

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003 IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

The Apple iPad, Model A1396 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the GSM 2G/3G data radio functions

MODEL: A1396 FCC ID: BCGA1396 IC: 579C-A1396

REPORT NUMBER: 10U13582-1B

ISSUE DATE: March 1, 2011

Prepared for

APPLE INC. 1 INFINITE LOOP, MS 26A CUPERTINO, CA 95014-2084

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	February 20, 2011	Initial Issue	
A	February 27, 2011	Includes Proximity Sensor reliability tests at the most conservative triggered distance	Sunny Shih
В	March 1, 2011	 Updated report per reviewer's comments, including 1. Page 46: Removed sections 11.1 and 11.2 Changed text to "FCC pre-TCB testing guidance KDB 335737" 2. Pages 46 ~ 48: Removed ambiguous plots and added section 11.6 - Summary Table of Power Reduction dB Levels per Mode and Band. 3. Pages 57 and 87: Corrected typos, changed from "WWNA' to "WWAN" and from "SA" to "SAR". 	Sunny Shih

Page 2 of 100

TABLE OF CONTENTS

	73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661- This report shall not be reproduced except in full, without the written approval of UL CCS.	
CON	Page 3 of 100 MPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B-0	1810
15.	ATTACHMENTS	88
14.	KDB 447498 SIMULTANEOUS TRANSMISSION SAR EVAULATIONS	86
13	3.4. 5 GHZ BANDS	77
13	3.3. 2.4 GHZ BAND	74
13	3.2. UMTS (WCDMA)	65
13	3.1. GPRS/EGPRS	56
13.	SUMMARY OF SAR TEST RESULTS	56
12	2.3. WiFi	54
	2.2. UMTS (WCDMA)	
12	2.1. GPRS & EGPRS	
12.	RF OUTPUT POWER VERIFICATION	49
11	1.4. Summary Table of Power Reduction dB Levels per Mode and Band	
	1.3. Method of SAR Measurement With and Without Back-off Enabled	
	1.2. Additional SAR Testing for the Back Surface and Top Edge	
	1.1. iPad WIFI Exclusions for SAR Testing	
11.	POWER REDUCTION BY SENSING	
10.	SAR MEASUREMENT PROCEDURES	
9.	.1. SYSTEM CHECK RESULTS	
-		
8.	.1. LIQUID CHECK RESULTS	13
	LIQUID PARAMETERS	
7.	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	
	SYSTEM SPECIFICATIONS	
5.	EQUIPMENT UNDER TEST	
	.2. MEASUREMENT UNCERTAINTY	-
	.1. MEASURING INSTRUMENT CALIBRATION	
	FACILITIES AND ACCREDITATION	
2.	TEST METHODOLOGY	6
1.	ATTESTATION OF TEST RESULTS	5

Page 4 of 100

1. ATTESTATION OF TEST RESULTS

Tested for:	APPLE INC. 1 INFINITE LOOP, MS 26A							
	CUPERTINO, CA 95014-2084							
EUT description:		The Apple iPad, Model A1396 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the						
Model number:	A1396, S/N: DLXDW007DK4P (WI	FI), DLXDT003DK3G (WWAN)						
Device category:	Portable							
Exposure category:	General Population/Uncontrolled Ex	xposure						
Date tested:	January 10 - 17, 2011 (WIFI); January 20 - 23, 2011 (WWAN); February 25 – 26, 2011 (WWAN Without Proximity sensor activated)							
FCC / IC Rule Parts	Freq. Range [MHz]	Highest 1-g SAR (mW/g)	Limit (mW/g)					
	824 - 849	1.180 (Secondary Portrait/Top Edge)						
22H / RSS-132	Special Development Software to disable power back-off							
	1850 - 1910	1.190 (Secondary Portrait/Top Edge)						
24E / RSS-133	Special Development Software to disable power back-off1.44 (Secondary Portrait / Top Edge with 9.5 mm air-gap distance)		1.6					
15.247 / RSS-102	2412 – 2462	1.070 (Primary Portrait)	1.0					
	5150 – 5250	0.788 (Primary Portrait)						
15.407 / RSS-102	5250 - 5350	0.822 (Primary Portrait)						
	5500 – 5700 0.679 (Primary Portrait)							
15.247 / RSS-102	5725 – 5850	5725 – 5850 0.621 (Primary Portrait)						
Applicable Standards								
FCC OET Bulletin 65 Suppl	ement C 01-01, IEEE STD 1528:2003	}	Pass					

IC RSS 102 Issue 4

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Seenay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

Down Charg

Devin Chang EMC Engineer Compliance Certification Services (UL CCS)

Page 5 of 100

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528:2003, IC RSS 102 Issue 4 and the following specific FCC Test Procedures.

