	2.48	11.00	-8.52			

OUTPUT POWER AND PPSD

8.9.5. PEAK EXCURSION


LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.71	13	-3.29
Mid	5550	9.95	13	-3.05
High	5670	9.04	13	-3.96

PEAK EXCURSION

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

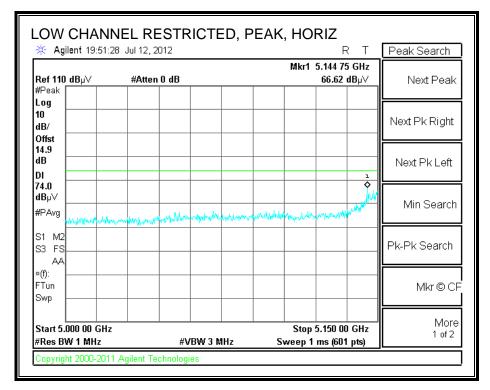
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

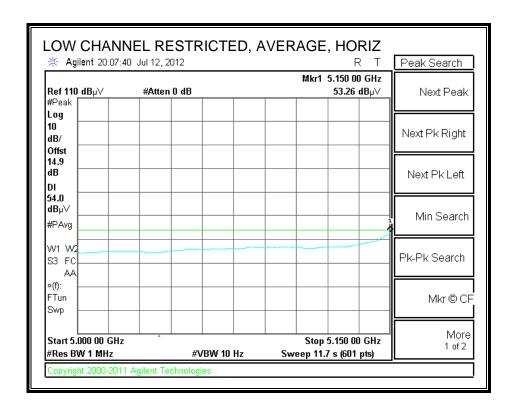
TEST PROCEDURE

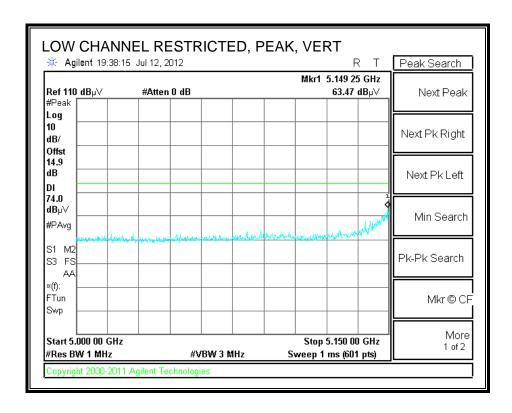
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

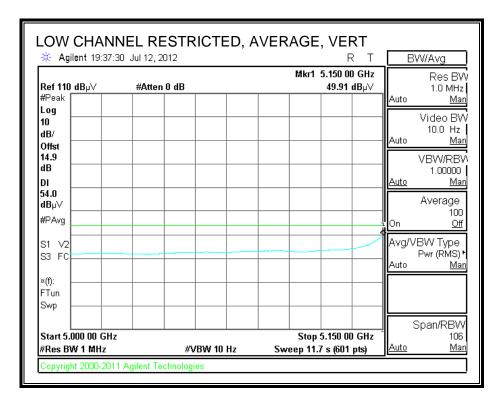
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


9.2. TRANSMITTER ABOVE 1 GHz


9.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

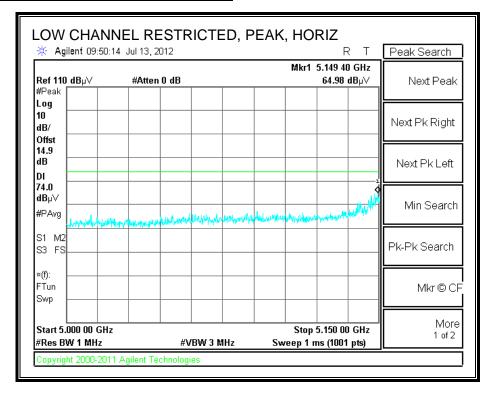
HARMONICS AND SPURIOUS EMISSIONS

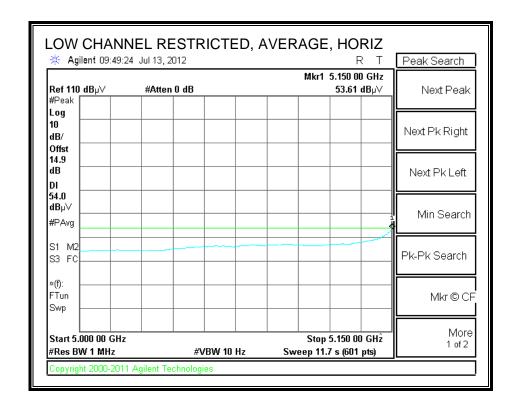
High Frequency Measurement

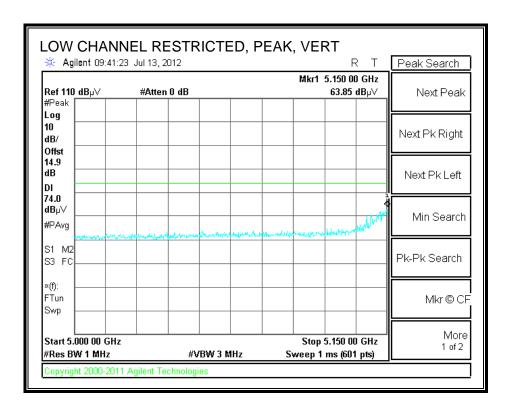
Compliance Certification Services, Fremont 5m Chamber

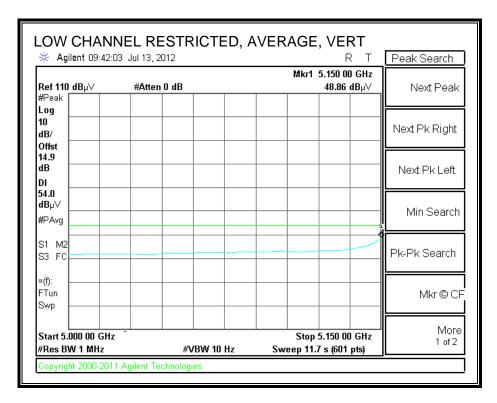
Test Engr: **Chin Pang** Date: 08/13/12 Project #: 12U14526 Company: Apple FCC 15.407 Test Target:

Mode Oper: a mode, 5.2GHz (Worst Case)


> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read
> Analyzer Reading
> Avg
> Average Field Strength @ 3 m
>
>
> AF
> Antenna Factor
> Peak
> Calculated Peak Field Strength
>
>
> CL
> Cable Loss
> HPF
> High Pass Filter
> Margin vs. Average Limit Margin vs. Peak Limit


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 5	180MH:	Z											
15.540	3.0	34.3	39.0	12.5	-34.0	0.0	0.0	51.8	74.0	-22.2	V	P	
15.540	3.0	22.4	39.0	12.5	-34.0	0.0	0.0	39.8	54.0	-14.2	V	A	
15.540	3.0	34.7	39.0	12.5	-34.0	0.0	0.0	52.2	74.0	-21.8	H	P	
15.540	3.0	22.8	39.0	12.5	-34.0	0.0	0.0	40.3	54.0	-13.7	H	A	
Mid Ch, 5	1 200MH2	Z			***************************************								
15.600	3.0	34.5	38.8	12.5	-34.0	0.0	0.0	51.8	74.0	-22.2	V	P	
15.600	3.0	22.3	38.8	12.5	-34.0	0.0	0.0	39.7	54.0	-14.3	V	A	
15.600	3.0	35.0	38.8	12.5	-34.0	0.0	0.0	52.3	74.0	-21.7	H	P	
15.600	3.0	22.3	38.8	12.5	-34.0	0.0	0.0	39.7	54.0	-14.3	H	A	
High Ch,	5240mh	Z			~~~~~~~~~~								
15.720	3.0	33.5	38.4	12.6	-34.0	0.0	0.0	50.6	74.0	-23.4	V	P	
15.720	3.0	22.0	38.4	12.6	-34.0	0.0	0.0	39.0	54.0	-15.0	V	A	
15.720	3.0	34.0	38.4	12.6	-34.0	0.0	0.0	51.0	74.0	-23.0	H	P	
15.720	3.0	22.0	38.4	12.6	-34.0	0.0	0.0	39.0	54.0	-15.0	H	A	


Rev. 4.1.2.7


9.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

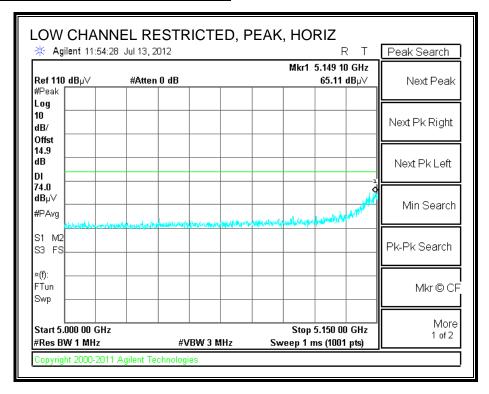
HARMONICS AND SPURIOUS EMISSIONS

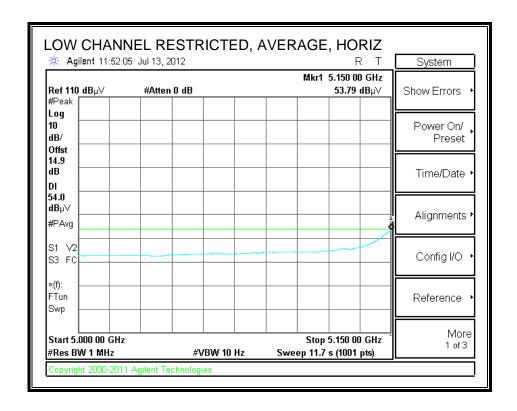
High Frequency Measurement

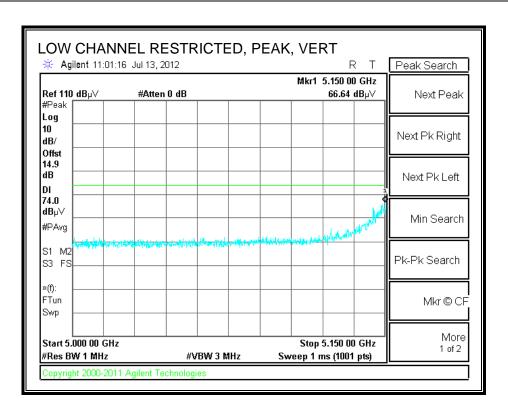
Compliance Certification Services, Fremont 5m Chamber

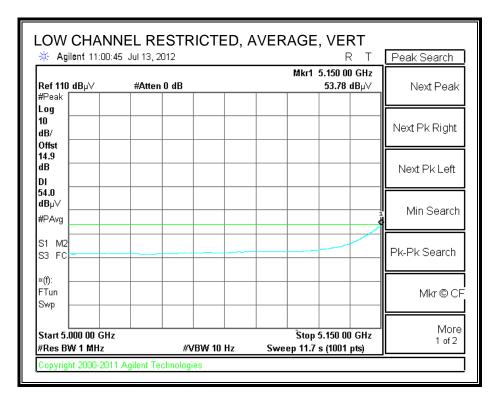
Test Engr: **Chin Pang** Date: 08/13/12 Project #: 12U14526 Company: Apple FCC 15.407 Test Target:

Mode Oper: HT20, 5.2GHz, TX (Worst Case)


> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read
> Analyzer Reading
> Avg
> Average Field Strength @ 3 m
>
>
> AF
> Antenna Factor
> Peak
> Calculated Peak Field Strength
>
>
> CL
> Cable Loss
> HPF
> High Pass Filter
> Margin vs. Average Limit Margin vs. Peak Limit


