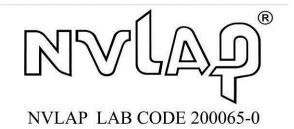


FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE 1528:2003 RSS-102 Issue 4, March 2010 IEC 62209-2:2010

SAR EVALUATION REPORT

For Apple iPad


MODEL: A1403 FCC ID: BCGA1403 IC: 579C-A1403

REPORT NUMBER: 11U13938-7B1

ISSUE DATE: February 13, 2012

Prepared for APPLE INC. 1 INFINITE LOOP, MS 26A CUPERTINO, CA 95014-2084

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
А	December 21, 2011	Initial Issue	
В	January 23, 2012	Added additional test for Top edge/Rear corner at 41° configuration	Devin Chang
B1	February 13, 2012	Added another footnote under Section 13.8 per FCC's request	Sunny Shih

Page 2 of 113

Table of Contents

1.	Attestation of Test Results				
2.	Te	est Methodology	7		
3.	Fa	acilities and Accreditation	7		
4.	C	alibration and Uncertainty	8		
	4.1.	Measuring Instrument Calibration	8		
	4.2.	Measurement Uncertainty	9		
5.	E	quipment Under Test	. 10		
	5.1.	KDB 941225 D05 SAR for LTE Devices v01			
	5.2.	Personal Hotspot Mode	. 13		
	5.3.	Description of Antennas	. 13		
	5.4.	Simultaneous Transmission Conditions	. 14		
6.	Pı	roximity Sensor Operation	. 17		
	6.1.	Description	. 17		
	6.2.	Test and Calibration of the Proximity Sensor	. 17		
	6.3.	Proximity Sensor Detection Area	. 17		
	6.4.	Coverage at the Corner of the DUT	. 18		
	6.5.	Special Development Software	. 19		
	6.6.	Power Reduction Values	. 19		
7.	R	F Output Power Measurement	33		
	7.1.	GSM	. 33		
	7.2.	UMTS (WCDMA)	. 34		
	7.3.	CDMA	. 40		
	7.4.	LTE	. 41		
	7.5.	Wi-Fi	. 43		
	7.6.	Bluetooth	. 44		
8.	S	ystem Specifications	45		
9.	C	omposition of Ingredients for Tissue Simulating Liquids	. 46		
1()	Liquid Parameters	47		
	10.1	-			
4.4					
11		SAR Measurement Procedure			
12	2.	System Verification	56		
		Page 3 of 113			
		LIANCE CERTIFICATION SERVICES (UL CCS) BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.			

12.1	1. System Check Results	57
13.	SAR Test Results	59
13.1	1. GSM850	59
13.2	2. GSM1900	60
13.3	3. UMTS (WCDMA) Band V	61
13.4	4. UMTS (WCDMA) Band II	62
13.5	5. CDMA BC0	63
13.6	5. CDMA BC1	
13.7	7. LTE Band 13	65
13.8	8. WiFi (802.11abgn)	67
14.	Summary of Highest 1g SAR	69
15.	Worst-case SAR Plots	70
16.	Simultaneous Transmission SAR Analysis	100
16.1	-	
16.2		
16.3		
16.4		
17.	Appendixes	104
17.1		
17.2	2. SAR test plots for GSM850	
17.3	3. SAR test plots for GSM1900	
17.4	4. SAR test plots for UMTS Band V	
17.5	5. SAR test plots for UMTS Band II	104
17.6	6. SAR test plots for CDMA BC0	104
17.7	7. SAR test plots for CDMA BC1	104
17.8	8. SAR test plots for LTE Band 13	104
17.9	9. SAR test plots for WiFi 2.4 GHz	104
17.1	10. SAR test plots for WiFi 5 GHz Bands	104
17.1	11. Calibration certificate for E-Field Probe EX3DV4 SN 3686	104
17.1	12. Calibration certificate for E-Field Probe EX3DV4 SN 3749	104
17.1	13. Calibration certificate for D750V3 SN 1019	104
17.1	14. Calibration Certificate for D835V2 SN 4d117	104
17.1	15. Calibration certificate for D1900V2 SN 5d140	104
17.1	16. Calibration certificate for D2450V2 SN: 706 with extended cal. Data	104
17.1	17. Calibration certificate for D5GHzV2 SN 1003 Page 4 of 113	104
	LIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CO	
4/1/3	BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (51 This report shall not be reproduced except in full, without the written approval of UL	0) 661-0888 CCS.

DATE: February 13, 2012 IC: 579C-A1403	REPORT NO: 11U13938-7B1 FCC ID: BCGA1403	
	Summary of Test Configurations	18.
	.1. Exposure conditions for WWAN and LTE	18.
	.2. Exposure conditions for WiFi	18.
	Antenna Locations & Separation Distances	19.
	WWAN & LTE Setup Photos	20.
111	WiFi Setup Photos	21.
	External Photos	22.

Page 5 of 113

1. Attestation of Test Results

Applicant:	APPLE INC.			
EUT description:	support, and video),	del A1403 is a tablet device with iPod functions (music, app 802.11a/b/g/n radio, Bluetooth radio functions, and cellular /LTE data radio functions		
Model number:	A1403			
Device category:	Portable			
Exposure category:	General Population/	Jncontrolled Exposure		
Date tested:	October 10 – Novem	ber 30, 2011 and January 10, 2012		
FCC Rule Parts	Freq. Range [MHz]	Highest 1-g SAR (W/kg)	Limit (W/kg)	
22H	824-849	1.19 W/kg (Body_ Rear w/ 0 mm distance)		
24E	1850-1910	1.18 W/kg (Body_ Rear w/ 0 mm distance)		
27 (LTE Band 13)	777-787 1.19 W/kg (Body_ Rear w/ 0 mm distance)			
15.247	2412-2462	1.19 W/kg (Body_ Bottom w/ 0 mm distance)	1.6	
15.247	5725-5850	1.15 W/kg (Body_ Bottom w/ 0 mm distance)	1.0	
	5150-5250	0.50 W/kg (Body_ Bottom w/ 0 mm distance)		
15.407	5250-5350	1.12 W/kg (Body_ Bottom w/ 0 mm distance)		
	5500-5700	1.08 W/kg (Body_ Bottom w/ 0 mm distance)		
Applicable Standards Test Results				

FCC OET Bulletin 65 Supplement C 01-01, IEEE 1528:2003, RSS-102 Issue 4, March 2010 and IEC 62209-2:2010 Pass

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Sunay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

Town Char

Devin Chang SAR Engineer Compliance Certification Services (UL CCS)

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE 1528:2003, RSS-102 Issue 4, March 2010, IEC 62209-2:2010 and the following KDB Test Procedures.

- 447498 D01 Mobile Portable RF Exposure v04
- 941225 D01 SAR test for 3G devices v02
- o 941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01
- 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- o 941225 D05 SAR for LTE Devices v01
- o 248227 D01 SAR meas for 802 11abg v01r02
- 865664 SAR 3 to 6 GHz Rev SAR measurement procedures for transmitters operating in the 3 to 6 GHz range
- Power Reduction by Sensing (April/October 2011 TCB Workshop SAR Updates)

Testing is performed per FCC's guidance KDB # 303789.

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 7 of 113

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Turne/Medial	Carial Na	Serial No.		. Due date	
Name of Equipment	Manufacturer	nufacturer Type/Model	Senai no.	MM	DD	Year	
Dielectronic Probe kit	HP	85070C	N/A			N/A	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3749	12	13	2011	
E-Field Probe	SPEAG	EX3DV4	3686	1	24	2012	
Thermometer	ERTCO	639-1S	1718	7	19	2012	
Data Acquisition Electronics	SPEAG	DAE3	500	7	14	2012	
Data Acquisition Electronics	SPEAG	DAE4	1259	5	3	2012	
System Validation Dipole	SPEAG	D750V3	1019	12	16	2011	
System Validation Dipole	SPEAG	D835V2	4d117	4	15	2012	
System Validation Dipole	SPEAG	D1900V2	5d140	4	18	2012	
System Validation Dipole	SPEAG	*D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	D5GHzV2	1003	8	23	2012	
Power Meter	HP	437B	3125U16345	5	13	2012	
Power Sensor	HP	8481A	2702A60780	5	13	2012	
Radio Communication Tester	R&S	CMU200	838114/032	3	1	2012	
Radio Communication Tester	R&S	CMW500	20-316567	12	17	2011	
Amplifier	MITEQ	4D00400600-50-30P	1620606			N/A	
Directional coupler	Werlatone	C8060-102	2141			N/A	

Notes:

*Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement. (See Appendix "18.16_Calibration Certificate Validation Dipole D2450V2 SN 706" with extended cal. data)
- 4. Impedance is within 5Ω of calibrated measurement (See Appendix "18.16_Calibration Certificate Validation Dipole D2450V2 SN 706" with extended cal. data)

Page 8 of 113

4.2. Measurement Uncertainty

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System			DIVISOI	Constituty	0 (74), 70
Probe Calibration (k=1)	5.50	Normal	1	1	5.50
Axial Isotropy		Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94
Boundary Effect		Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related				ſ	
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	-4.92	Normal	1	0.64	-3.15
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement uncertainty	-4.13		1	0.6	-
		Combined Standard		nty Uc(y) =	
Expanded Uncertainty U, Covera	ige Factor	= 2, > 95 % Confid	dence =	20.51	%
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.62 dB					dB
Measurement uncertainty for 3 to 6 GHz averaged over 1 gram					

Measurement uncertainty for 3 to 6 GHz averaged over 1 gram					
Component	error, %	Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1)	6.55	Normal	1	1	6.55
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	1.00	Normal	1	1	1.00
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	3.90	Rectangular	1.732	1	2.25
Test Sample Related					
Test Sample Positioning	1.10	Normal	1	1	1.10
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	4.80	Normal	1	0.64	3.07
Liquid Permittivity - deviation from target	10.00	Rectangular	1.732	0.6	3.46
Liquid Permittivity - measurement uncertainty	-4.44	Normal	1	0.6	-2.66
Combined Standard Uncertainty Uc(y), %:					11.21
Expanded Uncertainty U, Cover	rage Factor =	= 1.96, > 95 % Con	fidence =	21.98	%
Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 1.73					dB

Page 9 of 113

5. Equipment Under Test

The Apple iPad, Model A1403 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the CDMA/GSM 2G/3G/LTE data radio functions Model: A1403

Normal operation:	Body and Wireless Router (Hotspot)
Antenna-to-antenna and antenna-to-edges' separation distances:	Please refer to Section 19 Antenna Locations & Separation Distances
Proximity Sensor for Power Reduction:	 There is no proximity sensor for power reduction for WiFi/BT Antenna. The proximity sensor for power reduction is applied to Primary Cellular Antenna only. Trigger Distance: 0 0-11 mm from Rear, 0 0-14 mm from Top-edge of device.
Simultaneous Transmission:	 WWAN Radio (CDMA/EVDO/GPRS/EGPRS/UMTS/LTE) can transmit simultaneously with WiFi/BT Radio. WiFi 2.4GHz Radio cannot transmit simultaneously with Bluetooth Radio. WiFi 5GHz Radio can transmit simultaneously with Bluetooth Radio. Due to Bluetooth's maximum output is < 60/f(GHz) mW and standalone SAR is not required, Bluetooth is not considered as co-located transmitters with other radio. Bluetooth's max. output power: 15.49 mW.

Page 10 of 113

5.1. KDB 941225 D05 SAR for LTE Devices v01

Item D	Description	Information				
	dentify the operating frequency range of each _TE transmission band used by the device	Band 13: Tx: 777 – 787 MHz; Rx: 746 – 756 MHz				
	dentify the channel bandwidths used in each requency band; 1.4, 3, 5, 10, 15, 20 MHz etc	5 MHz, 10 MHz				
	dentify the high, middle and low (H, M, L)			Channel	Bandwidth	
	channel numbers and frequencies in each LTE	Band 13) MHz		ЛНz
	requency band		Ch. # / I	Freq. (MHz)		req. (MHz)
		Low		- /		/ 779.5
		Mid	2323	0 / 782.0		/ 782.0
		High			23255	/ 784.5
	Specify the UE category and uplink modulations used	UE Category: 3 Uplink Modulatio				
ir s o s	Descriptions of the LTE transmitter and antenna mplementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc.	A Single antenn (CDMA/EVDO/G				
	dentify the LTE voice/data requirements in	Data Only devic	e.			
	each operating mode and exposure condition	Exposure Condi				
	with respect to head and body test	 Body – Rear, Bottom, Left-edge, Top-edge, and Right-edge of the 				
	configurations, antenna locations, handset flip-			ance of 0 cm fro		
	cover or slide positions, antenna diversity			ower back-off d		
	conditions, etc.		-	he separation of		mm to the flat
Ŭ		phanto				
		o Top-ed	ge of the DU [.]	T at the separat	tion distance o	f 14 mm to
		 Top-edge of the DUT at the separation distance of 14 mm to the flat phantom. 				
		 Top-edge/Right Corner of the DUT at the separation angle of 				
			rees to the fla		•	c
7 lo	dentify if Maximum Power Reduction (MPR) is	As per 3GPP 1	ΓS 36.101 v	10.3.0 (2011-0	09), Release	10.4
0	optional or mandatory, i.e. built-in by design: a)	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3				
	only mandatory MPR may be considered during SAR testing, when the maximum output power	Modulation	Channel bandv	vidth / Transmission	bandwidth (RB)	MPR (dB)
	s permanently limited by the MPR implemented	1	.4 3.0	5 10	15 20	—
	within the UE; and only for the applicable RB		Hz MHz	MHz MHz	MHz MH	
	resource block) configurations specified in LTE		5 > 4 5 ≤ 4	>8 >12 ≤8 ≤12	> 16 > 18 $\le 16 \le 18$	
	standards b) A-MPR (additional MPR) must be disabled.		5 >4	>8 >12	> 16 > 18	
		MPR is perma	nently built-i	in by design.		
		A-MPR is supp	ported by de	sign, but is di	sabled for SA	R testing.
		A-MPR is disa	bled, by usii	ng Network Se	etting value c	f NS_01.
8 Ir	nclude the maximum average conducted	Refer to sectio	n 7.4			
	output power measured on the required test					
с	channels for each channel bandwidth and UL					
n	modulation used in each frequency band:					
а	a) with 1 RB allocated at the upper edge of a					
_	channel					
		1				
	b) with 1 RB allocated at the lower edge of a					
b	b) with 1 RB allocated at the lower edge of a channel					
b c c	-					

Page 11 of 113

KDB 941225 D05 SAR for LTE Devices v01 (Continued)

	41225 D05 SAR IOI LTE Devices VOT	<u>, </u>	nation			
Item	Description					
9	Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc),	Band	Transmit Frequencies			
	device/exposure configurations (head and	Cellular Band	824 – 849 MHz			
	body, antenna and handset flip-cover or	US PCS Band	1850 – 1910 MHz			
	slide positions, antenna diversity conditions	802.11a/b/g/n	2412 – 2472 MHz			
	etc.) and frequency bands used for these	662.11a/6/g/11	5150 – 5850 MHz			
	modes	Bluetooth	2402 – 2480 MHz			
		Mode	Uplink Modulations			
		CDMA 1xRTT	QPSK			
		EVDO Rev. 0, Rev. A	QPSK			
		GPRS/EGPRS	GMSK, 8PSK			
		UMTS Rel 99	BPSK, QPSK			
		HSDPA (Rel 7, CAT 14)	BPSK, QPSK			
		HSUPA (Rel 6, CAT 6)	BPSK, QPSK			
		DC-HSDPA (Rel 8, CAT 24)	BPSK, QPSK			
		HSPA+ (Rel 6, CAT 6)	BPSK, QPSK			
		802.11a/b/g/n	DSSS CCK, OFDM			
		Bluetooth 4.0 LE	DQPSK, 8DPSK, GFSK			
		Data Only device.				
		Exposure Conditions:				
			Fop-edge, and Right-edge of the DUT			
		 at a separation distance of 0 cm f With Proximity Sensor Power bac 	-			
		-	he separation distance of 11 mm to the			
		flat phantom.				
		 Top-edge of the DUT at the separation distance of 14 mm to the 				
		flat phantom.				
		• Top-edge/Right Corner of the DUT at the separation angle of 15				
		degrees to the flat phantom				
10	Include the maximum average conducted	Refer to section 7.1, 7.2, 7.3, 7.5 and	7.6			
	output power measured for the other					
	wireless mode and frequency bands					
11	Identify the simultaneous transmission	WWAN Radio (CDMA/EVDO/GPF	RS/EGPRS/UMTS/ LTE) can transmit			
	conditions for the voice and data	simultaneously with WiFi/BT Radi				
	configurations supported by all wireless	WiFi 2.4GHz Radio cannot transm	nit simultaneously with Bluetooth			
	modes, device configurations and	Radio.				
	frequency bands, for the head and body	 WiFi 5GHz Radio can transmit sin 	nultaneously with Bluetooth Radio.			
	exposure conditions and device operating configurations (handset flip or cover					
	positions, antenna diversity conditions etc.)					
12	When power reduction is applied to certain	Yes. A Proximity sensor for cellular po	wer reduction is implemented in the			
	wireless modes to satisfy SAR compliance	device to address RF exposure compl				
	for simultaneous transmission conditions,	positioned close to the user's body or				
	other equipment certification or operating					
	requirements, include the maximum					
	average conducted output power measured					
	in each power reduction mode applicable to the simultaneous voice/data transmission					
	configurations for such wireless					
	configurations and frequency bands; and					
		1				
1	also include details of the power reduction					

Page 12 of 113

KDB 941225 D05 SAR for LTE Devices v01 (Continued)

Item	Description	Information
13	Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission	The transmit power cap normally enabled by the proximity sensor, can be disabled by using a series of test commands which are only available in development software. The software provided on production units will not allow the proximity sensor or the power cap to be disabled.
14	When appropriate, include a SAR test plan proposal with respect to the above	Included in the KDB 303789
15	If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations	Not applicable

5.2. Personal Hotspot Mode

The device is capable of personal hotspot mode. The hotspot mode can be enabled by the users by the following this sequence of soft-keys; Settings > General > Network > Enable Personal Hotspot.

WiFi Hotspot mode permits the device to share its cellular data connection with other 2.4 GHz WiFi-enabled devices (channels 1 - 11). WiFi Hotspot mode is not supported in 5.0 GHz WiFi band.

As the tablet has a diagonal size of greater than 20 cm, and in accordance with FCC training provided in October 2011 (TCBC Workshop) hot spot SAR is not required for this device.

5.3. **Description of Antennas**

The device has two cellular antennas located on the top-edge of the device. The Primary Cellular Antenna is located on the top-edge of the device on the right side of the front camera and to the left side of the power button. The Secondary Cellular Antenna is located on the top-edge of the device, on the left side of the front camera.

The Primary Antenna is, by design, capable of cellular transmission and reception, and the Secondary Antenna is only capable of cellular reception only. WiFi 2.4GHz cannot transmit simultaneously with Bluetooth. WiFi 5.0GHz can transmit simultaneously with Bluetooth.

Antenna	Antenna Use	Antenna Type	Transmit/Receive	Tx Bands
1	Primary	PIFA	Transmit and Receive	777 – 787 MHz, 824 – 849 MHz, 1850 – 1910 MHz
2	Secondary	PIFA	Receive Only	
3	WiFi/BT	PIFA	802.11a/b/g/n, Bluetooth.	2400 - 2485 MHz, 5150 - 5350 MHz, 5500 - 5700 MHz, 5725 - 5850 MHz

Page 13 of 113

5.4. Simultaneous Transmission Conditions

This device is capable of transmitting simultaneously in certain allowed configurations. These configurations are defined in this section.

The primary cellular antenna can transmit simultaneously with the WiFi/Bluetooth Antenna.

Bluetooth and 2.4GHz WiFi time-share the same antenna and cannot transmit simultaneously. 5.0 GHz WiFi can transmit simultaneously with Bluetooth.

The Wireless Router (hotspot) permits the device to share its cellular data connection with other 2.4 GHz WiFi-enabled devices (channels 1 - 11). WiFi Hotspot mode is NOT supported in 5 GHz WiFi band.

DTM and SVLTE are NOT supported features on this device in any mode.