- KDB 248227 D01 SAR Measurement Procedure for 802 11abg v01r02
- KDB 941225 D01 SAR test for 3G devices v02
- KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE vo1
- KDB 447498 D01 Mobile Portable RF Exposure v04
- KDB 616217 D03 SAR Supp Note and Netbook Laptop v01
- Power Reduction by Sensing (Oct. 2010 TCBC workshop SAR Updates)

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 6 of 100

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date			
Name of Equipment	Manufacturer	Type/woder	Senai No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A		N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Data Acquistion Electronics	SPEAG	DAE4	1239	11	11	2011	
Data Acquistion Electronics	SPEAG	DAE3	427	7	21	2011	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Dielectronic Probe kit	HP	85070C	N/A			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
Wireless comunication test set	Agilent	E5515C (8960)	GB46160222	6	17	2012	
E-Field Probe	SPEAG	EX3DV3	3686	1	24	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
System Validation Dipole	SPEAG	* D835V2	4d002	4	22	2011	
System Validation Dipole	SPEAG	* D900V2	108	11	23	2011	
System Validation Dipole	SPEAG	D1800V2	294	11	24	2011	
System Validation Dipole	SPEAG	D1900V2	5d043	11	24	2012	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	CCS	M1800	N/A	Within 24 hrs of first test		rs of first test	
Simulating Liquid	SPEAG	M 900	N/A	Within 24 hrs of first test		rs of first test	
Simulating Liquid	SPEAG	H2450	N/A	Within 24 hrs of first test			
Simulating Liquid	SPAEG	M5800	N/A	Withir	Within 24 hrs of first test		
		(5-6GHz)					
Simulating Liquid	SPAEG	H5800	N/A	Withir	ו 24 h	rs of first test	

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (Appendix 3, 4 & 6)
- 4. Impedance is within 5Ω of calibrated measurement (Appendix 3, 4 & 6)

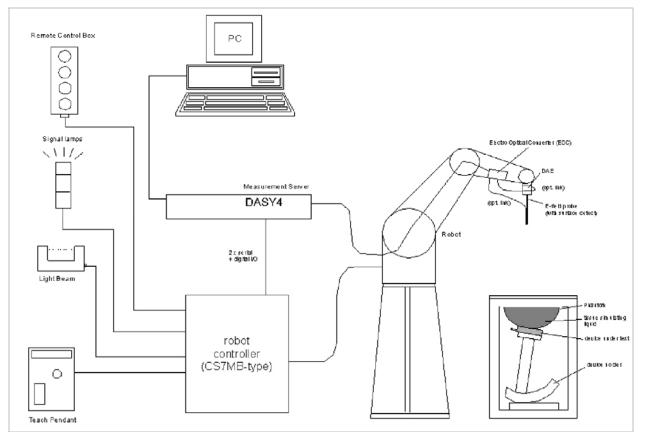
Page 7 of 100

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	orror %	Probe Distribution	Divisor	Sensitivity	11/ V i) 0/
Measurement System			DIVISOI	Sensitivity	U (AI), %
Probe Calibration (k=1)	5.50	Normal	1	1	5.50
Axial Isotropy		Rectangular	1.732		0.47
Hemispherical Isotropy		Rectangular	1.732		0.94
Boundary Effect		Rectangular	1.732		0.52
Probe Linearity		Rectangular	1.732		1.99
System Detection Limits		Rectangular	1.732		0.58
Readout Electronics	0.30			1	0.30
Response Time		Rectangular	1.732		0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance		Rectangular	1.732		0.23
Probe Positioning with respect to Phantom		Rectangular	1.732		1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal		-	2.90
Device Holder Uncertainty	3.60				3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters				L	
Phantom Uncertainty (shape and thickness)		Rectangular	1.732		2.31
Liquid Conductivity - deviation from target		Rectangular	1.732		1.85
Liquid Conductivity - measurement (Body 2450 MHz)	2.04			0.64	1.31
Liquid Permittivity - deviation from target		Rectangular	1.732		1.73
Liquid Permittivity - measurement uncertainty (Body 1900 MHz)	-2.96	Normal		0.6	-
		Combined Standar			9.69
Expanded Uncertainty U, Co				19.39	%
Expanded Uncertainty U, Co	verage Facto	or = 2, > 95 % Conf	idence =	1.54	dB
3 to 6 GHz averaged over 1 gram					
Component	error	, % Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 5GHz		0.55 Normal	1	1	6.55
Axial Isotropy	1	.15 Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2	2.30 Rectangular	1.732	0.7071	0.94
Boundary Effect	0	.90 Rectangular	1.732	1	0.52
Probe Linearity	3	3.45 Rectangular	1.732	1	1.99
System Detection Limits		.00 Rectangular	1.732	1	0.58
Readout Electronics		.00 Normal	1	1	1.00
Response Time		.80 Rectangular	1.732	1	0.46
Integration Time		2.60 Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		3.00 Rectangular	1.732	1	1.73
		Ű			
RF Ambient Conditions - Reflections		0.00 Rectangular	1.732	1	
Probe Positioner Mechanical Tolerance		0.40 Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom		2.90 Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	3	.90 Rectangular	1.732	1	2.25
Test Sample Related					
Test Sample Positioning		.10 Normal	1	1	1.10
Device Holder Uncertainty		8.60 Normal	1	1	3.60
Output Power Variation - SAR Drift	5	5.00 Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4	.00 Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target		.00 Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement		.60 Normal	1	0.64	-2.94
Liquid Permittivity - deviation from target		0.00 Rectangular	1.732	0.6	3.46
Liquid Permittivity - measurement uncertainty		8.61 Normal	1.102	0.6	-2.17
				0.0	/
			' Incortaint		
	Corr	bined Standard U		ty Uc(y), %:	11.07
Expanded Uncertainty U, Coverage Expanded Uncertainty U, Coverage	Com e Factor = 1	bined Standard U .96, > 95 % Confid	lence =	ty Uc(y), %: 21.70	

Page 8 of 100


5. EQUIPMENT UNDER TEST

The Apple iPad, Model A1396 is a tablet device with iPod functions (music, application support, and video), 802.11a/b/g/n radio, Bluetooth radio functions, and cellular using the GSM 2G/3G data radio functions