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 5	180MH:	z											
15.540	3.0	35.0	39.0	12.5	-34.0	0.0	0.0	52.4	74.0	-21.6	V	P	
15.540	3.0	22.4	39.0	12.5	-34.0	0.0	0.0	39.9	54.0	-14.1	V	A	
15.540	3.0	34.6	39.0	12.5	-34.0	0.0	0.0	52.1	74.0	-21.9	Н	P	
15.540	3.0	22.4	39.0	12.5	-34.0	0.0	0.0	39.9	54.0	-14.1	Н	<u>A</u>	
Mid Ch, 5	200MHz	Z											
15.600	3.0	34.9	38.8	12.5	-34.0	0.0	0.0	52.2	74.0	-21.8	V	P	
15.600	3.0	22.4	38.8	12.5	-34.0	0.0	0.0	39.7	54.0	-14.3	V	A	
15.600	3.0	34.7	38.8	12.5	-34.0	0.0	0.0	52.0	74.0	-22.0	Н	P	
15.600	3.0	22.4	38.8	12.5	-34.0	0.0	0.0	39.7	54.0	-14.3	H	A	
High Ch,	5240MF	łz			***************************************		*****************						
15.720	3.0	34.7	38.4	12.6	-34.0	0.0	0.0	51.8	74.0	-22.2	V	P	
15.720	3.0	22.0	38.4	12.6	-34.0	0.0	0.0	39.0	54.0	-15.0	V	A	
15.720	3.0	34.2	38.4	12.6	-34.0	0.0	0.0	51.2	74.0	-22.8	Н	P	
15.720	3.0	22.0	38.4	12.6	-34.0	0.0	0.0	39.0	54.0	-15.0	Н	A	


Rev. 4.1.2.7


9.2.3. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

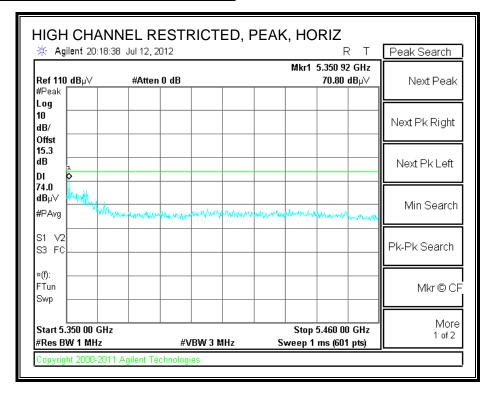
HARMONICS AND SPURIOUS EMISSIONS

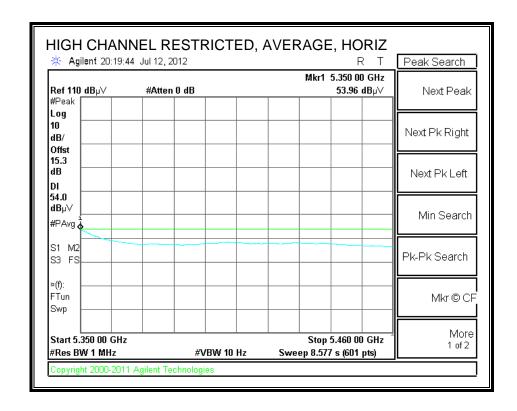
High Frequency Measurement

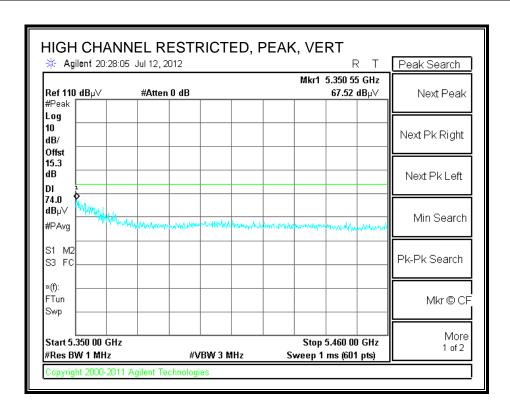
Compliance Certification Services, Fremont 5m Chamber

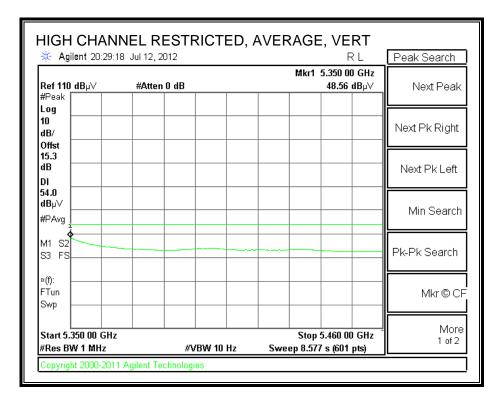
Test Engr: **Chin Pang** Date: 08/13/12 Project #: 12U14526 Company: Apple Test Target: FCC 15.407

Mode Oper: HT40, 5.2GHz, TX (Worst Case)


> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit Antenna Factor Peak Calculated.
>
> Oblin Loss HPF High Pass Filter Margin vs. Peak Limit


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 5	190MH:	Z											
15.570	3.0	35.3	38.9	12.5	-34.0	0.0	0.0	52.7	74.0	-21.3	H	P	
15.570	3.0	22.5	38.9	12.5	-34.0	0.0	0.0	39.9	54.0	-14.1	H	A	
15.570	3.0	35.2	38.9	12.5	-34.0	0.0	0.0	52.6	74.0	-21.4	V	P	
15.570	3.0	22.4	38.9	12.5	-34.0	0.0	0.0	39.9	54.0	-14.1	V	A	
High Ch, 5	5230MF	Iz											
15.690	3.0	34.3	38.5	12.6	-34.0	0.0	0.0	51.4	74.0	-22.6	H	P	
15.690	3.0	22.3	38.5	12.6	-34.0	0.0	0.0	39.4	54.0	-14.6	H	A	
15.690	3.0	34.6	38.5	12.6	-34.0	0.0	0.0	51.7	74.0	-22.3	V	P	
15.690	3.0	22.2	38.5	12.6	-34.0	0.0	0.0	39.3	54.0	-14.7	V	A	


Rev. 4.1.2.7


9.2.4. TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND

RESTRICTED BANDEDGE (HIGH CHANNEL)

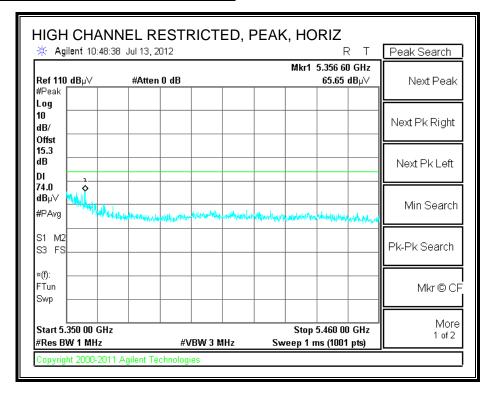
HARMONICS AND SPURIOUS EMISSIONS

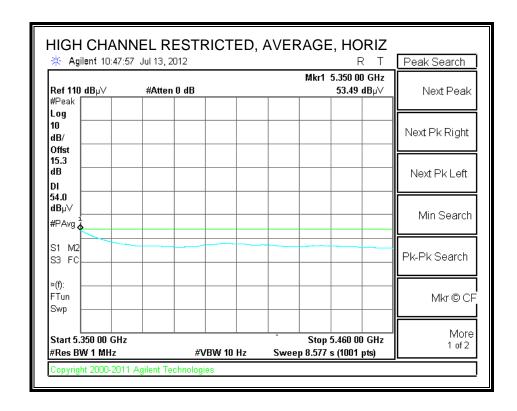
High Frequency Measurement

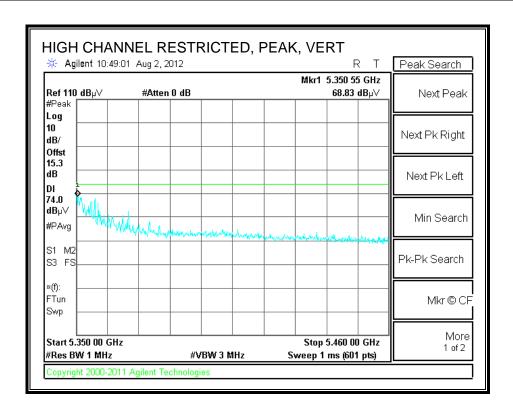
Compliance Certification Services, Fremont 5m Chamber

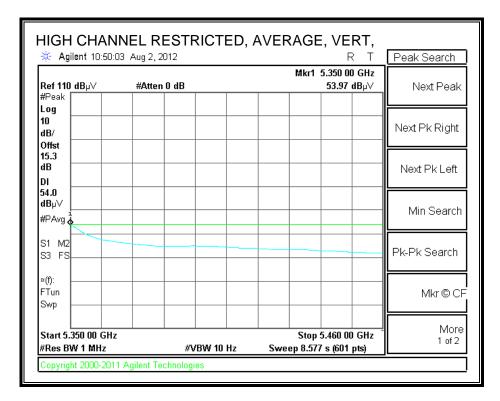
Test Engr: **Chin Pang** Date: 08/13/12 Project #: 12U14526 Company: Apple FCC 15.407 Test Target:

Mode Oper: a mode 5.3GHz TX(Worst Case)


> Measurement Frequency Amp Preamp Gain f Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Dist Distance to American
> Read Analyzer Reading Avg Average Field Strength
> AF Antenna Factor Peak Calculated Peak Field Strength
> CF Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit


				, ,		,				,	-		
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.			Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch, 5	260MH2	Z											
15.780	3.0	34.3	38.2	12.6	-33.9	0.0	0.0	51.2	74.0	-22.8	V	P	
15.780	3.0	22.2	38.2	12.6	-33.9	0.0	0.0	39.1	54.0	-14.9	V	A	
15.780	3.0	34.1	38.2	12.6	-33.9	0.0	0.0	51.0	74.0	-23.0	H	P	
15.780	3.0	22.1	38.2	12.6	-33.9	0.0	0.0	39.0	54.0	-15.0	H	A	
Mid Ch, 5.	300MHz	<u>.</u>											
10.600	3.0	36.6	38.3	9.7	-35.7	0.0	0.0	48.8	74.0	-25.2	V	P	
10.600	3.0	24.5	38.3	9.7	-35.7	0.0	0.0	36.7	54.0	-17.3	V	A	
15.900	3.0	34.3	37.8	12.7	-33.9	0.0	0.0	50.8	74.0	-23.2	V	P	
15.900	3.0	22.3	37.8	12.7	-33.9	0.0	0.0	38.9	54.0	-15.1	V	A	
10.600	3.0	34.2	38.3	9.7	-35.7	0.0	0.0	46.4	74.0	-27.6	H	P	
10.600	3.0	21.9	38.3	9.7	-35.7	0.0	0.0	34.0	54.0	-20.0	H	A	
15.900	3.0	34.0	37.8	12.7	-33.9	0.0	0.0	50.6	74.0	-23.4	H	P	
15.900	3.0	22.3	37.8	12.7	-33.9	0.0	0.0	38.8	54.0	-15.2	Н	A	oo
High Ch,	5320MH	[z											
10.640	3.0	35.1	38.3	9.7	-35.7	0.0	0.0	47.3	74.0	-26.7	V	P	
10.640	3.0	22.8	38.3	9.7	-35.7	0.0	0.0	35.0	54.0	-19.0	V	A	
15.960	3.0	34.9	37.6	12.7	-33.9	0.0	0.0	51.3	74.0	-22.7	V	P	
15.960	3.0	22.4	37.6	12.7	-33.9	0.0	0.0	38.8	54.0	-15.2	V	A	
10.640	3.0	34.0	38.3	9.7	-35.7	0.0	0.0	46.3	74.0	-27.7	H	P	
10.640	3.0	21.9	38.3	9.7	-35.7	0.0	0.0	34.2	54.0	-19.8	H	A	
15.960	3.0	34.4	37.6	12.7	-33.9	0.0	0.0	50.9	74.0	-23.1	H	P	
15.960	3.0	22.3	37.6	12.7	-33.9	0.0	0.0	38.7	54.0	-15.3	H	A	