WWAN & LTE + WiFi

sage	SAR Test distance		Mode of Operation			CDMA 1xRTT	GPRS/ EGPRS	А	đ	T	-	iDPA	WiFi 2.4 GHz	5.0 GHz	GHz
Jser usage	AR T	Mode	lode	Band	Ë	DMA	PRS	WCDMA	HSDPA	HSUPA	HSPA+	DC-HSDPA	/iFi 2	WiFi 5	BT 2.4GHz
\supset	S	Σ	LTE ^{a1}	<u>m</u> 782	Yes	No	No	≤ No	<u> </u>	エ No	エ No	No	5	≤ No	No
			CDMA 1xRTT ^{b1}	835	No	Yes	No	No	No	No	No	No		No	No
			CDMA 1xRTT ^{b1}	1900	No	Yes	No	No	No	No	No	No		No	No
			GPRS ^{c1}	850	No	No	Yes	No	No	No	No	No		No	No
		ΪŢ	GPRS ^{c1}	1900	No	No	Yes	No	No	No	No	No		No	No
		2.4GHz WiFi	WCDMA ^{d1}	835	No	No	No	Yes	No	No	No	No		No	No
	eq	ΉÐ	WCDMA ^{d1}	1900	No	No	No	Yes	No	No	No	No		No	No
	0cm, Conservative distance with power back-off disabled	2.4(HSDPA ^{e1}	835	No	No	No	No	Yes	No	No	No	Yes	No	No
	dis	+	HSDPA ^{e1}	1900	No	No	No	No	Yes	No	No	No		No	No
	-off	Cellular +	HSUPA ^{f1}	835	No	No	No	No	No	Yes	No	No		No	No
	ack	Cell	HSUPA ^{f1}	1900	No	No	No	No	No	Yes	No	No		No	No
	r ba	0	HSPA+ ^{g1}	835	No	No	No	No	No	No	Yes	No		No	No
	awe		HSPA+ ^{g1}	1900	No	No	No	No	No	No	Yes	No		No	No
ъ	od r		DC-HSDPA ^{h1}	835	No	No	No	No	No	No	No	Yes		No	No
SA	witł		DC-HSDPA ^{h1}	1900	No	No	No	No	No	No	No	Yes		No	No
Body SAR	ce		LTE ^{a1}	782	Yes	No	No	No	No	No	No	No	No		No
щ	itan		CDMA 1xRTT ^{b1}	835	No	Yes	No	No	No	No	No	No	No		
	dis		CDMA 1xRTT ^{b1}	1900	No	Yes	No	No	No	No	No	No	No		No
	tive		GPRS ^{c1}	850	No	No	Yes	No	No	No	No	No	No		No
	Na	5.0GHz WiFi	GPRS ^{c1}	1900	No	No	Yes	No	No	No	No	No	No		No
	Jse	↓z \	WCDMA ^{d1}	835	No	No	No	Yes	No	No	No	No	No		No
	Cor	ъ	WCDMA ^{d1}	1900	No	No	No	Yes	No	No	No	No	No		No
	,		HSDPA ^{e1}	835	No	No	No	No	Yes	No	No	No	No	Yes	No
	00	ar +	HSDPA ^{e1}	1900	No	No	No	No	Yes	No	No	No	No		No
		Cellular +	HSUPA ^{f1}	835	No	No	No	No	No	Yes	No	No	No		No
		Cel	HSUPA ^{f1}	1900	No	No	No	No	No	Yes	No	No	No		No
			HSPA+ ^{g1}	835	No	No	No	No	No	No	Yes	No	No		No
			HSPA+ ^{g1}	1900	No	No	No	No	No	No	Yes	No	No		No
			DC-HSDPA ^{h1}	835	No	No	No	No	No	No	No	Yes	No		No
			DC-HSDPA ^{h1}	1900	No	No	No	No	No	No	No	Yes	No		No

Page 14 of 113

Cellular + Bluetooth and Cellular + WiFi + Bluetooth

001	aiui		nuelooth and C	Jenaiai		1 Dide									
User usage	SAR Test distance	Mode	Mode of Operation	Band	ГТЕ	CDMA 1×RTT	GPRS/ EGPRS	WCDMA	HSDPA	VANSH	HSPA+	DC-HSDPA	WiFi 2.4 GHz	WiFi 5.0 GHz ^{it}	BT 2.4GHz ^{ir}
			LTE ^{a1}	782	Yes	No	No	No	No	No	No	No	No	No	
			CDMA 1xRTT ^{b1}	835	No	Yes	No	No	No	No	No	No	No	No	
			CDMA 1xRTT ^{b1}	1900	No	Yes	No	No	No	No	No	No	No	No	
			GPRS ^{c1}	850	No	No	Yes	No	No	No	No	No	No	No	
		Ч	GPRS ^{c1}	1900	No	No	Yes	No	No	No	No	No	No	No	
		oot	WCDMA ^{d1}	835	No	No	No	Yes	No	No	No	No	No	No	
	л П	luet	WCDMA ^{d1}	1900	No	No	No	Yes	No	No	No	No	No	No	
	0cm, Conservative distance with power back-off disabled	+ Bluetooth	HSDPA ^{e1}	835	No	No	No	No	Yes	No	No	No	No	No	Yes
	disa	ılar	HSDPA ^{e1}	1900	No	No	No	No	Yes	No	No	No	No	No	
	off (Cellular	HSUPA ^{f1}	835	No	No	No	No	No	Yes	No	No	No	No	
	-Å	0	HSUPA ^{f1}	1900	No	No	No	No	No	Yes	No	No	No	No	
	r ba		HSPA+ ^{g1}	835	No	No	No	No	No	No	Yes	No	No	No	
	owe		HSPA+ ^{g1}	1900	No	No	No	No	No	No	Yes	No	No	No	
Ц	bd r		DC-HSDPA ^{h1}	835	No	No	No	No	No	No	No	Yes	No	No	
SA	with		DC-HSDPA ^{h1}	1900	No	No	No	No	No	No	No	Yes	No	No	
Body SAR	ЭС		LTE ^{a1}	782	Yes	No	No	No	No	No	No	No	No		
В	star		CDMA 1xRTT ^{b1}	835	No	Yes	No	No	No	No	No	No	No		
	e di	oth	CDMA 1xRTT ^{b1}	1900	No	Yes	No	No	No	No	No	No	No		
	ative	etoc	GPRS ^{c1}	850	No	No	Yes	No	No	No	No	No	No		
	erva	+ Bluetooth	GPRS ^{c1}	1900	No	No	Yes	No	No	No	No	No	No		
	suo	+	WCDMA ^{d1}	835	No	No	No	Yes	No	No	No	No	No		
	Ŭ	NiF	WCDMA ^{d1}	1900	No	No	No	Yes	No	No	No	No	No		
	CC	Ϋ́	HSDPA ^{e1}	835	No	No	No	No	Yes	No	No	No	No	Yes	Yes
	0	5.0GHz WiFi	HSDPA ^{e1}	1900	No	No	No	No	Yes	No	No	No	No		
		+ 5.	HSUPA ^{f1}	835	No	No	No	No	No	Yes	No	No	No		
		llar .	HSUPA ^{f1}	1900	No	No	No	No	No	Yes	No	No	No		
1		Cellular +	HSPA+ ^{g1}	835	No	No	No	No	No	No	Yes	No	No		
		U U	HSPA+ ^{g1}	1900	No	No	No	No	No	No	Yes	No	No		
			DC-HSDPA ^{h1}	835	No	No	No	No	No	No	No	Yes	No		
			DC-HSDPA ^{h1}	1900	No	No	No	No	No	No	No	Yes	No		

Notes:

- a1 Per KDB 941225 D05 SAR for LTE Devices v01,
 - Since, the SAR value is less than 1.45 W/kg, SAR for 100% RB allocation and QPSK modulation is not evaluated. See test results in section 7.4.
 - SAR evaluation for 5MHz channel bandwidth is not performed, because the maximum average conducted output power of a 5 MHz channel bandwidth is within 0.5 dB of the average conducted output power measured for the 10 MHz channel bandwidth. See conducted power results in section 7.4. Additionally, the SAR for 10 MHz channel bandwidth for all RB configurations is less than 1.45 W/kg. See test results in section 13.7.
- b1 Per KDB941225 D01 SAR test for 3G devices v02, Body SAR evaluation for Primary antenna is performed in RC3/SO32 only.
 - Body SAR for multiple code channel (FCH+SCH) is not required since the output power is not 1/4 dB higher than RC3/SO32. Also, see conducted power results in section 7.3.
- c1 Per KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE vo1,
 - Refer to conducted power results in section 7.1.

Page 15 of 113

- d1 Per KDB 941225 D01 SAR Test for 3G devices v02, SAR for body exposure configurations in data modes is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". Also, see conducted power results in section 7.2.
- e1 Per KDB 941225 D01 Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Also, see conducted power results in section 7.2.
- f1 Per KDB 941225 D01 Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than ¼ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Also, see conducted power results in section 7.2.
- g1 –In HSPA+ implementation of this device, 16QAM is not used for uplink. The uplink Category and release number is same as HSUPA, i.e., CAT 6 Rel 6. Therefore, Body SAR is evaluation is not required. Also see note f1.
- h1 In DC-HSDPA implementation of this device, the uplink parameters are the same as HSDPA. No additional channels and modulations (16 QAM, and 64 QAM) are supported in uplink. The difference is only in the downlink parameters, where two carriers are supported. HSDPA settings were used on uplink.

i1 – 5.0 GHz WiFi can transmit simultaneously with Bluetooth.

6. Proximity Sensor Operation

A Proximity sensor for power reduction is implemented in this device to address RF exposure compliance when the cellular antenna is positioned close to the user's body. The sensor mechanical structure is designed to fit within the enclosure design used in this device and also extended around the edge and top of the antenna element in order to optimize sensitivity in these orientations. This design combines the antenna and proximity sensor into a single FPC (Flexible Printed Circuit).

6.1. Description

The device, model A1403, utilizes a capacitive proximity sensor built into the plastic area that houses the cellular radio antenna. This area can be found on the top edge and the front/Rears of the device, when the device is oriented in the portrait orientation and the I/O port is at the bottom. The purpose of the proximity sensor is to cap the transmitter output power when the device's cellular antenna is proximate to the human body.

For design and testing purposes Top-Edge, Front Surface, and Rear are chosen as the dimensions of interest. The minimum detection distances for these dimensions are: 14 mm (Top-Edge), 14mm (Front), and 11 mm (Rear)

6.2. Test and Calibration of the Proximity Sensor

Every unit from the production line is calibrated and tested to ensure that its operation meets or exceeds the expected detection sensitivity and performance.

An expected capacitance range is programmed in each device, and if the measured capacitance is outside the range during operation of the device, the proximity sensor is triggered and transmits power is capped.

Certain objects may trigger the transmitter output power cap at greater distances. The transmitter output power is capped at different levels depending on the cellular band and modulation in operation.

6.3. Proximity Sensor Detection Area

The proximity sensor is combined with the primary antenna in a single FPC (Flexible Printed Circuit), therefore, the proximity sensor occupies the same area as the primary antenna.

Refer to section 19 for location of proximity sensor

The conservation distance at which proximity sensor is triggered when the

- Top-edge of the device is 14 mm from the phantom.
- Front of the device is 14 mm from the phantom.
- Rear of the device is 11 mm from the phantom.

The following tables show the proximity sensor status as a function of distance from the relevant surfaces of the device.

Proximity Sensor Status Table - Top Edge/Right edge mode in conservative Proximity Sensor Operation

Distance to Top-edge/Right edge of DUT (mm)	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00
Proximity Sensor Status	ON	ON	ON	ON	ON	OFF	OFF	OFF

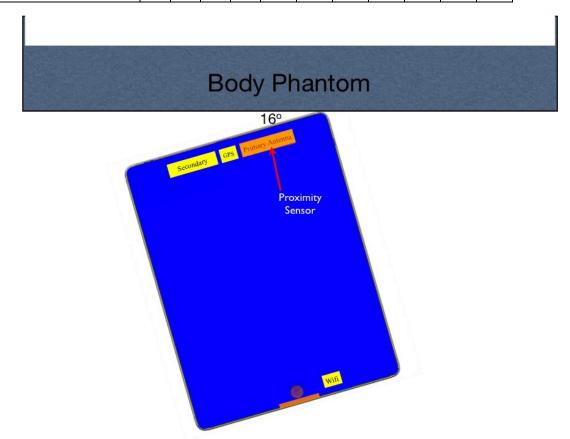
Proximity Sensor Status Table - Rear in conservative Proximity Sensor Operation

Distance to Rear of DUT (mm)	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00
Proximity Sensor Status	ON	ON	ON	ON	OFF	OFF	OFF	OFF

Page 17 of 113

Proximity Sensor Status Table – Front Surface in conservative Proximity Sensor Operation

Distance to Front Surface of DUT (mm)	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00
Proximity Sensor Status	ON	ON	ON	ON	ON	OFF	OFF	OFF


Since the primary antenna is 35.1mm from the edge of the device, additional testing is performed to evaluate the coverage of the proximity sensor detection area.

6.4. Coverage at the Corner of the DUT

To evaluate the proximity sensor coverage at the top right corner of the device, the angle at which proximity sensor stop triggering is determined. In this case, the conservative angle at which proximity sensor stops triggering is at 16°.

Proximity Sensor Status Table - Top Edge/Right corner in conservative Proximity Sensor Operation

Angle of Top-edge/Right corner of DUT (°)	0	5	10	15	16	20	25	30	35	40	45
Proximity Sensor Status	ON	ON	ON	ON	OFF						

Page 18 of 113

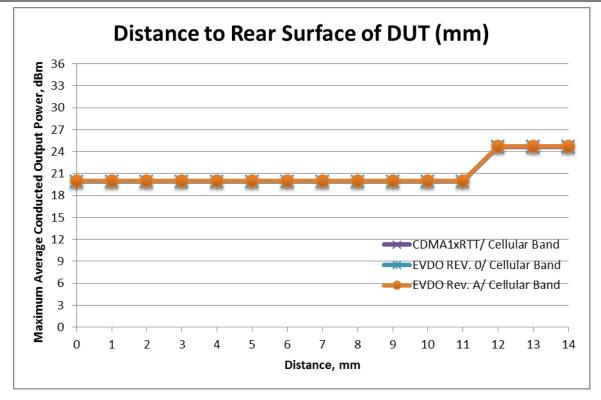
The proximity sensor coverage at the Rear Surface/Right-corner of the device is determined by changing the angle of the device relative to the phantom and observing the angle at which the proximity sensor is no longer triggered. In this case, the conservative angle at which proximity sensor stops triggering is at 20°.

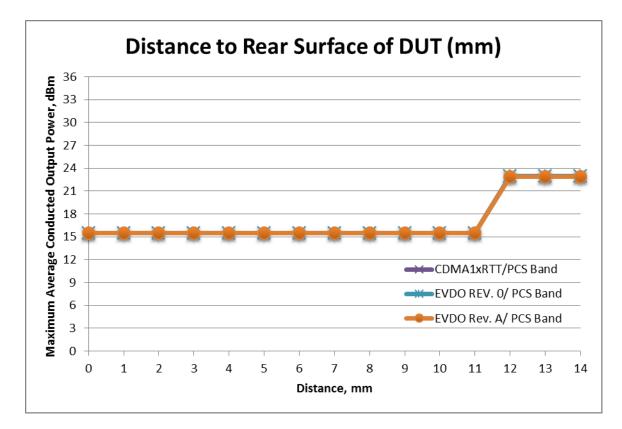
6.5. Special Development Software

During the 14 mm (Top-Edge), Rear (11mm), and 15° angle (0mm) SAR evaluations, the transmit power cap normally enabled by the proximity sensor, was disabled using a series of test commands which are only available in development software. The proximity sensor or the power reduction can't be intentionally or unintentionally turned-off by the user. The software provided on production units will not allow the proximity sensor or the power cap to be disabled.

6.6. Power Reduction Values

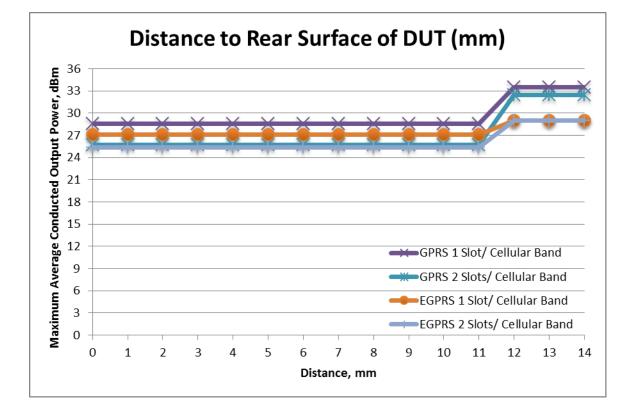
The measured power reduction in each air-interface is listed below. The power reduction values are same for Top-edge, Front and Rear.

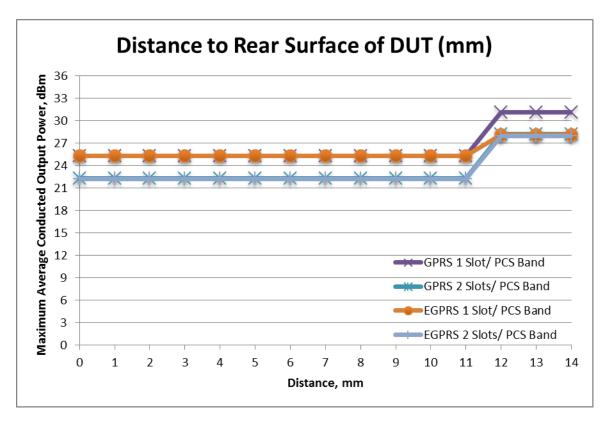

The following tables show the power vs distance plots for

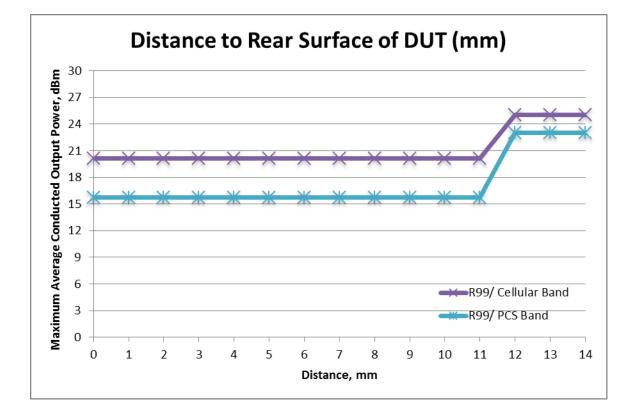

Rear_

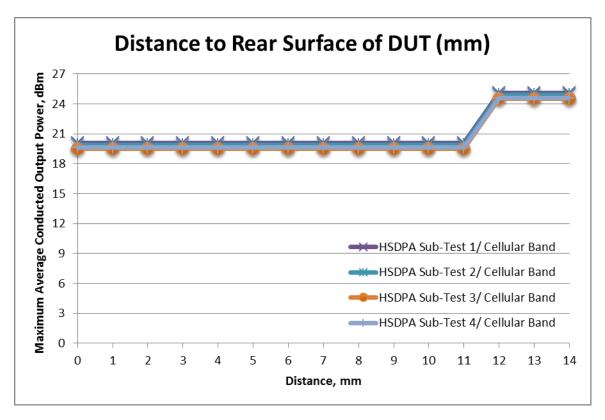
Top Edge

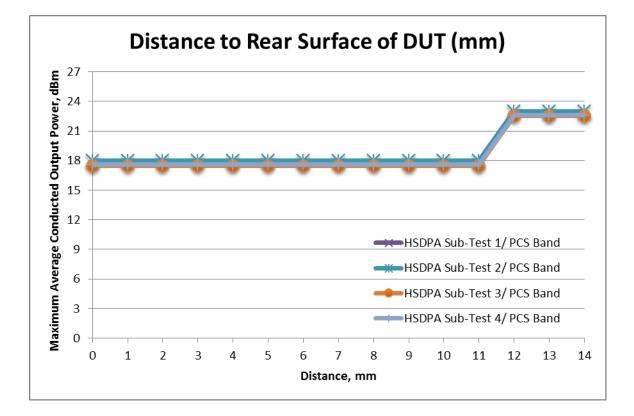
of the DUT with the proximity sensor enabled.