Normal operation:	Tablet bottom face, and Tablet edges - Multiple display orientations supporting both portrait and landscape configurations
Antenna tested:	AntennaApple part numberWiFi/BT631-1482 (shared with BT)WWAN631-1725
Antenna-to-antenna/user separation distances:	Refer to Sec. 14 for details of antenna locations and separation distances.
Simultaneous transmission:	 WWAN (GSM/UMTS) can transmit simultaneously with WiFi/BT WWAN (GSM/UMTS) can transmit simultaneously with Bluetooth WiFi 2.4 GHz cannot transmit simultaneously with Bluetooth WiFi 5 GHz bands can transmit simultaneously with Bluetooth
Assessment for SAR evaluation for Simultaneous transmission:	Refer to Sec. 14 for details of KDB 447498 Simultaneous Transmission SAR Evaluations.
Proximity Sensor for Power Reduction	Trigger Distance: 0-10 mm from back surface, 0-9.5 mm from top edge of device / Secondary Portrait.

Page 9 of 100

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 10 of 100

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	4	50	83	835		915		00	2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 MQ+ resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 11 of 100

8. LIQUID PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Torget Frequency (MHz)	He	ad	Body		
Target Frequency (MHz)	۶ _۲	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	
1 11 11 11 11	1 12 14 1	40001 (3)			

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz) In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Body	Reference	
	rel. permittivity	conductivity	Reference
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 100

8.1. LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameters for Body 835 MHz

Measured by: Devin Chang

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)				
0.05	e'	54.73	Relative Permittivity (ε_r):	54.732	55.2	-0.85	± 5				
835	e"	21.18	Conductivity (σ):	0.984	0.97	1.44	± 5				
Liquid Check		•									
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40%											
January 23, 207	11 10:31										
Frequency		e'	е"								
80000000.		54.9348	21.3031								
805000000.		54.9168	21.2896								
81000000.		54.8989	21.2789								
815000000.		54.8785	21.2679								
820000000.		54.8457	21.2563								
825000000.		54.8193	21.2371								
830000000.		54.7799	21.2066								
83500000.		54.7317	21.1830								
840000000.		54.6760	21.1474								
845000000.		54.6182	21.1082								
850000000.		54.5526	21.0703								
855000000. 860000000.		54.4881	21.0289								
		54.4193	20.9934								
865000000.		54.3488	20.9570								
870000000. 875000000.		54.2827 54.2136	20.9268 20.8954								
880000000.			20.8954								
885000000.		54.1555 54.0991	20.8508								
890000000.		54.0991	20.8330								
895000000.		53.9912	20.8330								
900000000.		53.9912	20.8169								
905000000.		53.9540	20.8059								
910000000.		53.8968	20.8014								
915000000.		53.8790	20.7981								
920000000.		53.8531	20.7946								
925000000.		53.8333	20.7949								
930000000.		53.8106	20.7873								
935000000.		53.7893	20.7811								
940000000.		53.7682	20.7701								
945000000.		53.7309	20.7548								
950000000.		53.6900	20.7377								
The conductivity	y (σ) can	be given a	as:								
$\sigma = \omega \varepsilon_0 e'' = 2$											
where f = targ	et f * 10 ⁶										
E _0 = 8.85	54 * 10 ⁻¹²										

Simulating Liquid Dielectric Parameters for Body 1900 MHz

Measured by: Devin Chang

f (MHz)	Muscle Liquid Parameters			Measured	Target	Delta (%)	Limit (%)			
1000	e'	51.722	Relative Permittivity (ε_r):	51.7221	53.3	-2.96	± 5			
1900	e"	14.289	Conductivity (σ):	1.51031	1.52	-0.64	± 5			
Liquid Check										
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 42%										
January 21, 2011 11	1:53 AM									
Frequency	e'		e"							
1710000000.	52.	3410	13.6646							
1720000000.	52.	3249	13.6896							
1730000000.	52.	3086	13.7171							
1740000000.	52.	2849	13.7529							
1750000000.	52.	2563	13.7898							
1760000000.	52.	2249	13.8273							
1770000000.	52.	1850	13.8738							
1780000000.	52.	1441	13.9224							
1790000000.	52.	0978	13.9664							
180000000.	52.	0588	14.0132							
1810000000.	52.	0195	14.0511							
1820000000.	51.	9810	14.0829							
1830000000.	51.	9492	14.1141							
1840000000.	51.	9141	14.1325							
1850000000.	51.	8836	14.1528							
1860000000.	51.	8515	14.1743							
1870000000.	51.	8202	14.1923							
1880000000.	51.	7845	14.2198							
189000000.	51.	7505	14.2524							
190000000.	51.	7221	14.2887							
191000000.	51.	6929	14.3303							
The conductivity (σ)	can be g	given as:								
$\sigma = \omega \varepsilon_0 e'' = 2 \pi i$	fε ₀ e"									
where f = target f *	⁵ 10 ⁶									
ɛ ₀ = 8.854 * ·	10 ⁻¹²									