Rev. 4.1.2.7


9.2.5. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND

RESTRICTED BANDEDGE (HIGH CHANNEL)

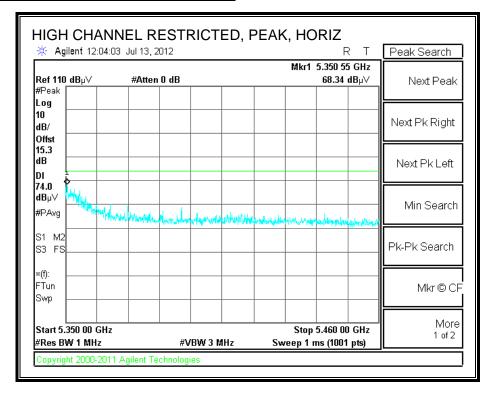
HARMONICS AND SPURIOUS EMISSIONS

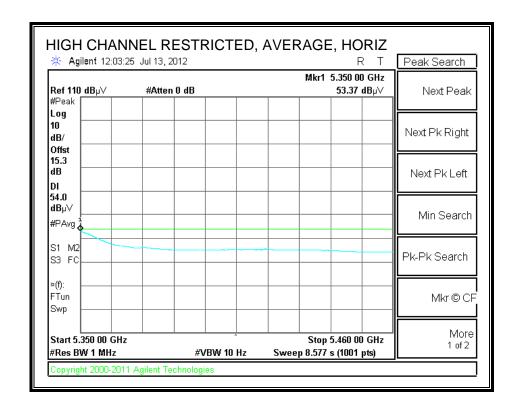
High Frequency Measurement

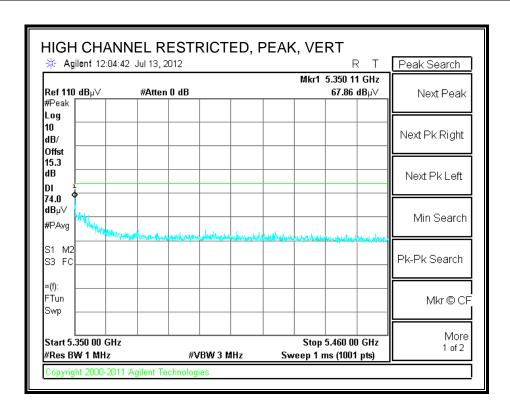
Compliance Certification Services, Fremont 5m Chamber

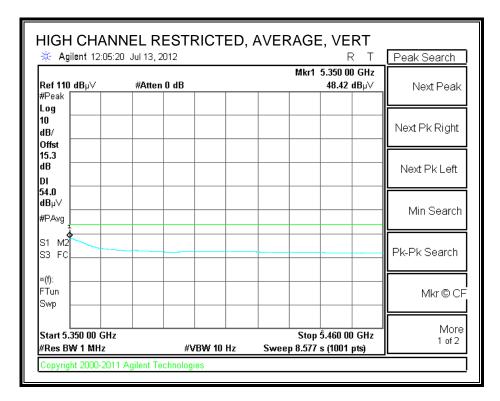
Test Engr: **Chin Pang** Date: 08/13/12 Project #: 12U14526 Company: Apple Test Target: FCC15.407

Mode Oper: HT20, 5.3GHz, TX (Worst Case)


> f Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Dist Distance to American
> Read Analyzer Reading Avg Average Field Strength
> AF Antenna Factor Peak Calculated Peak Field Strength
> CF Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB		8	dBuV/m	dB	V/H	P/A/QP	Hotes
	/		UD/III	иь	UD	uь	uъ	ubu v/III	ubu v/III	шь	V/II	r/A/Qr	
Low Ch, 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,											
15.780	3.0	34.6	38.2	12.6	-33.9	0.0	0.0	51.5	74.0	-22.5	V	P	
15.780	3.0	22.1	38.2	12.6	-33.9	0.0	0.0	39.0	54.0	-15.0	V	A	
15.780	3.0	35.2	38.2	12.6	-33.9	0.0	0.0	52.0	74.0	-22.0	H	P	
15.780	3.0	22.1	38.2	12.6	-33.9	0.0	0.0	38.9	54.0	-15.1	H	A	
Mid Ch, 5	300MH2	L Z					***********						
10.600	3.0	37.1	38.3	9.7	-35.7	0.0	0.0	49.3	74.0	-24.7	V	P	
10.600	3.0	24.1	38.3	9.7	-35.7	0.0	0.0	36.3	54.0	-17.7	V	A	
15.900	3.0	35.0	37.8	12.7	-33.9	0.0	0.0	51.6	74.0	-22.4	V	P	
15.900	3.0	22.2	37.8	12.7	-33.9	0.0	0.0	38.8	54.0	-15.2	V	A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10.600	3.0	33.4	38.3	9.7	-35.7	0.0	0.0	45.5	74.0	-28.5	Н	P	·····
10.600	3.0	21.5	38.3	9.7	-35.7	0.0	0.0	33.7	54.0	-20.3	Н	A	
15.900	3.0	34.2	37.8	12.7	-33.9	0.0	0.0	50.8	74.0	-23.2	H	P	
15.900	3.0	22.2	37.8	12.7	-33.9	0.0	0.0	38.8	54.0	-15.2	Н	A	
High Ch,	5320ME	I 7											
10.640	3.0	33.8	38.3	9.7	-35.7	0.0	0.0	46.0	74.0	-28.0	V	P	
10.640	3.0	21.3	38.3	9.7	-35.7	0.0	0.0	33.5	54.0	-20.5	V	A	
15.960	3.0	34.5	37.6	12.7	-33.9	0.0	0.0	50.9	74.0	-23.1	V	P	
15.960	3.0	22.3	37.6	12.7	-33.9	0.0	0.0	38.7	54.0	-15.3	V	A	***************************************
10.640	3.0	33.8	38.3	9.7	-35.7	0.0	0.0	46.0	74.0	-28.0	H	P	omoomoomoomoomoomoomoomoomoomoomoomoomo
10.640	3.0	21.3	38.3	9.7	-35.7	0.0	0.0	33.5	54.0	-20.5	H	A	onoonoonoonoonoonoonoonoonoonoonoonoono
15.960	3.0	35.3	37.6	12.7	-33.9	0.0	0.0	51.7	74.0	-22.3	Н	P	
15.960	3.0	22.3	37.6	12.7	-33.9	0.0	0.0	38.7	54.0	-15.3	H	A	
	1											***************************************	·


Rev. 4.1.2.7


9.2.6. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND

RESTRICTED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

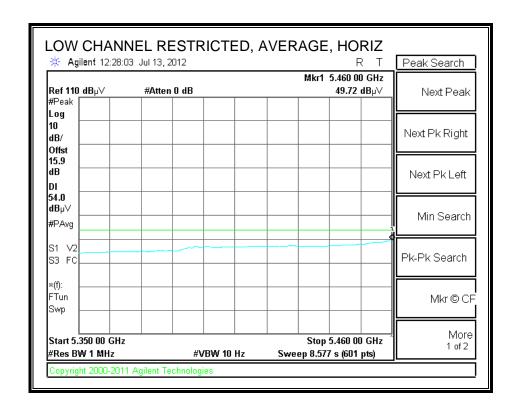
Compliance Certification Services, Fremont 5m Chamber

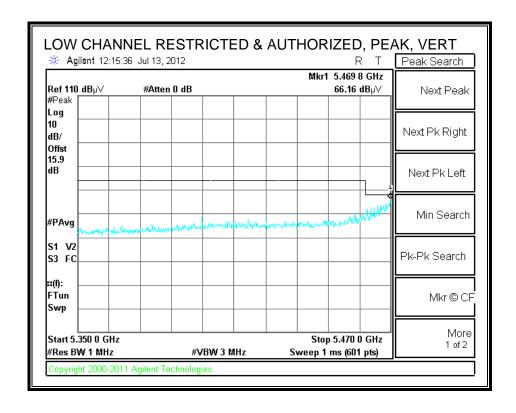
Test Engr: Chin Pang 08/13/12 Date: 12U14526 Project #: Company: Apple Test Target: FCC 15.407

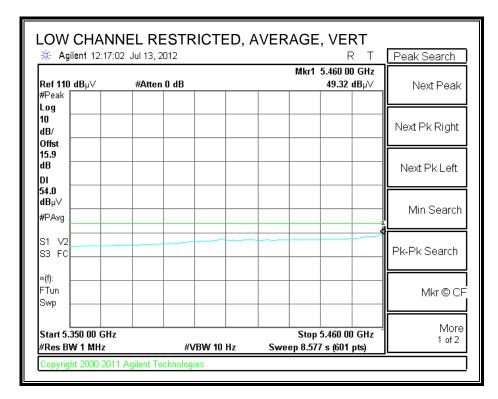
Mode Oper: HT40, 5.3GHz, TX (Worst Case)

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m

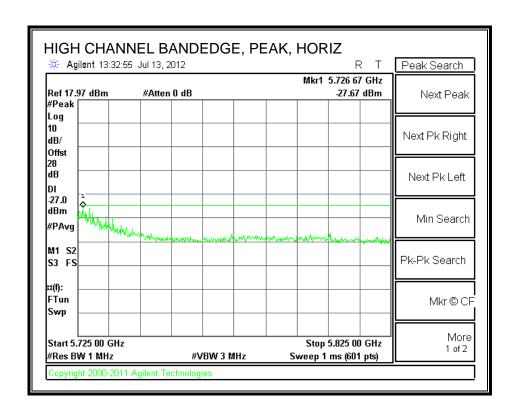
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

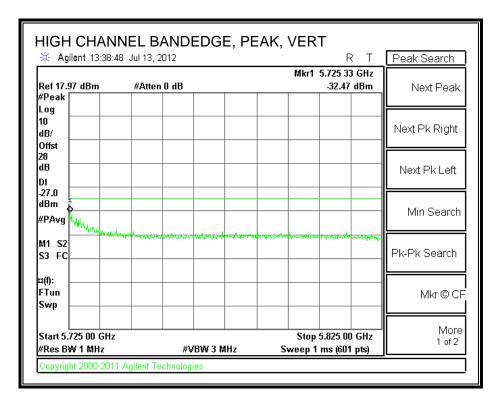

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	270MH	z											
15.810	3.0	34.6	38.1	12.6	-33.9	0.0	0.0	51.4	74.0	-22.6	V	P	
15.810	3.0	22.3	38.1	12.6	-33.9	0.0	0.0	39.1	54.0	-14.9	V	A	
15.810	3.0	34.9	38.1	12.6	-33.9	0.0	0.0	51.6	74.0	-22.4	H	P	
15.810	3.0	22.3	38.1	12.6	-33.9	0.0	0.0	39.1	54.0	-14.9	H	A	
High Ch,													
10.620	3.0	33.8	38.3	9.7	-35.7	0.0	0.0	46.0	74.0	-28.0	V	P	
10.620	3.0	21.3	38.3	9.7	-35.7	0.0	0.0	33.5	54.0	-20.5	V	A	
15.930	3.0	34.3	37.7	12.7	-33.9	0.0	0.0	50.8	74.0	-23.2	V	P	
15.930	3.0	22.3	37.7	12.7	-33.9	0.0	0.0	38.8	54.0	-15.2	V	A	
10.620	3.0	33.7	38.3	9.7	-35.7	0.0	0.0	45.9	74.0	-28.1	H	P	
10.620	3.0	21.4	38.3	9.7	-35.7	0.0	0.0	33.7	54.0	-20.3	H	A	
15.930	3.0	35.0	37.7	12.7	-33.9	0.0	0.0	51.5	74.0	-22.5	H	P	
15.930	3.0	22.5	37.7	12.7	-33.9	0.0	0.0	39.0	54.0	-15.0	H	A	
						i							