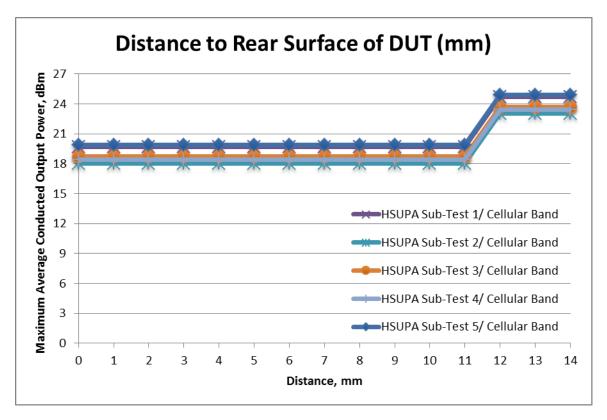

Page 19 of 113

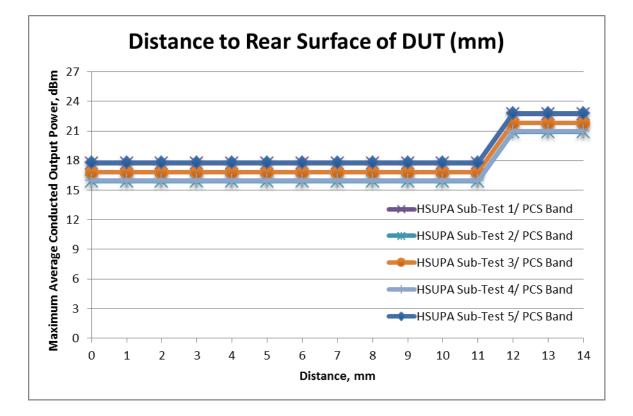


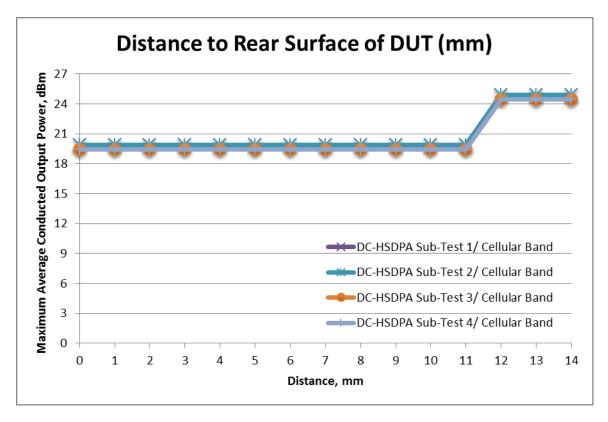

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

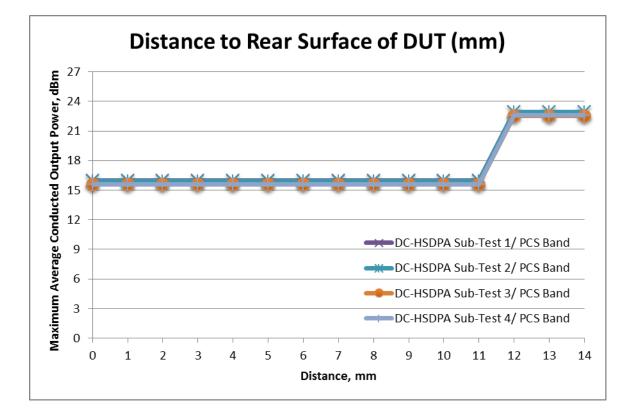

Page 20 of 113

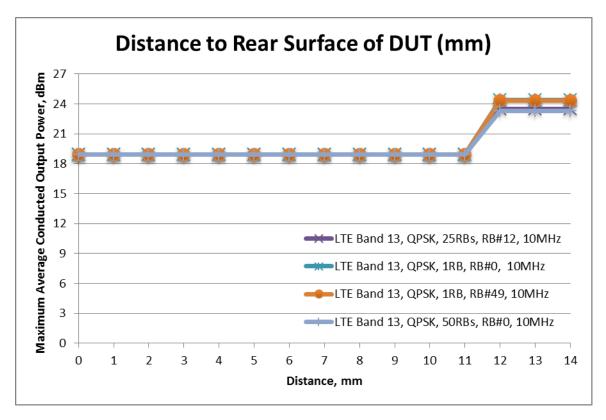



Page 21 of 113




Page 22 of 113



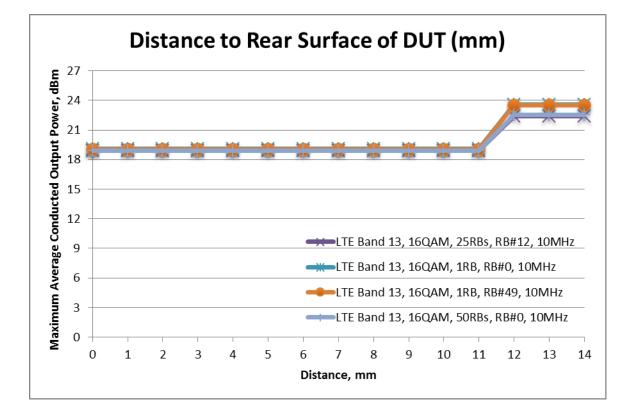

Page 23 of 113

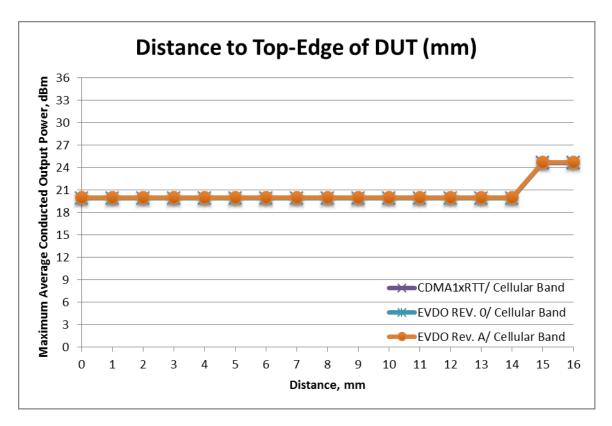
Page 24 of 113 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

 Page 25 of 115

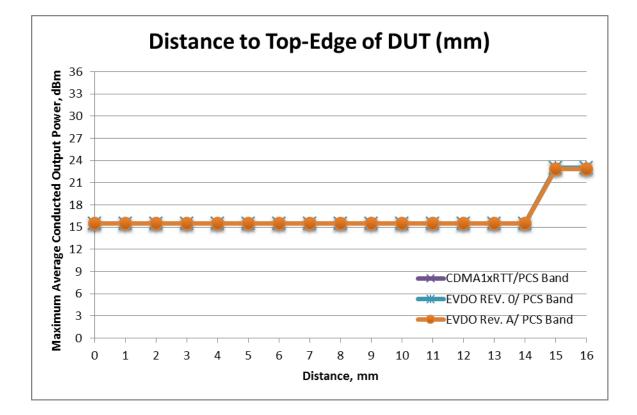
 Form NO: CCSUP4031B

 FORM NO: CCSUP4031B

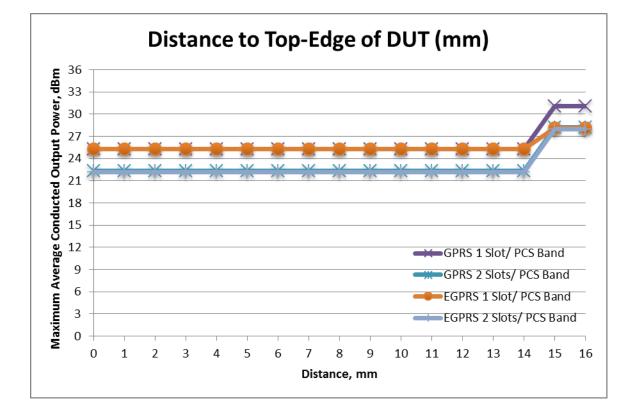

 47173 BENICIA STREET, FREMONT, CA 94538, USA


 TEL: (510) 771-1000

 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 25 of 113



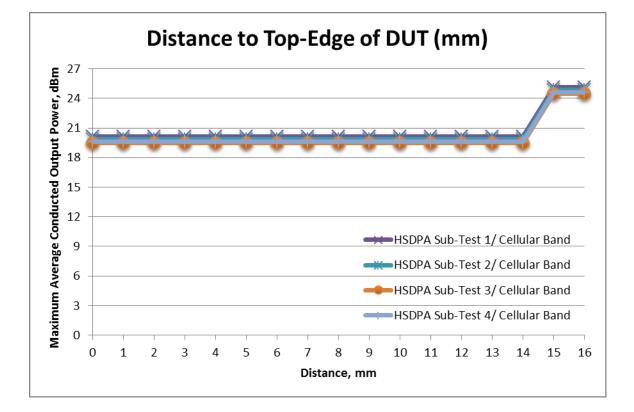
Page 26 of 113

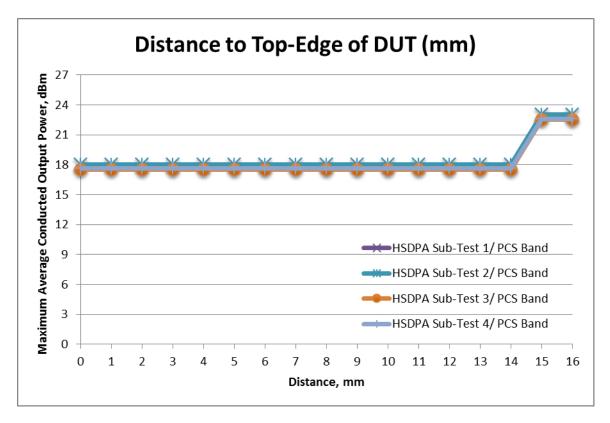
Page 27 of 113

 Page 28 of 113

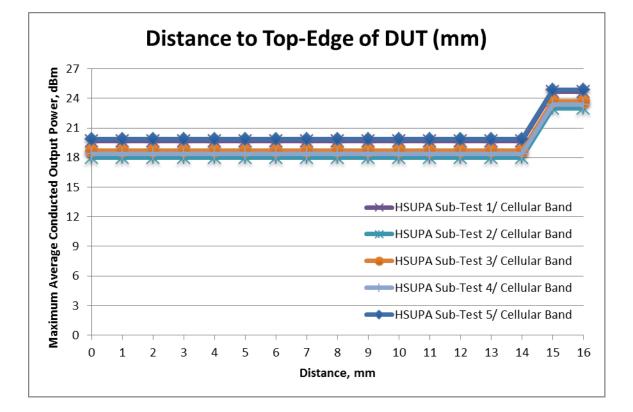
 COMPLIANCE CERTIFICATION SERVICES (UL CCS)

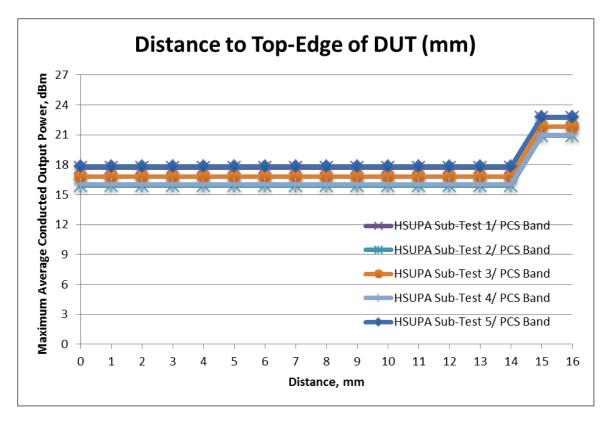
 FORM NO: CCSUP4031B


 47173 BENICIA STREET, FREMONT, CA 94538, USA

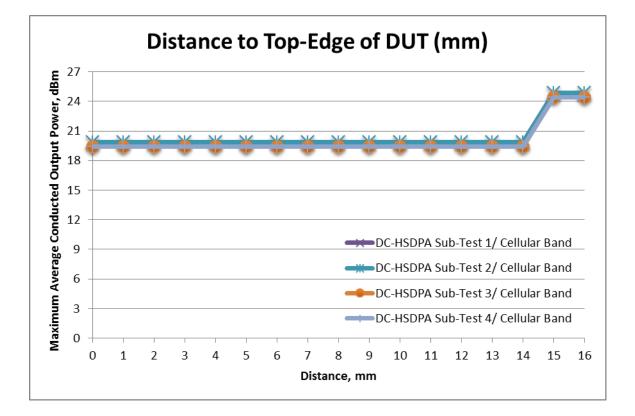

 TEL: (510) 771-1000

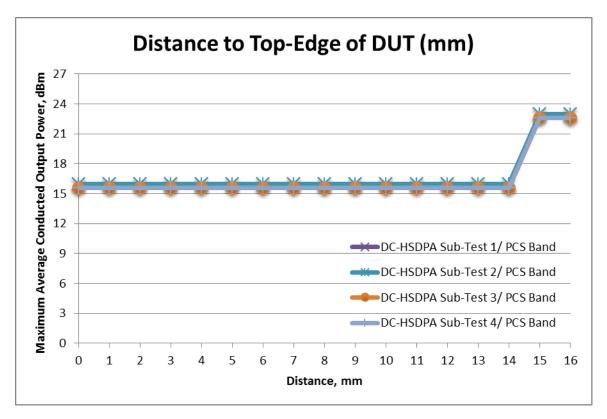
 FAX: (510) 661-0888


 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 28 of 113

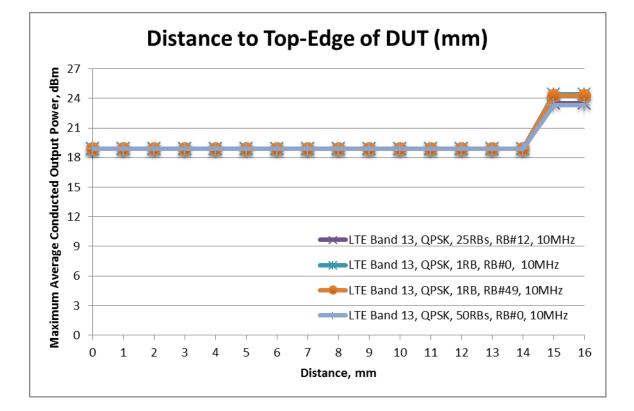
Page 29 of 113

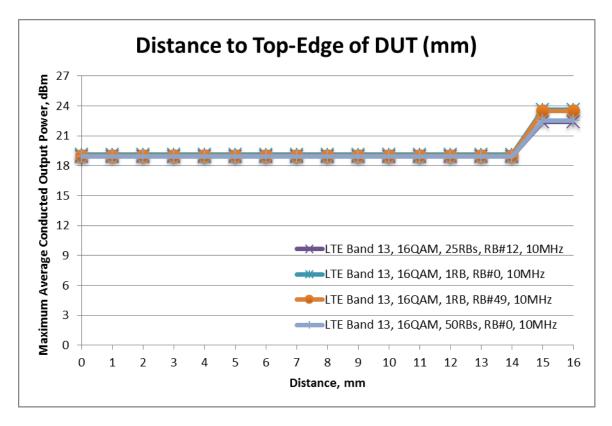



 COMPLIANCE CERTIFICATION SERVICES (UL CCS)
 FORM NO: CCSUP4031B

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL CCS.


Page 30 of 113



COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 31 of 113

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 32 of 113

7. RF Output Power Measurement

7.1. GSM

GPRS (GMSK) - Coding Scheme: CS1

	GPRS		GMSK				GMSK				
			w/o Pwr	back-off	w/ Pwr back-off		w/o Pwr	back-off	w/ Pwr back-off		
Band	Ch	Freq. (MHz)	1-Slot	Frame Avg	1-Slot	Frame Avg	2-Slot	Frame Avg	2-Slot	Frame Avg	
	128	824.2	33.5	24.5	28.6	19.6	32.4	26.4	25.6	19.6	
GSM850	190	836.6	33.5	24.5	28.6	19.6	32.5	26.5	25.7	19.7	
	251	848.8	33.5	24.5	28.6	19.6	32.4	26.4	25.6	19.6	
	512	1850.2	31.0	22.0	25.3	16.3	28.0	22.0	22.2	16.2	
GSM1900	661	1880	31.0	22.0	25.3	16.3	28.1	22.1	22.3	16.3	
	810	1909.8	31.0	22.0	25.3	16.3	28.2	22.2	22.3	16.3	

Note: The modulation for CS1 to CS4 is GMSK, so the above table reflects the conducted power in the GMSK modulation

EGPRS (8P	SK, Codir	ng Scheme	e: MCS5)								
E	GPRS		8PSK				8PSK				
		Freq.	w/o Pwr back-off w/ Pwr		w/ Pwr I	oack-off	w/o Pwr	back-off	w/ Pwr back-off		
Band	Ch	(MHz)	1-Slot	Frame Avg	1-Slot	Frame Avg	2-Slot	Frame Avg	2-Slot	Frame Avg	
	128	824.2	29.0	20.0	27.0	18.0	29.0	23.0	25.3	19.3	
GSM850	190	836.6	29.0	20.0	27.1	18.1	29.0	23.0	25.4	19.4	
	251	848.8	29.0	20.0	27.0	18.0	29.0	23.0	25.4	19.4	
	512	1850.2	28.0	19.0	25.3	16.3	28.0	22.0	22.1	16.1	
GSM1900	661	1880	28.1	19.1	25.3	16.3	28.0	22.0	22.2	16.2	
	810	1909.8	28.1	19.1	25.3	16.3	28.0	22.0	22.2	16.2	

Note: The modulation for MCS5 to MCS9 is 8PSK, so the above table reflects the conducted power in the 8PSK modulation. The conducted power results for GPRS (GMSK), also apply to EGPRS (GMSK, MCS1 to MCS4) modes.

Note(s):

Since the source-based time-averaged output power for EGPRS mode is lower than that in the GPRS mode, therefore Body SAR test reduction is applicable for this device

Page 33 of 113

7.2. UMTS (WCDMA)

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

	Mode	Rel99
	Subtest	-
	Loopback Mode	Test Mode 1
WODMA Conservations	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

<u>Results</u>

				Tx Conducte	ed Pwr (dBm)
Band	Mode	UL Ch No.	Freq. (MHz)	W/o	W/
				Pwr back-off	Pwr back-off
UMTS (WCDMA)	Rel 99	4357	826.4	24.9	20.0
Band V	(RMC, 12.2 kbps)	4408	836.6	25.0	20.1
Dariu v		4458	846.6	24.8	19.9
	Rol 00	9262	1852.4	22.8	15.5
UMTS (WCDMA) Band II	Rel 99 (RMC, 12.2 kbps)	9400	1880.0	23.0	15.6
Danu II	(11110, 12.2 1005)	9538	1907.6	22.8	15.7

<u>HSDPA</u>

The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1							
	Power Control Algorithm	Algorithm 2							
WCDMA	βc	2/15	12/15	15/15	15/15				
General Settings	βd	15/15	15/15	8/15	4/15				
Settings	Bd (SF)	64							
	βc/βd	2/15	12/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	CM (dB)	0	1	1.5	1.5				
	D _{ACK}	8							
	D _{NAK}	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4)	2							
	Ahs =βhs/βc	30/15							

Results

Band	Mode	UL Ch No.	Freq. (MHz)	MPR	Tx Conducted Pwr (dBm)	
					W/o	W/
					Pwr back-off	Pwr back-off
UMTS (WCDMA) Band V	Subtest 1	4357	826.4	0	25.1	20.1
		4408	836.6	0	25.0	20.0
		4458	846.6	0	25.0	20.0
	Subtest 2	4357	826.4	1	24.9	19.9
		4408	836.6	1	24.9	19.9
		4458	846.6	1	24.9	19.9
	Subtest 3	4357	826.4	1.5	24.4	19.4
		4408	836.6	1.5	24.4	19.4
		4458	846.6	1.5	24.5	19.5
	Subtest 4	4357	826.4	1.5	24.6	19.6
		4408	836.6	1.5	24.5	19.5
		4458	846.6	1.5	24.5	19.5
UMTS (WCDMA) Band II	Subtest 1	9262	1852.4	0	23.0	18.0
		9400	1880.0	0	23.0	18.0
		9538	1907.6	0	22.9	17.9
	Subtest 2	9262	1852.4	1	22.9	17.9
		9400	1880.0	1	23.0	18.0
		9538	1907.6	1	22.9	17.9
	Subtest 3	9262	1852.4	1.5	22.4	17.4
		9400	1880.0	1.5	22.5	17.5
		9538	1907.6	1.5	22.5	17.5
	Subtest 4	9262	1852.4	1.5	22.6	17.6
		9400	1880.0	1.5	22.5	17.5
		9538	1907.6	1.5	22.5	17.5

Note(s):

KDB 941225 D01 – Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is < 75% of the SAR limit.

Page 35 of 113COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA	HSPA	HSPA	HSPA	HSPA		
	Subtest	1	2	3	4	5		
	Loopback Mode	Test Mode 1						
WCDMA General Settings	Rel99 RMC	12.2kbps RMC						
	HSDPA FRC	H-Set1						
	HSUPA Test	HSUPA Loopback						
	Power Control Algorithm	Algorithm2						
	βc	11/15	6/15	15/15	2/15	15/15		
	βd	15/15	15/15	9/15	15/15	15/15		
	βec	209/225	12/15	30/15	2/15	24/15		
	βc/βd	11/15	6/15	15/9	2/15	15/15		
	βhs	22/15	12/15	30/15	4/15	30/15		
				47/15				
	βed	1309/225	94/75	47/15	56/75	134/15		
	CM (dB)	1.0	3.0	2.0	3.0	1.0		
	MPR (dB)	0	2	1	2	0		
HSDPA Specific Settings	DACK	8						
	DNAK	8						
	DCQI	8						
	Ack-Nack repetition factor	3						
	CQI Feedback (Table 5.2B.4) 4ms							
	CQI Repetition Factor (Table 5.2B.4) 2							
	Ahs = β hs/ β c	30/15						
HSUPA Specific Settings	D E-DPCCH	6	8	8	5	7		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	21		
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81		
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
	Reference E_TFCIs	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO 4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27			

Page 36 of 113

REPORT NO: 11U13938-7B1 FCC ID: BCGA1403

<u>Results</u>							
	Mode				Tx Conducted Pwr (dBm)		
Band		UL Ch No.	Freq. (MHz)	MPR	W/o Pwr back-off	W/ Pwr back-off	
		4357	826.4	0	24.7	19.7	
	Subtest 1	4408	836.6	0	24.5	19.5	
		4458	846.6	0	24.5	19.5	
		4357	826.4	2	23.0	18.0	
	Subtest 2	4408	836.6	2	23.0	18.0	
		4458	846.6	2	23.0	18.0	
UMTS		4357	826.4	1	23.6	18.6	
(WCDMA)	Subtest 3	4408	836.6	1	23.7	18.7	
Band V		4458	846.6	1	23.4	18.4	
	Subtest 4	4357	826.4	2	23.4	18.4	
		4408	836.6	2	23.2	18.2	
		4458	846.6	2	23.3	18.3	
	Subtest 5	4357	826.4	0	24.8	19.8	
		4408	836.6	0	24.9	19.9	
		4458	846.6	0	24.7	19.7	
	Subtest 1	9262	1852.4	0	22.7	17.7	
		9400	1880.0	0	22.7	17.7	
		9538	1907.6	0	22.7	17.7	
		9262	1852.4	2	20.7	15.7	
	Subtest 2	9400	1880.0	2	20.9	15.9	
		9538	1907.6	2	20.9	15.9	
UMTS		9262	1852.4	1	21.8	16.8	
(WCDMA)	Subtest 3	9400	1880.0	1	21.7	16.7	
Band II		9538	1907.6	1	21.7	16.7	
Γ		9262	1852.4	2	21.0	16.0	
	Subtest 4	9400	1880.0	2	20.8	15.8	
		9538	1907.6	2	20.8	15.8	
F F		9262	1852.4	0	22.8	17.8	
	Subtest 5	9400	1880.0	0	22.8	17.8	
		9538	1907.6	0	22.8	17.8	

Note(s):

KDB 941225 D01 – Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2kbps RMC is \leq 75% of the SAR limit.