Measured by: Devin Chang

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)				
2450	e'	52.12	Relative Permittivity (ε_r):	52.123	52.7	-1.09	± 5				
2450	e"	14.60	Conductivity (σ):	1.990	1.95	2.04	± 5				
Liquid Check											
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%											
January 17, 20	011 10:1	9 AM									
Frequency		e'	e"								
2400000000.		52.2326	14.4366	6							
2405000000.		52.2147	14.4597	7							
2410000000.		52.1991	14.4816	6							
2415000000.		52.1855	14.5056								
2420000000.		52.1667	14.5284	ŀ							
2425000000.		52.1536	14.5495	5							
2430000000.		52.1393	14.5734	ŀ							
2435000000.		52.1232	14.5986	6							
2440000000.		52.1087	14.6220)							
2445000000.		52.0897	14.6442	2							
2450000000.		52.0746	14.6668	3							
2455000000.		52.0580	14.6922	2							
2460000000.		52.0413	14.7137	7							
2465000000.		52.0240	14.7365	5							
2470000000.		52.0066	14.7559)							
2475000000.		51.9900	14.7801								
2480000000.		51.9720	14.7994	ł							
2485000000.		51.9556	14.8200)							
2490000000.		51.9384	14.8406	6							
2495000000.		51.9233	14.8596	6							
2500000000.		51.9049	14.8796	6							
The conductivit	y (σ) can	be given a	IS:								
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"									
where f = targ	et f * 10 ⁶										
E 0 = 8.85	54 * 10 ⁻¹²										

Page 15 of 100

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)	Muscle Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
e'		48.7136	Relative Permittivity (ε_r):	48.7136	49.0	-0.58	± 10
5200	e"	17.7246	Conductivity (σ):	5.12742	5.30	-0.58 -3.26 -0.44 1.26 -2.15 -0.22	± 5
5500	e'	48.3858	Relative Permittivity (e _r):	48.3858	48.6	-0.44	± 10
5500	e"	18.6984	Conductivity (σ):	vity (ε_r):48.713649.0-0.58vity (σ):5.127425.30-3.26vity (ε_r):48.385848.6-0.44vity (σ):5.721195.651.26vity (ε_r):47.161648.2-2.15	1.26	± 5	
5800	e'	47.1616	Relative Permittivity (&):	47.1616	48.2	-2.15	± 10
5600	e"	18.5549	Conductivity (σ):	5.98695	6.00	-0.22	± 5

/ inbioint tomporata	io. 20 dog. o, Elquid id	importataro: Er aog
January 10, 2011 1		
Frequency	e'	e"
460000000.	49.9964	16.7112
4650000000.	50.1388	17.2854
4700000000.	49.9642	16.8133
4750000000.	49.7733	17.4304
480000000.	49.9223	17.1918
4850000000.	49.4924	17.3158
490000000.	49.6582	17.6773
4950000000.	49.4340	17.2445
500000000.	49.2491	17.9967
5050000000.	49.4366	17.4994
510000000.	48.8332	17.9671
5150000000.	49.2039	17.9794
520000000.	48.7136	17.7246
5250000000.	48.7909	18.4706
530000000.	48.8218	17.6755
5350000000.	48.2787	18.6161
540000000.	48.8176	18.0649
5450000000.	47.9861	18.3675
5500000000.	48.3858	18.6984
5550000000.	48.0946	18.0570
560000000.	47.7267	19.1225
5650000000.	48.2976	18.1278
5700000000.	47.1626	19.0392
5750000000.	48.1469	18.7509
580000000.	47.1616	18.5549
5850000000.	47.3194	19.4642
5900000000.	47.6455	18.3207
5950000000.	46.4286	19.6760
600000000.	47.8654	18.7048

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $f = target f * 10^6$

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)	Muscle Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
5200	e'	e' 47.721 Relative Per		47.7210	49.0	-2.61	± 10
5200	e"	18.2905	Conductivity (σ):	5.29112	5.30	-0.17	± 5
5500	e'	47.1076	Relative Permittivity (ε_r):	47.1076	48.6	-3.07	± 10
5500	e"	17.6165	Conductivity (σ):	5.39016	5.65	-4.60	± 5
5800	e'	46.4622	Relative Permittivity (&):	46.4622	48.2	-3.61	± 10
5600	e"	19.1959	Conductivity (σ):	6.19378	6.00	3.23	± 5

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 40% January 11, 2011 07:11 AM

January 11, 2011		
Frequency	e'	e"
460000000.	48.9605	17.1721
4650000000.	49.0228	16.6388
4700000000.	48.5934	17.1306
4750000000.	48.9218	17.1374
4800000000.	48.3948	16.9383
4850000000.	48.5934	17.6079
4900000000.	48.3747	16.9491
4950000000.	48.1533	17.7381
5000000000.	48.3697	17.3338
5050000000.	47.8348	17.5142
5100000000.	48.1501	17.9113
5150000000.	47.7424	17.2874
5200000000.	47.7210	18.2905
5250000000.	47.7744	17.4219
5300000000.	47.2645	18.1916
5350000000.	47.7141	17.9886
540000000.	47.0624	17.8217
5450000000.	47.3729	18.5721
5500000000.	47.1076	17.6165
5550000000.	46.8420	18.7476
560000000.	47.1761	17.9970
5650000000.	46.4814	18.3995
5700000000.	46.9786	18.7034
5750000000.	46.4722	17.9818
580000000.	46.4622	19.1959
5850000000.	46.6404	17.9547
5900000000.	45.9285	19.0913
5950000000.	46.6394	18.5729
600000000.	45.7546	18.5346