Rev. 4.1.2.7


9.2.7. TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND

RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)





AUTHORIZED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

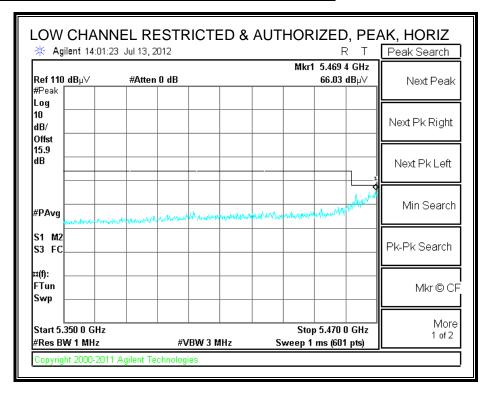
High Frequency Measurement

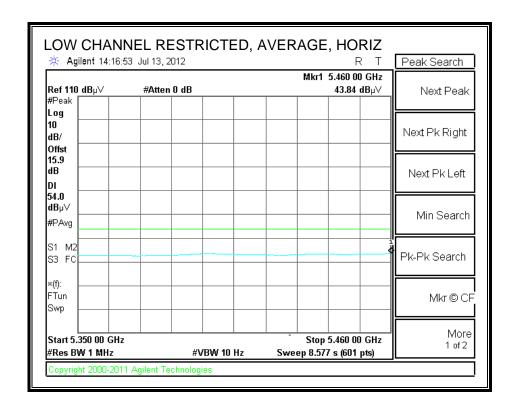
Compliance Certification Services, Fremont 5m Chamber

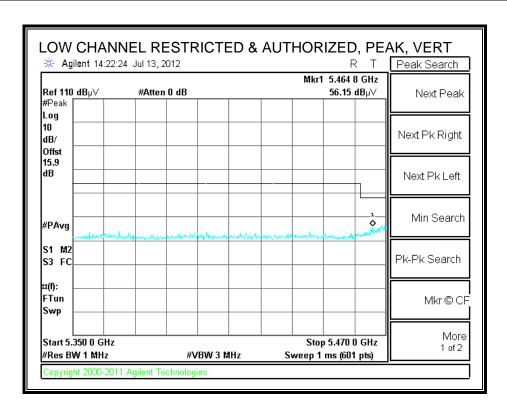
Test Engr: Chin Pang Date: 08/13/12 Project #: 12U14526 Company: Apple FCC 15.407 Test Target:

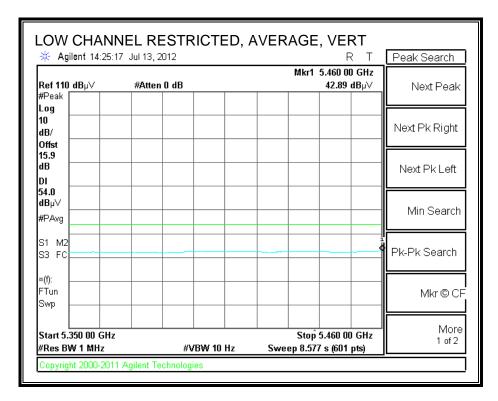
Mode Oper: a mode, 5.6GHz, TX (Worst Case)

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m

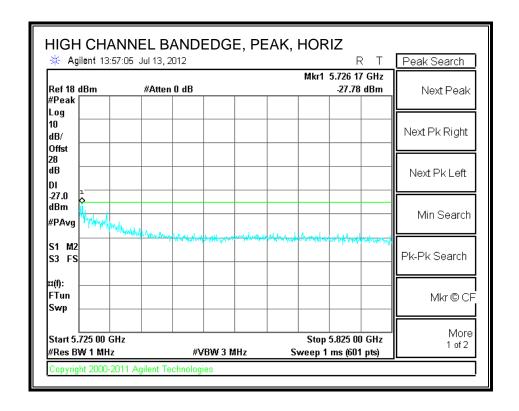

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

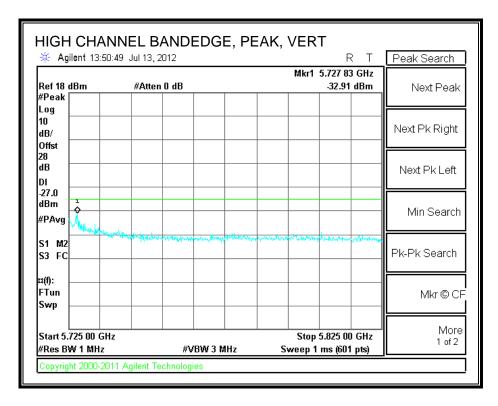

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	500MH:	z											
11.000	3.0	33.0	38.4	10.1	-35.6	0.0	0.0	45.7	74.0	-28.3	V	P	
11.000	3.0	21.0	38.4	10.1	-35.6	0.0	0.0	33.7	54.0	-20.3	V	A	
11.000	3.0	33.3	38.4	10.1	-35.6	0.0	0.0	46.1	74.0	-27.9	H	P	
11.000	3.0	21.0	38.4	10.1	-35.6	0.0	0.0	33.8	54.0	-20.2	H	A	
Mid Ch, 5	580MH2	Z											
11.160	3.0	35.0	38.5	10.2	-35.6	0.0	0.0	48.2	74.0	-25.8	V	P	
11.160	3.0	22.4	38.5	10.2	-35.6	0.0	0.0	35.6	54.0	-18.4	V	A	
11.160	3.0	35.5	38.5	10.2	-35.6	0.0	0.0	48.7	74.0	-25.3	H	P	
11.160	3.0	22.3	38.5	10.2	-35.6	0.0	0.0	35.5	54.0	-18.5	H	A	
High Ch,	5700ME	Ιz											
11.400	3.0	33.9	38.7	10.4	-35.6	0.0	0.0	47.6	74.0	-26.4	V	P	
11.400	3.0	21.8	38.7	10.4	-35.6	0.0	0.0	35.4	54.0	-18.6	V	A	
11.400	3.0	33.9	38.7	10.4	-35.6	0.0	0.0	47.5	74.0	-26.5	H	P	
11.400	3.0	21.8	38.7	10.4	-35.6	0.0	0.0	35.4	54.0	-18.6	H	A	


Rev. 4.1.2.7


9.2.8. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND

RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)





AUTHORIZED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

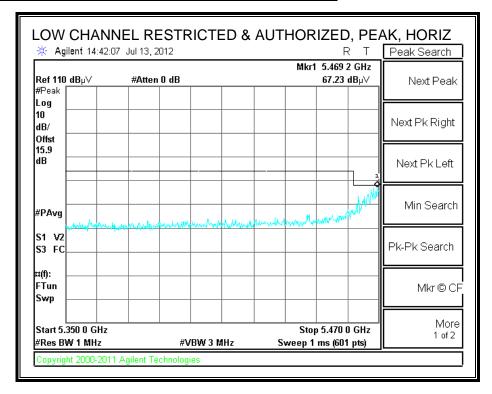
High Frequency Measurement

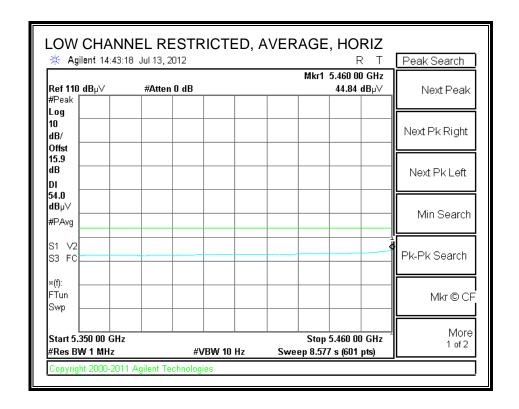
Compliance Certification Services, Fremont 5m Chamber

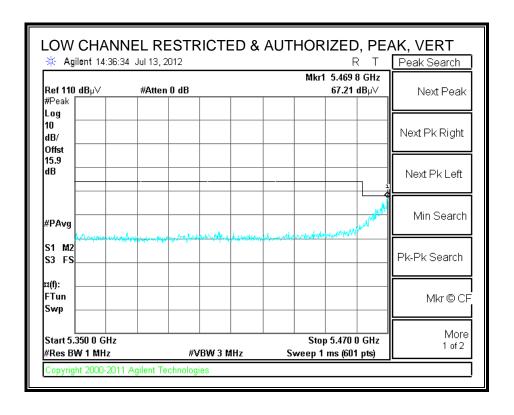
Chin Pang Test Engr: Date: 08/13/12 12U14526 Project #: Company: Apple FCC 15.407 Test Target:

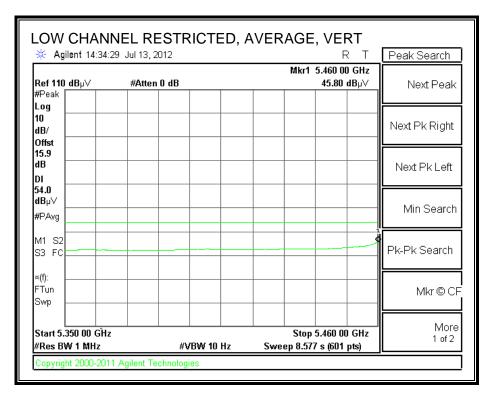
Mode Oper: HT20 mode, 5.6GHz, TX (Worst Case)

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m

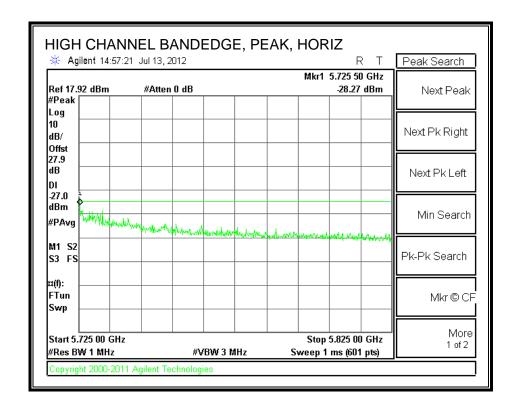

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

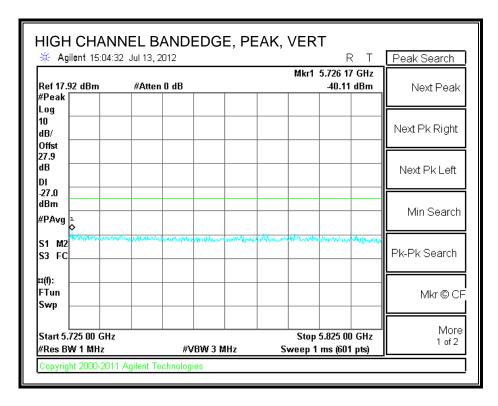

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	$dBuV/\mathbf{m}$	dB	V/H	P/A/QP	
Low Ch, 5	500MH2												
11.000	3.0	32.9	38.4	10.1	-35.6	0.0	0.0	45.6	74.0	-28.4	V	P	
11.000	3.0	21.0	38.4	10.1	-35.6	0.0	0.0	33.8	54.0	-20.2	V	A	
11.000	3.0	33.4	38.4	10.1	-35.6	0.0	0.0	46.2	74.0	-27.8	H	P	
11.000	3.0	21.0	38.4	10.1	-35.6	0.0	0.0	33.8	54.0	-20.2	H	A	
Mid Ch, 5	600MH ₂												
11.160	3.0	34.3	38.5	10.2	-35.6	0.0	0.0	47.5	74.0	-26.5	V	P	
11.160	3.0	22.5	38.5	10.2		0.0	0.0	35.7	54.0	-18.3	V	A	
11.160	3.0	34.3	38.5	10.2	-35.6	0.0	0.0	47.5	74.0	-26.5	H	P	
11.160	3.0	21.8	38.5	10.2	-35.6	0.0	0.0	35.0	54.0	-19.0	H	A	
High Ch,	5700MH	z											
11.400	3.0	33.7	38.7	10.4	-35.6	0.0	0.0	47.4	74.0	-26.6	V	P	
11.400	3.0	21.6	38.7	10.4	-35.6	0.0	0.0	35.3	54.0	-18.7	V	A	
11.400	3.0	34.5	38.7	10.4	-35.6	0.0	0.0	48.1	74.0	-25.9	H	P	
11.400	3.0	21.6	38.7	10.4	-35.6	0.0	0.0	35.3	54.0	-18.7	H	A	