Page 37 of 113

DC-HSDPA (Rel 8, CAT 24)

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

	Parameter	Unit	Value		
	Nominal Avg. Inf. Bit Rate	kbps	60		
	Inter-TTI Distance	TTI's	1		
	Number of HARQ Processes	Proces	6		
		ses	· ·		
	Information Bit Payload (N _{INF})	Bits	120		
	Number Code Blocks	Blocks	1		
	Binary Channel Bits Per TTI	Bits	960		
	Total Available SML's in UE	SML's	19200		
	Number of SML's per HARQ Proc.	SML's	3200		
	Coding Rate		0.15		
	Number of Physical Channel Codes	Codes	1		
	Modulation		QPSK		
	Note 1: The RMC is intended to be used for				
	mode and both cells shall transmit	with identi	cal		
	parameters as listed in the table.				
	Note 2: Maximum number of transmission				
	retransmission is not allowed. The		icy and		
	constellation version 0 shall be us	eu.		1	
Inf. Bit Payload	120				
CRC Addition	120 24 CRC				
Code Block					
Segmentation	144				
Turbo-Encoding					
(R=1/3)	432				12 Tail Bits
(11= 170)					
1st Rate Matching	432				
-					
RV Selection	960				
L					
Physical Channel					
Segmentation	960				
oggingination	300				

Table C.8.1.12: Fixed Reference Channel H-Set 12

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 5 Sub-tests for HSDPA were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

Page 38 of 113

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA		
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1					
WCDMA	Power Control Algorithm	Algorithm2					
General	βc	2/15	12/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Settings	βd (SF)	64					
	βc/βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR	0	0	0.5	0.5		
	DACK	8					
	DNAK	8					
HSDPA	DCQI	8					
Specific	Ack-Nack Repetition factor	3					
Settings	CQI Feedback	4ms					
	CQI Repetition Factor	2					
	Ahs = βhs/ βc	30/15					

Up commands are set continuously to set the UE to Max power.

<u>Results</u>

				Tx Conducted Pwr (dBm)		
Band	Mode	UL Ch No.	Freq. (MHz)	W/o	W/	
				Pwr back-off	Pwr back-off	
		4357	826.4	24.9	19.9	
	Subtest 1	4408	836.6	24.9	19.9	
		4458	846.6	24.9	19.9	
		4357	826.4	24.9	19.9	
UMTS	Subtest 2	4408	836.6	24.8	19.8	
(WCDMA)		4458	846.6	24.8	19.8	
Band V		4357	826.4	24.4	19.4	
Danu v	Subtest 3	4408	836.6	24.4	19.4	
		4458	846.6	24.4	19.4	
	Subtest 4	4357	826.4	24.4	19.4	
		4408	836.6	24.4	19.4	
		4458	846.6	24.3	19.3	
	Subtest 1	9262	1852.4	22.9	15.9	
		9400	1880.0	22.9	15.9	
		9538	1907.6	23.0	16.0	
		9262	1852.4	22.9	15.9	
UMTS	Subtest 2	9400	1880.0	22.9	15.9	
(WCDMA)		9538	1907.6	22.9	15.9	
Band II		9262	1852.4	22.5	15.5	
Danu II	Subtest 3	9400	1880.0	22.6	15.6	
		9538	1907.6	22.5	15.5	
		9262	1852.4	22.5	15.5	
	Subtest 4	9400	1880.0	22.6	15.6	
		9538	1907.6	22.6	15.6	

<u>HSPA+</u>

Since 16QAM is not used for uplink, the uplink Category and release is same as HSUPA, i.e., CAT 6 Rel 6. Therefore, the RF conducted power is not measured.

7.3. CDMA

1xRTT

			Avg Pwr							
CDMA			RC1 - SO55 (Loopback)		RC3 - SO55 (Loopback)		RC3 - SO32 (+F-SCH)			
Band	Ch	Freq. (MHz)	W/o Pwr back-off	W/ Pwr back-off	W/o Pwr back-off	W/ Pwr back-off	W/o Pwr back-off	W/ Pwr back-off		
	1013	824.7	24.6	19.9	24.6	20.0	24.7	19.9		
BC 0	384	836.52	24.5	20.0	24.7	20.1	24.7	20.0		
	777	848.31	24.5	19.9	24.6	19.9	24.7	20.0		
	25	1851.25	22.9	15.5	23.0	15.5	22.9	15.5		
BC 1	600	1880	23.0	15.5	23.0	15.5	23.0	15.5		
	1175	1908.75	23.0	15.5	23.0	15.5	22.9	15.5		

Note(s):

 Per KDB941225 D01 SAR test for 3G devices v02, Body SAR evaluation for Primary antenna is performed in RC3/SO32 only. Body SAR for multiple code channel (FCH+SCH) is not required since the output power is not 1/4 dB higher than RC3/SO32.

1xEv-Do Rel. 0

					Tx Conducted Power (dBm)		
Band	FTAP Rate	RTAP Rate	Channel	f (MHz)	W/o	W/	
					Pwr back-off	Pwr back-off	
	BC0 307.2 kbps (2 slot, QPSK)	153.6 kbps	1013	824.70	24.7	20.0	
BC0			384	836.52	24.7	19.9	
			777	848.31	24.6	20.0	
	C1 307.2 kbps (2 slot, QPSK)	153.6 kbps	25	1851.25	22.9	15.5	
BC1			600	1880.00	23.0	15.5	
			1175	1908.75	22.9	15.5	

1xEv-Do Rev. A

	FETAP	RETAP			Tx Conducted Power (dBm)		
Band	Traffic Format	Data Payload Size	Channel	f (MHz)	W/o Pwr back-off	W/ Pwr back-off	
BC0	307.2k, QPSK/ ACK	4096	1013	824.70	24.7	20.0	
	channel is transmitted at		384	836.52	24.7	19.9	
	all the slots		777	848.31	24.6	19.9	
	307.2k, QPSK/ ACK		25	1851.25	22.9	15.5	
BC1	channel is transmitted at	4096	600	1880.00	22.9	15.5	
	all the slots		1175	1908.75	22.9	15.4	

Note(s):

 SAR for Subtype 2 Physical layer configurations in not required for Rev. A since the maximum average output of each RF channel is less than that measured in Subtype 0/1 Physical layer configurations as per KDB 941225 D01 SAR test for 3G devices v02.

Page 40 of 113

7.4. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	(RB)	MPR (dB)				
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	-
QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ <mark>8</mark>	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤ <mark>2</mark>

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)			
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA			
			3	>5	≤ 1			
			5	>6	≤ 1			
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1			
		,	15	>8	≤ 1			
			20	>10	≤ 1			
NO 04		41	5	>6	≤ 1			
NS_04	NS_04 6.6.2.2.2 41		10, 15, 20	See Table 6.2.4-4				
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1			
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a			
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2			
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ <mark>3</mark>			
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2			
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3			
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5			
 NS_32	-	-	-	-	-			
Note 1: Applies to the lower block of Band 23, i.e. a carrier placed in the 2000-2010 MHz region.								

Page 41 of 113

			Freq.		UL RB	UL RB	Target	Measure		Power (dBm)
Band	BW	Ch	(MHz)	Mode	Allocation	Start	MPR	MPR	W/o	*W/
			· · ·						Pwr back-off	Pwr back-off
					25	12	1	1	23.5	18.9
				QPSK	1	0	0	0	24.3	18.9
					1	49	0	0	24.3	18.9
13	10	23230	782.0		50	0	1	1	23.3	18.9
10		20200	10210		25	12	2	2	22.4	18.9
				16QAM	1	0	1	1	23.6	19.1
				1000/101	1	49	1	1	23.5	19.0
					50	0	2	2	22.5	18.9
					12	6	1	1	23.4	18.9
				QPSK	1	0	0	0	24.4	18.9
					1	24	0	0	24.3	18.9
		23205	779.5		25	0	1	1	23.4	18.9
		23205	119.5	16QAM	12	6	2	2	22.4	18.9
					1	0	1	1	23.5	18.9
					1	24	1	1	23.5	18.9
					25	0	2	2	22.5	19.0
					12	6	1	1	23.3	18.9
				QPSK	1	0	0	0	24.4	18.9
			782.0		1	24	0	0	24.4	18.9
13	5	23230			25	0	1	1	23.5	18.9
15	5	23230	102.0		12	6	2	2	22.4	18.9
				16QAM	1	0	1	1	23.5	18.9
				TOQAIVI	1	24	1	1	23.5	18.9
					25	0	2	2	22.6	19.0
					12	6	1	1	23.3	18.9
				QPSK	1	0	0	0	24.4	18.9
				QPSK	1	24	0	0	24.3	19.0
		00055	704 5		25	0	1	1	23.5	18.9
		23255	784.5		12	6	2	2	22.4	18.9
				400414	1	0	1	1	23.5	18.9
				16QAM	1	24	1	1	23.4	19.0
					25	0	2	2	22.5	18.9

Note(s):

* When the power reduction due to proximity sensor is activated, the maximum conducted power is reduced, but the MPR for different resource block configurations/allocations is disabled.

7.5. Wi-Fi

<u>2.4 GHz</u>

Mode	Channel #	Freq. (MHz)	Conducted Avg Power			
INIOUE		Fied. (MILZ)	(dBm)	(mW)		
	1	2412	16.5	44.67		
802.11b	6	2437	16.6	45.71		
	11	2462	16.5	44.67		
	1	2412	16.0	39.81		
802.11g	6	2437	16.5	44.67		
	11	2462	16.0	39.81		
802.11n	1	2412	15.5	35.48		
(HT20)	6	2437	16.5	44.67		
(1120)	11	2462	15.0	31.62		

5.2 GHz band (5150-5250 MHz)

Mode	Channel #	Freq. (MHz)	Conducted Avg Power		
wode	Channel #		(dBm)	(mW)	
	36	5180	13.5	22.39	
802.11a	40	5200	13.5	22.39	
	48	5240	13.5	22.39	
902.11	36	5180	13.6	22.75	
802.11n (HT20)	40	5200	13.6	22.96	
(1120)	48	5240	13.6	22.86	

5.3 GHz band (5250-5350 MHz)

Mode	Channel #	Freq. (MHz)	Conducted Avg Power			
Wode	Channel #	Fied. (MILZ)	(dBm)	(mW)		
	52	5260	17.5	56.23		
802.11a	60	5300	17.5	56.23		
	64	5320	16.5	44.67		
902 11p	52	5260	17.4	54.95		
802.11n (HT20)	60	5300	17.4	54.95		
(1120)	64	5320	16.4	43.65		

5.5 GHz band (5500-5700 MHz)

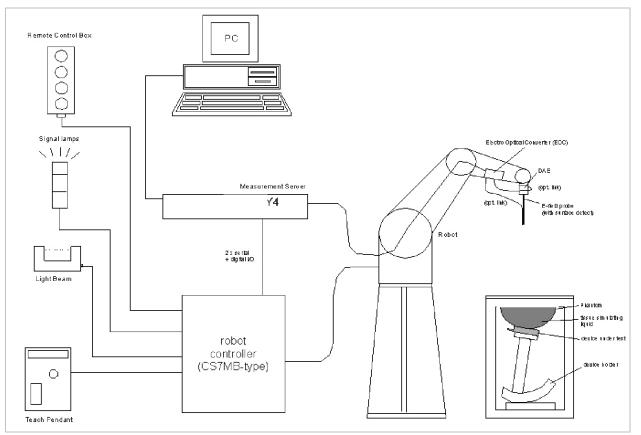
Mode	Channel #	Freq. (MHz)	Conducted Avg Power			
Widde		Fieq. (MITZ)	(dBm)	(mW)		
	100	5500	16.5	44.67		
802.11a	120	5600	16.5	44.67		
	140	5700	16.5	44.67		
802.11n	100	5500	16.5	44.67		
(HT20)	120	5600	16.5	44.67		
(1120)	140	5700	16.5	44.67		

Page 43 of 113

5.8 GHz band (5725-5850 MHz)

Mode	Channel #	Freq. (MHz)	Conducted Avg Power			
Nidde		Fieq. (MITZ)	(dBm)	(mW)		
	149	5745	17.5	56.23		
802.11a	157	5785	17.5	56.23		
	165	5825	17.4	54.95		
802 11p	149	5745	17.5	56.23		
802.11n (HT20)	157	5785	17.5	56.23		
(1120)	165	5825	17.5	56.23		

7.6. Bluetooth


Mode	Channel #	Freq. (MHz)	Conducted	Avg Power
woue	Channel #		(dBm)	(mW)
	0	2402	11.9	15.49
V2.1 + EDR, GFSK	39	2441	11.7	14.79
GISK	78	2480	10.8	12.02
V2.1 + EDR,	0	2402	9.8	9.55
$\pi/4$ DQPSK	39	2441	10.0	10.00
	78	2480	9.3	8.51
V2.1 + EDR,	0	2402	9.9	9.77
8-DPSK	39	2441	10.0	10.00
0-DI 3K	78	2480	9.3	8.51
	0	2402	8.8	7.59
V4.0 LE, GFSK	39	2441	8.9	7.76
OF SIX	78	2480	8.7	7.41

Note(s):

Stand-alone SAR is not required as the output power is less than 25 mW $[60/f_{(GHz)}]$.

Page 44 of 113

8. System Specifications

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 45 of 113

9. Composition of Ingredients for Tissue Simulating Liquids

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	4	50	835		915		1900		2450			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 46 of 113

Liquid Parameters 10.

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within ± 5% of the target values. For frequencies in the range of 2-3 GHz and above the measured conductivity should be within ± 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
Target Frequency (MHZ)	ε _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz - 6G Hz).

Target Frequency (MHz)	He	ad	Body		
raiger requercy (wriz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 47 of 113

10.1. Liquid Check Results

Date	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	50.5230	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	DUUY 2450	e"	14.5573	Conductivity (o):	1.98	1.95	1.70	5
10/10/2011	Body 2410	e'	50.6534	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	Douy 2410	e"	14.4109	Conductivity (o):	1.98	1.95	1.70	5
10/10/2011	Body 2435	e'	50.5759	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	DUUY 2435	e"	14.5011	Conductivity (o):	1.98	1.95	1.70	5
	Body 2465	e'	50.4696	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	DUUY 2400	e"	14.6156	Conductivity (o):	1.98	1.95	1.70	5
	Body 5180		49.1209	Relative Permittivity (c _r):	49.12	49.05	0.15	10
Body	BOUY 5100	e"	18.4112	Conductivity (o):	5.30	5.27	0.60	5
	Body 5200	e'	49.1282	Relative Permittivity (c _r):	49.13	49.02	0.22	10
	B00y 5200	e"	18.4697	Conductivity (o):	5.34	5.29	0.86	5
10/10/2011	Body 5500	e'	48.5634	Relative Permittivity (c _r):	48.56	48.61	-0.10	10
10/10/2011	BOUY 5500	e"	18.7437	Conductivity (o):	5.73	5.64	1.55	5
	Body 5800	e'	48.0852	Relative Permittivity (c _r):	48.09	48.20	-0.24	10
		e"	19.0479	Conductivity (o):	6.14	6.00	2.38	5
	Body 5825	e'	48.0422	Relative Permittivity (c _r):	48.04	48.20	-0.33	10
		e"	19.0569	Conductivity (o):	6.17	6.00	2.87	5
	Body 5180	e'	47.3328	Relative Permittivity (ε_r):	47.33	49.05	-3.49	10
		e"	18.4853	Conductivity (o):	5.32	5.27	1.00	5
	Body 5200	e'	47.1193	Relative Permittivity (ε_r):	47.12	49.02	-3.88	10
	B00y 5200	e"	18.4634	Conductivity (o):	5.34	5.29	0.83	5
10/11/2011	Body 5500	e'	46.7376	Relative Permittivity (ε_r):	46.74	48.61	-3.86	10
10/11/2011	Body 5500	e"	18.8227	Conductivity (o):	5.76	5.64	1.98	5
	Body 5800	e'	46.1847	Relative Permittivity (ε_r):	46.18	48.20	-4.18	10
	Body 0000	e"	19.1559	Conductivity (o):	6.18	6.00	2.96	5
	Body 5825	e'	46.0593	Relative Permittivity (ε_r):	46.06	48.20	-4.44	10
	B00y 0020	e"	19.1725	Conductivity (o):	6.21	6.00	3.50	5
	Body 2450	e'	54.0530	Relative Permittivity (ε_r):	54.05	52.70	2.57	5
	Dody 2400	e"	13.6199	Conductivity (o):	1.86	1.95	-4.85	5
	Body 2410	e'	54.1646	Relative Permittivity (ε_r):	54.16	52.76	2.66	5
10/11/2011	500y 2410	e"	13.5487	Conductivity (o):	1.82	1.91	-4.82	5
10/11/2011	Body 2435	e'	54.0939	Relative Permittivity (ε_r):	54.09	52.73	2.59	5
	500y 2700	e"	13.5605	Conductivity (o):	1.84	1.93	-4.92	5
	Body 2465	e'	54.0080	Relative Permittivity (ε_r):	54.01	52.68	2.52	5
	200, 2400	e"	13.6836	Conductivity (o):	1.88	1.97	-4.85	5

Page 48 of 113

Date	Freq. (MHz)			id Parameters	Measured	Target	Delta (%)	Limit ±(%)
		e'	49.2153	Relative Permittivity (c _r):	49.22	49.02	0.40	10
	Body 5200	e"	18.8478	Conductivity (σ):	5.45	5.29	2.93	5
	Body 5180	e'	49.2245	Relative Permittivity (ε_r):	49.22	49.05	0.36	10
10/11/2011	DOUY 5100	e"	18.8052	Conductivity (σ):	5.42	5.27	2.75	5
10/11/2011	Body 5250	e'	49.1116	Relative Permittivity (ε_r):	49.11	48.95	0.33	10
	D0uy 5250	e"	18.8602	Conductivity (σ):	5.51	5.35	2.85	5
	Body 5320	e'	49.0038	Relative Permittivity (c _r):	49.00	48.86	0.30	10
	BOUY 5520	e"	18.9581	Conductivity (σ):	5.61	5.43	3.19	5
	Body 5180	e'	48.3255	Relative Permittivity (ε_r):	48.33	49.05	-1.47	10
	BOUY 5160	e"	18.3454	Conductivity (σ):	5.28	5.27	0.24	5
	Body 5200	e'	48.3026	Relative Permittivity (ε_r):	48.30	49.02	-1.46	10
	B00y 5200	e"	18.3780	Conductivity (σ):	5.31	5.29	0.36	5
10/12/2011	Rody 5500	e'	47.7738	Relative Permittivity (ε_r):	47.77	48.61	-1.73	10
10/12/2011	0/12/2011 Body 5500	e"	18.6793	Conductivity (σ):	5.71	5.64	1.20	5
Body 580 Body 582	Rody 5800	e'	47.2691	Relative Permittivity (ε_r):	47.27	48.20	-1.93	10
	B00y 5000	e"	18.9790	Conductivity (σ):	6.12	6.00	2.01	5
	Rody 5825	e'	47.2315	Relative Permittivity (ε_r):	47.23	48.20	-2.01	10
	DOUY 3023	e"	19.0031	Conductivity (σ):	6.15	6.00	2.58	5
	Body 5180	e'	48.7356	Relative Permittivity (c _r):	48.74	49.05	-0.63	10
		e"	18.2183	Conductivity (σ):	5.25	5.27	-0.46	5
	Body 5200	e'	48.7131	Relative Permittivity (c _r):	48.71	49.02	-0.63	10
	D00y 5200	e"	18.2494	Conductivity (σ):	5.28	5.29	-0.34	5
10/12/2011	Body 5500	e'	48.1450	Relative Permittivity (ε_r):	48.15	48.61	-0.96	10
10/12/2011	Body 5500	e"	18.4791	Conductivity (σ):	5.65	5.64	0.12	5
	Body 5800	e'	47.6225	Relative Permittivity (ε_r):	47.62	48.20	-1.20	10
	Douy 3000	e"	18.7524	Conductivity (σ):	6.05	6.00	0.79	5
	Body 5825	e'	47.5898	Relative Permittivity (ε_r):	47.59	48.20	-1.27	10
	DOUY 3023	e"	18.7720	Conductivity (σ):	6.08	6.00	1.33	5
	Body 5180	e'	48.5943	Relative Permittivity (ε_r):	48.59	49.05	-0.92	10
	Douy 5100	e"	18.8801	Conductivity (σ):	5.44	5.27	3.16	5
	Body 5200	e'	48.5741	Relative Permittivity (ε_r):	48.57	49.02	-0.91	10
10/04/0044	Body 5200	e"	18.9207	Conductivity (σ):	5.47	5.29	3.32	5
10/24/2011	Dedu 5500	e'	47.9902	Relative Permittivity (ε_r):	47.99	48.61	-1.28	10
	Body 5500	e"	19.2292	Conductivity (o):	5.88	5.64	4.18	5
		e'	47.6270	Relative Permittivity (c _r):	47.63	48.34	-1.48	10
	Body 5700	e"	19.4345	Conductivity (o):	6.16	5.88	4.80	5

