

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

SAR EVALUATION REPORT

For

The Apple iPad, Model A1397 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the CDMA data radio functions

MODEL: A1397 FCC ID: BCGA1397

REPORT NUMBER: 10U13600-1B

ISSUE DATE: March 1, 2011

Prepared for

APPLE INC. 1 INFINITE LOOP, MS 26A CUPERTINO, CA 95014-2084

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	February 20, 2011	Initial Issue	
А	February 27, 2011	Revised based upon KDB comments	Sunny Shih
В	March 1, 2011	 Updated report per reviewer's comments, including 1. Page 39: Removed sections 11.1 and 11.2 Changed text to "FCC pre-TCB testing guidance KDB 335737" Pages 41: Added Summary table of supplemental results from Cetecom SAR test report. Removed ambiguous plots and added section 11.4 - Summary Table of Power Reduction dB Levels per Mode and Band. Page 66: Corrected typo, changed from "SA" to "SAR". 	Sunny Shih

Page 2 of 77

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS
2.	ΤE	ST METHODOLOGY
3.	FA	CILITIES AND ACCREDITATION
4.	СА	LIBRATION AND UNCERTAINTY
4	.1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	MEASUREMENT UNCERTAINTY8
5.	EQ	QUIPMENT UNDER TEST9
6.	SY	STEM SPECIFICATIONS
7.	СС	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS
8.	LIC	QUID PARAMETERS
8	.1.	LIQUID CHECK RESULTS
9.	SY	STEM VERIFICATION
-	.1.	SYSTEM CHECK RESULTS
10.		SAR MEASUREMENT PROCEDURES
11.		POWER REDUCTION BY SENSING
	1.1.	
	1.2.	-
1	1.3.	
1	1.4.	
12.		RF OUTPUT POWER VERIFICATION42
1	2.1.	WWAN
1	2.2.	WiFi
13.		SUMMARY OF SAR TEST RESULTS
1	3.1.	WWAN (CDMA2000)
1	3.2.	2.4 GHz BAND
1	3.3.	5 GHz BANDS
14.		KDB 447498 SIMULTANEOUS TRANSMISSION SAR EVAULATIONS65
15.		ATTACHMENTS67
16.		ANTENNAS LOCATIONS AND SEPARATION DISTANCES
17.		WWAN TEST SETUP PHOTOS
		Page 3 of 77 IANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B-0810
471	73 B	BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

18.	WIFI TEST SETUP PHOTOS7	4
19.	EXTERNAL PHOTOS	7

1. ATTESTATION OF TEST RESULTS

Tested for:	APPLE INC.							
	1 INFINITE LOOP, MS 26A							
	CUPERTINO, CA 95014-2084	CUPERTINO, CA 95014-2084						
EUT description:		The Apple iPad, Model A1397 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the CDMA data radio functions.						
Model number:	A1397, S/N: DLXDV001DK65 (WiFi), D	LXDV00MDK61(CDMA2000)						
Device category:	Portable							
Exposure category:	General Population/Uncontrolled Exposi	ure						
Date tested:	January 10 - 17, 2011 (WiFi); January 2	5- 26, 2011 (CDMA2000)						
FCC Rule Parts	Freq. Range [MHz]							
	824 - 849	1.140 (Back Surface)	m					
22H	With Special Development Software to disable power back-off	0.565 (Back Surface with 10mm distance)						
	1850 - 1910	1.150 (Back Surface)						
24E	With Special Development Software to disable power back-off	1.4 (Secondary Portrait /Top Edge with 9.5 mm distance)						
15.247	2412 – 2462	1.050 (Primary Portrait)	1.6					
	5150 – 5250	0.787 (Primary Portrait)	-					
15.407	5250 – 5350	0.852 (Primary Portrait)						
	5500 – 5700	5500 – 5700 0.816 (Primary Portrait)						
15.247	5725 – 5850	0.647 (Primary Portrait)						
Applicable Standards								
FCC OET Bulletin 65 Suppl	ement C 01-01, IEEE STD 1528: 2003		Pass					

IC RSS 102 Issue 4

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

any shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS)

Tested By:

own Charg

Devin Chang EMC Engineer Compliance Certification Services (UL CCS)

Page 5 of 77

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003, IC RSS 102 Issue 4 and the following specific FCC Test Procedures.

- KDB 248227 D01 SAR Measurement Procedure for 802 11abg v01r02
- KDB 941225 D01 SAR test for 3G devices v02
- KDB 447498 D01 Mobile Portable RF Exposure v04
- KDB 616217 D03 SAR Supp Note and Netbook Laptop v01
- Power Reduction by Sensing (Oct. 2010 TCBC Workshop SAR Updates)

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Nome of Equipment	Manufacturar	Turne /Medel	Carial Na	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Data Acquistion Electronics	SPEAG	DAE4	1239	11	11	2011	
Data Acquistion Electronics	SPEAG	DAE3	427	7	21	2011	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Dielectronic Probe kit	HP	85070C	N/A			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
Wireless comunication test set	Agilent	E5515C (8960)	GB46160222	6	17	2012	
E-Field Probe	SPEAG	EX3DV3	3686	1	24	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
System Validation Dipole	SPEAG	* D835V2	4d002	4	22	2011	
System Validation Dipole	SPEAG	* D900V2	108	11	23	2011	
System Validation Dipole	SPEAG	D1800V2	294	11	24	2011	
System Validation Dipole	SPEAG	D1900V2	5d043	11	24	2012	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5		N/A		
Simulating Liquid	CCS	M1800	N/A	Withir	Within 24 hrs of first test		
Simulating Liquid	SPEAG	M900	N/A		Within 24 hrs of first test		
Simulating Liquid	SPEAG	H2450	N/A			rs of first test	
Simulating Liquid	SPAEG	M5800 (5-6GHz)	N/A	Withir	Within 24 hrs of first test		
Simulating Liquid	SPAEG	H5800	N/A	Withir	า 24 h	rs of first test	

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (Appendix 3 , 4 & 6)
- 4. Impedance is within 5 Ω of calibrated measurement (Appendix 3, 4 & 6)

Page 7 of 77

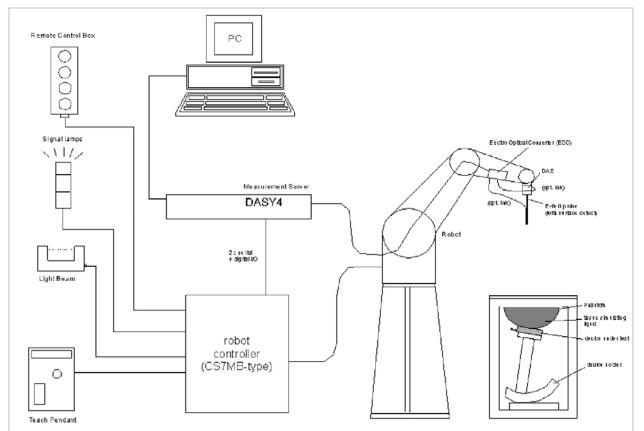
4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram					
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System				<u> </u>	
Probe Calibration (k=1)	5.50				5.50
Axial Isotropy		Rectangular	1.732		0.47
Hemispherical Isotropy		Rectangular	1.732		0.94
Boundary Effect		Rectangular	1.732		
Probe Linearity		Rectangular	1.732		
System Detection Limits		Rectangular	1.732		0.58
Readout Electronics	0.30				0.30
Response Time		Rectangular	1.732		0.46
Integration Time		Rectangular	1.732		
RF Ambient Conditions - Noise		Rectangular	1.732		-
RF Ambient Conditions - Reflections		Rectangular	1.732		
Probe Positioner Mechanical Tolerance		Rectangular	1.732		
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732		1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters		<u> </u>		1	
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target		Rectangular	1.732		1.85
Liquid Conductivity - measurement (Body 835 MHz)	2.68			0.64	
Liquid Permittivity - deviation from target		Rectangular	1.732		
Liquid Permittivity - measurement uncertainty (Body 1900 MHz)	1.13			0.0	-
	1.13	Combined Standar			
Expanded Uncertainty U, C				19.24	9.02 %
Expanded Uncertainty U, C	overage Facto	5r = 2, > 95 % Cont	idence =	1.53	dB
3 to 6 GHz averaged over 1 gram					
Component	erro	r, % Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 5GHz	6	0.55 Normal	1	1	6.55
Axial Isotropy		1.15 Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		2.30 Rectangular	1.732	0.7071	0.94
Boundary Effect).90 Rectangular	1.732	1	0.52
			1.732		
Probe Linearity		3.45 Rectangular		1	1.99
System Detection Limits		1.00 Rectangular	1.732	1	0.58
Readout Electronics		I.00 Normal	1	1	1.00
Response Time	().80 Rectangular	1.732	1	0.46
Integration Time	2	2.60 Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		3.00 Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		3.00 Rectangular	1.732	1	
Probe Positioner Mechanical Tolerance		0.40 Rectangular	1.732	1	
					0.23
Probe Positioning with respect to Phantom		2.90 Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	3	3.90 Rectangular	1.732	1	2.25
Test Sample Related					L
Test Sample Positioning		I.10 Normal	1	1	1.10
Device Holder Uncertainty	3	3.60 Normal	1	1	3.60
Output Power Variation - SAR Drift		5.00 Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					2.00
	- .	1 00 Postoraular	1 7 2 2	1	0.04
Phantom Uncertainty (shape and thickness)		1.00 Rectangular	1.732	-	2.31
Liquid Conductivity - deviation from target		5.00 Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement		1.60 Normal	1	0.64	-2.94
	40	0.00 Rectangular	1.732	0.6	3.46
Liquid Permittivity - deviation from target	10				
		3.61 Normal	1	0.6	-2.17
Liquid Permittivity - deviation from target Liquid Permittivity - measurement uncertainty	-3	3.61 Normal	1		
Liquid Permittivity - measurement uncertainty	-: Con	3.61 Normal nbined Standard U	1 Incertaint	ty Uc(y), %:	11.07
	-: Con ge Factor = 1	3.61 Normal nbined Standard U .96, > 95 % Confic	1 Incertaint Ience =	ty Uc(y), %: 21.70	

Page 8 of 77

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B-081047173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.