Rev. 4.1.2.7


9.2.9. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BAND

RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)





AUTHORIZED BANDEDGE (HIGH CHANNEL)

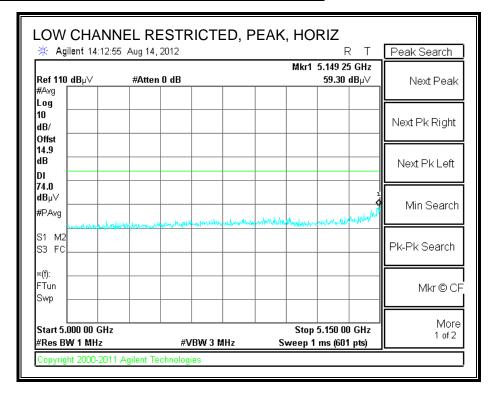
HARMONICS AND SPURIOUS EMISSIONS

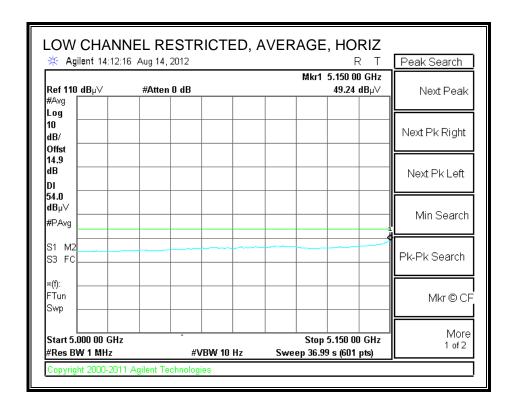
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

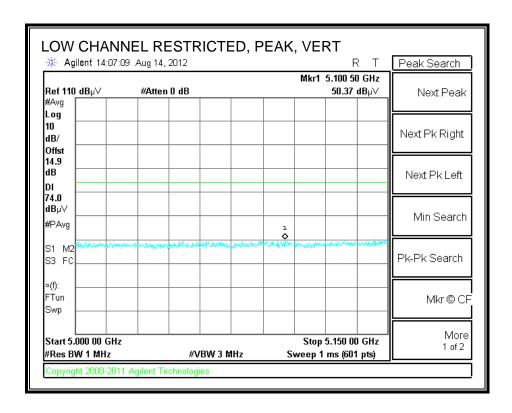
Test Engr: Chin Pang Date: 08/13/12 Project #: 12U14526 Company: Apple FCC 15.407 Test Target:

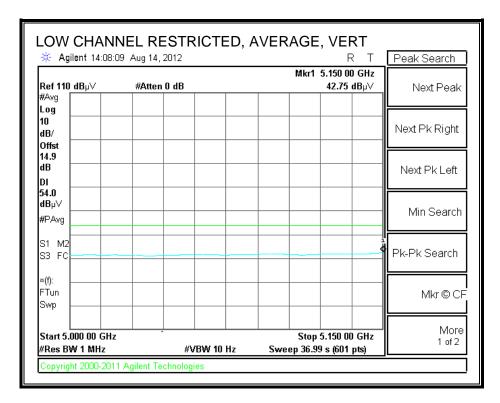
Mode Oper: HT40, 5.6GHz, TX (Worst Case)


f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
Low Ch,	510MH:	z											
11.020	3.0	32.4	38.4	10.1	-35.6	0.0	0.0	45.2	74.0	-28.8	V	P	
11.020	3.0	20.8	38.4	10.1	-35.6	0.0	0.0	33.6	54.0	-20.4	V	A	
11.020	3.0	32.9	38.4	10.1	-35.6	0.0	0.0	45.7	74.0	-28.3	H	P	
11.020	3.0	20.8	38.4	10.1	-35.6	0.0	0.0	33.6	54.0	-20.4	H	A	
Mid Ch, 5	550MH2	<u>:</u> Z											
11.100	3.0	34.6	38.5	10.2	-35.6	0.0	0.0	47.7	74.0	-26.3	V	P	
11.100	3.0	22.4	38.5	10.2	-35.6	0.0	0.0	35.5	54.0	-18.5	V	A	
11.100	3.0	34.6	38.5	10.2	-35.6	0.0	0.0	47.7	74.0	-26.3	H	P	
11.100	3.0	22.5	38.5	10.2	-35.6	0.0	0.0	35.6	54.0	-18.4	H	A	
High Ch,	5670ME	· Iz											
11.340	3.0	33.5	38.7	10.4	-35.6	0.0	0.0	47.0	74.0	-27.0	V	P	
11.340	3.0	21.5	38.7	10.4	-35.6	0.0	0.0	35.0	54.0	-19.0	V	A	
11.340	3.0	33.8	38.7	10.4	-35.6	0.0	0.0	47.3	74.0	-26.7	H	P	
11.340	3.0	21.6	38.7	10.4	-35.6	0.0	0.0	35.1	54.0	-18.9	H	A	

Rev. 4.1.2.7


9.2.10. 2.4 GHz and 5GHz band Colocation


BANDEDGE (CHANNEL 36 and Bluetooth High CHANNEL)

UL CCS FORM NO: CCSUP4701H 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

HARMONICS AND SPURIOUS EMISSIONS

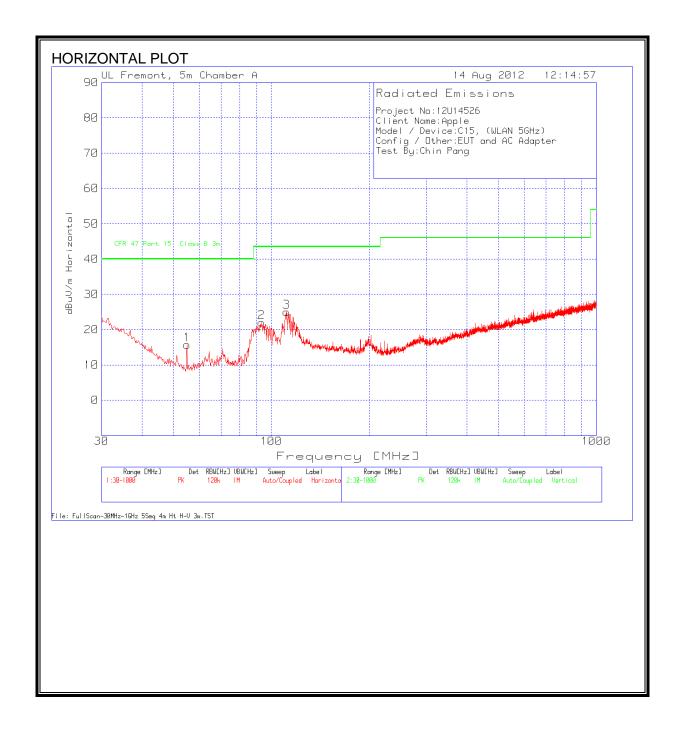
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

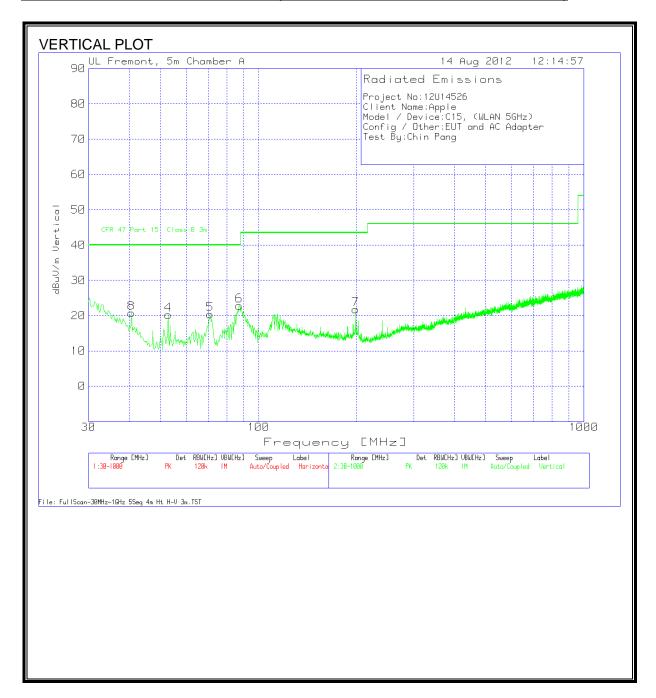
Test Engr: Chin pang
Date: 08/14/12
Project #: 12U14526
Company: Apple
Test Target: FCC 15.407

Mode Oper: Co-location, 5GHz and BTTX.

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit
Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit


CL Cable Loss HPF High Pass Filter

m) 0MHz 3.0 3.0 3.0	34.9	dB/m 38.2	dB	dB	dB	dB	dBuV/m	JD X7/			D/4 /O.D.	4
3.0 3.0	34.9	38.2			1		3	abu v/m	dB	V/H	P/A/QP	d .
3.0		38.2	0.4									
	22.4		9.4	-35.8	0.0	0.0	46.8	74.0	-27.2	V	P	
2 0	22.4	38.2	9.4	-35.8	0.0	0.0	34.3	54.0	-19.7	V	A	
3.U	35.5	39.0	12.5	-34.0	0.0	0.0	53.0	74.0	-21.0	V	P	
3.0	22.3	39.0	12.5	-34.0	0.0	0.0	39.7	54.0	-14.3	V	A	
3.0	35.3	38.2	9.4	-35.8	0.0	0.0	47.1	74.0	-26.9	H	P	
3.0	22.4	38.2	9.4	-35.8	0.0	0.0	34.3	54.0	-19.7	H	A	
3.0	35.2	39.0	12.5	-34.0	0.0	0.0	52.7	74.0	-21.3	H	P	
3.0	22.3	39.0	12.5	-34.0	0.0	0.0	39.8	54.0	-14.2	H	A	
2480N	Пz											
3.0	55.6	33.6	6.4	-35.5	0.0	0.0	60.0	74.0	-14.0	Н	P	
3.0	40.2	33.6	6.4	-35.5	0.0	0.0	44.6	54.0	-9.4	H	A	
3.0	50.4	35.9	8.5	-35.5	0.0	0.0	59.4	74.0	-14.6	H	P	
3.0	36.1	35.9	8.5	-35.5	0.0	0.0	45.2	54.0	-8.9	H	A	
3.0	35.9	38.1	9.1	-35.9	0.0	0.0	47.2	74.0	-26.8	H	P	
3.0	23.1	38.1	9.1	-35.9	0.0	0.0	34.4	54.0	-19.6	Н	A	
3.0	48.5	33.6	6.4	-35.5	0.0	0.0	53.0	74.0	-21.0	V	P	
3.0	36.4	33.6	6.4	-35.5	0.0	0.0	40.8	54.0	-13.2	V	A	
3.0	41.3	35.9	8.5	-35.5	0.0	0.0	50.3	74.0	-23.7	V	P	
3.0	30.1	35.9	8.5	-35.5	0.0	0.0	39.1	54.0	-14.9	V	A	
				***************************************		·····	1					
	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.0 35.3 3.0 22.4 3.0 35.2 3.0 22.3 480MHz 3.0 55.6 3.0 40.2 3.0 50.4 3.0 36.1 3.0 35.9 3.0 23.1 3.0 48.5 3.0 36.4 3.0 36.4	3.0 35.3 38.2 3.0 22.4 38.2 3.0 35.2 39.0 3.0 22.3 39.0 3.0 55.6 33.6 3.0 40.2 33.6 3.0 50.4 35.9 3.0 36.1 35.9 3.0 35.9 38.1 3.0 48.5 33.6 3.0 36.4 33.6 3.0 36.4 33.6	3.0 35.3 38.2 9.4 3.0 22.4 38.2 9.4 3.0 35.2 39.0 12.5 3.0 22.3 39.0 12.5 3.0 55.6 33.6 6.4 3.0 40.2 33.6 6.4 3.0 36.1 35.9 8.5 3.0 36.1 35.9 8.5 3.0 36.1 38.1 9.1 3.0 48.5 33.6 6.4 3.0 36.4 33.6 6.4 3.0 36.4 33.6 6.4	3.0 35.3 38.2 9.4 -35.8 3.0 22.4 38.2 9.4 -35.8 3.0 35.2 39.0 12.5 -34.0 3.0 22.3 39.0 12.5 -34.0 3.0 55.6 33.6 6.4 -35.5 3.0 40.2 33.6 6.4 -35.5 3.0 50.4 35.9 8.5 -35.5 3.0 36.1 35.9 8.5 -35.5 3.0 35.9 38.1 9.1 -35.9 3.0 23.1 38.1 9.1 -35.9 3.0 48.5 33.6 6.4 -35.5 3.0 36.4 33.6 6.4 -35.5 3.0 36.4 33.6 6.4 -35.5 3.0 36.4 33.6 6.4 -35.5	3.0 35.3 38.2 9.4 -35.8 0.0 3.0 22.4 38.2 9.4 -35.8 0.0 3.0 35.2 39.0 12.5 -34.0 0.0 3.0 22.3 39.0 12.5 -34.0 0.0 3.0 55.6 33.6 6.4 -35.5 0.0 3.0 40.2 33.6 6.4 -35.5 0.0 3.0 50.4 35.9 8.5 -35.5 0.0 3.0 36.1 35.9 8.5 -35.5 0.0 3.0 35.9 38.1 9.1 -35.9 0.0 3.0 23.1 38.1 9.1 -35.9 0.0 3.0 48.5 33.6 6.4 -35.5 0.0 3.0 36.4 33.6 6.4 -35.5 0.0 3.0 36.4 33.6 6.4 -35.5 0.0	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 3.0 55.6 33.6 6.4 -35.5 0.0 0.0 3.0 40.2 33.6 6.4 -35.5 0.0 0.0 3.0 55.6 35.9 8.5 -35.5 0.0 0.0 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 3.0 36.4 33.6 6.4 -35.5 0.0 0.0 3.0 36.4 35.9 8.5 -35.5 0.0 0.0 3.0 48.5 33.6 6.4 -35.5 0.0 0.0	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 47.1 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 34.3 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 52.7 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 480MHz 30.0 55.6 33.6 6.4 -35.5 0.0 0.0 60.0 3.0 40.2 33.6 6.4 -35.5 0.0 0.0 44.6 3.0 50.4 35.9 8.5 -35.5 0.0 0.0 59.4 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 45.2 3.0 35.9 38.1 9.1 -35.9 0.0 0.0 34.4 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 34.4 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 35.9 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 34.4 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 36.4	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 47.1 74.0 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 34.3 54.0 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 52.7 74.0 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 54.0 480MHz 3.0 55.6 33.6 6.4 -35.5 0.0 0.0 60.0 74.0 3.0 40.2 33.6 6.4 -35.5 0.0 0.0 44.6 54.0 3.0 50.4 35.9 8.5 -35.5 0.0 0.0 45.2 54.0 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 47.2 74.0 3.0 35.9 38.1 9.1 -35.9 0.0 0.0 47.2 74.0 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 34.4 54.0 3.0 48.5 33.6 6.4 -35.5 0.0 0.0 34.4 54.0 3.0 48.5 33.6 6.4 -35.5 0.0<	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 47.1 74.0 -26.9 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 34.3 54.0 -19.7 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 52.7 74.0 -21.3 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 54.0 -14.2 480MHz	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 47.1 74.0 -26.9 H 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 34.3 54.0 -19.7 H 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 52.7 74.0 -21.3 H 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 54.0 -14.2 H 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 54.0 -14.2 H 3.0 40.2 33.6 6.4 -35.5 0.0 0.0 60.0 74.0 -14.0 H 3.0 50.4 35.9 8.5 -35.5 0.0 0.0 44.6 54.0 -9.4 H 3.0 36.1 35.9 8.5 -35.5 0.0 0.0 45.2 54.0 -8.9 H 3.0 35.9 38.1 9.1 -35.9 0.0 0.0 47.2 74.0 -26.8 H 3.0 23.1 38.1 9.1 -35.9 0.0 0.0 34.4 54.0 -19.6 H 3.0 36.4 33.6 6.4 -35.5 0.0 0.0 53.0 74.0 -21.0 V 3.0 36.4 33.6 6.4 -35.5 0.0 0.0 40.8 54.0 -13.2 V 3.0 36.4 33.6 6.4 -35.5 0.0 0.0 50.3 74.0 -23.7 V	3.0 35.3 38.2 9.4 -35.8 0.0 0.0 47.1 74.0 -26.9 H P 3.0 22.4 38.2 9.4 -35.8 0.0 0.0 34.3 54.0 -19.7 H A 3.0 35.2 39.0 12.5 -34.0 0.0 0.0 52.7 74.0 -21.3 H P 3.0 22.3 39.0 12.5 -34.0 0.0 0.0 39.8 54.0 -14.2 H A 480MHz 8.0 55.6 33.6 6.4 -35.5 0.0 0.0 60.0 74.0 -14.0 H P 3.0 55.6 33.6 6.4 -35.5 0.0 0.0 44.6 54.0 -9.4 H A 3.0 50.4 35.9 8.5 -35.5 0.0 0.0 49.2 54.0 -8.9 H A 3.0 36.1 35.9 8.5


Rev. 4.1.2.7

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Designet Nov	12114626							
Project No:								
Client Name								
Model / Dev			•					
Config / Oth		AC Adapt	er					
Test By:Chir	n Pang							
Horizontal 3	80 - 1000MH	łz						
			25MHz-1GHz ChmbrA	T243 Sunol		CFR 47 Part 15B		
Frequency	Reading	Detector	Amplified.TX (dB)	Bilog.TXT (dB)	dBuV/m	3m	Margin	Polarity
55.006	35.91	PK	-27.3	7.1	15.71	40	-24.29	Horz
93.3873	40.68	PK	-27	8.4	22.08	43.5	-21.42	Horz
111.221	38.86	PK	-26.7	12.9	25.06	43.5	-18.44	Horz
Vertical 30 -	1000MHz							
Frequency	Reading	Detector	25MHz-1GHz ChmbrA Amplified.TX (dB)	T243 Sunol Bilog.TXT (dB)	dBuV/m	CFR 47 Part 15B	Margin	Polarity
52.6799	40.15	PK	-27.3	7.4	20.25	40	-19.75	Vert
70.9013	39.37	PK	-27.1	8.1	20.37	40	-19.63	Vert
87.1843	42.43	PK	-27	7.4	22.83	40	-17.17	Vert
198.8389	35.85	PK	-26.2	12.2	21.85	43.5	-21.65	Vert
40.6615	34.51	PK	-27.3	13.5	20.71	40	-19.29	Vert

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

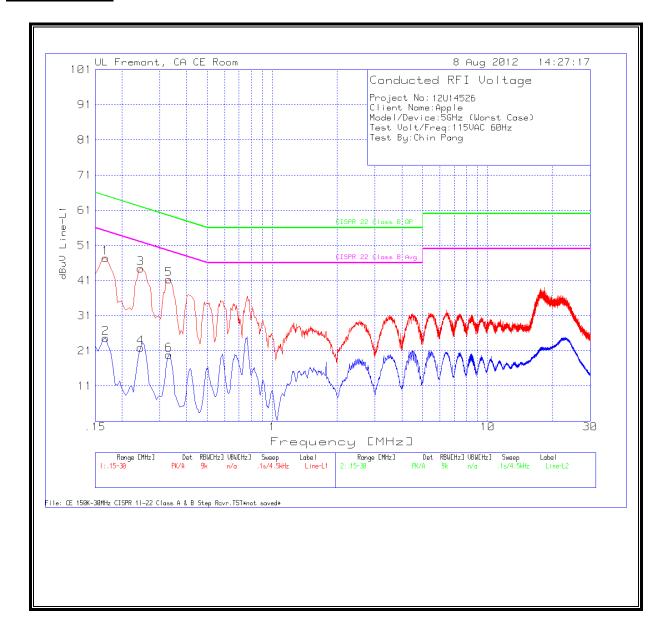
Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

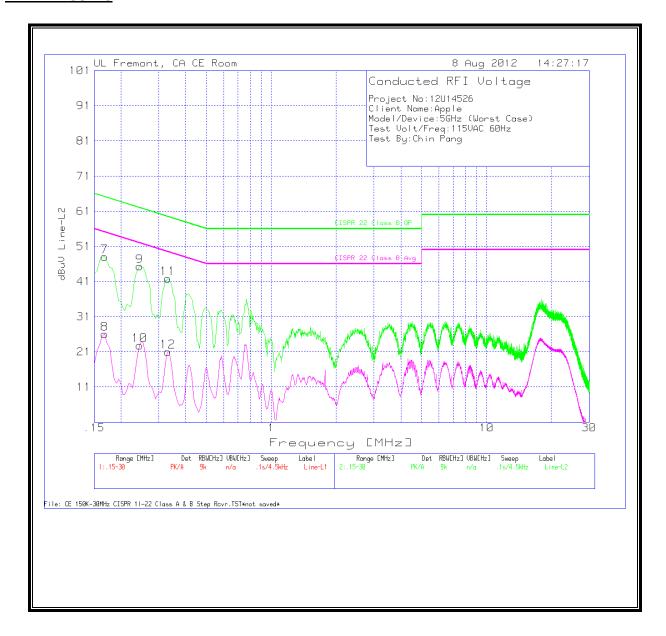
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