Page 49 of 113COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Date	Freq. (MHz)			id Parameters	Measured	Target	Delta (%)	Limit ±(%)
		e'	51.6580	Relative Permittivity (ε_r):	51.66	53.30	-3.08	5
	Body 1900	e"	13.9541	Conductivity (o):	1.47	1.52	-3.01	5
	Body 1950	e'	51.8242	Relative Permittivity (ε_r):	51.82	53.30	-2.77	5
10/04/0011	Body 1850	e"	14.0500	Conductivity (o):	1.45	1.52	-4.92	5
10/24/2011	Body 1880	e'	51.7230	Relative Permittivity (c _r):	51.72	53.30	-2.96	5
	D00y 1000	e"	13.8918	Conductivity (o):	1.45	1.52	-4.46	5
	Body 1910	e'	51.6274	Relative Permittivity (c _r):	51.63	53.30	-3.14	5
	Body 1910	e"	13.9842	Conductivity (o):	1.49	1.52	-2.29	5
	Body 2450	e'	51.1919	Relative Permittivity (c _r):	51.19	52.70	-2.86	5
	B00y 2450	e"	14.2594	Conductivity (o):	1.94	1.95	-0.38	5
	Pady 2110	e'	51.3125	Relative Permittivity (cr):	50.52	52.70	-4.13	5
10/25/2011	Body 2410	e"	14.0991	Conductivity (o):	1.98	1.95	1.70	5
10/23/2011	Pady 2425	e'	51.2404	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	Body 2435	e"	14.1995	Conductivity (σ):	1.98	1.95	1.70	5
	Darky 0405	e'	51.1372	Relative Permittivity (cr):	50.52	52.70	-4.13	5
	Body 2465	e"	14.3225	Conductivity (σ):	1.98	1.95	1.70	5
	Body 835	e'	53.8428	Relative Permittivity (cr):	55.84	55.20	1.16	5
	BOOY 835	e"	20.6159	Conductivity (σ):	0.97	0.97	-0.45	5
10/25/2011	Pady 920	e'	54.0048	Relative Permittivity (cr):	55.84	55.26	1.05	5
10/23/2011	Body 820	e"	20.6476	Conductivity (o):	0.96	0.97	-1.35	5
	Pody 950	e'	53.6853	Relative Permittivity (cr):	55.84	55.17	1.21	5
	Body 850	e"	20.5874	Conductivity (o):	0.98	0.98	-0.24	5
	Body 1900	e'	51.6338	Relative Permittivity (c _r):	51.63	53.30	-3.13	5
	Douy 1900	e"	14.2678	Conductivity (o):	1.51	1.52	-0.83	5
	Body 1850	e'	51.8044	Relative Permittivity (c _r):	51.80	53.30	-2.81	5
10/25/2011	Douy 1000	e"	14.1085	Conductivity (o):	1.45	1.52	-4.52	5
10/23/2011	Body 1880	e'	51.6995	Relative Permittivity (ε_r):	51.70	53.30	-3.00	5
	Body 1000	e"	14.2027	Conductivity (o):	1.48	1.52	-2.32	5
	Body 1910	e'	51.6050	Relative Permittivity (ε_r):	51.61	53.30	-3.18	5
	Body 1910	e"	14.3027	Conductivity (o):	1.52	1.52	-0.07	5
	Body 835	e'	54.5939	Relative Permittivity (cr):	55.84	55.20	1.16	5
		e"	20.6764	Conductivity (o):	0.97	0.97	-0.45	5
10/26/2011	Body 820	e'	54.7595	Relative Permittivity (cr):	55.84	55.26	1.05	5
10/20/2011	1000y 020	e"	20.7083	Conductivity (o):	0.96	0.97	-1.35	5
	Body 850	e'	54.4321	Relative Permittivity (cr):	55.84	55.17	1.21	5
	Douy 000	e"	20.6441	Conductivity (o):	0.98	0.98	-0.24	5

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 50 of 113

Date	Freq. (MHz)			uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
		e'	52.4246	Relative Permittivity (c _r):	52.42	53.30	-1.64	5
	Body 1900	e"	14.6648	Conductivity (o):	1.55	1.52	1.93	5
	Dody 1950	e'	52.5964	Relative Permittivity (c _r):	52.60	53.30	-1.32	5
10/26/2011	Body 1850	e"	14.5383	Conductivity (σ):	1.50	1.52	-1.61	5
10/26/2011	Pody 1990	e'	52.4859	Relative Permittivity (c _r):	52.49	53.30	-1.53	5
	Body 1880	e"	14.6170	Conductivity (σ):	1.53	1.52	0.52	5
	Body 1910	e'	52.3987	Relative Permittivity (ε_r):	52.40	53.30	-1.69	5
	DOUY 1910	e"	14.6886	Conductivity (σ):	1.56	1.52	2.63	5
	Body 835	e'	55.8403	Relative Permittivity (cr):	55.84	55.20	1.16	5
	B00y 035	e"	20.7990	Conductivity (σ):	0.97	0.97	-0.45	5
10/27/2011	Body 820	e'	55.9929	Relative Permittivity (cr):	55.84	55.20	1.16	5
10/27/2011	600y 620	e"	20.8459	Conductivity (σ):	0.97	0.97	-0.26	5
	Body 850	e'	55.6987	Relative Permittivity (cr):	55.84	55.17	1.21	5
	DOUY 000	e"	20.7605	Conductivity (σ):	0.98	0.98	-0.24	5
	Pady 1000	e'	53.7384	Relative Permittivity (ε_r):	53.74	53.30	0.82	5
	Body 1900	e"	14.7472	Conductivity (σ):	1.56	1.52	2.50	5
	Body 1850	e'	53.9371	Relative Permittivity (ε_r):	53.94	53.30	1.20	5
10/27/2011	BOUY 1000	e"	14.5449	Conductivity (σ):	1.50	1.52	-1.57	5
10/27/2011	Body 1880	e'	53.8109	Relative Permittivity (ε_r):	53.81	53.30	0.96	5
	DUUY 1000	e"	14.6712	Conductivity (σ):	1.53	1.52	0.90	5
	Rody 1010	e'	53.7045	Relative Permittivity (ε_r):	53.70	53.30	0.76	5
	Body 1910	e"	14.7839	Conductivity (σ):	1.57	1.52	3.29	5
	Body 835	e'	55.4998	Relative Permittivity (cr):	55.5	55.2	0.54	5
	Bouy 055	e"	20.7567	Conductivity (σ):	0.96	0.97	-0.65	5
10/28/2011	Body 820	e'	55.6366	Relative Permittivity (cr):	55.5	55.2	0.54	5
10/20/2011	D00y 020	e"	20.8050	Conductivity (σ):	0.97	0.97	-0.46	5
	Body 850	e'	55.3640	Relative Permittivity (cr):	55.5	55.17	0.6	5
	Body 050	e"	20.7221	Conductivity (σ):	0.98	0.98	-0.44	5
	Body 1900	e'	51.2267	Relative Permittivity (c _r):	51.23	53.30	-3.89	5
	B00y 1900	e"	14.3405	Conductivity (σ):	1.52	1.52	-0.33	5
	Body 1850	e'	51.3825	Relative Permittivity (ε_r):	51.38	53.30	-3.60	5
10/28/2011	Douy 1000	e"	14.1765	Conductivity (o):	1.46	1.52	-4.06	5
10/20/2011	Body 1880	e'	51.2868	Relative Permittivity (ε_r):	51.29	53.30	-3.78	5
	Douy 1000	e"	14.2741	Conductivity (o):	1.49	1.52	-1.83	5
	Body 1010	e'	51.1981	Relative Permittivity (ε_r):	51.20	53.30	-3.94	5
	Body 1910	e"	14.3717	Conductivity (σ):	1.53	1.52	0.41	5

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 51 of 113

Date	Freq. (MHz)			iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
		e'	54.0904	Relative Permittivity (cr):	54.09	55.20	-2.01	5
	Body 835	e"	20.8454	Conductivity (σ):	0.97	0.97	-0.22	5
		e'	54.2477	Relative Permittivity (cr):	54.09	55.20	-2.01	5
10/31/2011	Body 820	e"	20.8777	Conductivity (σ):	0.97	0.97	-0.03	5
		e'	53.9344	Relative Permittivity (cr):	54.09	55.17	-1.96	5
	Body 850	e"	20.8091	Conductivity (σ):	0.98	0.98	-0.02	5
		e'	54.9461	Relative Permittivity (c _r):	54.95	53.30	3.09	5
	Body 1900	e"	14.8546	Conductivity (σ):	1.57	1.52	3.25	5
		e'	55.1052	Relative Permittivity (c _r):	55.11	53.30	3.39	5
	Body 1850	e"	14.6611	Conductivity (σ):	1.51	1.52	-0.78	5
10/31/2011		e'	55.0089	Relative Permittivity (c _r):	55.01	53.30	3.21	5
	Body 1880	e"	14.7816	Conductivity (σ):	1.55	1.52	1.66	5
		e'	54.9137	Relative Permittivity (c _r):	54.91	53.30	3.03	5
	Body 1910	e"	14.8880	Conductivity (σ):	1.58	1.52	4.02	5
		e'	55.7545	Relative Permittivity (cr):	55.75	55.55	0.38	5
	Body 750	e"	22.8228	Conductivity (σ):	0.95	0.96	-1.17	5
		e'	55.5243	Relative Permittivity (cr):	55.75	55.45	0.55	5
	Body 775	e"	22.6143	Conductivity (σ):	0.99	0.97	2.51	5
11/1/2011		e'	55.4732	Relative Permittivity (cr):	55.75	55.43	0.58	5
	Body 780	e"	22.5827	Conductivity (σ):	0.99	0.97	2.80	5
	5	e'	55.4197	Relative Permittivity (cr):	55.75	55.43	0.58	5
	Body 785	e"	22.5522	Conductivity (o):	1.00	0.97	3.12	5
	D 1 4000	e'	51.3581	Relative Permittivity (c _r):	51.36	53.30	-3.64	5
	Body 1900	e"	14.5146	Conductivity (o):	1.53	1.52	0.88	5
	D 1 4050	e'	51.5464	Relative Permittivity (c _r):	51.55	53.30	-3.29	5
	Body 1850	e"	14.3591	Conductivity (o):	1.48	1.52	-2.83	5
11/1/2011	D	e'	51.4281	Relative Permittivity (c _r):	51.43	53.30	-3.51	5
	Body 1880	e"	14.4540	Conductivity (o):	1.51	1.52	-0.60	5
	Dedu 1010	e'	51.3295	Relative Permittivity (c _r):	51.33	53.30	-3.70	5
	Body 1910	e"	14.5439	Conductivity (o):	1.54	1.52	1.62	5
	Darka 750	e'	53.1779	Relative Permittivity (cr):	53.18	55.55	-4.27	5
	Body 750	e"	22.1534	Conductivity (o):	0.92	0.96	-4.17	5
	Della 775	e'	52.8991	Relative Permittivity (cr):	53.18	55.45	-4.09	5
44/0/0011	Body 775	e"	21.9708	Conductivity (σ):	0.96	0.97	-1.03	5
11/2/2011	Data 700	e'	52.8433	Relative Permittivity (cr):	53.18	55.43	-4.06	5
	Body 780	e"	21.9381	Conductivity (σ):	0.96	0.97	-1.03	5
	Data 705	e'	52.7968	Relative Permittivity (cr):	53.18	55.43	-4.06	5
	Body 785	e"	21.9078	Conductivity (σ):	0.97	0.97	0.00	5

Page 52 of 113

Date	Freq. (MHz)			id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Dody 1000	e'	53.1960	Relative Permittivity (c _r):	53.20	53.30	-0.20	5
	Body 1900	e"	14.4606	Conductivity (σ):	1.53	1.52	0.51	5
	Body 1850	e'	53.3955	Relative Permittivity (ε_r):	53.40	53.30	0.18	5
11/2/2011	BOUY 1050	e"	14.2637	Conductivity (σ):	1.47	1.52	-3.47	5
11/2/2011	Body 1880	e'	53.2794	Relative Permittivity (ε_r):	53.28	53.30	-0.04	5
	DUUY 1000	e"	14.3816	Conductivity (σ):	1.50	1.52	-1.09	5
	Body 1910	e'	53.1603	Relative Permittivity (ε_r):	53.16	53.30	-0.26	5
	DOUY 1910	e"	14.4982	Conductivity (o):	1.54	1.52	1.30	5
	Pody 750	e'	53.5709	Relative Permittivity (ε_r):	53.57	55.55	-3.56	5
	Body 750	e"	22.0907	Conductivity (σ):	0.92	0.96	-4.34	5
	Dody 775	e'	53.2973	Relative Permittivity (c _r):	53.30	55.45	-3.88	5
44/2/2044	Body 775	e"	21.9176	Conductivity (σ):	0.94	0.97	-2.13	5
11/3/2011	Dody 700	e'	53.2464	Relative Permittivity (c _r):	53.25	55.43	-3.94	5
	Body 780	e"	21.8894	Conductivity (o):	0.95	0.97	-1.66	5
		e'	53.1998	Relative Permittivity (ε_r):	53.20	55.41	-3.99	5
	Body 785	e"	21.8592	Conductivity (o):	0.95	0.97	-1.21	5
	D	e'	51.4792	Relative Permittivity (c _r):	51.48	53.30	-3.42	5
B	Body 1900	e"	14.5687	Conductivity (o):	1.54	1.52	1.26	5
		e'	51.6422	Relative Permittivity (c _r):	51.64	53.30	-3.11	5
44/2/2044	Body 1850	e"	14.3961	Conductivity (o):	1.48	1.52	-2.57	5
11/3/2011	Dody 1000	e'	51.5438	Relative Permittivity (c _r):	51.54	53.30	-3.29	5
	Body 1880	e"	14.5009	Conductivity (σ):	1.52	1.52	-0.27	5
	Pady 1010	e'	51.4439	Relative Permittivity (c _r):	51.44	53.30	-3.48	5
	Body 1910	e"	14.5996	Conductivity (o):	1.55	1.52	2.01	5
	Dody 025	e'	53.2708	Relative Permittivity (cr):	53.27	55.20	-3.49	5
	Body 835	e"	21.0356	Conductivity (σ):	0.98	0.97	0.69	5
44/4/0044	Dedu 000	e'	53.4326	Relative Permittivity (cr):	53.43	55.28	-3.34	5
11/4/2011	Body 820	e"	21.0983	Conductivity (σ):	0.96	0.97	-0.67	5
	Dady 050	e'	53.1237	Relative Permittivity (cr):	53.12	55.16	-3.69	5
	Body 850	e"	20.9776	Conductivity (o):	0.99	0.99	0.44	5
	Dedu 1000	e'	51.5883	Relative Permittivity (c _r):	51.59	53.30	-3.21	5
	Body 1900	e"	14.5072	Conductivity (o):	1.53	1.52	0.83	5
	Dedu 1050	e'	51.7657	Relative Permittivity (ε_r):	51.77	53.30	-2.88	5
44/4/0044	Body 1850	e"	14.3464	Conductivity (o):	1.48	1.52	-2.91	5
11/4/2011	Dedu 1000	e'	51.6539	Relative Permittivity (ε_r):	51.65	53.30	-3.09	5
	Body 1880	e"	14.4425	Conductivity (o):	1.51	1.52	-0.68	5
	Dody 1010	e'	51.5554	Relative Permittivity (ε_r):	51.56	53.30	-3.27	5
	Body 1910	e"	14.5422	Conductivity (o):	1.54	1.52	1.61	5

Page 53 of 113

Date	Freq. (MHz)			iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 1900	e'	51.9591	Relative Permittivity (ε_r):	51.96	53.30	-2.52	5
	DOUY 1900	e"	14.2645	Conductivity (σ):	1.51	1.52	-0.86	5
	Dody 1950	e'	52.1382	Relative Permittivity (c _r):	52.14	53.30	-2.18	5
44/00/0044	Body 1850	e"	14.1004	Conductivity (σ):	1.45	1.52	-4.58	5
11/29/2011	Dody 1000	e'	52.0260	Relative Permittivity (ε_r):	52.03	53.30	-2.39	5
	Body 1880	e"	14.1985	Conductivity (σ):	1.48	1.52	-2.35	5
	Dedy 1010	e'	51.9265	Relative Permittivity (c _r):	51.93	53.30	-2.58	5
	Body 1910	e"	14.2967	Conductivity (σ):	1.52	1.52	-0.11	5
	Body 835	e'	55.2718	Relative Permittivity (cr):	55.27	55.20	0.13	5
		e"	21.1392	Conductivity (σ):	0.98	0.97	1.18	5
	Body 820	e'	55.4251	Relative Permittivity (cr):	55.43	55.28	0.27	5
11/29/2011		e"	21.1988	Conductivity (σ):	0.97	0.97	-0.20	5
11/29/2011	Body 830	e'	55.3208	Relative Permittivity (cr):	55.32	55.24	0.15	5
		e"	21.1595	Conductivity (σ):	0.98	0.97	0.75	5
	Body 850	e'	55.1233	Relative Permittivity (cr):	55.12	55.16	-0.06	5
		e"	21.0765	Conductivity (σ):	1.00	0.99	0.91	5
	Body 750	e'	54.3619	Relative Permittivity (ε_r):	54.36	55.55	-2.13	5
	Bouy 750	e"	22.2527	Conductivity (σ):	0.93	0.96	-3.64	5
	Body 779.5	e'	54.3619	Relative Permittivity (ε_r):	54.36	55.45	-1.96	5
11/30/2011	Bouy 119.5	e"	22.2527	Conductivity (σ):	0.96	0.97	-0.05	5
11/30/2011	Body 782	e'	54.3619	Relative Permittivity (ε_r):	54.36	55.43	-1.93	5
	DOUY 702	e"	22.2527	Conductivity (σ):	0.97	0.97	0.23	5
	Dody 7915	e'	54.3619	Relative Permittivity (c _r):	54.36	55.43	-1.93	5
	Body 784.5	e"	22.2527	Conductivity (σ):	0.97	0.97	0.55	5
	Pady 1000	e'	51.0687	Relative Permittivity (ε_r):	51.07	53.30	-4.19	5
	Body 1900	e"	14.2951	Conductivity (σ):	1.51	1.52	-0.64	5
	Body 1850	e'	51.2362	Relative Permittivity (c _r):	51.24	53.30	-3.87	5
1/10/2012	Douy 1000	e"	14.1153	Conductivity (σ):	1.45	1.52	-4.47	5
1/10/2012	Body 1880	e'	51.1342	Relative Permittivity (c _r):	51.13	53.30	-4.06	5
	Douy 1000	e"	14.2262	Conductivity (σ):	1.49	1.52	-2.16	5
	Body 1010	e'	51.0328	Relative Permittivity (ε_r):	51.03	53.30	-4.25	5
	Body 1910	e"	14.3262	Conductivity (σ):	1.52	1.52	0.10	5

11. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 55 of 113

12. System Verification

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

System	Serial No.	Cal. date	Cal. Freq.	S	AR Avg (mW/g	g)
validation dipole	Senai No.	Cal. Uale	(GHz)	Tissue:	Head	Body
D750V3	1019	12/16/10	0.75	1g SAR:	8.16	8.64
D750V5	1019	12/10/10	0.75	10g SAR:	5.32	5.72
D835V2	4d117	4/15/11	0.835	1g SAR:	9.64	10.1
D033V2	40117	4/13/11	0.000	10g SAR:	6.28	6.60
D1900V2	5d140	4/18/11	1.9	1g SAR:	41.6	41.2
D1900V2	50140	4/10/11	1.5	10g SAR:	21.5	21.6
D2450V2	706	4/19/11	2.45	1g SAR:	51.6	52.4
D2400V2	700	4/19/11	2.45	10g SAR:	24.4	24.5
			5200	1g SAR:	76.5	74.5
			5200	10g SAR:	21.8	20.8
D5GHzV2	1003	8/23/11	5500	1g SAR:	80.9	80.0
	1003	0/23/11	5500	10g SAR:	23.1	22.3
			5800	1g SAR:	76.3	76.3
			5600	10g SAR:	21.7	21.2

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

Page 56 of 113

12.1. System Check Results

10/10/11	Body	on dipole	(INORMALIZE	ed to 1 W)	Target	Delta (%)	Tolerance (%)
		0450	1g SAR:	52.4	52.4	0.00	
10/10/11	Douy	2450	10g SAR:	24.4	24.5	-0.41	±10
	Dedu	5000	1g SAR:	74.1	74.5	-0.54	.10
10/10/11	Body	5200	10g SAR:	21.3	20.8	2.40	±10
40/44/44	Death	0.450	1g SAR:	52.5	52.4	0.19	. 40
10/11/11	Body	2450	10g SAR:	24.8	24.5	1.22	±10
10/11/11	Dedu	5900	1g SAR:	70.6	76.3	-7.47	.10
10/11/11	Body	5800	10g SAR:	19.9	21.2	-6.13	±10
40/44/44	Death	5000	1g SAR:	76.1	74.5	2.15	.10
10/11/11	Body	5200	10g SAR:	22.0	20.8	5.77	±10
10/10/11			1g SAR:	85.8	80	7.25	4.0
10/12/11	Body	5500	10g SAR:	24.2	22.3	8.52	±10
10/10/11	D 1	5000	1g SAR:	73.1	76.3	-4.19	4.0
10/12/11	Body	5800	10g SAR:	20.7	21.2	-2.36	±10
			1g SAR:	75.4	74.5	1.21	
10/12/11	Body	5200	10g SAR:	21.4	20.8	2.88	±10
			1g SAR:	83.8	80	4.75	
10/12/11	Body	5500	10g SAR:	24.1	22.3	8.07	±10
			1g SAR:	73.4	74.5	-1.48	
10/24/11	Body	5200	10g SAR:	20.7	20.8	-0.48	±10
			1g SAR:	78.2	80	-2.25	
10/24/11	Body	5500	10g SAR:	22.0	22.3	-1.35	±10
			1g SAR:	41.7	41.2	1.21	
10/24/11	Body	1900	10g SAR:	21.9	21.6	1.39	±10
			1g SAR:	49.9	52.4	-4.77	
10/25/11	Body	2450	10g SAR:	23.4	24.5	-4.49	±10
/ /			1g SAR:	9.54	10.1	-5.54	
10/25/11	Body	835	10g SAR:	6.29	6.6	-4.70	±10
			1g SAR:	40.2	41.2	-2.43	
10/25/11	Body	1900	10g SAR:	21.2	21.6	-1.85	±10
			1g SAR:	9.59	10.1	-5.05	
10/26/11	Body	835	10g SAR:	6.31	6.6	-4.39	±10
			1g SAR:	42.6	41.2	3.40	
10/26/11	Body	1900	10g SAR:	22.3	21.6	3.24	±10
/			1g SAR:	9.84	10.1	-2.57	
10/27/11	Body	835	10g SAR:	6.49	6.6	-1.67	±10
			1g SAR:	41.8	41.2	1.46	
10/27/11	Body	1900	10g SAR:	21.8	21.6	0.93	±10
	_		1g SAR:	9.5	10.1	-5.74	
10/28/11	Body	835	10g SAR:	6.3	6.6	-4.85	±10
			1g SAR:	41.4	41.2	0.49	
10/28/11	Body	1900	10g SAR:	21.8	21.6	0.49	±10
			1g SAR:	9.8	10.1	-2.97	
10/31/11	Body	835	10g SAR:	6.5	6.6	-2.97	±10