5. EQUIPMENT UNDER TEST

The Apple iPad, Model A1397 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the CDMA data radio functions

Normal operation:	Tablet bottom face, and Tablet edges - Multiple display orientations supporting both portrait and landscape configurations
Antenna tested:	AntennaApple part numberWiFi/BT631-1482 (shared with BT)WWAN631-1781
Antenna-to-antenna/user separation distances:	Refer to Sec. 14 for details of antenna locations and separation distances.
Simultaneous transmission:	 WWAN (CDMA) can transmit simultaneously with WiFi/BT WWAN (CDMA) can transmit simultaneously with Bluetooth WiFi 2.4 GHz cannot transmit simultaneously with Bluetooth WiFi 5 GHz bands can transmit simultaneously with Bluetooth
Assessment for SAR evaluation for Simultaneous transmission:	Refer to Sec. 12 for details of KDB 447498 Simultaneous Transmission SAR Evaluations.
Proximity Sensor for Power Reduction	Trigger Distance : 0-10 mm from back surface; 0- 9.5 mm from Top edge / Secondary Portrait of device

Page 9 of 77

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 10 of 77

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients				Frequency (MHz)							
(% by weight)	4	50	83	35	9′	15	19	00	24	50	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium ChlorideSugar: 98+% Pure SucroseWater: De-ionized, 16 M Ω + resistivityHEC: Hydroxyethyl CelluloseDGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 11 of 77

8. LIQUID PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	ody
Target Frequency (MHz)	۶ _۲	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800 – 2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5800	35.3	5.27	48.2	6
1. 12. 102. 10	1 12 14 1	40001 (3)		

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz) In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (M⊔→)	Body	Tissue	Reference
f (MHz)	rel. permitivity	conductivity	Relefence
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 77

8.1. LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameters for Body 835 MHz

Measured by: Devin Chang

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)				
0.05	e'	55.01	Relative Permittivity (ε_r):	55.008	55.2	-0.35	± 5				
835	e"	21.44	Conductivity (σ):	0.996	0.97	2.68	± 5				
Liquid Check						•					
•	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%										
January 25, 207	11 11:34										
Frequency		e'	e"								
80000000.		55.3546	21.5511								
805000000.		55.2966	21.5380								
81000000.		55.2536	21.5263								
815000000.		55.2017	21.5279								
820000000.		55.1498	21.5044								
825000000.		55.1013	21.4905								
83000000.		55.0510	21.4700								
835000000.		55.0084	21.4404								
840000000.		54.9598	21.4162								
845000000.		54.9201	21.3850								
850000000. 855000000.		54.8754 54.8369	21.3490 21.3217								
		54.6369 54.7992									
860000000. 865000000.		54.7992 54.7484	21.2801 21.2478								
870000000.		54.7484	21.2478								
875000000.		54.6605	21.1867								
880000000.		54.6125	21.1594								
885000000.		54.5627	21.1394								
890000000.		54.5128	21.1225								
895000000.		54.4583	21.1223								
900000000.		54.4022	21.0928								
905000000.		54.3484	21.0887								
910000000.		54.2987	21.0832								
915000000.		54.2449	21.0789								
920000000.		54.1898	21.0756								
925000000.		54.1329	21.0659								
930000000.		54.0881	21.0642								
935000000.		54.0349	21.0539								
940000000.		53.9954	21.0435								
945000000.		53.9488	21.0268								
950000000.		53.9102	21.0107	,							
The conductivit	y (σ) can	be given a	as:								
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"									
where f = targ	et f * 10 ⁶										
E 0 = 8.85	54 * 10 ⁻¹²										

Simulating Liquid Dielectric Parameters for Body 1900 MHz

Measured by: Devin Chang

f (MHz)		Muscle Lic	uid Parameters	Measured	Target	Delta (%)	Limit (%)		
1900	e'	53.902	Relative Permittivity (ε_r):	53.9016	53.3	1.13	± 5		
1900	e"	14.064	Conductivity (σ):	1.48650	1.52	-2.20	± 5		
Liquid Check									
•	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 42%								
January 26, 2011 1	1:06 PM				-				
Frequency	e'		e"						
1710000000.	54.	2631	13.4907						
1720000000.	54.	2785	13.5374						
1730000000.	54.	3174	13.5821						
1740000000.	54.	3643	13.6250						
1750000000.	54.	3950	13.6580						
1760000000.	54.	.3961	13.6843						
1770000000.	54.	3636	13.7022						
1780000000.	54.	2992	13.7287						
1790000000.	54.	2103	13.7487						
180000000.	54.	1126	13.7773						
1810000000.	54.	0271	13.8107						
1820000000.	53.	9633	13.8516						
1830000000.	53.	9305	13.8991						
1840000000.	53.	9265	13.9436						
1850000000.	53.	9472	13.9843						
1860000000.	53.	9740	14.0178						
1870000000.	53.	9904	14.0392						
1880000000.	53.	9869	14.0533						
1890000000.	53.	9567	14.0583						
190000000.	53.	9016	14.0635						
1910000000.	53.	8293	14.0766						
The conductivity (σ)) can be g	given as:							
$\sigma = \omega \varepsilon_0 e'' = 2 \pi$	fε ₀ e"								
where $f = target f$	* 10 ⁶								
E ₀ = 8.854 *	10 ⁻¹²								

Page 14 of 77

Simulating Liquid Dielectric	Parameter Check	Result @ Bod	y 2450 MHz
------------------------------	-----------------	--------------	------------

Measured by: Devin Chang

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)		
2450	e'	52.12	Relative Permittivity (c _r):	52.123	52.7	-1.09	± 5		
2450	e"	14.60	Conductivity (σ):	1.990	1.95	2.04	± 5		
Liquid Check									
Ambient tempe	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%								
January 17, 20	January 17, 2011 10:19 AM								
Frequency		e'	e"						
2400000000.		52.2326	14.4366	6					
2405000000.		52.2147	14.4597	7					
2410000000.		52.1991	14.4816	6					
2415000000.		52.1855	14.5056	6					
2420000000.		52.1667	14.5284	ŀ					
2425000000.		52.1536	14.5495						
2430000000.		52.1393	14.5734						
2435000000.		52.1232	14.5986	6					
2440000000.		52.1087	14.6220)					
2445000000.	52.0897 14		14.6442	2					
2450000000.		52.0746	14.6668	8					
2455000000.		52.0580	14.6922	2					
2460000000.		52.0413	14.7137	7					
2465000000.		52.0240	14.7365	5					
2470000000.		52.0066	14.7559)					
2475000000.		51.9900	14.7801						
2480000000.		51.9720	14.7994	ŀ					
2485000000.		51.9556	14.8200)					
2490000000.		51.9384	14.8406	6					
2495000000.		51.9233	14.8596	6					
2500000000.		51.9049	14.8796	6					
The conductivit	y (σ) can	be given a	IS:						
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"							
where f = targ	et f * 10 ⁶								
ɛ ₀ = 8.88	54 * 10 ⁻¹²								

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)		Muscle Liquid Parameters			Target	Delta (%)	Limit (%)
5000	e'	48.7136	Relative Permittivity (ε_r):	48.7136	49.0	-0.58	± 10
5200	e"	17.7246	Conductivity (σ):	5.12742	5.30	-3.26	± 5
	e'	48.3858	Relative Permittivity (c _r):	48.3858	48.6	-0.44	± 10
5500	e"	18.6984	Conductivity (σ):	5.72119	5.65	1.26	± 5
	e'	47.1616	Relative Permittivity (c _r):	47.1616	48.2	-2.15	± 10
5800	e"	18.5549	Conductivity (σ):	5.98695	6.00	-0.22	± 10
Liquid Check Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 40%							
Ambient temper January 10, 201			uid temperature: 24 de	g. C; Relative	humidity = 4	10%	
Frequency	1 10.02	e'	e"				
4600000000.		49.9964	16.7112)			
46500000000.		50.1388	17.2854				
47000000000.		49.9642	16.8133				
47500000000.		49.9042	17.4304				
4800000000.		49.7733	17.430-				
48500000000.		49.4924	17.3158				
49000000000.		49.6582	17.6773				
49500000000.		49.4340	17.2445				
50000000000.		49.2491	17.9967				
50500000000.		49.4366	17.4994				
51000000000.		48.8332	17.9671				
51500000000.		49.2039	17.9794				
5200000000 .		48.7136	17.7246				
52500000000.		48.7909	18.4706				
53000000000.		48.8218	17.6755				
53500000000.		48.2787	18.6161				
54000000000.		48.8176	18.0649				
54500000000.		47.9861	18.3675				
5500000000.		48.3858	18.6984				
5550000000.		48.0946	18.0570				
56000000000.		47.7267	19.1225				
5650000000.		48.2976	18.1278				
5700000000.		47.1626	19.0392				
5750000000.		48.1469	18.7509				
5800000000.		47.1616	18.5549				
5850000000.		47.3194	19.4642				
5900000000.		47.6455	18.3207				
5950000000.		46.4286	19.6760				
6000000000.		47.8654	18.7048				
The conductivity	/ (σ) can						
σ = ωε ₀ e″= 2	-						
where f = targe							
ε ₀ = 8.85	64 * 10 ⁻¹²						

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)	Muscle Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
5200	e'	47.721	Relative Permittivity (ε_r):	47.7210	49.0	-2.61	± 10
5200	e" 18.2905 C		Conductivity (σ):	5.29112	5.30	-0.17	± 5
5500	e'	47.1076	Relative Permittivity (ε_r):	47.1076	48.6	-3.07	± 10
5500	e"	17.6165	Conductivity (σ):	5.39016	5.65	-4.60	± 5
5800	e'	46.4622	Relative Permittivity (c _r):	46.4622	48.2	-3.61	± 10
5000	e"	19.1959	Conductivity (σ):	6.19378	6.00	3.23	± 5
Liquid Check Ambient tempera January 11, 201		• •	uid temperature: 24 de	g. C; Relative	humidity = 4	0%	
Frequency		e'	e"				
460000000.		48.9605	17.172 <i>°</i>	1			
4650000000.		49.0228	16.6388	3			
4700000000.		48.5934	17.1306	6			
4750000000.		48.9218	17.1374	1			
4800000000.		48.3948	16.9383	3			
4850000000.		48.5934	17.6079	9			
4900000000.		48.3747	16.949 ²	1			
4950000000.		48.1533	17.738 <i>′</i>	1			
5000000000.		48.3697	17.3338	3			
5050000000.		47.8348	17.5142	2			
5100000000.		48.1501	17.9113	3			
5150000000.		47.7424	17.2874	1			
5200000000.		47.7210	18.290	5			
5250000000.		47.7744	17.4219				
5300000000.		47.2645	18.1916				
5350000000.		47.7141	17.9886				
540000000.		47.0624	17.8217				
5450000000.		47.3729	18.572				
5500000000.		47.1076	17.616				

18.7476

17.9970

18.3995

18.7034

17.9818

19.1959

17.9547

19.0913

18.5729

18.5346

The conductivity (σ) can be given as:

46.8420

47.1761

46.4814

46.9786

46.4722

46.4622

46.6404

45.9285

46.6394

45.7546

where $\mathbf{f} = target f * 10^6$

5550000000.

560000000.

565000000.

5700000000.

5750000000.

580000000.

5850000000.

5900000000.

5950000000.

600000000.