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $f = target f * 10^6$

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz

Measured by: David Lee

f (MHz)		Muscle Liquid Parameters			Target	Delta (%)	Limit (%)
5200	e'		Relative Permittivity (ε_r):	49.8309	49.0	1.70	± 10
5200	e" 17.6668 e' 49.3059 Re	Conductivity (σ):	5.11070	5.30	-3.57	± 5	
5500	e'	49.3059	Relative Permittivity (¢r):	49.3059	48.6	1.45	± 10
5500	18.5943	Conductivity (σ):	5.68934	5.65	0.70	± 5	
5800	e'	48.4447	Relative Permittivity (&):	48.4447	48.2	0.51	± 10
3600	e"	18.5910	Conductivity (σ):	5.99860	6.00	-0.02	± 5
Liquid Check Ambient tempe January 14, 20		•	uid temperature: 24 de	g. C; Relative	humidity = 4	.0%	

January 14, 2011 (08:19 AM	
Frequency	e'	e"
460000000.	51.0668	16.6305
4650000000.	50.9337	16.8486
4700000000.	50.9261	16.8108
4750000000.	50.6895	17.0003
480000000.	50.7597	17.1063
4850000000.	50.5242	17.0815
490000000.	50.5395	17.4281
4950000000.	50.3430	17.1591
500000000.	50.2519	17.6434
5050000000.	50.2001	17.3320
510000000.	50.0312	17.6791
5150000000.	50.0846	17.7401
520000000.	49.8309	17.6668
5250000000.	49.7359	18.1132
5300000000.	49.6753	17.7682
5350000000.	49.4087	18.2335
5400000000.	49.5257	18.0992
5450000000.	49.1997	18.1579
5500000000.	49.3059	18.5943
5550000000.	49.1474	18.0706
560000000.	48.9053	18.8925
5650000000.	49.1268	18.3265
5700000000.	48.5435	18.8295
5750000000.	48.8989	18.8875
580000000.	48.4447	18.5910
5850000000.	48.4257	19.4993
590000000.	48.5819	18.5486
5950000000.	47.8553	19.6052
600000000.	48.5302	19.0647

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $f = target f * 10^6$

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ? %)
2/25/2011	Dody 925	e'	54.3291	Relative Permittivity (ε_r):	54.33	55.20	-1.58	5
2/25/2011	Body 835	e"	21.2383	Conductivity (o):	0.99	0.97	1.66	5
Liquid Checl	k							
•			C: Liquid to	mperature: 23 deg. C; R	olotivo humid	$\frac{1}{100}$		
	•	Ũ	C, Liquiu le	imperature. 25 deg. C, R		illy – 40%		
	5, 2011 05:37 I							
Frequency	e			e"				
80000000.			6740	21.3992				
805000000.			6229	21.3831				
810000000.			5765	21.3512				
815000000.			5243	21.3337				
820000000.			1738	21.3109				
825000000.		54.4	1261	21.2845				
830000000.			3775	21.2573				
835000000.		54.3	3291	21.2383				
840000000.		54.2	2867	21.2100				
845000000.		54.2	2378	21.1910				
850000000.		54.1	1978	21.1730				
855000000.		54.1	1548	21.1532				
860000000.		54.1	1094	21.1407				
865000000.		54.0	0573	21.1236				
870000000.		54.0	084	21.1143				
875000000.		53.9	9593	21.0931				
880000000.		53.9	9118	21.0789				
885000000.		53.8	3564	21.0610				
890000000.		53.8	3071	21.0528				
895000000.		53.7	7547	21.0314				
900000000.		53.7	7056	21.0170				
905000000.		53.6	6593	20.9994				
910000000.		53.6	6072	20.9761				
915000000.		53.5	5606	20.9636				
920000000.			5089	20.9482				
925000000.			4691	20.9313				
930000000.		53.4	1230	20.9158				
935000000.		53.3	3785	20.8970				
940000000.			3313	20.8796				
945000000.			2849	20.8633				
950000000.		53.2	2376	20.8459				
The conduc	tivity (σ) can b	e gi	iven as:					
$\sigma = \omega \varepsilon_0 e^{i}$	"=2πfε ₀ e							
where f = ;	target f * 10 ⁶							
ε ₀ =	8.854 * 10 ⁻¹²							

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit?%)		
0/44/0044		e'	52.9619	Relative Permittivity (ε_r):	52.96	53.30	-0.63	5		
2/11/2011	2011 Body 1900 e" 14.0530		14.0530	Conductivity (o):	1.48	1.52	-2.33	5		
iquid Check										
			. C; Liquid t	emperature: 23 deg. C; I	Relative hun	nidity = 42%				
	, 2011 07:03 F	РΜ								
Frequency	e			e"						
1710000000			5953	13.4024						
172000000			5673	13.4333						
173000000			5418	13.4644						
174000000			5091	13.4961						
175000000			4811	13.5285						
176000000			1480	13.5618						
177000000			4153	13.5965						
178000000			3853	13.6331						
179000000			3479	13.6719						
180000000			3152	13.7081						
181000000			2838	13.7440						
182000000			2491	13.7803						
183000000			2169	13.8138						
184000000			1842	13.8505						
185000000			1492	13.8837						
186000000			1149	13.9187						
187000000 188000000			0755 0350	13.9505 13.9832						
1890000000			9983	14.0180						
190000000			9903 9619	14.0180 14.0530						
1910000000			9250	14.0833						
The conduct	tivity (σ) can b	e g	iven as:							
$\sigma = \omega \varepsilon_0 e''$	′=2πfε₀e′	,								
where $\mathbf{f} = t$	arget $f * 10^6$									
$\varepsilon_0 = \delta$	8.854 * 10 ⁻¹²									

Page 20 of 100

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 SN3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