Page 57 of 113

System Check Results (continued)

Date Tested	•	tem on dipole		sured ed to 1 W)	Target	Delta (%)	Tolerance (%)
10/31/11	Body	1900	1g SAR:	43.3	41.2	5.10	±10
10/31/11	Бойу	1900	10g SAR:	22.6	21.6	4.63	±10
11/01/11	Body	750	1g SAR:	8.62	8.64	-0.23	±10
11/01/11	Бойу	750	10g SAR:	5.72	5.72	0.00	±10
11/01/11	Body	1900	1g SAR:	43.6	41.2	5.83	±10
11/01/11	Body	1900	10g SAR:	22.7	21.6	5.09	10
11/02/11	Body	750	1g SAR:	8.55	8.64	-1.04	±10
11/02/11	Bouy	730	10g SAR:	5.67	5.72	-0.87	10
11/02/11	Body	1900	1g SAR:	40.1	41.2	-2.67	±10
11/02/11	Bouy	1900	10g SAR:	20.9	21.6	-3.24	EIO
11/03/11	Body	750	1g SAR:	8.5	8.64	-1.62	±10
11/03/11	Bouy	730	10g SAR:	5.64	5.72	-1.40	ΞĪŪ
11/03/11	Body	1900	1g SAR:	40.0	41.2	-2.91	±10
11/03/11	Bouy	1900	10g SAR:	20.9	21.6	-3.24	ΞĪŪ
11/04/11	Body	835	1g SAR:	10.2	10.1	0.99	±10
11/04/11	Body	000	10g SAR:	6.7	6.6	1.67	ΞĪŪ
11/04/11	Body	1900	1g SAR:	41.5	41.2	0.73	±10
11/04/11	Body	1900	10g SAR:	21.4	21.6	-0.93	ΞĪŪ
11/29/11	Body	1900	1g SAR:	41.6	41.2	0.97	±10
11/23/11	Douy	1900	10g SAR:	21.7	21.6	0.46	10
11/29/11	Body	835	1g SAR:	9.9	10.1	-1.98	±10
11/23/11	Body	000	10g SAR:	6.5	6.6	-1.52	ΞĪŪ
11/30/11	Body	750	1g SAR:	8.73	8.64	1.04	±10
11/30/11	Bouy	730	10g SAR:	5.8	5.72	1.40	10
11/30/11	Body	835	1g SAR:	10.3	10.1	1.98	±10
17,50/11	Douy	000	10g SAR:	6.7	6.6	1.52	10
01/10/12	Body	1900	SAR _{1g} :	41.6	41.2	0.97	±10
01/10/12	DOUY	1900	SAR _{10g} :	21.6	21.6	0.00	±10

Page 58 of 113

13. SAR Test Results

13.1. GSM850

Test mode reduction considerations

Since the source-based time-averaged output power for EGPRS mode is lower than that in the GPRS mode, therefore Body SAR test reduction is applicable for this device

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			GPRS	128	824.2	25.6	1.170	
			2 Slot	190	836.6	25.7	1.050	
			2 3101	251	848.8	25.6	0.867	
			GPRS	128	824.2	28.6	1.130	
	0 Yes	1 Slot	190	836.6	28.6	0.929		
Rear		Voc	1 3101	251	848.8	28.6	0.784	
iteai	0	165	EGPRS	128	824.2	25.3	1.020	
			2 Slot	190	836.6	25.4	0.933	
			2 3101	251	848.8	25.4	0.835	
			EGPRS	128	824.2	27.0		1
			1 Slot	190	836.6	27.1	0.616	
			1 3101	251	848.8	27.0		1

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			GPRS	128	824.2	25.6		1
Тор	0	Yes	2 Slot	190	836.6	25.7	0.627	
			2 3101	251	848.8	25.6		1
			GPRS	128	824.2	32.4		1
Right	0	No	2 Slot	190	836.6	32.5	0.394	
			2 3101	251	848.8	32.4		1
			GPRS	128	824.2	32.4	1.060	
Rear	11	No	2 Slot	190	836.6	32.5	0.929	
			2 5101	251	848.8	32.4	0.843	
			GPRS	128	824.2	32.4		1
Тор	14	No	2 Slot	190	836.6	32.5	0.482	
			2 5101	251	848.8	32.4		1
Top edge/			GPRS	128	824.2	32.4	0.967	
Right corner at	0	No	2 Slot	190	836.6	32.5	0.818	
15°			2 3101	251	848.8	32.4	0.690	

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

13.2. GSM1900

Test mode reduction considerations

Since the source-based time-averaged output power for EGPRS mode is lower than that in the GPRS mode, therefore Body SAR test reduction is applicable for this device

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			GPRS	512	1850.2	22.2	0.782	
Rear	0	Yes	2 Slot	661	1880.0	22.3	0.851	
			2 3101	810	1909.8	22.3	1.010	
			GPRS	512	1850.2	25.3	0.803	
Rear	0	Yes	1 Slot	661	1880.0	25.3	0.830	
			1 300	810	1909.8	25.3	1.010	
			EGPRS	512	1850.2	22.1	0.771	
Rear	0	Yes	2 Slot	661	1880.0	22.2	0.810	
			2 3101	810	1909.8	22.2	0.957	
			EGPRS	512	1850.2	25.3	0.758	
Rear	Rear 0		1 Slot	661	1880.0	25.3	0.802	
			1 3101	810	1909.8	25.3	0.967	

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			GPRS	512	1850.2	22.2		1
Тор	0	Yes	2 Slot	661	1880.0	22.3	0.598	
		2 3101	810	1909.8	22.3		1	
			GPRS	512	1850.2	28.0		1
Right	0	No	2 Slot	661	1880.0	28.1	0.276	
	•		2 5101	810	1909.8	28.2		1
			GPRS 2 Slot	512	1850.2	28.0		1
Rear	11	No		661	1880.0	28.1	0.788	
			2 3101	810	1909.8	28.2		1
			GPRS	512	1850.2	28.0		1
Тор	14	No	2 Slot	661	1880.0	28.1	0.420	
			2 3101	810	1909.8	28.2		1
Top edge/			GPRS	512	1850.2	28.0		1
Right corner at	0	No	2 Slot	661	1880.0	28.1	0.424	
15°			2 3101	810	1909.8	28.2		1

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

Page 60 of 113

13.3. UMTS (WCDMA) Band V

Test mode reduction considerations

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2kbps RMC is \leq 75% of the SAR limit as per KDB 941225 D01

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
				4357	826.4	20.0	1.160	
Rear	0	Yes	Rel 99	4408	836.6	20.1	1.180	
				4458	846.6	19.9	1.120	
				4357	826.4	20.0		1
Тор	0	Yes	Rel 99	4408	836.6	20.1	0.729	
				4458	846.6	19.9		1
				4357	826.4	24.9		1
Right	0	No	Rel 99	4408	836.6	25.0	0.316	
				4458	846.6	24.8		1
				4357	826.4	24.9	0.884	
Rear	11	No	Rel 99	4408	836.6	25.0	0.910	
				4458	846.6	24.8	0.846	
				4357	826.4	24.9		1
Тор	14	No	Rel 99	4408	836.6	25.0	0.430	
				4458	846.6	24.8		1
Top edge/				4357	826.4	24.9		1
Right corner at	0	No	Rel 99	4408	836.6	25.0	0.753	
15°				4458	846.6	24.8		1

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

Page 61 of 113

13.4. UMTS (WCDMA) Band II

Test mode reduction considerations

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2kbps RMC is \leq 75% of the SAR limit as per KDB 941225 D01

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
				9662	1852.4	15.5	1.090	
Rear	0	Yes	Rel 99	9800	1880.0	15.6	1.180	
				9938	1907.6	15.7	1.140	
				9662	1852.4	15.5	0.900	
Тор	0	Yes	Rel 99	9800	1880.0	15.6	0.850	
				9938	1907.6	15.7	0.789	
				9662	1852.4	22.8		1
Right	0	No	Rel 99	9800	1880.0	23.0	0.458	
				9938	1907.6	22.8		1
				9662	1852.4	22.8	0.883	
Rear	11	No	Rel 99	9800	1880.0	23.0	1.000	
				9938	1907.6	22.8	1.050	
				9662	1852.4	22.8	0.648	
Тор	14	No	Rel 99	9800	1880.0	23.0	0.808	
				9938	1907.6	22.8	0.917	
Top edge/				9662	1852.4	22.8		1
Right corner at	0	No	Rel 99	9800	1880.0	23.0	0.758	
15°				9938	1907.6	22.8		1
Top edge/				9262	1852.4	14.9	1.090	
Rear corner	0	Yes	Rel 99	9400	1880.0	14.8	1.160	
at 41°				9538	1907.6	15.0	1.060	

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

Page 62 of 113

13.5. CDMA BC0

Test mode reduction considerations

SAR for Subtype 2 Physical layer configurations in not required for Rev. A since the maximum average output of each RF channel is less than that measured in Subtype 0/1 Physical layer configurations as per KDB 941225 D01 SAR test for 3G devices v02.

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			1xRTT	1013	824.7	19.9	1.190	
Rear	0	Yes	(RC3,SO32)	384	836.5	20.0	1.190	
			(1003, 30032)	777	848.3	20.0	1.130	
			1xRTT	1013	824.7	19.9		
Тор	0	Yes	(RC3,SO32)	384	836.5	20.0	0.772	
			(RC3,3032)	777	848.3	20.0		
			1xRTT	1013	824.7	24.7		1
Right	0	No	(RC3,SO32)	384	836.5	24.7	0.327	
			(RU3,3032)	777	848.3	24.7		1
			1xRTT	1013	824.7	24.7	0.937	
Rear	11	No	(RC3,SO32)	384	836.5	24.7	0.938	
			(1003, 30032)	777	848.3	24.7	0.899	
			1xRTT	1013	824.7	24.7		1
Тор	14	No	(RC3,SO32)	384	836.5	24.7	0.394	
			(RU3, 3U32)	777	848.3	24.7		1
Top edge/				1013	824.7	24.7		1
Right corner at	0	No		384	836.5	24.7	0.734	
15°			(RC3,SO32)	777	848.3	24.7		1

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			1x EV-DO	1013	824.7	20.0	1.170	
Rear	0	Yes	Release 0	384	836.5	19.9	1.190	
			Release 0	777	848.3	20.0	1.140	
			1x EV-DO	1013	824.7	20.0		1
Тор	0	Yes	Release 0	384	836.5	19.9	0.722	
			Release 0	777	848.3	20.0		1
			1x EV-DO	1013	824.7	24.7		1
Right	0	No	Release 0	384	836.5	24.7	0.310	
			Release 0	777	848.3	24.6		1
			1x EV-DO	1013	824.7	24.7	0.826	
Rear	11	No	Release 0	384	836.5	24.7	0.823	
			Release 0	777	848.3	24.6	0.817	
			1x EV-DO	1013	824.7	24.7		1
Тор	14	No	Release 0	384	836.5	24.7	0.355	
			Release 0	777	848.3	24.6		1
Top edge/			1x EV-DO	1013	824.7	24.7	0.807	
Right corner at	0 No	-	384	836.5	24.7	0.790		
15°	0		Release 0	777	848.3	24.6	0.768	

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

Page 63 of 113

13.6. CDMA BC1

Test mode reduction considerations

SAR for Subtype 2 Physical layer configurations in not required for Rev. A since the maximum average output of each RF channel is less than that measured in Subtype 0/1 Physical layer configurations as per KDB 941225 D01 SAR test for 3G devices v02.

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			1xRTT	25	1851.3	15.5	0.917	
Rear	0	Yes	(RC3,SO32)	600	1880.0	15.5	0.984	
			(1003, 30032)	1175	1908.8	15.5	1.080	
			1xRTT	25	1851.3	15.5		
Тор	0	Yes	(RC3,SO32)	600	1880.0	15.5	0.639	
			(1003, 30032)	1175	1908.8	15.5		
			1xRTT	25	1851.3	22.9		1
Right	0	No	(RC3,SO32)	600	1880.0	23.0	0.507	
				1175	1908.8	23.0		1
			1xRTT	25	1851.3	22.9	0.753	
Rear	11	No	(RC3,SO32)	600	1880.0	23.0	0.847	
			(RU3,3032)	1175	1908.8	23.0	0.948	
			1xRTT	25	1851.3	22.9		1
Тор	14	No		600	1880.0	23.0	0.782	
			(RC3,SO32)	1175	1908.8	23.0		1
Top edge/				25	1851.3	22.9		1
Right corner at	0	No	1xRTT	600	1880.0	23.0	0.720	
15°			(RC3,SO32)	1175	1908.8	23.0		1

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
			1x EV-DO	25	1851.3	15.5	0.845	
Rear	0	Yes	Release 0	600	1880.0	15.5	0.933	
			Release 0	1175	1908.8	15.5	1.040	
			1x EV-DO	25	1851.3	15.5		
Тор	0	Yes	Release 0	600	1880.0	15.5	0.604	
			Release 0	1175	1908.8	15.5		
				25	1851.3	22.9		1
Right	0	No	1x EV-DO	600	1880.0	23.0	0.527	
			Release 0	1175	1908.8	22.9		1
			1x EV-DO	25	1851.3	22.9	0.738	
Rear	11	No	Release 0	600	1880.0	23.0	0.837	
			Release 0	1175	1908.8	22.9	0.945	
			1x EV-DO	25	1851.3	22.9		1
Тор	14	No	Release 0	600	1880.0	23.0	0.751	
			Release 0	1175	1908.8	22.9		1
Top edge/			1x EV-DO	25	1851.3	22.9		1
Right corner at	•	No	Release 0	600	1880.0	23.0	0.723	
15°	5		Release 0	1175	1908.8	22.9		1

Note(s):

1. SAR test was performed in the middle channel only as the measured level was < 50% of the SAR limit as stated in FCC "Public Notice DA 02-1438" by the SCC-34/SC-2. Testing in the low and high channel is optional.

Page 64 of 113

13.7. LTE Band 13

Test mode reduction considerations

SAR evaluation for 5MHz channel bandwidth is not performed, because the maximum average conducted output power of a 5 MHz channel bandwidth is within 0.5 dB of the average conducted output power measured for the 10 MHz channel bandwidth.

	dist.	Pwr	Mada	Ch #	Freq.	RB	RB	MPR	Avg Pwr	SAR (mW/g)	Nata
Test position	(mm)	back-off	Mode	Ch #	(MHz)	Slze	Offset	IVIPR	(dBm)	1-g	Note
						25	12	1	18.9	1.140	
			QPSK	23230	782.0	1	0	0	18.9	1.130	
			QF ON	23230	702.0	1	49	0	18.9	1.090	
Rear	0	Yes				50	0	1	18.9	1.110	
iteai	0	165				25	12	2	18.9	1.140	
			16QAM	23230	782.0	1	0	1	19.1	1.190	
			10QAIN	23230	102.0	1	49	1	19.0	1.150	
						50	0	2	18.9	1.150	
						25	12	1	18.9	0.736	
			QPSK	23230	782.0	1	0	0	18.9	0.750	
			GION	23230	102.0	1	49	0	18.9	0.735	
Тор	0	Yes				50	0	1	18.9		1
төр	0	165				25	12	2	18.9	0.741	
			16QAM	23230	782.0	1	0	1	19.1	0.790	
			10QAIN	23230	102.0	1	49	1	19.0	0.773	
						50	0	2	18.9		1
						25	12	1	23.5	0.382	
			QPSK	23230	782.0	1	0	0	24.4	0.473	
			GION		102.0	1	49	0	24.3	0.443	
Right	0	No				50	0	1	23.3		1
Right	U	NO	16QAM	23230		25	12	2	22.4	0.301	
					782.0	1	0	1	23.6	0.391	
					782.0	1	49	1	23.5	0.372	
						50	0	2	22.5		1
						25	12	1	23.5	0.635	
			QPSK	23230	782.0	1	0	0	24.4	0.765	
			GI OIX	20200	102.0	1	49	0	24.3	0.780	
Rear	11	No				50	0	1	23.3		1
Real						25	12	2	22.4	0.499	
			16QAM	23230	782.0	1	0	1	23.6	0.646	
			1000/111	20200	102.0	1	49	1	23.5	0.655	
						50	0	2	22.5		1
						25	12	1	23.5	0.275	
			QPSK	23230	782.0	1	0	0	24.4	0.347	
	14 No -		20200	102.0	1	49	0	24.3	0.327		
Тор					50	0	1	23.3		1	
100	14	110				25	12	2	22.4	0.219	
		16QAM 232	23230	782 0	1	0	1	23.6	0.290		
		1		23230	782.0	1	49	1	23.5	0.276	
						50	0	2	22.5		1

10MHz Channel Bandwidth

Note(s):

100% RB Allocation in QPSK and 16QAM is not needed due to the SAR result is < 1.45 mW/g from 50% RB 1. Allocation. The data has not been considered for FCC Equipment Certification.

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USÁ TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 65 of 113

10MHz Channel Bandwidth (continued)

Test position	dist. (mm)	Pwr back-off	Mode	Ch #	Freq. (MHz)	RB SIze	RB Offset	MPR	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
						25	12	1	23.5	0.615	
			QPSK	23230	782.0	1	0	0	24.4	0.753	
Top odgo/			QFSN	23230	782.0	1	49	0	24.3	0.717	
Top edge/ Right corner	0	No				50	0	1	23.3		1
at 15°	0	INU			782.0	25	12	2	22.4	0.475	
acij			160 0 M	23230		1	0	1	23.6	0.627	
		16QAM	23230	102.0	1	49	1	23.5	0.607		
						50	0	2	22.5		1

Note(s):

1. 100% RB Allocation in QPSK and 16QAM is not needed due to the SAR result is < 1.45 mW/g from 50% RB Allocation. The data has not been considered for FCC Equipment Certification.

Page 66 of 113

13.8. WiFi (802.11abgn)

802.11bgn (2.4GHz)

Test mode reduction considerations

Per KDB 248227, SAR is not required for 802.11g /n (HT20) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
		N/A	802.11 b	1	2412.0	16.5		1
Rear	0		1Mbps	6	2437.0	16.7	0.089	
				11	2462.0	16.5		1
			802.11 b 1Mbps	1	2412.0	16.5	0.924	
bottom	0	N/A		6	2437.0	16.7	1.180	
			Tivips	11	2462.0	16.5	1.190	
			802 11 h	1	2412.0	16.5		1
Right	Right 0	N/A	802.11 b 1Mbps	6	2437.0	16.7	0.049	
			rivipa	11	2462.0	16.5		1

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

802.11an (5GHz)

Test mode reduction considerations

Per KDB 248227, SAR is not required for 802.11n (HT20) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a channels.

Test position	dist. (mm)	Pwr back-off	Mode	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (mW/g) 1-g	Note
	(11111)	Dack on		36	5180.0	13.5	I-g	1
Rear	0	N/A		40	5200.0	13.5	0.045	
Roal	Ŭ	1.0/7.1		48	5240.0	13.5	0.040	1
			802.11 a	36	5180.0	13.5		1
bottom	0	N/A	5.2GHz	40	5200.0	13.5	0.501	•
bottom	Ŭ		6Mbps	48	5240.0	13.5	0.001	1
			0	36	5180.0	13.5		1
Right	0	N/A		40	5200.0	13.5	0.043	•
5	_	-		48	5240.0	13.5		1
				52	5260.0	17.5		1
Rear	0	N/A		60	5300.0	17.5	0.117	
				64	5320.0	16.5		1
			802.11 a	52	5260.0	17.5	1.000	
bottom	0	N/A	5.3GHz	60	5300.0	17.5	1.120	
			6Mbps	64	5320.0	16.5	1.090	
				52	5260.0	17.5		1
Right	0	N/A		60	5300.0	17.5	0.052	
-				64	5320.0	16.5		1
				100	5500.0	16.5		2
Rear	0	N/A		120	5600.0	16.5	0.068	
				140	5700.0	16.5		2
			*802.11 a	100	5500.0	16.5	0.887	
bottom	0	N/A	5.5GHz	120	5600.0	16.5	1.080	
			6Mbps	140	5700.0	16.5	0.954	
				100	5500.0	16.5		2
Right	0	N/A		120	5600.0	16.5	0.011	
				140	5700.0	16.5		2
				149	5745.0	17.5		1
Rear	0	N/A		157	5785.0	17.5	0.069	
				165	5825.0	17.5		1
			802.11 a	149	5745.0	17.5	1.150	
bottom	0	N/A	5.8GHz	157	5785.0	17.5	1.040	
			6Mbps	165	5825.0	17.5	1.140	
				149	5745.0	17.5		1
Right	0	N/A		157	5785.0	17.5	0.019	
				165	5825.0	17.5		1

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

2. Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

3. *The FCC has reviewed and accepted the measurements on the non-default channels.