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)		Muscle Liqu	id Parameters	Measured	Target	Delta (%)	Limit (%)
5200	e'	49.8309	Relative Permittivity (ε_r):	49.8309	49.0	1.70	± 10
5200	e"	17.6668	Conductivity (σ):	5.11070	5.30	-3.57	± 5
5500	e'	49.3059	Relative Permittivity (ε_r):	49.3059	48.6	1.45	± 10
5500	e"	18.5943	Conductivity (σ):	5.68934	5.65	0.70	± 5
5000	e'	48.4447	Relative Permittivity (c _r):	48.4447	48.2	0.51	± 10
5800	e"	18.5910	Conductivity (σ):	5.99860	6.00	-0.02	± 5
Liquid Check						1	
	ature: 2	5 dea C [.] Lia	uid temperature: 24 de	a C. Relative	humidity = 4	0%	
January 14, 201		• •		.g. 0, 1 toluit t	i nannancy i	0 / 0	
Frequency		e'	e"				
4600000000.		51.0668	16.630	5			
4650000000.		50.9337	16.8486	6			
4700000000.		50.9261	16.8108	3			
4750000000.		50.6895	17.0003	3			
4800000000.		50.7597	17.1063	3			
4850000000.		50.5242	17.081	5			
490000000.		50.5395	17.428 ²	1			
4950000000.		50.3430	17.159 [,]	1			
5000000000.		50.2519	17.6434	4			
5050000000.		50.2001	17.3320)			
5100000000.		50.0312	17.679 [,]	1			
5150000000.		50.0846	17.740 ²	1			
5200000000.		49.8309	17.6668	3			
5250000000.		49.7359	18.1132	2			
5300000000.		49.6753	17.7682	2			
5350000000.		49.4087	18.233	5			
5400000000.		49.5257	18.0992	2			
5450000000.		49.1997	18.1579	9			
5500000000.		49.3059	18.5943	3			
5550000000.		49.1474	18.0706	3			
5600000000.		48.9053	18.892	5			
5650000000.		49.1268	18.326	5			
5700000000.		48.5435	18.829	5			
5750000000.		48.8989	18.887	5			
5800000000.		48.4447	18.5910)			
5850000000.		48.4257	19.4993	3			
5900000000.		48.5819	18.5486	6			
5950000000.		47.8553	19.6052	2			
600000000.		48.5302	19.0647	7			
The conductivity	ν (σ) can	be given as	:				
$\sigma = \omega \varepsilon_0 e''= 2$	$\pi f \varepsilon_0$	e"					
where f = targe							
ε ₀ = 8.85	4 * 10 ⁻¹²						

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 SN3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Cal. certificate #	ticate #		R Avg (mW	/g)			
	date	(GHz)	Tissue:	Head	Body		
D8351/2 4d002 Apr00	*4/22/2000	0.925	SAR _{1g} :	9.64	9.96		
D055V2-40002_Apr09	4/23/2009	0.055	SAR _{10g} :	6.28	6.56		
D1000\/2 5d043 Nov00	*11/24/2000			39.8	40.4		
D1900V2-30043_N0V09	11/24/2009	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.4				
D24501/2 706 Apr10	04/10/10	2.4	SAR _{1g} :	51.6	52.4		
D2450V2-700_Apr10	04/19/10	10 2.4 SAR _{10g} : 24.4	24.4	24.5			
		5.0	SAR _{1g} :		79.0		
		5.2	SAR _{10g} :		22.0		
	*0/2/2000	5 5	SAR _{1g} :		85.4		
D3GHZVZ-1075_Sep09	9/3/2009	5.5	SAR _{10g} :		Body 9.96 6.56 40.4 21.4 52.4 24.5 79.0 22.0		
		E 9	SAR _{1g} :	/	73.2		
		0.0	SAR _{10g} :		20.1		
	Cal. certificate # D835V2-4d002_Apr09 D1900V2-5d043_Nov09 D2450V2-706_Apr10 D5GHzV2-1075_Sep09	Cal. certificate # Cal. date D835V2-4d002_Apr09 *4/23/2009 D1900V2-5d043_Nov09 *11/24/2009 D2450V2-706_Apr10 04/19/10	Cal. certificate # Cal. date Cal. Freq. (GHz) D835V2-4d002_Apr09 *4/23/2009 0.835 D1900V2-5d043_Nov09 *11/24/2009 1.9 D2450V2-706_Apr10 04/19/10 2.4	$ \begin{array}{c c} \mbox{Cal. certificate \#} & \mbox{Cal. freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{Cal. certificate \#} & \mbox{Cal. Freq. (GHz)} & \mbox{Tissue:} \\ \mbox{SAR}_{10}; \mbox{Cal. Freq. (GHz)} & \mbox{SAR}_{10}; \mbox{SAR}_{10}; \mbox{Cal. Freq. (GHz)} & \mbox{SAR}_{10}; \mbox{SAR}_{10}; \mbox{Cal. Freq. (GHz)} & \mbox{SAR}_{10}; \mbox{SAR}_{10};$	$ \begin{array}{c c c c c c } \hline \mbox{Cal. certificate \#} & \mbox{Cal. freq.} \\ \mbox{(GHz)} & \mbox{Tissue: Head} \\ \hline \mbox{Tissue: Head} \\ \hline \mbox{SAR}_{1g}: 9.64 \\ \hline \mbox{SAR}_{10g}: 6.28 \\ \hline \mbox{SAR}_{10g}: 6.28 \\ \hline \mbox{SAR}_{10g}: 6.28 \\ \hline \mbox{SAR}_{10g}: 6.28 \\ \hline \mbox{SAR}_{10g}: 20.7 \\ \hline \mbox{SAR}_{10g}: 20.7 \\ \hline \mbox{SAR}_{10g}: 24.4 \\ \hline \\mbox{SAR}_{10g}: 24.4 \\ \hline \\\mbox{SAR}_{10g}: 24.4 \\ \hline \\\\mbox{SAR}_{10g}: 24.4 \\ \hline \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\$		

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (Appendix 3, 4 & 6)
- 4. Impedance is within 5Ω of calibrated measurement (Appendix 3, 4 & 6)

Page 19 of 77

9.1. SYSTEM CHECK RESULTS

System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Taryer		(%)
	01/25/11	SAR _{1g} :	9.77	9.96	-1.91	110
D835V2	01/25/11	SAR _{10g} :	6.4	6.56	-2.44	±10
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date Testeu	Tissue:	Body	Taiyet	Della (70)	(%)
D1900V2	01/26/11	SAR _{1g} :	38.2	40.4	-5.45	±10
D1900V2	01/20/11	SAR _{10g} :	20.2	21.4	-5.61	10
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Taiyet	Della (70)	(%)
D2450V2	01/17/11	SAR _{1g} :	52.7	52.4	0.57	±10
D2430V2	01/17/11	SAR _{10g} :	24.1	24.5	-1.63	10
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date rested	Tissue:	Body	Target		(%)
D5GHzV2	01/10/10	SAR _{1g} :	74.2	79.0	-6.08	±10
(5.2GHz)		SAR _{10g} :	21.4	22.0	-2.73	10
D5GHzV2	01/10/10	SAR _{1g} :	83.0	85.4	-2.81	±10
(5.5GHz)	01/10/10	SAR _{10g} :	23.6	23.5	0.43	10
D5GHzV2	01/10/10	SAR _{1g} :	73.7	73.2	0.68	±10
(5.8GHz)	01/10/10	SAR _{10g} :	21.0	20.1	4.48	10
D5GHzV2	01/11/11	SAR _{1g} :	75.0	79.0	-5.06	±10
(5.2GHz)	01/11/11	SAR _{10g} :	21.7	22.0	-1.36	ΞĪŪ
D5GHzV2	01/11/11	SAR _{1g} :	80.9	85.4	-5.27	±10
(5.5GHz)	01/11/11	SAR _{10g} :	23.0	23.5	-2.13	10
D5GHzV2	01/11/11	SAR _{1g} :	73.1	73.2	-0.14	±10
(5.8GHz)	01/11/11	SAR _{10g} :	20.8	20.1	3.48	10
D5GHzV2	01/14/11	SAR _{1g} :	75.6	79.0	-4.30	±10
(5.2GHz)	01/14/11	SAR _{10g} :	22.1	22.0	0.45	ΞIU
D5GHzV2	01/14/11	SAR _{1g} :	83.2	85.4	-2.58	±10
(5.5GHz)	01/14/11	SAR _{10g} :	23.8	23.5	1.28	±10
D5GHzV2	01/14/11	SAR _{1g} :	73.3	73.2	0.14	±10
(5.8GHz)	01/14/11	SAR _{10g} :	21.0	20.1	4.48	U

Page 20 of 77

SYSTEM CHECK PLOT for D835V2

Date/Time: 1/25/2011 2:17:31 PM

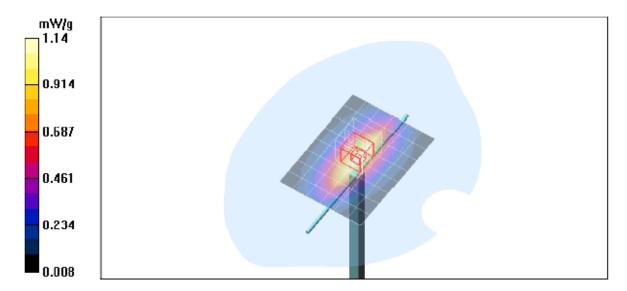
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D835V2

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:xxx

Communication System: CW 835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.996 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=100 mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

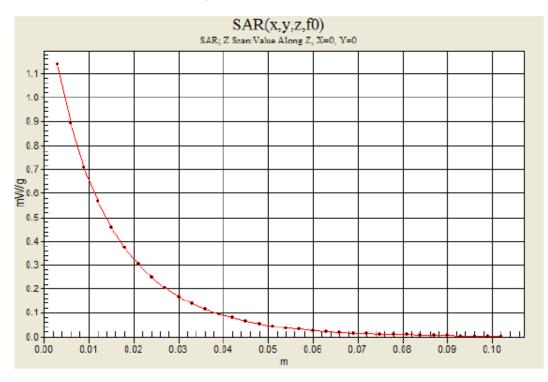
Maximum value of SAR (measured) = 1.14 mW/g

d=15mm, Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.1 V/m; Power Drift = -0.048 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.977 mW/g; SAR(10 g) = 0.640 mW/g

Page 21 of 77

Z-Axis PLOT for D835V2

Date/Time: 1/25/2011 2:34:07 PM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D835V2

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:xxx

Communication System: CW 835; Frequency: 835 MHz; Duty Cycle: 1:1

d=15mm, Pin=100 mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 1.14 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 22 of 77

SYSTEM CHECK PLOT for D1900V2

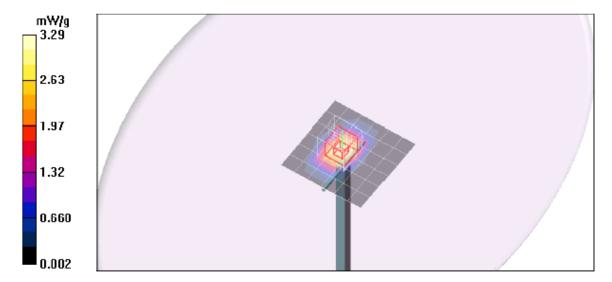
Date/Time: 1/26/2011 11:52:25 PM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.49 mho/m; ε_r = 53.9; ρ = 1000 kg/m³ Phantom section: Flat Section


Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

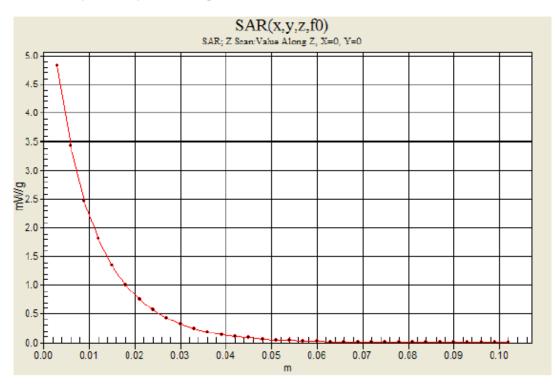
d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.29 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.8 V/m; Power Drift = 0.237 dB Peak SAR (extrapolated) = 6.87 W/kg SAR(1 g) = 3.82 mW/g; SAR(10 g) = 2.02 mW/g Maximum value of SAR (measured) = 4.81 mW/g

Page 23 of 77

Z-Axis PLOT for D1900V2

Date/Time: 1/27/2011 12:08:28 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 4.83 mW/g

Page 24 of 77

SYSTEM CHECK PLOT for D2450V2

Date/Time: 1/17/2011 11:20:01 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phontom section: Elet Section

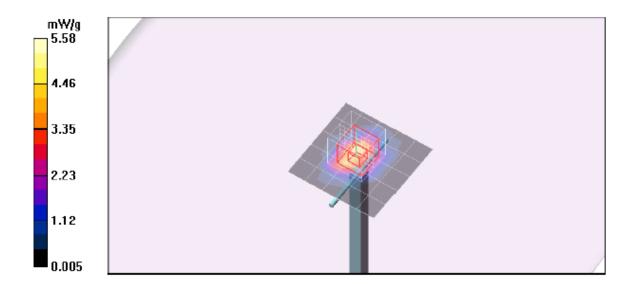
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 5.58 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.3 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.27 mW/g; SAR(10 g) = 2.41 mW/g Maximum value of SAR (measured) = 6.96 mW/g

Page 25 of 77

Z-Axis PLOT for D2450V2

Date/Time: 1/17/2011 11:34:38 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.97 mW/g

SAR(x,y,z,f0)SAR; Z Scan:Value Along Z, X=0, Y=0 6 5 B/M/m 3 2 <u>└</u>┬╇┬╺╋╌┼╇ 0-0.07 0.08 0.01 0.03 0.05 0.06 0.09 0.10 0.00 0.02 0.04 m

Page 26 of 77

SYSTEM CHECK PLOT for 5.5 GHz band

Date/Time: 1/10/2011 12:10:22 PM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

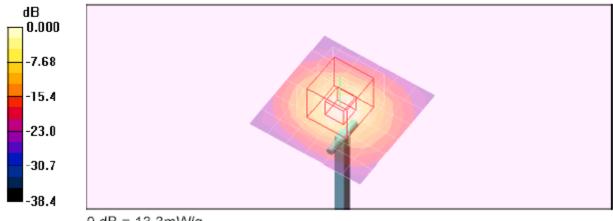
 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.6 mW/g

5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 54.8 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 7.42 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 13.3 mW/g

0 dB = 13.3mW/g

Page 27 of 77

SYSTEM CHECK PLOT for 5.5 GHz band

Date/Time: 1/10/2011 11:06:47 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

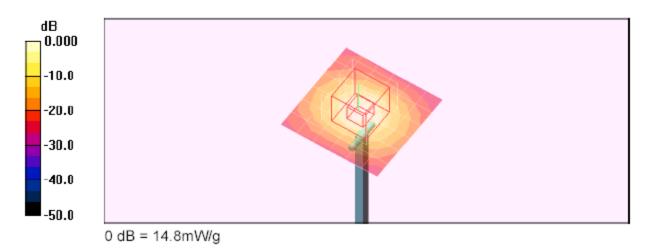
Communication System: System Check Signal - CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 47.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010


- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.2 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 55.4 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 8.3 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 14.8 mW/g

Page 28 of 77

SYSTEM CHECK PLOT for 5.8 GHz band

Date/Time: 1/10/2011 10:36:47 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.27 mho/m; ϵ_r = 47.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

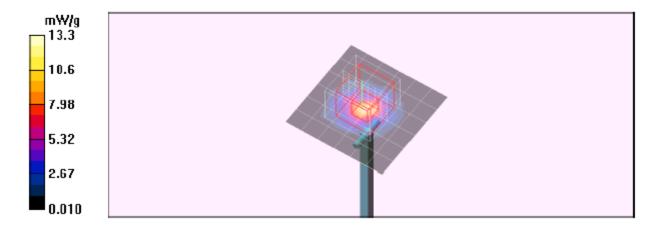
DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.3 mW/g

5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 50.8 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 7.37 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 13.2 mW/g

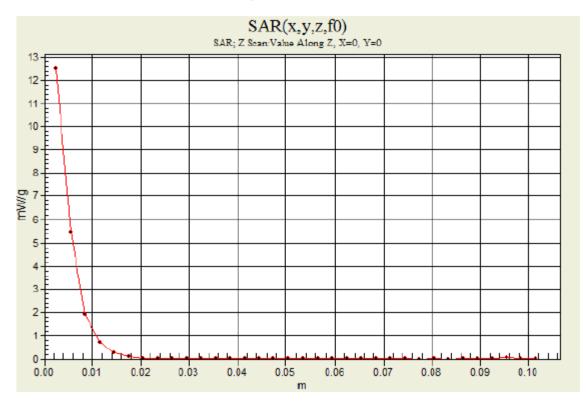
Page 29 of 77

Z-Axis PLOT for 5.8 GHz band

Date/Time: 1/10/2011 11:01:25 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2


DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm,

dz=3mm

Maximum value of SAR (measured) = 12.5 mW/g

Page 30 of 77

SYSTEM CHECK PLOT for 5.2 GHz band

Date/Time: 1/11/2011 7:55:42 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.29 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

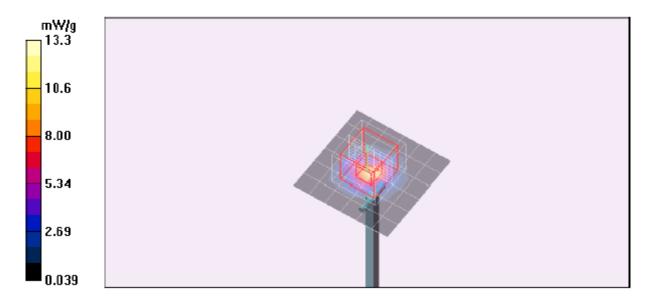
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.2GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.3 mW/g

d=10mm, Pin=100mW, 5.2GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 55.1 V/m; Power Drift = 0.196 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 7.5 mW/g; SAR(10 g) = 2.17 mW/g

Page 31 of 77

SYSTEM CHECK PLOT for 5.5 GHz band

Date/Time: 1/11/2011 9:01:30 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.39 mho/m; ϵ_r = 47.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

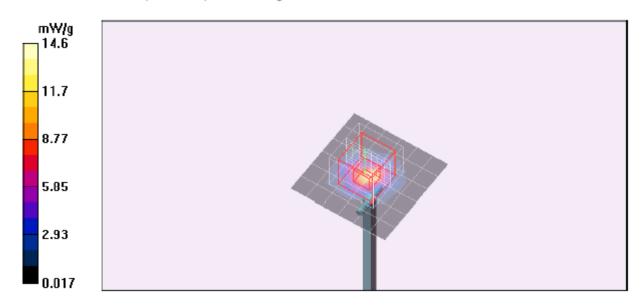
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.5GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.6 mW/g

d=10mm, Pin=100mW, 5.5GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 56.8 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.3 mW/g Maximum value of SAR (measured) = 14.3 mW/g

Page 32 of 77

SYSTEM CHECK PLOT for 5.8 GHz band

Date/Time: 1/11/2011 10:03:36 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.19 mho/m; ϵ_r = 46.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

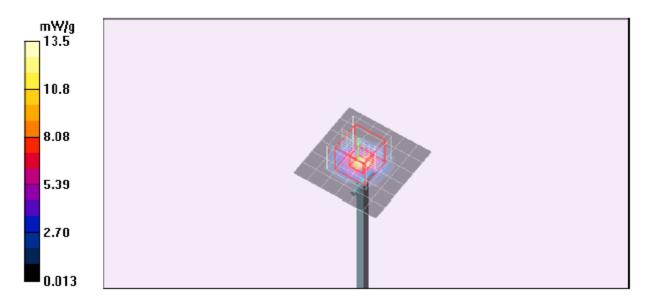
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.8GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

d=10mm, Pin=100mW, 5.8GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 51.0 V/m; Power Drift = 0.119 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.31 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 13.3 mW/g

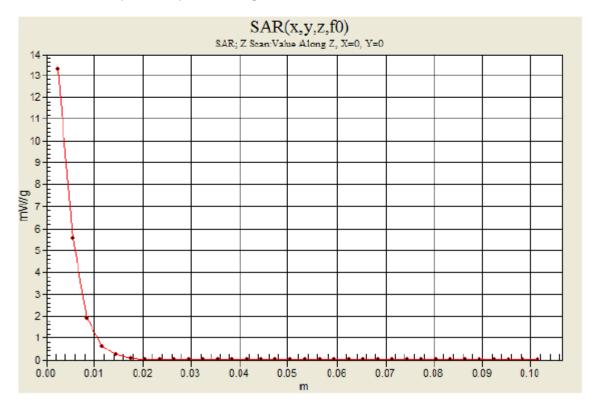
Page 33 of 77

Z-Axis PLOT for 5.8 GHz band

Date/Time: 1/11/2011 10:28:03 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz


DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5800 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW, 5.8GHz/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm,

dz=3mm

Maximum value of SAR (measured) = 13.3 mW/g

Page 34 of 77

SYSTEM CHECK PLOT for 5.2 GHz band

Date/Time: 1/14/2011 9:09:44 AM

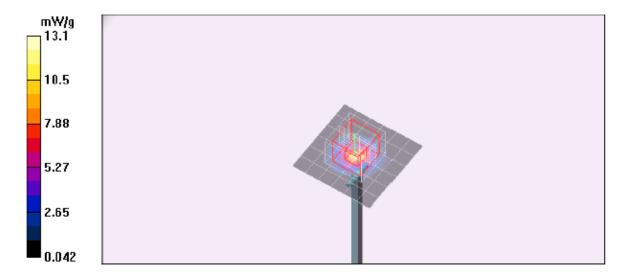
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.11 mho/m; ϵ_r = 49.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.1 mW/g