System	Cal. certificate #	Cal.	Cal. Freq.	SA	AR Avg (mW	/g)
validation dipole		date	(GHz)	Tissue:	Head	Body
D835V2	D9251/2 4d002 Apr00	*4/23/2009	0.835	SAR _{1g} :	9.64	9.96
D035V2	D835V2-4d002_Apr09	4/23/2009	0.000	SAR _{10g} :	6.28	6.56
D1900V2	D10001/2 Ed042 Nov00	*11/24/2000	1.9	SAR _{1g} :	39.8	40.4
D1900V2	D1900V2-5d043_Nov09	*11/24/2009	1.9	SAR _{10g} :	20.7	21.4
D2450V2	D2450V2-706_Apr10	04/19/10	2.4	SAR _{1g} :	51.6	52.4
D2450V2			2.4	SAR _{10g} :	24.4	24.5
			5.2	SAR _{1g} :	/	79.0
			5.2	SAR _{10g} :	/	22.0
D5GHzV2		*9/3/2009	5.5	SAR _{1g} :		85.4
DOGHZVZ	D5GHzV2-1075_Sep09	9/3/2009	5.5	SAR _{10g} :	/	23.5
			5.8	SAR _{1g} :		73.2
			0.0	SAR _{10g} :		20.1

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (Appendix 3, 4 & 6)
- 4. Impedance is within 5 Ω of calibrated measurement (Appendix 3, 4 & 6)

Page 21 of 100

9.1. SYSTEM CHECK RESULTS

System	Data Tastad	Measured (N	ormalized to 1 W)	Townst		Tolerance
validation dipole	Date Tested	Tissue:	Body	Target	Delta (%)	(%)
	01/02/11	SAR _{1g} :	9.65	9.96	-3.11	110
D835V2	01/23/11	SAR _{10g} :	6.32	6.56	-3.66	±10
D835V2	01/25/11	SAR _{1g} :	9.92	9.96	-0.40	±10
D033V2	01/25/11	SAR _{10g} :	6.51	6.56	-0.76	ΞĪŪ
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Taiyet	Della (70)	(%)
D1900V2	01/21/11	SAR _{1g} :	39.5	40.4	-2.23	±10
SN 5d043	01/21/11	SAR _{10g} :	20.5	21.4	-4.21	ΞĪŪ
D1900V2 SN	02/25/11	SAR _{1g} :	38.0	40.4	-5.94	±10
5d043	02/25/11	SAR _{10g} :	20.0	21.4	-6.54	ΞĪŪ
System	Date Tested	Measured (N	ormalized to 1 W)	Torget	$D_{olto}(0/)$	Tolerance
validation dipole	Date Tested	Tissue:	Body	Target	Delta (%)	(%)
D2450V2	01/17/11	SAR _{1g} :	52.7	52.4	0.57	±10
D2430V2	01/17/11	SAR _{10g} :	24.1	24.5	-1.63	ΞĪŪ
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Dale Tesleu	Tissue:	Body	Taiyet		(%)
D5GHzV2	01/10/10	SAR _{1g} :	74.2	79.0	-6.08	±10
(5.2GHz)	01/10/10	SAR _{10g} :	21.4	22.0	-2.73	10
D5GHzV2	01/10/10	SAR _{1g} :	83.0	85.4	-2.81	±10
(5.5GHz)	01/10/10	SAR _{10g} :	23.6	23.5	0.43	10
D5GHzV2	01/10/10	SAR _{1g} :	73.7	73.2	0.68	±10
(5.8GHz)	01/10/10	SAR _{10g} :	21.0	20.1	4.48	±10
D5GHzV2	01/11/11	SAR _{1g} :	75.0	79.0	-5.06	±10
(5.2GHz)	01/11/11	SAR _{10g} :	21.7	22.0	-1.36	±10
D5GHzV2	01/11/11	SAR _{1g} :	80.9	85.4	-5.27	±10
(5.5GHz)	01/11/11	SAR _{10g} :	23.0	23.5	-2.13	1 10
D5GHzV2	01/11/11	SAR _{1g} :	73.1	73.2	-0.14	110
(5.8GHz)	01/11/11	SAR _{10g} :	20.8	20.1	3.48	±10
D5GHzV2	01/14/14	SAR _{1g} :	75.6	79.0	-4.30	140
(5.2GHz)	01/14/11	SAR _{10g} :	22.1	22.0	0.45	±10
D5GHzV2	04/44/44	SAR _{1g} :	83.2	85.4	-2.58	140
(5.5GHz)	01/14/11	SAR _{10g} :	23.8	23.5	1.28	±10
D5GHzV2	04/44/44	SAR _{1g} :	73.3	73.2	0.14	. 40
(5.8GHz)	01/14/11	SAR _{10g} :	21.0	20.1	4.48	±10

Page 22 of 100

SYSTEM CHECK PLOT for D835V2

Date/Time: 1/23/2011 11:32:44 AM

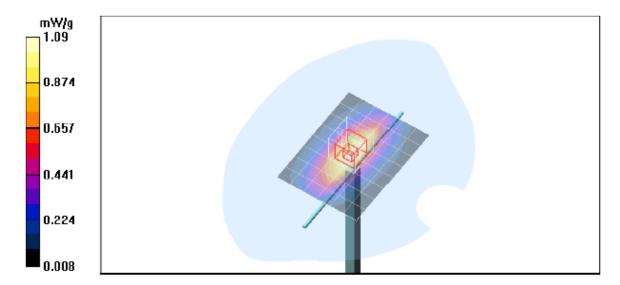
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D835V2

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:xxx

Communication System: CW 835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.984 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