Page 68 of 113

14. Summary of Highest 1g SAR

FCC rule part	Technology/Band	Test configuration	Mode	Separation distance (mm)	Highest 1g SAR (W/kg)
	GSM850	Rear	GPRS 2 slot	0	1.17
22	UMTS Band V	Rear	R99	0	1.18
22		Rear	1xRTT (RC3, SO55)	0	1.19
	CDMA BC0	Rear	1xEVDO (Rel. 0)	0	1.19
	GSM1900	Rear	GPRS 2 slot	0	1.01
24	UMTS Band II	Rear	R99	0	1.18
24		Rear	1xRTT (RC3, SO55)	0	1.08
	CDMA BC1	Rear	1xEVDO (Rel. 0)	0	1.04
07	LTE band 40	Rear	QPSK (RB 25/12)	0	1.14
27	LTE band 13	Rear	16QAM (RB 25/12)	0	1.19
15.247	WiFi 2.4 GHz	Bottom	802.11b	0	1.19
	WiFi 5.2 GHz	Bottom	802.11a	0	0.501
15.407	WiFi 5.3 GHz	Bottom	802.11a	0	1.12
	WiFi 5.5 GHz	Bottom	802.11a	0	1.08
15.247	WiFi 5.8 GHz	Bottom	802.11a	0	1.15

Page 69 of 113

15. Worst-case SAR Plots

Date/Time: 10/26/2011 12:32:29 AM

Test Laboratory: UL CCS SAR Lab D

GSM 850

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:4 Medium parameters used: f = 825 MHz; σ = 0.947 mho/m; ϵ_r = 53.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010

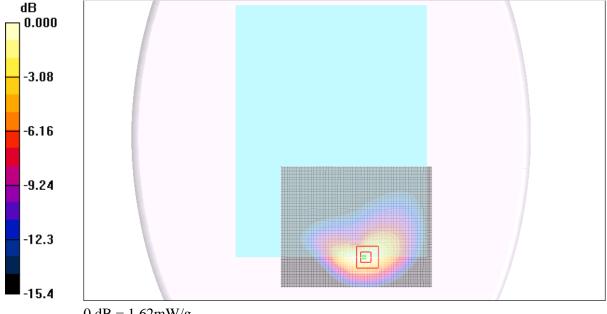
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017

- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Rear/Base_GPRS 2 slot_L ch/Area Scan (101x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.58 mW/g

Rear/Base_GPRS 2 slot_L ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=3mm

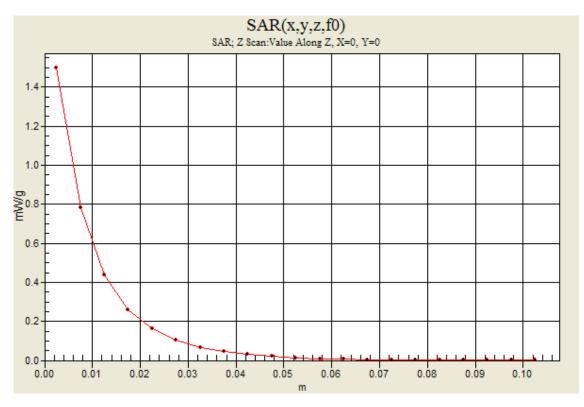
Reference Value = 40.4 V/m; Power Drift = -0.122 dB Peak SAR (extrapolated) = 2.35 W/kg SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.619 mW/g

Maximum value of SAR (measured) = 1.62 mW/g

0 dB = 1.62 mW/g

Page 70 of 113

Date/Time: 10/26/2011 12:50:52 AM


Test Laboratory: UL CCS SAR Lab D

GSM 850

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:4

Rear/Base_GPRS 2 slot_L ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 1.50 mW/g

Page 71 of 113

Date: 10/25/2011

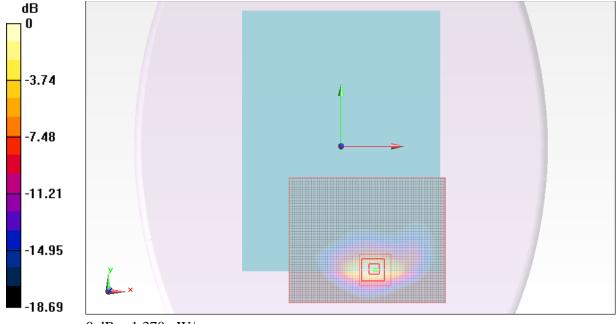
Test Laboratory: UL CCS SAR Lab A

PCS 1900

Communication System: GPRS-FDD (TDMA, GMSK, 2 slot); Frequency: 1909.8 MHz; Duty Cycle: 1:4.00037 Medium parameters used: f = 1910 MHz; σ = 1.486 mho/m; ϵ_r = 51.627; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.99, 6.99, 6.99); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 7/14/2011
- Phantom: ELI v4.0(A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

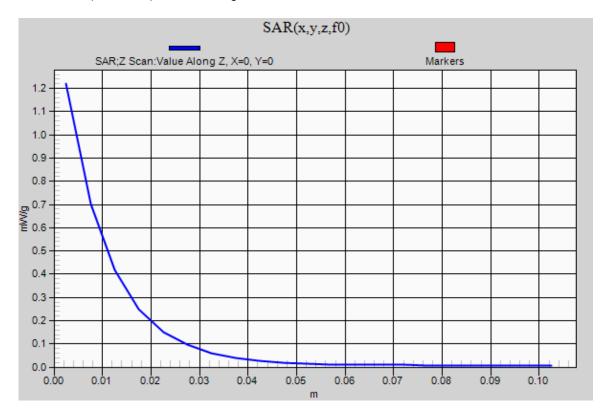
Rear/Base/GPRS 2 slot_H ch/Area Scan (101x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.377 mW/g

Rear/Base/GPRS 2 slot_H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=3mm Reference Value = 28.196 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 2.018 W/kg SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.480 mW/g

Maximum value of SAR (measured) = 1.366 mW/g

 $0 \, dB = 1.370 \, mW/g$


Page 72 of 113

Test Laboratory: UL CCS SAR Lab A

PCS 1900

Communication System: GPRS-FDD (TDMA, GMSK, 2 slot); Frequency: 1909.8 MHz;Duty Cycle: 1:4.00037

Rear/Base/GPRS 2 slot_H ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.220 mW/g

Page 73 of 113

Date/Time: 10/25/2011 7:43:26 PM

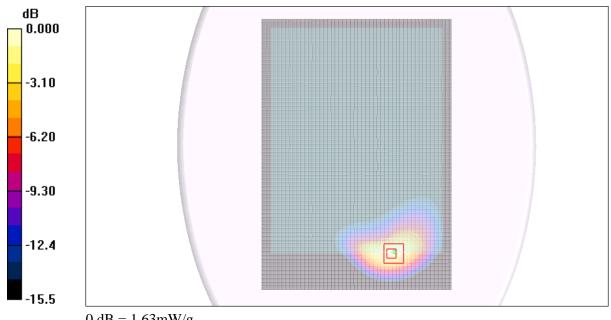
Test Laboratory: UL CCS SAR Lab D

UMTS band V

Communication System: UMTS Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.959 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Rear/Base_M ch/Area Scan (141x201x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.52 mW/g

Rear/Base_M ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

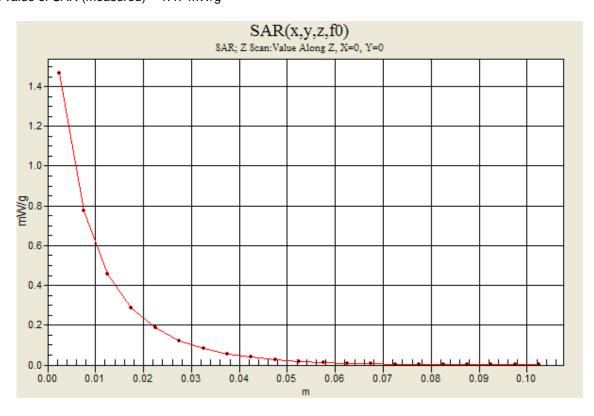
Reference Value = 39.9 V/m; Power Drift = 0.026 dB Peak SAR (extrapolated) = 2.48 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.620 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 mW/g

 $0 \, dB = 1.63 mW/g$

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 74 of 113

Date/Time: 10/25/2011 8:22:56 PM


Test Laboratory: UL CCS SAR Lab D

UMTS band V

Communication System: UMTS Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Rear/Base_M ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.47 mW/g

Page 75 of 113

Date: 10/24/2011

Test Laboratory: UL CCS SAR Lab A

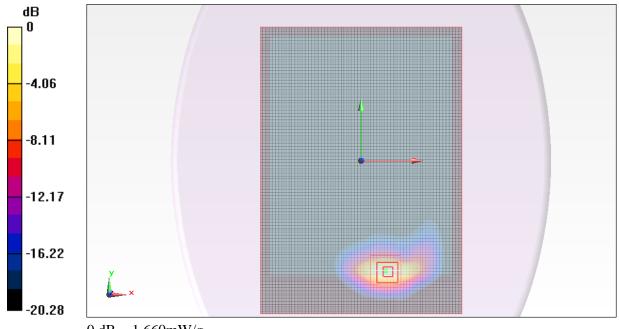
UMTS band II

Communication System: WCDMA (UMTS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.453 mho/m; ϵ_r = 51.723; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.99, 6.99, 6.99); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 7/14/2011
- Phantom: ELI v4.0(A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)


Rear/Base/M ch/Area Scan (141x201x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.802 mW/g

Rear/Base/M ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

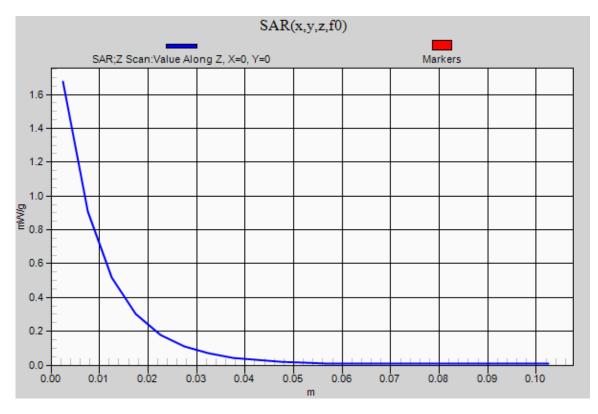
Reference Value = 34.238 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.236 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.554 mW/g

Maximum value of SAR (measured) = 1.662 mW/g

0 dB = 1.660 mW/g

Page 76 of 113

Date: 10/24/2011


Test Laboratory: UL CCS SAR Lab A

UMTS band II

Communication System: WCDMA (UMTS); Frequency: 1880 MHz; Duty Cycle: 1:1

Rear/Base/M ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 1.675 mW/g

Page 77 of 113

Date/Time: 10/27/2011 10:42:54 PM

Test Laboratory: UL CCS SAR Lab D

CDMA2000 BC0

Communication System: CDMA Cell Band; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.968 mho/m; ϵ_r = 55.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010

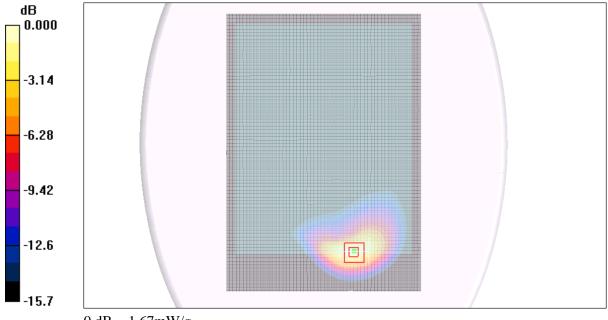
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Rear/Base_1xRTT SO32_M ch/Area Scan (141x201x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.50 mW/g

Rear/Base_1xRTT SO32_M ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 40.6 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 2.44 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.629 mW/g

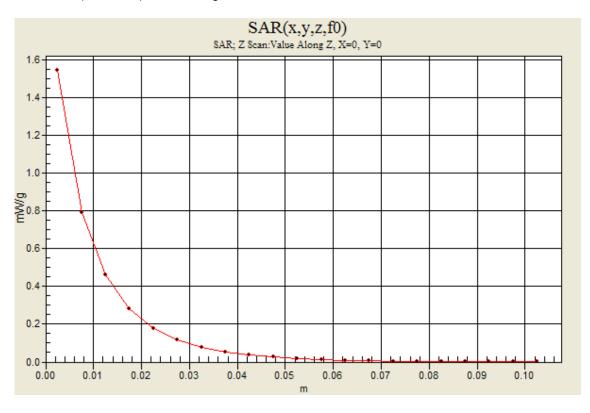
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.67 mW/g

 $0 \, dB = 1.67 mW/g$

Page 78 of 113

Date/Time: 10/27/2011 11:14:27 PM


Test Laboratory: UL CCS SAR Lab D

CDMA2000 BC0

Communication System: CDMA Cell Band; Frequency: 836.52 MHz; Duty Cycle: 1:1

Rear/Base_1xRTT SO32_M ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.55 mW/g

Page 79 of 113

Date/Time: 10/31/2011 4:13:57 PM

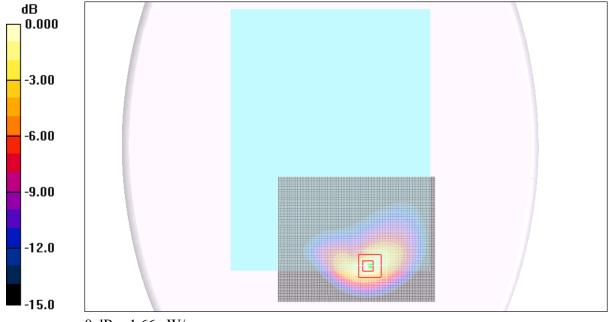
Test Laboratory: UL CCS SAR Lab D

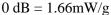
CDMA2000 BC0

Communication System: CDMA Cell Band; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.52 MHz; σ = 0.97 mho/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Rear/Base_1xEV-DO_Rel.0_M ch/Area Scan (101x81x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

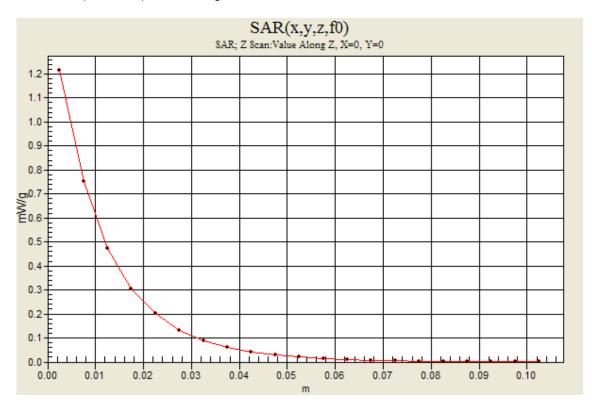
Maximum value of SAR (interpolated) = 1.40 mW/g

Rear/Base_1xEV-DO_Rel.0_M ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=3mm Reference Value = 35.6 V/m; Power Drift = 0.143 dB Peak SAR (extrapolated) = 2.46 W/kg SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.623 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.66 mW/g

Page 80 of 113

Date/Time: 10/31/2011 4:44:34 PM


Test Laboratory: UL CCS SAR Lab D

CDMA2000 BC0

Communication System: CDMA Cell Band; Frequency: 836.52 MHz; Duty Cycle: 1:1

Rear/Base_1xEV-DO_Rel.0_M ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.22 mW/g

Page 81 of 113

Date: 11/1/2011

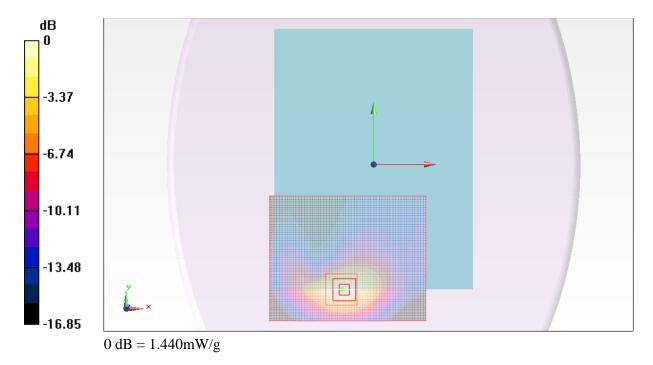
Test Laboratory: UL CCS SAR Lab A

CDMA2000 BC1_1xRTT SO32

Communication System: CDMA2000 (1xRTT); Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.544 mho/m; ϵ_r = 51.334; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 7/14/2011
- Phantom: ELI v4.0(A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Front with 14mm/H ch/Area Scan (101x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.458 mW/g

Front with 14mm/H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 30.642 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.814 W/kg SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.629 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.438 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 82 of 113

Date: 11/1/2011

Test Laboratory: UL CCS SAR Lab A

CDMA2000 BC1_1xRTT SO32

Communication System: CDMA2000 (1xRTT); Frequency: 1908.75 MHz; Duty Cycle: 1:1

Front with 14mm/H ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.420 mW/g

Page 83 of 113

Date: 11/2/2011

Test Laboratory: UL CCS SAR Lab A

CDMA2000 BC1_1xEVDO Rel.0

Communication System: CDMA2000; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.539 mho/m; ϵ_r = 53.165; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

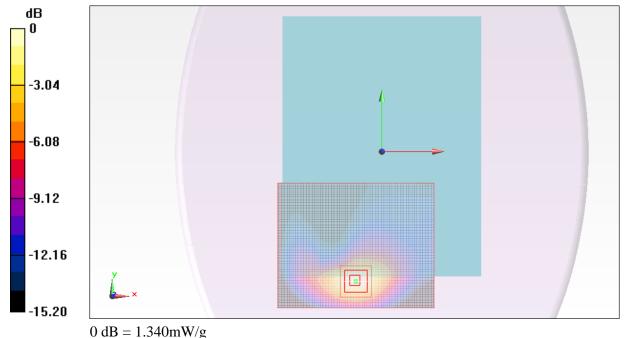
DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 7/14/2011
- Phantom: ELI v4.0(A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Front with 14mm/H ch/Area Scan (101x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.354 mW/g

Front with 14mm/H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 28.761 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.697 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.585 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.336 mW/g

Page 84 of 113

Date: 11/2/2011

Test Laboratory: UL CCS SAR Lab A

CDMA2000 BC1_1xEVDO Rel.0

Communication System: CDMA2000; Frequency: 1908.75 MHz; Duty Cycle: 1:1

Front with 14mm/H ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.249 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USÁ TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 85 of 113

Date/Time: 11/1/2011 1:26:53 PM

Test Laboratory: UL CCS SAR Lab D

LTE Band 13

Communication System: LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 782 MHz; σ = 0.982 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

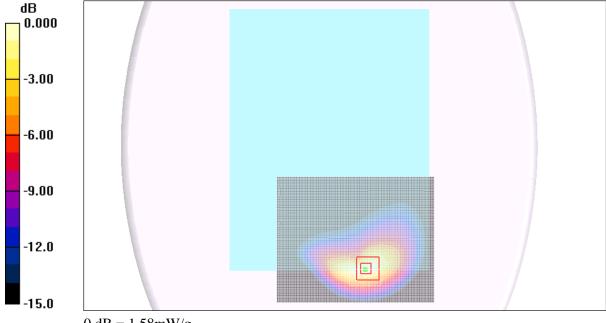
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(8.87, 8.87, 8.87); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Rear/Base_QPSK_RB25/12_BW 10MHz/Area Scan (101x81x1): Measurement grid: dx=15mm,

dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.46 mW/g

Rear/Base_QPSK_RB25/12_BW 10MHz/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=3mm Reference Value = 38.1 V/m; Power Drift = -0.104 dB

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.595 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

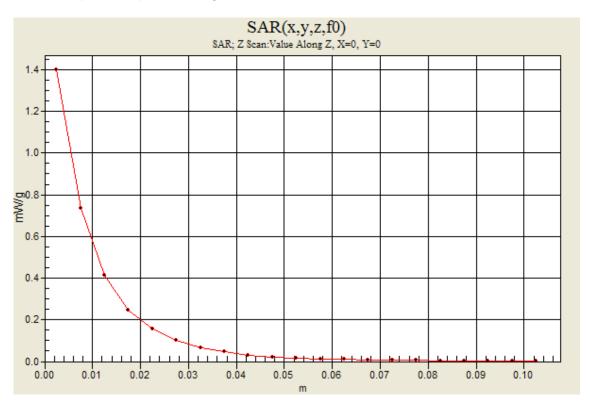
Maximum value of SAR (measured) = 1.58 mW/g

 $0 \, dB = 1.58 \, mW/g$

Page 86 of 113

Date/Time: 11/1/2011 1:52:34 PM

Test Laboratory: UL CCS SAR Lab D


LTE Band 13

Communication System: LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1

Rear/Base_QPSK_RB25/12_BW 10MHz/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.40 mW/g

Page 87 of 113

Date/Time: 11/1/2011 3:39:17 PM

Test Laboratory: UL CCS SAR Lab D

LTE Band 13

Communication System: LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 782 MHz; σ = 0.982 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(8.87, 8.87, 8.87); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017

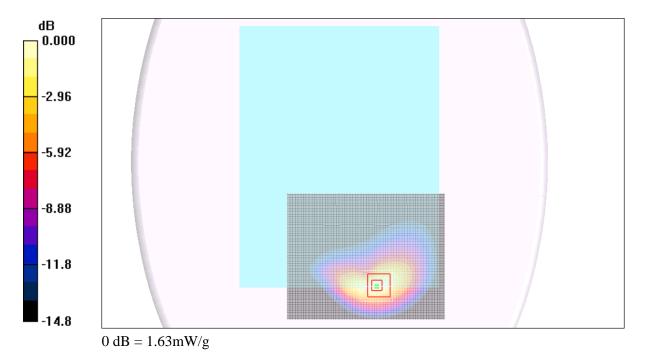
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Rear/Base_16QAM_RB1/0_BW 10MHz/Area Scan (101x81x1): Measurement grid: dx=15mm,

dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.52 mW/g

Rear/Base_16QAM_RB1/0_BW 10MHz/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=3mm


Reference Value = 38.5 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 2.49 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.627 mW/g

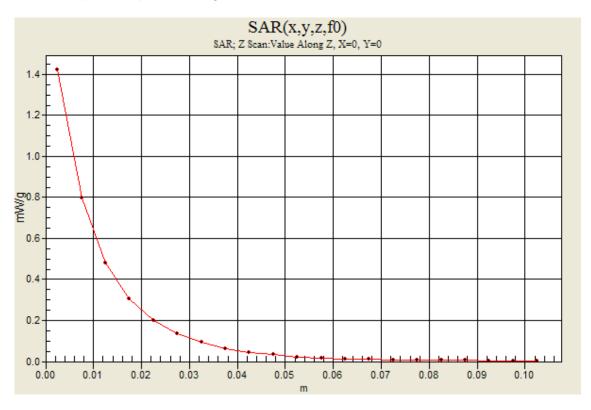
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.63 mW/g