5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 56.0 V/m; Power Drift = 0.065 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 7.56 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 13.2 mW/g

Page 35 of 77

SYSTEM CHECK PLOT for 5.5 GHz band

Date/Time: 1/14/2011 9:38:08 AM

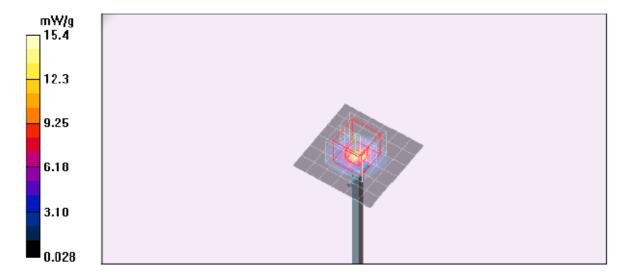
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.69 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.4 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 56.8 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 8.32 mW/g; SAR(10 g) = 2.38 mW/g Maximum value of SAR (measured) = 15.1 mW/g

Page 36 of 77

SYSTEM CHECK PLOT for 5.8 GHz band

Date/Time: 1/14/2011 10:04:26 AM

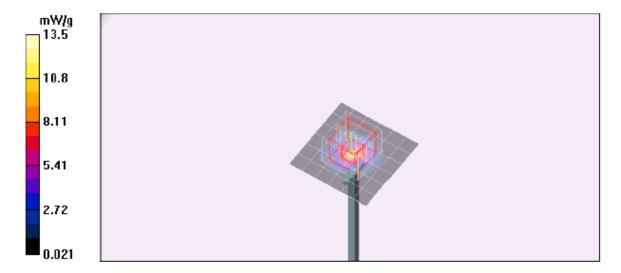
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6 mho/m; ϵ_r = 48.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

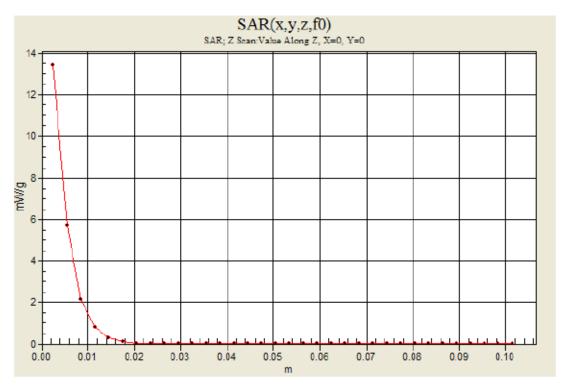
5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 52.0 V/m; Power Drift = -0.049 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 13.4 mW/g

Page 37 of 77

Z-Axis PLOT for 5.8 GHz band

Date/Time: 1/14/2011 10:28:56 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 13.4 mW/g

 COMPLIANCE CERTIFICATION SERVICES (UL CCS)
 FORM NO: CCSUP4031B-0810

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 38 of 77

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. POWER REDUCTION BY SENSING

SAR Testing Considerations & FCC pre-TCB testing guidance KDB 335737

11.1. iPad WIFI Exclusions for SAR Testing

The iPad does not have proximity sensors or back-off capabilities on WiFi.

11.2. Additional SAR Testing for the Back Surface and Top Edge

Based on discussions with the FCC it was determined that additional SAR testing is required. The additional testing required testing at a conservative distance from the iPad with the power back-off disabled via special development software. Details about the proximity sensor operation, and special development software are included in a separate document titled "Operational Description".

Proximity Sensor Status Table - Back Surface In Conservative Proximity Sensor Operation

Distance to Back Surface of iPad (mm)	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0
Proximity Sensor Status	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

Proximity Sensor Status Table – Top Edge Secondary Portrait In Conservative Proximity Sensor Operation

Distance to Top Edge of iPad (mm)	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5
Proximity Sensor Status	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF

11.3. Method of SAR Measurement With and Without Back-off Enabled

Based on the above proximity sensor activation vs. distance results, the iPad was tested at zero spacing, back-off enabled and additionally at a conservative test distance of 9.5 mm on the top edge and 10 mm on back surface with back-off disabled (maximum power).

To test SAR with back-off enabled at zero spacing, the iPad was placed in maximum power transmit mode (with back-off enabled) with a base station simulator. The device was then positioned under the tissue equivalent liquid-filled flat phantom at zero distance.

To test SAR with back-off disabled at 9.5 mm, the iPad utilized special development software. The ability to disable the back-off is not available in the production release of software. The device was placed in maximum power transmit mode with a base station simulator. The iPad was then positioned under the tissue equivalent liquid-filled flat phantom at a distance of 9.5mm when in the "Top Edge – Secondary Portrait" orientation and at 10mm when in "Tablet Mode-Back surface" and tested with the back-off disabled.

Page 40 of 77

(Please refer to Cetecom SAR Test Report No: SAR_APPLE_070_FCC for SAR evaluation at Back Surface with 10 mm distance and Top Edge/ Secondary Portrait with 9.5 mm with special development software to disable power back-off)

Summary table of the test results form Cetecom SAR Test Report

8.4. SAR results

Position	Band	Operation Mode	Channel	Frequency (MHz)	SAR 1g (W/kg)	Area Scan (Appendix A)	Positioning Photo (Appendix B)
		1xRTT	384	836.52	0.564	Plot 1	Photo 1
Back surface	Cell	EV-DO Release 0	384	836.52	0.522	Plot 2	Photo 1
(10mm)		1xRTT	600	1880	0.577	Plot 3	Photo 1
	PCS	EV-DO Release 0	600	1880	0.639	Plot 4	Photo 1
		1xRTT	384	836.52	0.383	Plot 5	Photo 2
	Cell	EV-DO Release 0	384	836.52	0.353	Plot 6	Photo 2
Top Edge			25	1851.25	1.04	Plot 7	Photo 2
Top Edge (9.5mm)		1xRTT	60	1880	1.19	Plot 8	Photo 2
(9.511111)	PCS		1175	1908.75	1.4	Plot 9	Photo 2
	103	EV-DO	25	1851.25	1.04	Plot 10	Photo 2
		Release 0	60	1880	1.18	Plot 11	Photo 2
		Release 0	1175	1908.75	1.42	Plot 12	Photo 2

11.4. Summary Table of Power Reduction dB Levels per Mode and Band

A1397 Sensor, Back Surface																	
Distance in mm	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Proximity sensor with reduced power activation	ON	OFF	OFF	OFF	OFF	OFF	OFF										
1xRTT / Cellular Band /dBm (by 4 dB)	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	24.5	24.5	24.5	24.5	24.5	24.5
EVDO Rev. 0 / Cellular Band /dBm (by 4 dB)	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	24.3	24.3	24.3	24.3	24.3	24.3
EVDO Rev. A / Cellular Band / dBm (by 4 dB)	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	24.2	24.2	24.2	24.2	24.2	24.2
1xRTT / PCS Band / dBm (by 7 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	23.4	23.4	23.4	23.4	23.4	23.4
EVDO Rev. 0 / PCS Band /dBm (by 6.5 dB)	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	23	23	23	23	23	23
EVDO Rev. A / PCS Band / dbm (by 6.8 dB)	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	23	23	23	23	23	23

A1397 Sensor, Top Edge / Secondary Portrait																	
Distance in mm	0	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5
Proximity sensor with reduced power activation	ON	OFF	OFF	OFF	OFF	OFF	OFF										
1xRTT / Cellular Band /dBm (by 4 dB)	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	20.50	24.5	24.5	24.5	24.5	24.5	24.5
EVDO Rev. 0 / Cellular Band /dBm (by 4 dB)	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	24.3	24.3	24.3	24.3	24.3	24.3
EVDO Rev. A / Cellular Band / dBm (by 4 dB)	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	20.3	24.2	24.2	24.2	24.2	24.2	24.2
1xRTT / PCS Band / dBm (by 7 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	23.4	23.4	23.4	23.4	23.4	23.4
EVDO Rev. 0 / PCS Band /dBm (by 6.5 dB)	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	23	23	23	23	23	23
EVDO Rev. A / PCS Band / dbm (by 6.8 dB)	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	16.2	23	23	23	23	23	23

Page 41 of 77

12. **RF OUTPUT POWER VERIFICATION**

Maximum output power is verified on the Low, Middle and High channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E for 1xRTT, section 3.1.2.3.4 of 3GPP2 C.S0033-0/TIA-866 for Rel. 0 and section 4.3.4 of 3GPP2 C.S0033-A for Rev. A

12.1. **WWAN**

CDMA2000 1xRTT

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application Rev, License

CDMA2000 Mobile Test B.13.08. L

- Protocol Rev > 6 (IS-2000-0)
- System ID: 28 (Cell) & 18 (PCS); NID: 65535 (Cell & PCS); Reg. Ch. #.: 384 (Cell) & 600 (PCS) •
- Radio Config (RC) > Please see following table for details
- FCH Service Option (SO) Setup > Please see following table or details •
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps •
 - > R-SCH Parameters > R-SCH Data Rate > 153.6 kbps
- Rvs Power Ctrl > All Up bits (Maximum TxPout) •

Conducted Output Power (dBm) Radio Service Option Configuration Ch. 1013/824.7 MHz Ch. 384/836.52 MHz Ch. 777/848.31 MHz (SO) (RC) Average Average Average RC1 24.5 24.5 24.5 55 (Loopback) 55 (Loopback) 24.6 24.5 24.6 RC3 32 (+ F-SCH) 24.5 24.5 24.6 With proximity senser activated with power back-off 20.5 RC1 55 (Loopback) 20.5 20.4 55 (Loopback) 20.4 20.5 20.4 RC3 32 (+ F-SCH) 20.5 20.6 20.4

RF Output Power for Cellular Band

RF Output Power for PCS Band

Radio		Con	ducted Output Power (c	IBm)
Configuration	Service Option	Ch. 25/1851.25 MHz	Ch. 600/1880 MHz	Ch. 1175/1908.75 MHz
(RC)	(SO)	Average	Average	Average
RC1	55 (Loopback)	23.3	23.3	23.3
RC3	55 (Loopback)	23.4	23.4	23.5
RCJ	32 (+ F-SCH)	23.4	23.4	23.5
With proximit	y sensor activate	ed with power back-off		
RC1	55 (Loopback)	16.4	16.4	16.5
RC3	55 (Loopback)	16.5	16.4	16.5
1.05	32 (+ F-SCH)	16.5	16.5	16.6

1xEv-Do - Release 0 (Rel. 0)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