6 WORST EMISSIONS

Project No:	12U14526								
Client Nam	e:Apple								
Model/Dev	rice:5GHz (Worst Case	2)						
Test Volt/F	req:115VA	C 60Hz							
Test By:Chi	n Pang								
Line-L1 .15	- 30MHz								
Frequency	Reading	Detector	T24 IL L1.	LC Cables	dBuV	CISPR 22B	Margin	CISPR 22B	Margin
0.168	47.28	PK	0.1	0	47.38	65.1	-17.72	-	-
0.168	24.53	Av	0.1	0	24.63	-	-	55.1	-30.47
0.2445	44.34	PK	0.1	0	44.44	61.9	-17.46	-	-
0.2445	21.81	Av	0.1	0	21.91	-	-	51.9	-29.99
0.33	41.21	PK	0.1	0	41.31	59.5	-18.19	-	-
0.33	19.79	Av	0.1	0	19.89	-	-	49.5	-29.61
Line-L2 .15	- 30MHz								
Frequency	Reading	Detector	T24 IL L1.	LC Cables	dBuV	CISPR 22B	Margin	CISPR 22B	Margin
0.168	47.94	PK	0.1	0	48.04	65.1	-17.06	-	-
0.168	25.97	Av	0.1	0	26.07	-	-	55.1	-29.03
0.2445	45.18	PK	0.1	0	45.28	61.9	-16.62	-	-
0.2445	22.76	Av	0.1	0	22.86	-	-	51.9	-29.04
0.33	41.78	PK	0.1	0	41.88	59.5	-17.62	-	-
0.33	20.89	Av	0.1	0	20.99	-	-	49.5	-28.51

LINE 1 RESULTS

LINE 2 RESULTS

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 188 of 229

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode					
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

rabio 2. Applicability of bit o requirements during normal operation								
Requirement	Operationa	Operational Mode						
	Master	Client	Client					
		(without DFS)	(with DFS)					
DFS Detection Threshold	Yes	Not required	Yes					
Channel Closing Transmission Time	Yes	Yes	Yes					
Channel Move Time	Yes	Yes	Yes					

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Monitoring	
Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Table 5 – Short Fulse Radar Test Wavelorins									
Radar	Pulse Width	PRI	Pulses	Minimum	Minimum				
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials				
				Successful					
				Detection					
1	1	1428	18	60%	30				
2	1-5	150-230	23-29	60%	30				
3	6-10	200-500	16-18	60%	30				
4	11-20	200-500	12-16	60%	30				
Aggregate (F	Radar Types 1-4)	80%	120						

Table 6 - Long Pulse Radar Test Signal

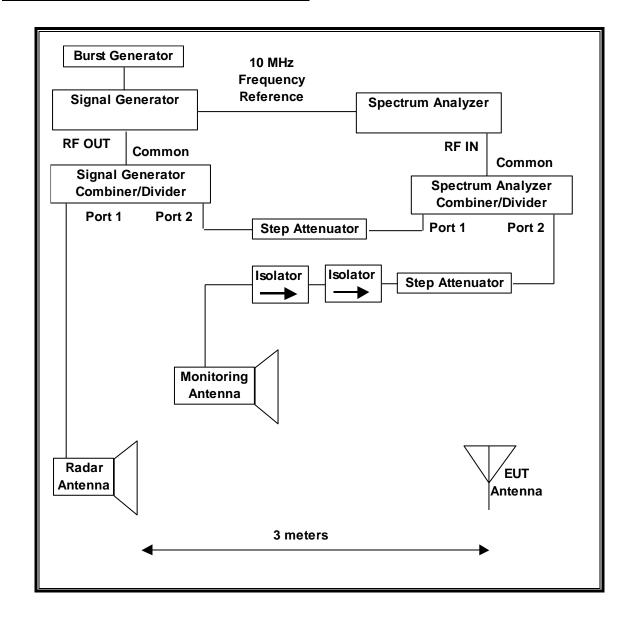

	.9 . 4.00 .		9				
Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage	Trials
		Burst	(µsec)	(MHz)		of Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

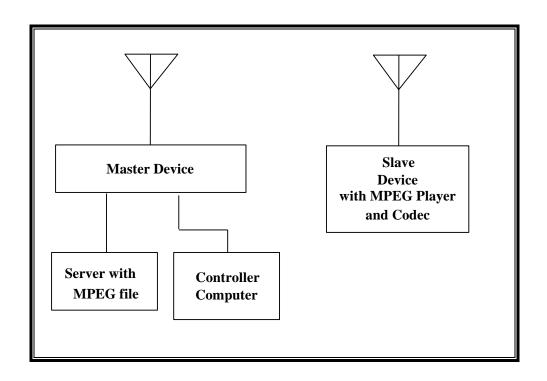
Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

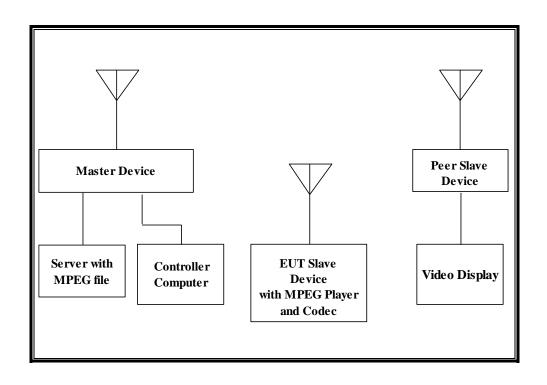
TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset Number	Cal Due				
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/15/12				
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	11/17/12				

11.1.3. SETUP OF EUT

CLIENT MODE:

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT


The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST									
Description	Manufacturer	Model	Serial Number	FCC ID					
Wireless Access Point	Cisco	AIR-AP1252AG-A-	FTX130390D9	LDK102061					
(Master Device)		K9							
AC Adapter (AP)	Delta Electronics	EADP-45BB B	DTH1049902N	DoC					
Notebook PC (Server)	Apple	MacBook Pro A1150	AOU257941	DoC					
AC Adapter (Server)	Delta Electronics	A1344	MV05104CNAL1A	DoC					
Notebook PC (Controller)	Dell	PP18L	10657517725	DoC					
AC Adapter (Controller PC)	Dell	LA65SN0-00	CN-ODF263-71615- 6AU-1019	DoC					

REPORT NO: 12U14526-2A DATE: OCTOBER 3, 2012 IC: 579C-A1432 FCC ID: BCGA1432

AIRPLAY MODE:

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
Wireless Access Point	Cisco	AIR-AP1252AG-A-	FTX130390D9	LDK102061
(Master Device)		K9		
AC Adapter (AP)	Delta Electronics	EADP-45BB B	DTH1049902N	DoC
Notebook PC (Server)	Apple	MacBook Pro A1150	AOU257941	DoC
AC Adapter (Server)	Delta Electronics	A1344	MV05104CNAL1A	DoC
Notebook PC (Controller)	Dell	PP18L	10657517725	DoC
AC Adapter (Controller PC)	Dell	LA65SN0-00	CN-ODF263-71615- 6AU-1019	DoC
Apple TV (Peer Slave Device)	Apple	A1427	C07GY040F14P	BCGA1427
LCD Monitor	Dell	Prototype	6279	N/A

This report shall not be reproduced except in full, without the written approval of UL CCS.

11.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 21.6 dBm EIRP in the 5250-5350 MHz band and 21.18 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 4.25 dBi in the 5250-5350 MHz band and 4.51 dBi in the 5470-5725 MHz band.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter/receiver chain connected to an antenna to perform radiated tests.

In the client mode, WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using Safari web browser. In the Client-to-Client Communications mode, WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master, to the Slave, and mirror to the peer slave device in full motion video mode using Safari web browser.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths of 20 MHz and 40 MHz are implemented in standard client mode. One nominal channel bandwidth of 20 MHz is implemented in Client-to-Client Communications mode.

The software installed in the EUT is IOS (Build 10A371).

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices.

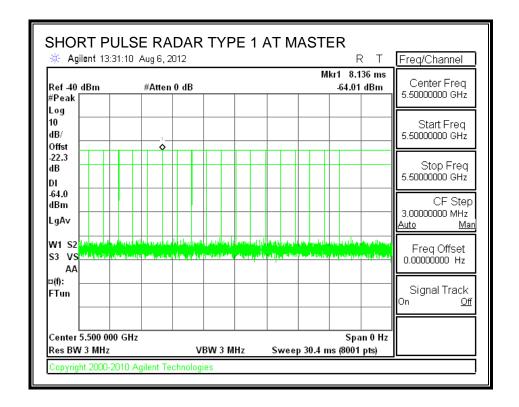
OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102061. The minimum antenna gain for the Master Device is 3.5 dBi.

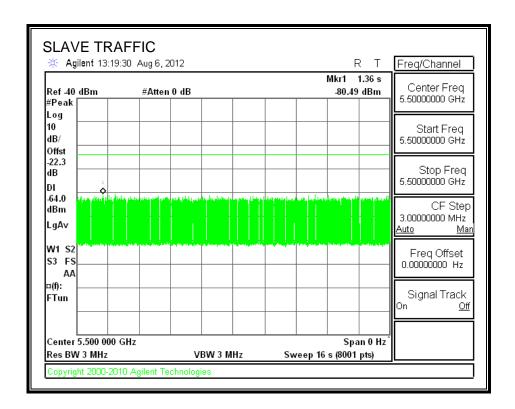
The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The software installed in the access point is 12.4(25d)JA1.


11.2. CLIENT MODE RESULTS FOR 20 MHz BANDWIDTH

11.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.

11.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

11.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

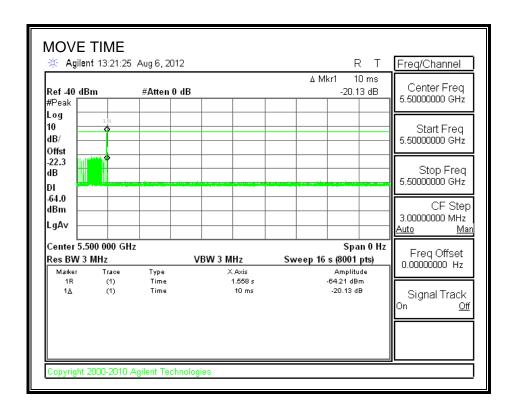
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

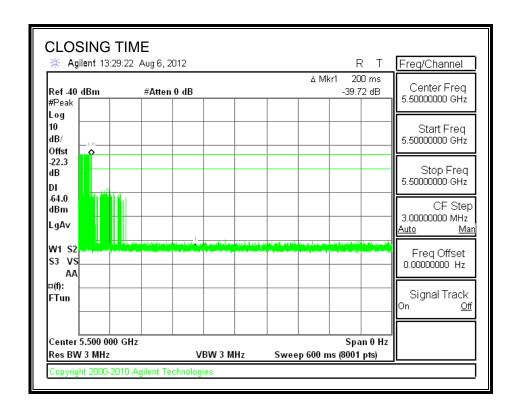
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

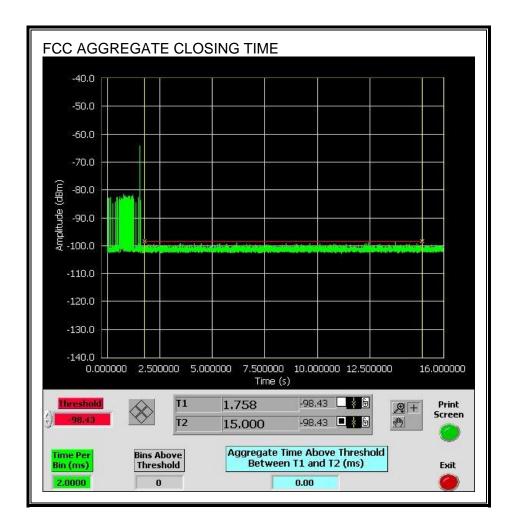

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

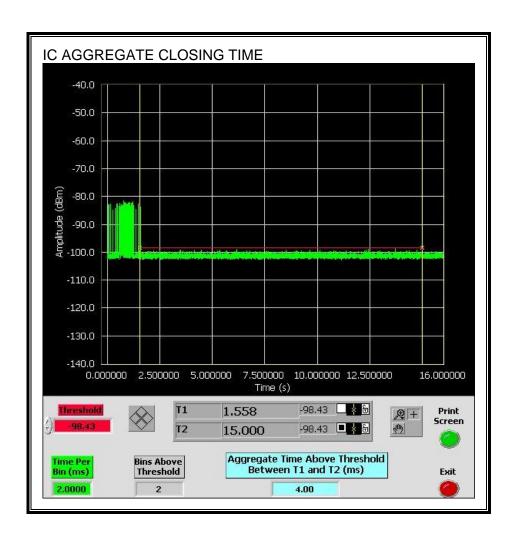

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.010	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	4.0	260