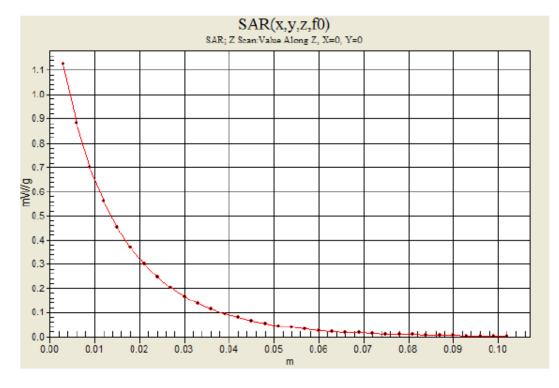
d=15mm, Pin=100 mW/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.09 mW/g

d=15mm, Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 33.4 V/m; Power Drift = 0.123 dB Peak SAR (extrapolated) = 1.46 W/kg SAR(1 g) = 0.965 mW/g; SAR(10 g) = 0.632 mW/g Maximum value of SAR (measured) = 1.13 mW/g

Page 23 of 100

Z-Axis PLOT for D835V2

Date/Time: 1/23/2011 11:49:09 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D835V2

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:xxx

Communication System: CW 835; Frequency: 835 MHz; Duty Cycle: 1:1

d=15mm, Pin=100 mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 1.13 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B-0810 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 24 of 100

SYSTEM CHECK PLOT for D1900V2

Date/Time: 1/21/2011 1:11:47 PM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

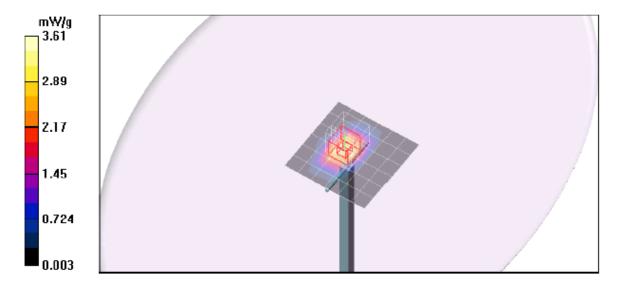
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

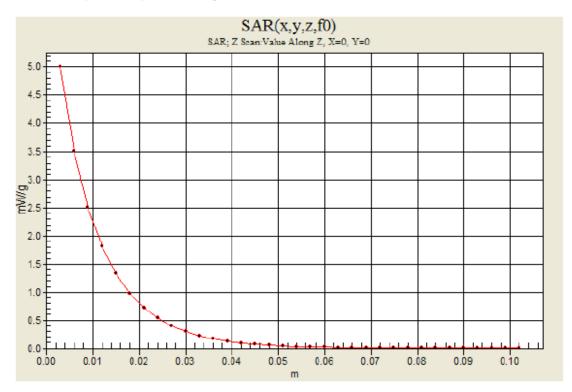
d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.61 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = 0.103 dB Peak SAR (extrapolated) = 7.32 W/kg SAR(1 g) = 3.95 mW/g; SAR(10 g) = 2.05 mW/g Maximum value of SAR (measured) = 4.99 mW/g

Page 25 of 100

Z-Axis PLOT for D1900V2

Date/Time: 1/21/2011 1:28:43 PM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 5.01 mW/g

Page 26 of 100

SYSTEM CHECK PLOT for D2450V2

Date/Time: 1/17/2011 11:20:01 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phontom section: Elet Section

Phantom section: Flat Section

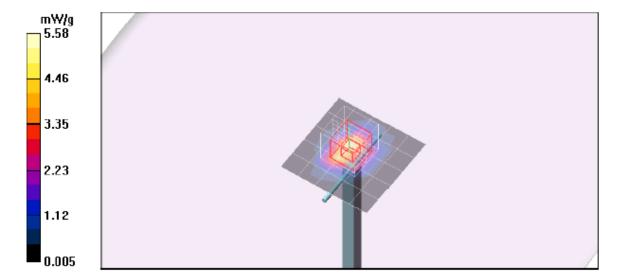
Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 5.58 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.3 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.27 mW/g; SAR(10 g) = 2.41 mW/g

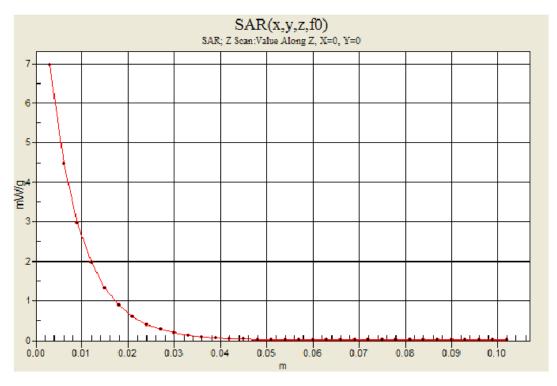
Maximum value of SAR (measured) = 6.96 mW/g

Page 27 of 100

Z-Axis PLOT for D2450V2

Date/Time: 1/17/2011 11:34:38 AM

Test Laboratory: Compliance Certification Services (UL CCS)


System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm

Maximum value of SAR (measured) = 6.97 mW/g

Page 28 of 100

SYSTEM CHECK PLOT for 5.2 GHz

Date/Time: 1/10/2011 12:10:22 PM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.39 mho/m; ϵ_r = 48.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