EVDO Release 0 - RTAP

- Call Setup > Shift & Preset
- Call Control:
 - Access Network Info > Cell Parameters > Sector ID > 00000000 : 00000000 : 00000000 > Subnet Mask > 0
 - Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Call Parms:
 - Cell Power > -105.5 dBm/1.23 MHz
 - Cell Band > (Select US Cellular or US PCS)
 - Channel > (Enter channel number)
 - Application Config > Enhanced Test Application Protocol > RTAP
 - RTAP Rate > 153.6 kbps
 - Rvs Power Ctrl > Active bits
 - Protocol Rel > 0 (1xEV-DO)
- Press "Start Data Connection" when "Session Open" appear in "Active Cell"
- Rvs Power Ctrl > All Up bits (Maximum TxPout)

EVDO Release 0 - FTAP

- Call Setup > Shift & Preset
- Call Control:
 - Access Network Info > Cell Parameters > Sector ID > 00000000 : 00000000 : 00000000 > Subnet Mask > 0
 - Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Call Parms:
 - Cell Power > -105.5 dBm/1.23 MHz
 - Cell Band > (Select US Cellular or US PCS)
 - Channel > (Enter channel number)
 - Application Config > Enhanced Test Application Protocol > FTAP (default)
 - FTAP Rate > 307.2 kbps (2 Slot, QPSK)
 - Rvs Power Ctrl > Active bits
 - Protocol Rel > 0 (1xEV-DO)
- Press "Start Data Connection" when "Session Open" appear in "Active Cell"
- Rvs Power Ctrl > All Up bits (Maximum TxPout)

RF Power Output for EV-DO Rel 0

					Tx Cond	ucted Power (dBm)
Band	FTAP Rate	RTAP Rate	Channel	f (MHz)	Avg Pwr	with proximity sensor power Back-off
	307.2 kbps		1013	824.70	24.1	20.3
Cellular	(2 slot, QPSK)	153.6 kbps	384	836.52	24.1	20.3
	(2.500, QP50)		777	848.31	24.3	20.4
	307.2 kbps		25	1851.25	23.0	16.5
PCS	(2 slot, QPSK)	153.6 kbps	600	1880.00	23.0	16.5
	(2301, QP3K)		1175	1908.75	23.1	16.6

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B-0810 TEL: (510) 771-1000 FAX: (510) 661-0888

Page 43 of 77

1xEv-Do - Revision A (Rev. A)

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.ApplicationRev, License1xEV-DO Terminal TestA.09.13

EVDO Rev. A - RETAP

- Call Setup > Shift & Preset
- Cell Power > -60 dBm/1.23 MHz
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > RETAP
- R-Data Pkt Size > 4096
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 2
- > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- - > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
 > ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

EVDO Rev. A - FETAP

- Call Setup > Shift & Preset
- Cell Power > -60 dBm/1.23 MHz
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > FETAP
- F-Traffic Format > 4 (1024, 2,128) Canonical (307.2k, QPSK)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 2
- > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- - > Subnet Mask > 0
- Generator Info > Termination Parameters > Max Forward Packet Duration >16 Slots
 > ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

		DETAD			Tx Conducte	ed Power (dBm)
Band	FETAP Traffic Format	IData Payload I Chann		f (MHz)	Avg Pwr	with proximity sensor power Back-off
	307.2k, QPSK/ ACK		1013	824.70	24.2	20.3
Cellular	channel is transmitted at	4096	384	836.52	24.1	20.3
	all the slots		777	848.31	24.2	20.3
	307.2k, QPSK/ ACK		25	1851.25	22.9	16.4
PCS	channel is transmitted at	4096	600	1880.00	22.9	16.5
	all the slots		1175	1908.75	23.0	16.5

12.2. WiFi

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, wl_tools, which enable then engineer to control the frequency and output power of the module. Such program is not accessible by the end user.

802.11bg mode (2.4 GHz band)

Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
	1	2412	15.5
802.11b	6	2437	15.8
	11	2462	15.6
	1	2412	14.0
802.11g	6	2437	15.7
	11	2462	15.0
	1	2412	13.0
802.11n (HT20)	6	2437	15.5
	11	2462	14.0

Note: KDB 248227 - SAR is not required for 802.11g /HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 45 of 77

802.11a mode

Band	Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
		36	5180	15.5
5.2 GHz	802.11a	40	5200	15.7
		48	5240	15.7
		52	5260	15.6
5.3 GHz	802.11a	60	5300	15.6
		64	5320	15.7
		100	5500	15.6
5.6 GHz	802.11a	120	5600	15.7
		140	5700	15.6
		149	5745	17.0
5.8 GHz	802.11a	157	5785	17.1
		165	5825	17.0

802.11n HT20

Band	Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
	802.11n	36	5180	14.0
5.2 GHz	602.1 III HT20	40	5200	14.0
	11120	48	5240	14.0
	000 1 1 m	52	5260	15.5
5.3 GHz	802.11n HT20	60	5300	15.5
	11120	64	5320	15.5
	000.11m	100	5500	15.5
5.6 GHz	802.11n HT20	120	5600	15.5
	11120	140	5700	15.5
	802.11n	149	5745	17.0
5.8 GHz	802.1 m HT20	157	5785	17.0
	11120	165	5825	17.0

DATE: March 1, 2011

Page 46 of 77

13. SUMMARY OF SAR TEST RESULTS

13.1. WWAN (CDMA2000)

Back Surface - With Proximity sensor activated with power back-off

Direct contact / 0 cm distance between EUT and Flat Phantom (WWAN Main antenna-to-user distance: 8 mm).

Band	Mode	Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)
Dana	Mode	on No.	1 (1011 12)	(dBm)	1-g	10-g
	1x RTT	1013	824.70	20.5	0.938	0.511
	(RC3, SO32)	384	836.52	20.6	1.100	0.602
Cellular	(1100, 0002)	777	848.31	20.4	1.100	0.602
Cellular	1x EV-DO	1013	824.70	20.3	0.960	0.523
	Release 0	384	836.52	20.3	1.090	0.594
	Release 0	777	848.31	20.4	1.140	0.622
	Mada	Ch No				
Band	Mode	Ch No	f (MH7)	Avg Pwr	SAR (mW/g)
Band	Mode	Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band		Ch No. 25	f (MHz) 1851.25			0/
Band	1x RTT		. ,	(dBm)		0/
		25	1851.25	(dBm) 16.5	1-g	10-g
Band PCS	1x RTT (RC3, SO32)	25 600	1851.25 1880.00	(dBm) 16.5 16.5	1-g	10-g
	1x RTT	25 600 1175	1851.25 1880.00 1908.75	(dBm) 16.5 16.5 16.6	1-g 0.786	10-g 0.370

Primary Landscape

Direct Contact / 0 cm distance between EUT and Flat Phantom (WWAN Main antenna-to-user distance: 35.3 mm).

Band	Mode	Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
Danu	Mode	CITINO.	1 (IVII 12)	(dBm)	1-g	10-g
Cellular (RC3, SO3		384	836.52	24.5	0.111	0.062
Celiulai	1x EV-DO Release 0	384	836.52	24.1	0.135	0.075
Band	Mode	Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)
Danu	Mode	CITINO.	1 (IVII 12)	(dBm)	1-g	10-g
PCS	1x RTT (RC3, SO32)	600	1880.00	23.4	0.033	0.016
	1x EV-DO					

Page 47 of 77

Secondary Landscape

Direct contact / 0 cm distance between EUT and Flat Phantom. (WWAN Main antenna-to-user distance: 100 mm).

Band	Mode	Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)
Danu	Mode	CITINO.	1 (IVII 12)	(dBm)	1-g	10-g
Cellular	1x RTT (RC3, SO32)	384	836.52	24.5	0.028	0.015
Celiulai	1x EV-DO Release 0	384	836.52	24.1	0.026	0.014
		Ch No				
Band	Mode	Ch No	f (MHz)	Avg Pwr	SAR (mW/g)
Band	Mode	Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band	Mode 1x RTT (RC3, SO32)	Ch No. 600	f (MHz) 1880.00	v		

Primary Portrait (No SAR)

With <u>227</u> mm separation distance from WWAN Main antenna-to-user.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Secondary Portrait / Top Edge - With Proximity sensor activated with power back-off

Direct Contact / 0 cm distance between EUT and Flat Phantom (WWAN Main antenna-to-user distance: 3.68 mm).

Band	Mode	Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)
Danu	Mode	CH NO.	1 (1011 12)	(dBm)	1-g	10-g
	1x RTT	1013	824.70	20.5	0.765	0.402
	(RC3, SO32)	384	836.52	20.6	0.873	0.441
Cellular	(100, 0002)	777	848.31	20.4	1.020	0.529
Cellulai	1x EV-DO	1013	824.70	20.3	0.741	0.390
	Release 0	384	836.52	20.3	0.846	0.423
	Release 0	777	848.31	20.4	1.020	0.533
Band	Mode	Ch No. f (MHz)	f (MHz)	Avg Pwr	SAR (
Danu	MODE	CITINO.	1 (1011 12)	(dBm)	1-g	10-g
	1x RTT	25	1851.25	16.5		
	(RC3, SO32)	600	1880.00	16.5	0.697	0.340
PCS	(100, 0002)	1175	1908.75	16.6		
FC3	1x EV-DO	25	1851.25	16.5		
		600	1880.00	16.5	0.584	0.286
	Release 0	1175	1908.75	16.6		

Page 48 of 77

Worst-case SAR Test Plots for Cellular Band (Part 22)

Date/Time: 1/26/2011 7:00:43 AM

Test Laboratory: Compliance Certification Services (UL CCS)

Bottom face_Cell band

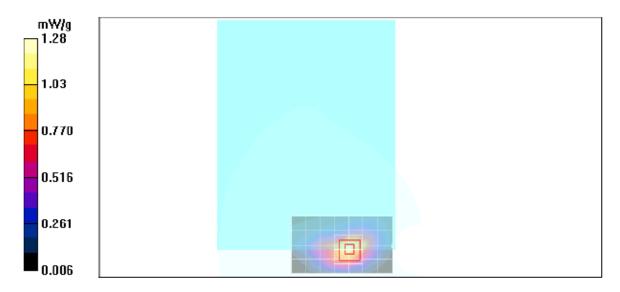
DUT: Apple; Type: NA; Serial: NA

Communication System: CDMA Cell Band; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 848.31 MHz; σ = 1.01 mho/m; ϵ_r = 54.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


EV-DO Rel. 0_H ch/Area Scan (8x5x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.28 mW/g

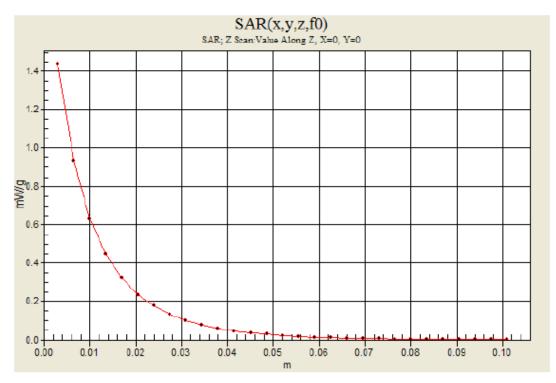
EV-DO Rel. 0_H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 35.8 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.622 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 mW/g