Page 88 of 113 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Date/Time: 11/1/2011 3:57:45 PM

Test Laboratory: UL CCS SAR Lab D


LTE Band 13

Communication System: LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1

Rear/Base_16QAM_RB1/0_BW 10MHz/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm,

dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.42 mW/g

Page 89 of 113

Date/Time: 10/11/2011 12:25:25 AM

Test Laboratory: UL CCS SAR Lab D

WiFi 2.4GHz_Body

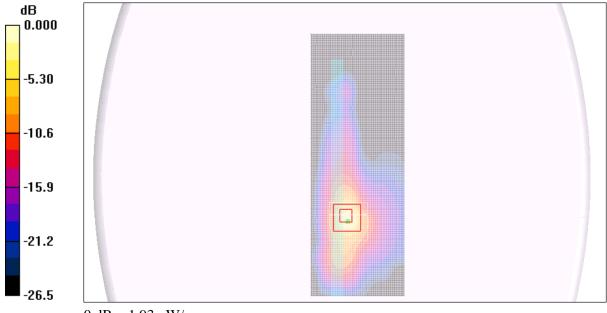
Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 2 mho/m; ϵ_r = 50.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 2.5mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: 1017
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Bottom_ch 11/Area Scan (51x141x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.42 mW/g

Bottom_ch 11/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 29.9 V/m; Power Drift = -0.171 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.416 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.93 mW/g

 $0 \, dB = 1.93 \, mW/g$

Page 90 of 113

Date/Time: 10/11/2011 12:57:20 AM

Test Laboratory: UL CCS SAR Lab D

WiFi 2.4GHz_Body

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Bottom_ch 11/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.68 mW/g

> SAR(x,y,z,f0)SAR; Z Scan:Value Along Z, X=0, Y=0 1.6 1.4 1.2 ^{1.0} б//лш 0.6 0.4 0.2 0.0+ 0.09 0.10 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 m

Page 91 of 113

Date/Time: 10/24/2011 6:33:11 PM

Test Laboratory: UL CCS SAR Lab D

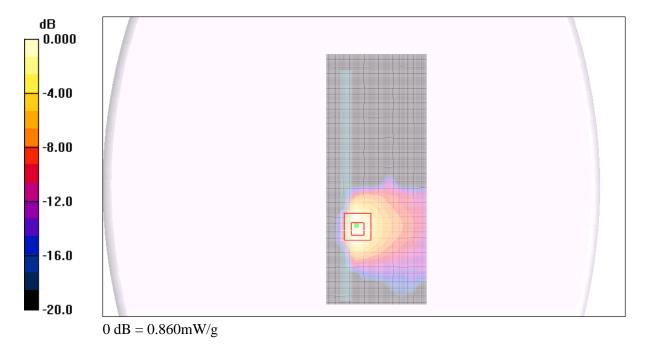
5GHz_Body

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.47 mho/m; ϵ_r = 48.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Bottom_Ch40/Area Scan (81x201x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.962 mW/g

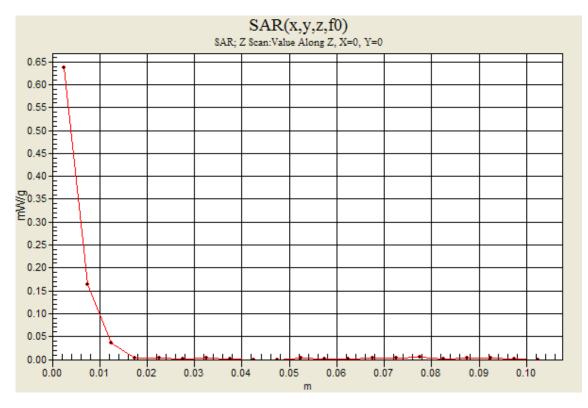
Bottom_Ch40/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 12.0 V/m: Power Drift = 0.176 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.171 mW/g

Maximum value of SAR (measured) = 0.860 mW/g

Page 92 of 113

Date/Time: 10/24/2011 7:44:30 PM


Test Laboratory: UL CCS SAR Lab D

5GHz_Body

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1

Bottom_Ch40/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 0.637 mW/g

Page 93 of 113

Date: 10/12/2011

Test Laboratory: UL CCS SAR Lab A

5GHz_Body

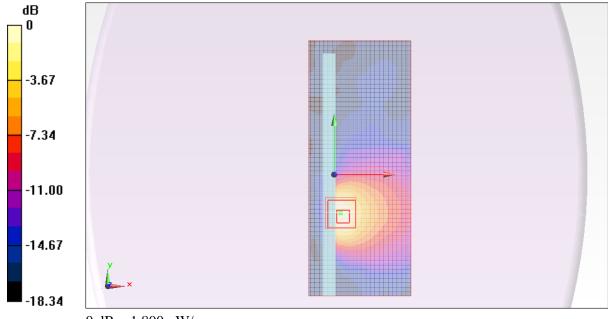
Communication System: WLAN 5GHz; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.587 mho/m; ε_r = 49.014; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.7, 3.7, 3.7); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 7/14/2011
- Phantom: ELI v4.0(A); Type: QDOVA001BB; Serial: 1119
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

Bottom/802.11a_ch 60/Area Scan (81x201x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 1.986 mW/g

Bottom/802.11a_ch 60/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 18.035 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.601 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.426 mW/g

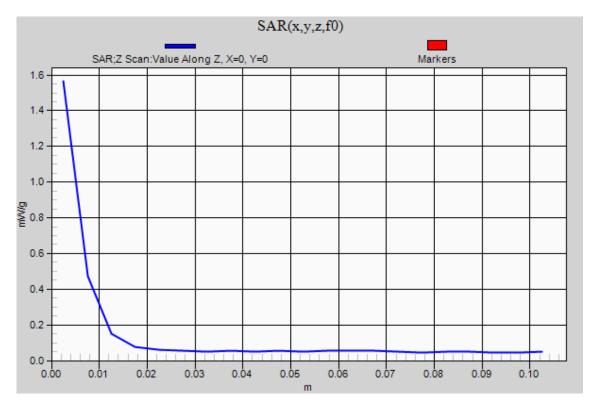
Maximum value of SAR (measured) = 1.804 mW/g

 $0 \, dB = 1.800 \, mW/g$

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 94 of 113

Date: 10/12/2011


Test Laboratory: UL CCS SAR Lab A

5GHz_Body

Communication System: WLAN 5GHz; Frequency: 5300 MHz; Duty Cycle: 1:1

Bottom/802.11a_ch 60/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 1.565 mW/g

Page 95 of 113

Date/Time: 10/12/2011 7:59:16 PM

Test Laboratory: UL CCS SAR Lab D

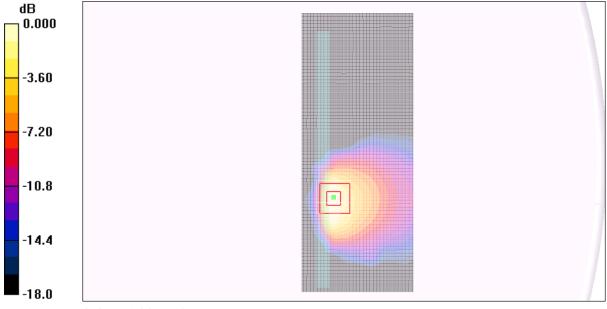
5GHz_Body

DUT: Apple; Type: 17 inch; Serial: N/A

```
Communication System: 802.11abgn; Frequency: 5600 MHz; Duty Cycle: 1:1
Medium parameters used: f = 5600 MHz; \sigma = 5.85 mho/m; \epsilon_r = 47.6; \rho = 1000 kg/m<sup>3</sup>
Phantom section: Flat Section
```

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.36, 3.36, 3.36); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1017
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Bottom_Ch120/Area Scan (81x201x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 2.34 mW/g

Bottom_Ch120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

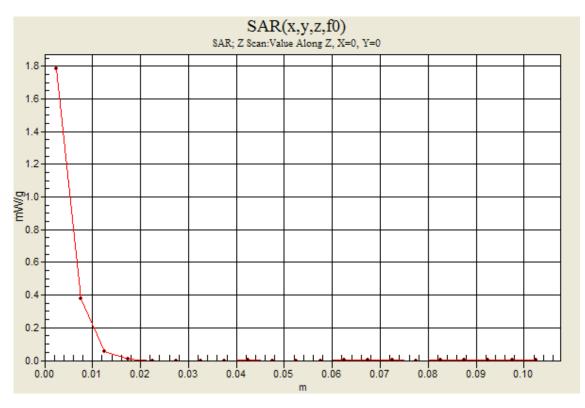
Reference Value = 19.3 V/m; Power Drift = -0.081 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.374 mW/g Maximum value of SAR (measured) = 1.83 mW/g

 $0 \, dB = 1.83 \, mW/g$

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 96 of 113

Date/Time: 10/12/2011 8:32:17 PM


Test Laboratory: UL CCS SAR Lab D

5GHz_Body

Communication System: 802.11abgn; Frequency: 5600 MHz; Duty Cycle: 1:1

Bottom_Ch120/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 1.78 mW/g

Page 97 of 113

Date/Time: 10/12/2011 1:11:13 AM

Test Laboratory: UL CCS SAR Lab D

5GHz_Body

DUT: Apple; Type: 17 inch; Serial: N/A

```
Communication System: 802.11abgn; Frequency: 5745 MHz; Duty Cycle: 1:1
Medium parameters used: f = 5745 MHz; \sigma = 6.09 mho/m; \epsilon_r = 46.2; \rho = 1000 kg/m<sup>3</sup>
Phantom section: Flat Section
```

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

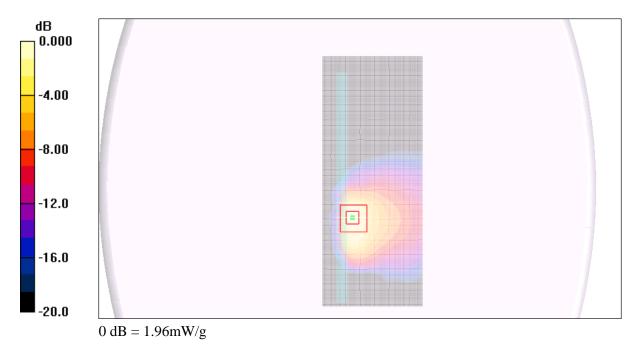
- Sensor-Surface: 2.5mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1259; Calibrated: 5/3/2011

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BB; Serial: SN:1017

- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Bottom_Ch149/Area Scan (81x201x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 2.09 mW/g

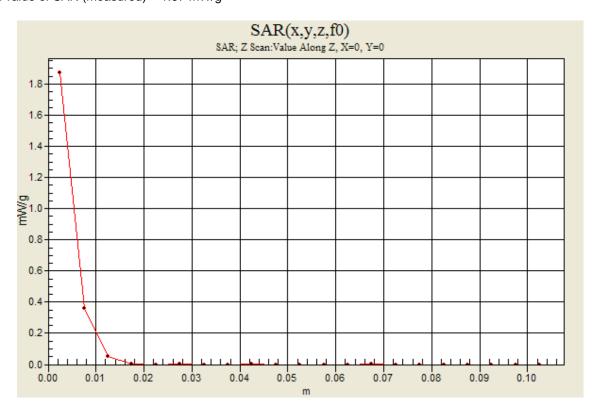
Bottom_Ch149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 19.2 V/m; Power Drift = -0.189 dB Peak SAR (extrapolated) = 3.80 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.401 mW/g

Maximum value of SAR (measured) = 1.96 mW/g

Page 98 of 113


Date/Time: 10/12/2011 1:32:54 AM

Test Laboratory: UL CCS SAR Lab D

5GHz_Body

Communication System: 802.11abgn; Frequency: 5745 MHz; Duty Cycle: 1:1

Bottom_Ch149/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.87 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 99 of 113

16. Simultaneous Transmission SAR Analysis

The Bluetooth's output power is < 25 mW [$60/f_{(GHz)}$], which stand-alone SAR evaluation is not required. Therefore, simultaneous transmission SAR evaluation is not required. SVDO and SVLTE are NOT supported features on this device

			Da	ata			Data		
Test Position	(1) GSM 850	(2) GSM 1900	(3) UMTS Band V	(4) UMTS Band II	(5) CDMA BC0	(6) CDMA BC1	(7) WiFi 2.4G	Sum of 1g SAR (mW/g)	
	1.17						0.089	1.259	
		1.01					0.089	1.099	
Rear			1.180				0.089	1.269	
ittear				1.180			0.089	1.269	
					1.190		0.089	1.279	
						1.080	0.089	1.169	
	0.394						0.049	0.443	
		0.276					0.049	0.325	
Right			0.316				0.049	0.365	
rugin				0.458			0.049	0.507	
					0.327		0.049	0.376	
						0.751	0.049	0.800	
	0.627						0	0.627	
		0.598					0	0.598	
Тор			0.729				0	0.729	
iop				0.917			0	0.917	
					0.772		0	0.772	
						0.639	0	0.639	
	0						1.190	1.190	
		0					1.190	1.190	
Bottom			0				1.190	1.190	
Dottom				0			1.190	1.190	
					0		1.190	1.190	
						0	1.190	1.190	

16.1. Body exposure condition (3G + WiFi 2.4 GHz)

Conclusions:

Simultaneous transmission SAR is not required because the sum of the 1-g SAR is < 1.6 W/kg

Page 100 of 113

16.2. Body exposure condition (3G + WiFi 5 GHz Bands)

	Data					Data					Sum of
Test	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	1g SAR
Position	GSM	GSM	UMTS	UMTS	CDMA	CDMA	WiFi	WiFi	WiFi	WiFi	(mW/g)
	850	1900	Band V	Band II	BC0	BC1	5.2G	5.3G	5.5G	5.8G	, ,
	1.17						0.045				1.215
		1.01					0.045				1.055
			1.180				0.045				1.225
				1.180			0.045				1.225
					1.190		0.045				1.235
	=					1.080	0.045				1.125
	1.17							0.117			1.287
		1.01	4.400					0.117			1.127
			1.180	4 4 9 9				0.117			1.297
				1.180	4.400			0.117			1.297
					1.190	1.000		0.117			1.307
Rear	4 4 7					1.080		0.117	0.000		1.197
	1.17	1.01							0.068		1.238
		1.01	1 1 0 0						0.068		1.078 1.248
			1.180	1.180					0.068		1.248
				1.160	1.190						1.240
					1.190	1 090			0.068		1.148
	1 1 7					1.080			0.068	0.060	
	1.17	1.01								0.069	1.239
		1.01	1.180							0.069	1.249
			1.160	1.180						0.069	1.249
				1.160	1.190					0.069	1.249
					1.190	1.080				0.069	1.149
	0.394					1.000	0.043			0.003	0.437
	0.594	0.276					0.043				0.319
		0.270	0.316				0.043				0.359
			0.010	0.458			0.043				0.501
				0.100	0.327		0.043				0.370
					0.021	0.751	0.043				0.794
	0.394					01101	0.010	0.052			0.446
	0.001	0.276						0.052			0.328
			0.316					0.052			0.368
				0.458				0.052			0.510
					0.327			0.052			0.379
D: 14						0.751		0.052			0.803
Right	0.394								0.011		0.405
		0.276							0.011		0.287
			0.316						0.011		0.327
				0.458					0.011		0.469
					0.327				0.011		0.338
						0.751			0.011		0.762
	0.394									0.019	0.413
		0.276								0.019	0.295
			0.316							0.019	0.335
				0.458						0.019	0.477
					0.327					0.019	0.346
						0.751				0.019	0.770

Page 101 of 113

REPORT NO: 11U13938-7B1 FCC ID: BCGA1403

			Da	ata		Data				Sum of	
Test	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	1g SAR
Position	GSM	GSM	UMTS	UMTS	CDMA	CDMA	WiFi	WiFi	WiFi	WiFi	(mW/g)
	850	1900	Band V	Band II	BC0	BC1	5.2G	5.3G	5.5G	5.8G	
	0.627						0				0.627
		0.598					0				0.598
			0.729				0				0.729
				0.917			0				0.917
					0.772		0				0.772
						0.639	0				0.639
	0.627							0			0.627
		0.598						0			0.598
			0.729					0			0.729
				0.917				0			0.917
					0.772			0			0.772
Тор						0.639		0			0.639
· •p	0.627								0		0.627
		0.598							0		0.598
			0.729						0		0.729
				0.917					0		0.917
					0.772				0		0.772
						0.639			0		0.639
	0.627									0	0.627
		0.598								0	0.598
			0.729							0	0.729
				0.917						0	0.917
					0.772					0	0.772
						0.639				0	0.639
	0						0.501				0.501
		0					0.501				0.501
			0				0.501				0.501
				0			0.501				0.501
					0		0.501				0.501
						0	0.501				0.501
	0							1.120			1.120
		0						1.120			1.120
			0					1.120			1.120
				0				1.120			1.120
					0			1.120			1.120
Bottom						0		1.120	4.000		1.120
	0								1.080		1.080
		0							1.080		1.080
			0						1.080		1.080
				0					1.080		1.080
					0				1.080		1.080
						0			1.080	4 450	1.080
	0									1.150	1.150
		0								1.150	1.150
			0	-						1.150	1.150
				0	-					1.150	1.150
					0					1.150	1.150
						0				1.150	1.150

Conclusions:

Simultaneous transmission SAR is not required because the sum of the 1-g SAR is < 1.6 W/kg

Page 102 of 113

16.3. Body exposure condition (LTE Band 13 + WiFi 2.4 GHz)

	Data	Data	Sum of 1g SAR (mW/g)	
Test Position	(1) LTE Band 13	(2) WiFi 2.4G		
Rear	1.190	0.089	1.279	
Right	0.473	0.049	0.522	
Тор	0.790	0.0	0.790	
Bottom	0	1.190	1.190	

Conclusions:

Simultaneous transmission SAR is not required because the sum of the 1-g SAR is < 1.6 W/kg

16.4. Body exposure condition (LTE Band 13 + WiFi 5 GHz Bands)

	Data		Sum of 1g			
Test Position	(1) LTE Band 13	(2) WiFi 5.2G	(3) WiFi 5.3G	(4) WiFi 5.5G	(5) WiFi 5.8G	SAR (mW/g)
	1.19	0.045				1.235
Rear	1.19		0.117			1.307
Real	1.19			0.068		1.258
	1.19				0.069	1.259
	0.473	0.043				0.516
Right	0.473		0.052			0.525
Right	0.473			0.011		0.484
	0.473				0.019	0.492
	0.790	0				0.790
Тор	0.790		0			0.790
төр	0.790			0		0.790
	0.790				0	0.790
	0	0.501				0.501
Bottom	0		1.120			1.120
Bollom	0			1.080		1.080
	0				1.150	1.150

Conclusions:

Simultaneous transmission SAR is not required because the sum of the 1-g SAR is < 1.6 W/kg

Page 103 of 113

17. Appendixes

Refer to separated files for the following appendixes.

- 17.1. System check plots
- 17.2. SAR test plots for GSM850
- 17.3. SAR test plots for GSM1900
- 17.4. SAR test plots for UMTS Band V
- 17.5. SAR test plots for UMTS Band II
- 17.6. SAR test plots for CDMA BC0
- 17.7. SAR test plots for CDMA BC1
- 17.8. SAR test plots for LTE Band 13
- 17.9. SAR test plots for WiFi 2.4 GHz
- 17.10. SAR test plots for WiFi 5 GHz Bands
- 17.11. Calibration certificate for E-Field Probe EX3DV4 SN 3686
- 17.12. Calibration certificate for E-Field Probe EX3DV4 SN 3749
- 17.13. Calibration certificate for D750V3 SN 1019
- 17.14. Calibration Certificate for D835V2 SN 4d117
- 17.15. Calibration certificate for D1900V2 SN 5d140
- 17.16. Calibration certificate for D2450V2 SN: 706 with extended cal. Data
- 17.17. Calibration certificate for D5GHzV2 SN 1003

Page 104 of 113

18. Summary of Test Configurations

The following test configurations are based on KDB 447498 4) b) Tablet Mode

18.1. Exposure conditions for WWAN and LTE

Configuration	Antenna-to- edge/surface	SAR Required	note
Rear	2.14 mm	Yes	SAR evaluated with the base/bottom of the tablet in direct contact with a flat phantom as per KDB 447498 4) b) i)
Top edge	3.7 mm	Yes	This is the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Top edge/Right corner at 15°	>3.7 mm	Yes	This is the most conservative antenna-to-user angle at Top-Edge/Right Corner at which proximity sensor is triggered.
Top edge/Rear corner at 41°	1.98 mm	Yes	Since, the Top-Edge of the tablet is rounded, this is the most conservative antenna-to-user distance/angle at edge mode as per KDB 447498 4)B)ii) (2).
Bottom	225.5 mm	No	> 20 cm
Left edge	99.8mm	No	This is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Right edge	35.1 mm	Yes	This is the most conservative antenna-to-user distance at edge mode compared with Left edge

18.2. Exposure conditions for WiFi

Configuration	Antenna-to- edge/surface	SAR Required	note
Rear	8.48 mm	Yes	SAR evaluated with the base/bottom of the tablet in direct contact with a flat phantom as per KDB 447498 4) b) i)
Top edge	227.4 mm	No	> 20 cm
Bottom	4 mm	Yes	This is the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Left edge	111.7 mm	No	This is not the most conservative antenna-to-user distance at edge mode as per KDB 447498 4) b) ii) (2)
Right edge	44.6 mm	Yes	This is the most conservative antenna-to-user distance at edge mode compared with Left edge

Page 105 of 113