MOVE TIME



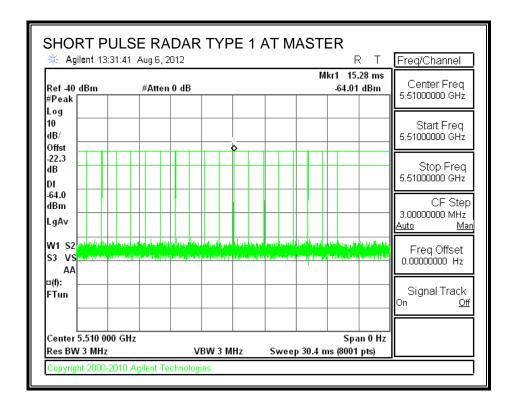
CHANNEL CLOSING TIME



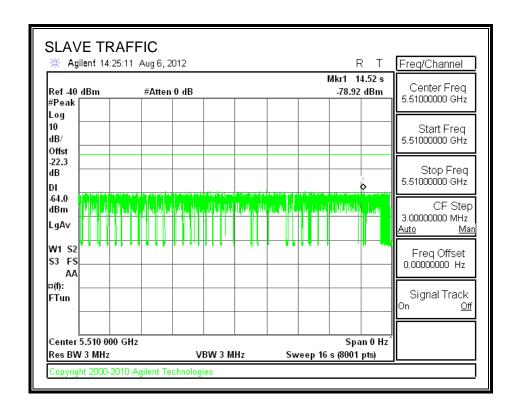
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Only intermittent transmissions are observed during the IC aggregate monitoring period.


11.3. CLIENT MODE RESULTS FOR 40 MHz BANDWIDTH

11.3.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5510 MHz.

11.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

11.3.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

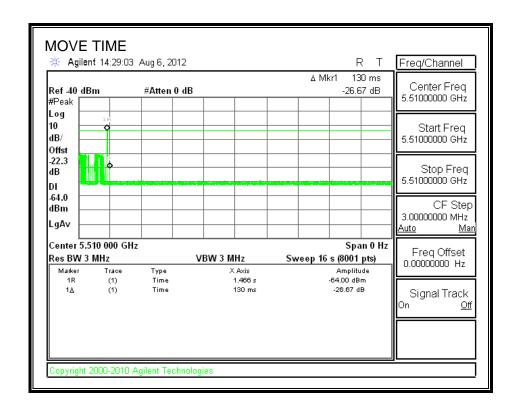
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

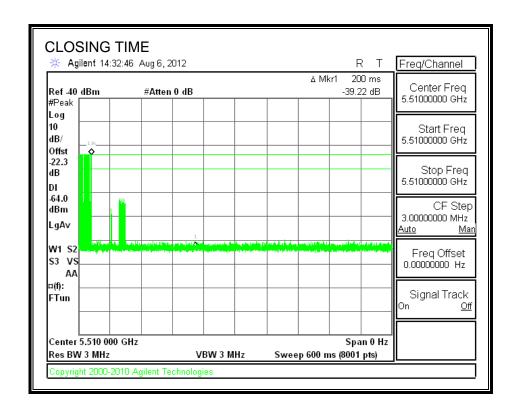
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

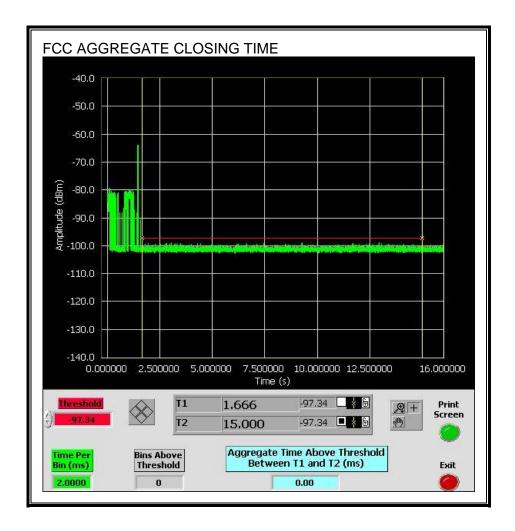

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

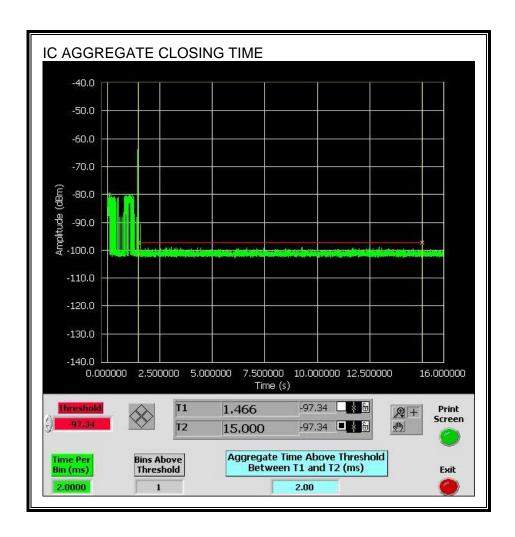

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.130	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	2.0	260

MOVE TIME

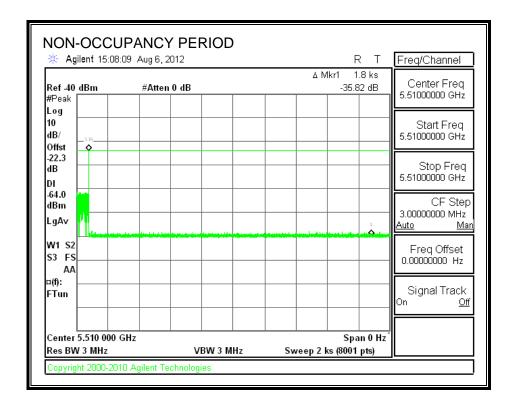


CHANNEL CLOSING TIME



AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

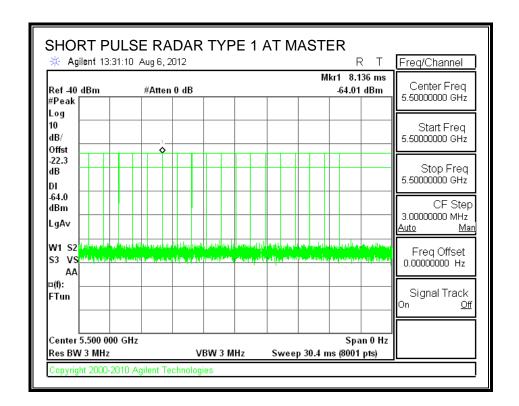
No transmissions are observed during the FCC aggregate monitoring period.


Only intermittent transmissions are observed during the IC aggregate monitoring period.

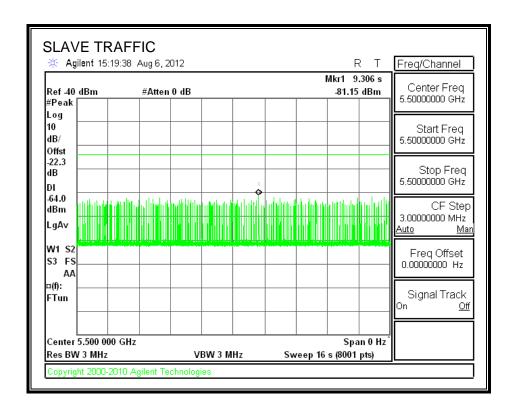
11.3.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.


11.4. CLIENT-TO-CLIENT COMMUNICATIONS MODE RESULTS FOR 20 MHz BANDWIDTH

11.4.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.

11.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

TRAFFIC

11.4.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

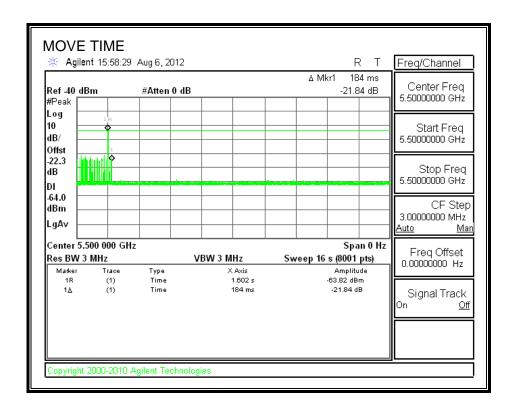
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

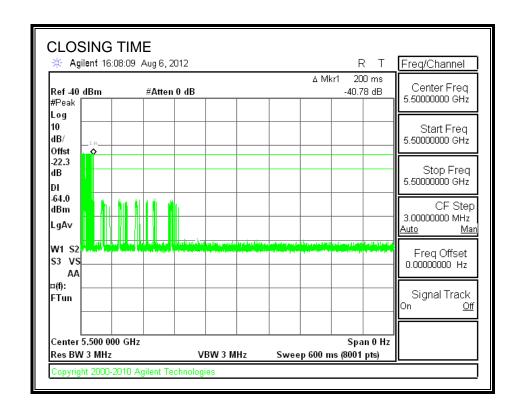
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

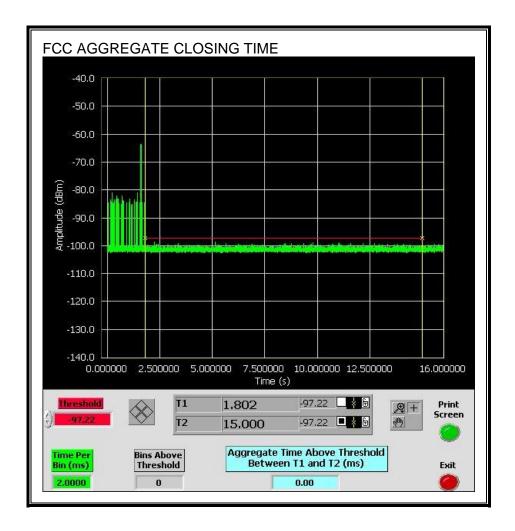

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

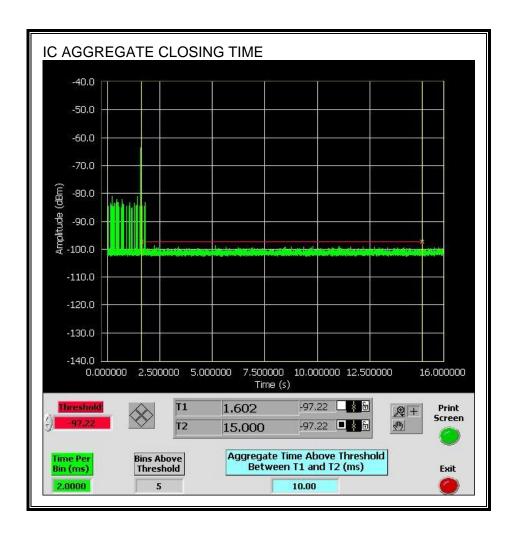

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.184	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	10.0	260

MOVE TIME



CHANNEL CLOSING TIME



AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Only intermittent transmissions are observed during the IC aggregate monitoring period.