Page 49 of 77

Date/Time: 1/26/2011 7:18:21 AM

Test Laboratory: Compliance Certification Services (UL CCS)


Bottom face_Cell band

DUT: Apple; Type: NA; Serial: NA

Communication System: CDMA Cell Band; Frequency: 848.31 MHz; Duty Cycle: 1:1

EV-DO Rel. 0_H ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 mW/g

Page 50 of 77

Worst-case SAR Test Plots for PCS Band (Part 24)

Date/Time: 1/27/2011 12:41:36 AM

Test Laboratory: Compliance Certification Services (UL CCS)

Bottom face_PCS band

DUT: Apple; Type: NA; Serial: NA

Communication System: CDMA PCS Band; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1908.75 MHz; σ = 1.49 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


EV-DO Rel. 0_H ch/Area Scan (8x5x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.35 mW/g

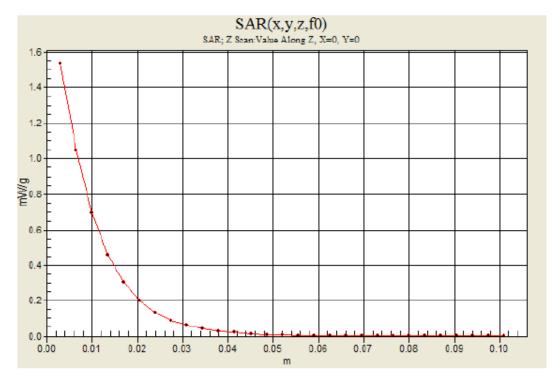
EV-DO Rel. 0_H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 30.4 V/m; Power Drift = -0.188 dB Peak SAR (extrapolated) = 2.46 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.541 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.53 mW/g

Page 51 of 77

Date/Time: 1/27/2011 12:59:29 AM

Test Laboratory: Compliance Certification Services (UL CCS)


Bottom face_PCS band

DUT: Apple; Type: NA; Serial: NA

Communication System: CDMA PCS Band; Frequency: 1908.75 MHz; Duty Cycle: 1:1

EV-DO Rel. 0_H ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.54 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 52 of 77

13.2. 2.4 GHz BAND

Back Surface

Direct Contact / 0 cm distance between EUT and Flat Phantom (WiFi/BT antenna-to-user distance : 8 mm).

Mada	e Channel	Channel f (MHz)		Avg Pwr	Results (mW/g)	
Mode Char	Channel	T (IVITIZ)	(dBm)	1g-SAR	10g-SAR	
802.11b	6	2437	15.7	0.072	0.035	

Primary Landscape

Direct Contact / 0 cm distance between EUT and Flat Phantom (WiFi/BT antenna-to-user distance: 44.6 mm).

Mada	Channel	f (MHz)	Avg Pwr	Results	(mW/g)
Mode Channe	Chaimer	T (IVITIZ)	(dBm)	1g-SAR	10g-SAR
802.11b	6	2437	15.7	0.042	0.020

Secondary Landscape (No SAR)

With <u>112 mm</u> separation distance from WiFi/BT antenna-to-user.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Primary Portrait

Direct Contact / 0 cm distance between EUT and Flat Phantom(WiFi/BT antenna-to-user distance: 3.75 mm).

Mode	Channel	$f(M \parallel z)$		Results (mW/g)	
	Channel f (MHz)	(dBm)	1g-SAR	10g-SAR	
	1	2412	15.5	1.040	0.352
802.11b	6	2437	15.7	1.050	0.353
	11	2462	15.6	0.909	0.306

Secondary Portrait / Top Edge (No SAR)

Separation distance: 227 mm from WiFi/BT antenna-to-phantom

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Worst-case SAR Test Plots for 2.4 GHz

Date/Time: 1/17/2011 3:51:02 PM

Test Laboratory: Compliance Certification Services (UL CCS)

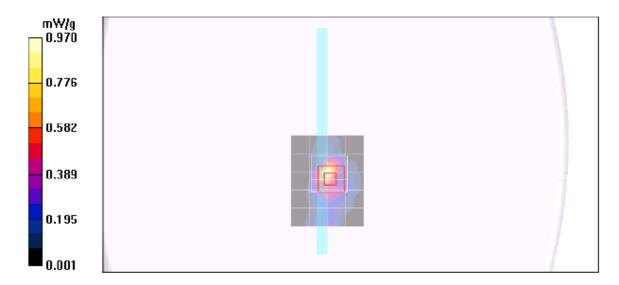
11b_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.98 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch/Area Scan (5x6x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.970 mW/g

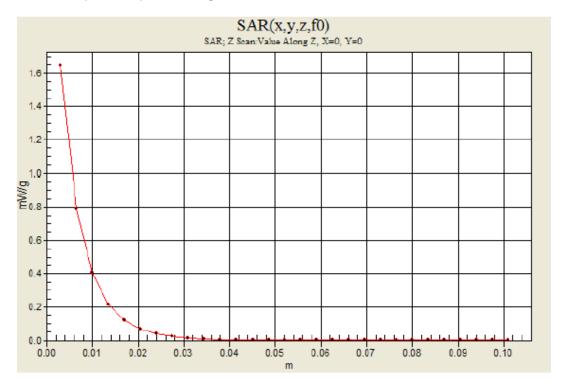
802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 22.7 V/m; Power Drift = -0.144 dB Peak SAR (extrapolated) = 3.37 W/kg SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.353 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 mW/g

Page 54 of 77

Date/Time: 1/17/2011 4:08:21 PM

Test Laboratory: Compliance Certification Services (UL CCS)


11b_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 mW/g

Page 55 of 77

13.3. 5 GHz BANDS

Back Surface

Direct Contact / 0 cm distance between EUT and Flat Phantom (WiFi/BT antenna-to-user distance 8 mm).

Pand	Band Mode		f(MHz)	Avg Pwr	Results	(mW/g)
Daliu	IVIOUE	Channel		(dBm)	1g-SAR	10g-SAR
5.2 GHz	802.11a Legacy	40	5200	15.7	0.055	0.023
5.3 GHz	802.11a Legacy	60	5300	15.6	0.053	0.022
5.6 GHz	802.11a Legacy	120	5600	15.7	0.088	0.032
5.8 GHz	802.11a Legacy	157	5785	17.1	0.061	0.027

Primary Landscape

Direct Contact / 0 cm distance between EUT and Flat Phantom (WiFi/BT antenna-to-user distance: 44.6 mm).

Pand	and Mode		f (MHz)	Avg Pwr	Results	(mW/g)
Band Mode		Channel		(dBm)	1g-SAR	10g-SAR
5.2 GHz	802.11a Legacy	40	5200	15.7	0.014	0.00763
5.3 GHz	802.11a Legacy	60	5300	15.6	0.012	0.00575
5.6 GHz	802.11a Legacy	120	5600	15.7	0.032	0.012
5.8 GHz	802.11a Legacy	157	5785	17.1	0.052	0.017

Secondary Landscape (No SAR)

With <u>112 mm separation distance from WiFi/BT antenna-to-user</u>.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Primary Portrait

Direct Contact / 0 cm distance between EUT and Flat Phantom(WiFi/BT antenna-to-user distance: 3.75 mm).

Band	Modo	Mode Channel f (MHz)		Avg Pwr	Results (mW/g)	
Dallu	MODE	Charmer		(dBm)	1g-SAR	10g-SAR
5.2 GHz	802.11a Legacy	40	5200	15.7	0.787	0.276
		52	5260	15.6	0.828	0.291
5.3 GHz	802.11a Legacy	60	5300	15.6	0.852	0.302
	• •	64	5320	15.7	0.825	0.294
		100	5500	15.6	0.628	0.220
5.6 GHz	802.11a Legacy	120	5600	15.7	0.816	0.295
		140	5700	15.6	0.597	0.201
5.8 GHz	802.11a Legacy	157	5785	17.1	0.647	0.226

Secondary Portrait / Top Edge (No SAR)

Separation distance: 227 mm from WiFi/BT antenna-to-phantom

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Worst-case SAR Test Plots for 5GHz bands

5.2 GHz Band

Date/Time: 1/11/2011 12:38:53 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.2GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

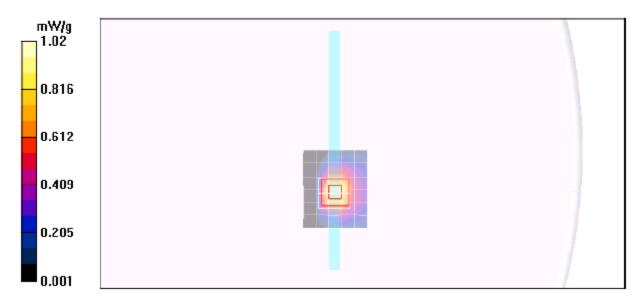
Communication System: 802.11abgn; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.29 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


802.11a_ch 40/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.02 mW/g

802.11a_ch 40/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 15.0 V/m; Power Drift = -0.145 dB

Peak SAR (extrapolated) = 2.43 W/kg

SAR(1 g) = 0.787 mW/g; SAR(10 g) = 0.276 mW/g

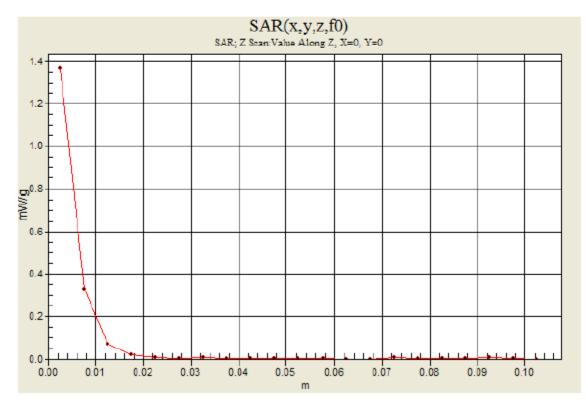
Maximum value of SAR (measured) = 1.33 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B-0810 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 57 of 77

5.2 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 12:56:53 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.2GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1

802.11a_ch 40/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.37 mW/g

Page 58 of 77

5.3 GHz Band

Date/Time: 1/11/2011 1:50:05 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.3GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.36 mho/m; ϵ_r = 47.3; ρ = 1000 kg/m³ Phantom section: Flat Section

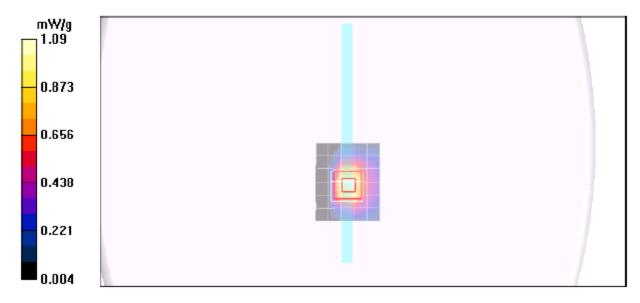
Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(3.88, 3.88, 3.88); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 60/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 1.09 mW/g

802.11a_ch 60/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 15.4 V/m; Power Drift = 0.157 dB

Peak SAR (extrapolated) = 2.61 W/kg

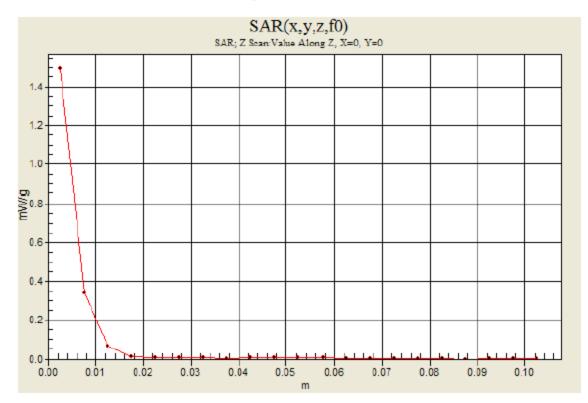
SAR(1 g) = 0.852 mW/g; SAR(10 g) = 0.302 mW/g

Maximum value of SAR (measured) = 1.43 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

5.3 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 2:08:09 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.3GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5300 MHz; Duty Cycle: 1:1

802.11a_ch 60/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.49 mW/g

Page 60 of 77

5.6 GHz Band

Date/Time: 1/11/2011 4:20:20 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.6GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.61 mho/m; ϵ_r = 47.2; ρ = 1000 kg/m³ Phantom section: Flat Section

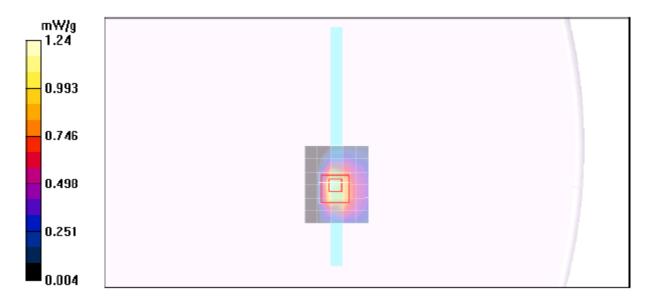
Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.36, 3.36, 3.36); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

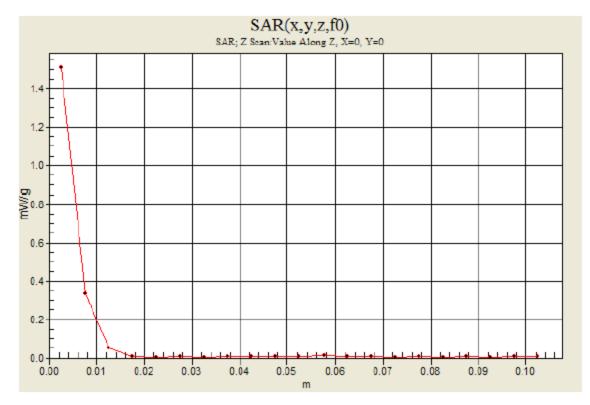
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 120/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.24 mW/g

802.11a_ch 120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 16.6 V/m; Power Drift = -0.135 dB Peak SAR (extrapolated) = 2.62 W/kg SAR(1 g) = 0.816 mW/g; SAR(10 g) = 0.295 mW/g Maximum value of SAR (measured) = 1.44 mW/g

5.6 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 4:38:32 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.6GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5600 MHz; Duty Cycle: 1:1

802.11a_ch 120/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.51 mW/g

Page 62 of 77

5.8 GHz Band

Date/Time: 1/11/2011 5:10:42 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.8GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz; σ = 6.06 mho/m; ϵ_r = 46.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

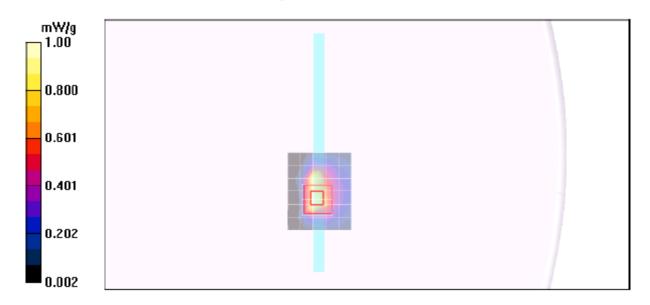
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 157/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.00 mW/g

802.11a_ch 157/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 14.4 V/m; Power Drift = -0.225 dB

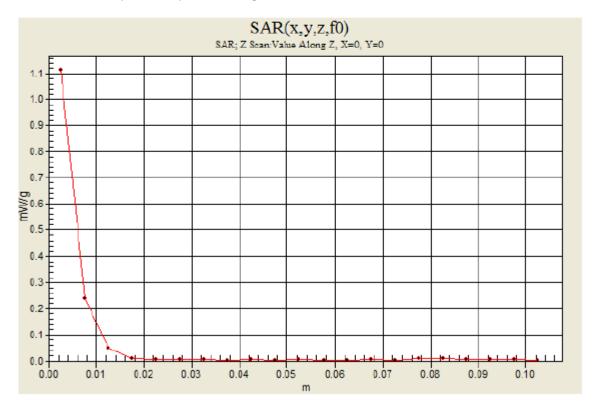
Peak SAR (extrapolated) = 2.23 W/kg SAR(1 g) = 0.647 mW/g; SAR(10 g) = 0.226 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.12 mW/g

Page 63 of 77

5.8 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 5:28:55 PM

Test Laboratory: Compliance Certification Services (UL CCS)


5.8GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5785 MHz; Duty Cycle: 1:1

802.11a_ch 157/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.11 mW/g

Page 64 of 77

14. KDB 447498 SIMULTANEOUS TRANSMISSION SAR EVAULATIONS

Acc. to KDB 447498 3) b) ii)

(1) for the antennas that are located < 5 cm from the persons

Finding: When the EUT is positioned at the bottom face configuration, WWAN (CDMA) and WiFi antennas are located < 5 cm from persons.

WWAN (CDMA)	WWAN (CDMA) and WiFi (2.4 & 5 GHz bands)								
Test position	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
Test position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio			
	CDMA Cell	1.140	0.072	1.212	n/a	n/a			
	CDMA PCS	1.150	0.072	1.222	n/a	n/a			
Back Surface /	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
W Power Back- off	WW	AN	WiFi 5G	(W/kg)	Separation (cm)	Ratio			
OII	CDMA Cell	1.140	0.000	1.228	n/a	n/a			
	CDMA PCS	1.150	0.088	1.238	n/a	n/a			
Test position	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
Test position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio			
	CDMA Cell	1.020	*N/A	1.020	n/a	n/a			
Secondary	CDMA PCS	0.697	IN/A	0.697	n/a	n/a			
Portrait / top	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
Edge w/ Power	WWAN		WiFi 5G	(W/kg)	Separation (cm)	Ratio			
Back-off	CDMA Cell	1.020	*N1/A	1.020	n/a	n/a			
	CDMA PCS	0.697	*N/A	0.697	n/a	n/a			
Test position	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
Test position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio			
Back Surface	CDMA Cell	0.565	0.070	0.637	n/a	n/a			
with special	CDMA PCS	0.639	0.072	0.711	n/a	n/a			
development	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
software at 10	ŴŴ		WiFi 5G	(W/kg)	Separation (cm)	Ratio			
mm without	CDMA Cell	0.565	0.000	0.653	n/a	n/a			
power back-off	CDMA PCS	0.639	0.088	0.727	n/a	n/a			
	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
Test position	ŴŴ	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio			
Secondary	CDMA Cell	0.383	*N/A	0.383	n/a	n/a			
Portrait / Top	CDMA PCS	1.400	N/A	1.400	n/a	n/a			
Edge with	Highes	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location			
special	WW		WiFi 5G	(W/kg)	Separation (cm)	Ratio			
development	CDMA Cell	0.383	*NI/A	0.383	n/a	n/a			
software at 9.5	CDMA PCS	1.400	*N/A	1.400	n/a	n/a			

Page 65 of 77
COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET, FREMONT, CA 94538, USA
TEL: (510) 771-1000
FAX: (510) 661-0888
This report shall not be reproduced except in full, without the written approval of UL CCS.

WiFi (2.4 & 5 GHz bands) and WWAN (CDMA)

Test position	Highest 1-g SAR (W/kg)			Σ 1g SAR	SAR to peak location		
	WWAN		WiFi 2.4G	(W/kg)	Separation (cm)	Ratio	
	CDMA Cell	n/a*	1.05	1.050	n/a	n/a	
Primary portrait	CDMA PCS	n/a*		1.050	n/a	n/a	
	Highest 1-g SAR (W/kg)			Σ 1g SAR	SAR to peak location		
	WWAN		WiFi 5G	(W/kg)	Separation (cm)	Ratio	
	CDMA Cell	n/a*	0.852	0.852	n/a	n/a	
	CDMA PCS	n/a*		0.852	n/a	n/a	

*Note: WWAN antenna is located at Top edge (Secondary portrait); antenna-to-bottom edge distance is more than 20 cm. Therefore primary portrait is excluded from SAR evaluation for WWAN. At the secondary Portrait / Top Edge mode, WiFi is more than 20 cm to the flat phantom which are excluded from SAR evaluation. Back Surface and Secondary Portrait/Top with special development software with 10 mm / 9.5 mm WWAN test data are obtained from Cetecom SAR test report submitted separately.

CONCLUSIONS:

WWAN (CDMA) and WiFi (2.4 GHz & 5 GHz bands):

Simultaneous transmission is SAR not required for WWAN (CDMA) & WiFi because the sum of the 1-g SAR is < 1.6 W/kg.

WWAN (CDMA) and Bluetooth:

Simultaneous transmission is SAR not required for WWAN (CDMA) & Bluetooth because stand alone SAR is not required for Bluetooth (output power is $\leq 60/f(GHz)$ mW).

WiFi 5GHz bands and Bluetooth:

Simultaneous transmission is SAR not required for WiFi 5GHz bands & Bluetooth because stand alone SAR is not required for Bluetooth (output power is $\leq 60/f(GHz)$ mW).

Page 66 of 77

15. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1-1	SAR Test Plots for CDMA2000 Cellular Band	17
1-2	SAR Test Plots for CDMA2000 PCS Band	11
1-3	SAR Test Plots for 2.4 GHz	6
1-4	SAR Test Plots for 5 GHz	20
2	Certificate of E-Field Probe - EX3DV4 SN 3749	11
3	Certificate of System Validation Dipole - D835V2 SN:4d002	11
4	Certificate of System Validation Dipole - D1900V2 SN:5d043	11
5	Certificate of System Validation Dipole - D2450 SN:706	9
6	Certificate of System Validation Dipole - D5GHzV2 SN:1075	11

Page 67 of 77