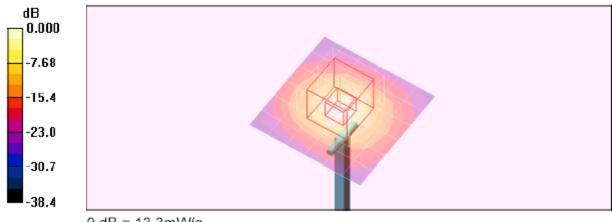
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.6 mW/g

5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 54.8 V/m; Power Drift = -0.046 dB Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 7.42 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 13.3 mW/g

⁰ dB = 13.3mW/g

Page 29 of 100

SYSTEM CHECK PLOT for 5.5 GHz

Date/Time: 1/10/2011 11:06:47 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

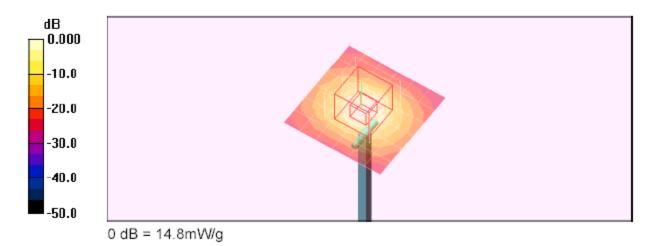
Communication System: System Check Signal - CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.83 mho/m; ϵ_r = 47.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010


Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.2 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 55.4 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 8.3 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 14.8 mW/g

SYSTEM CHECK PLOT for 5.8 GHz

Date/Time: 1/10/2011 10:36:47 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.27 mho/m; ϵ_r = 47.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

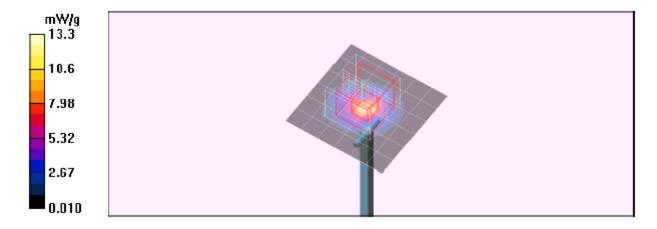
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.3 mW/g

5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 50.8 V/m; Power Drift = -0.077 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 7.37 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 13.2 mW/g

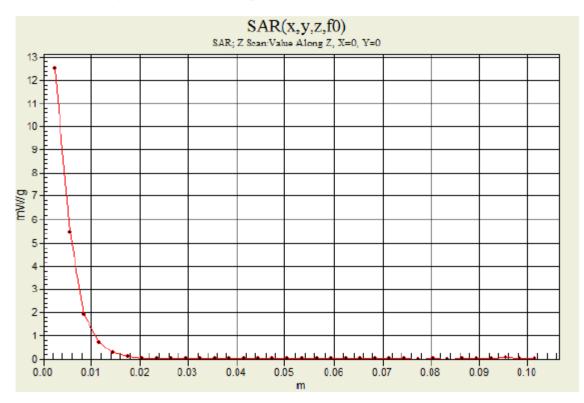
Page 31 of 100

Z-Axis PLOT for 5.8 GHz

Date/Time: 1/10/2011 11:01:25 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2


DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm,

dz=3mm

Maximum value of SAR (measured) = 12.5 mW/g

Page 32 of 100

SYSTEM CHECK PLOT for 5.2 GHz

Date/Time: 1/11/2011 7:55:42 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.29 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

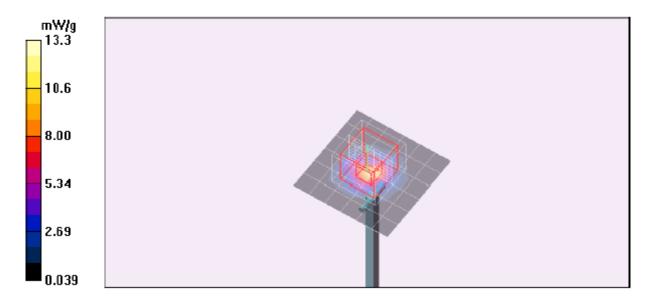
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.2GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.3 mW/g

d=10mm, Pin=100mW, 5.2GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 55.1 V/m; Power Drift = 0.196 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 7.5 mW/g; SAR(10 g) = 2.17 mW/g

Page 33 of 100

SYSTEM CHECK PLOT for 5.5 GHz

Date/Time: 1/11/2011 9:01:30 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.39 mho/m; ϵ_r = 47.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

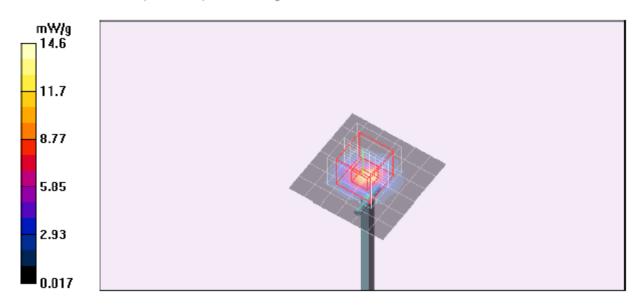
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

Electronics: DAE3 Sn427; Calibrated: 7/21/2010


- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.5GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.6 mW/g

d=10mm, Pin=100mW, 5.5GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2.5mm Reference Value = 56.8 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.3 mW/g Maximum value of SAR (measured) = 14.3 mW/g

SYSTEM CHECK PLOT for 5.8 GHz

Date/Time: 1/11/2011 10:03:36 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6.19 mho/m; ϵ_r = 46.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

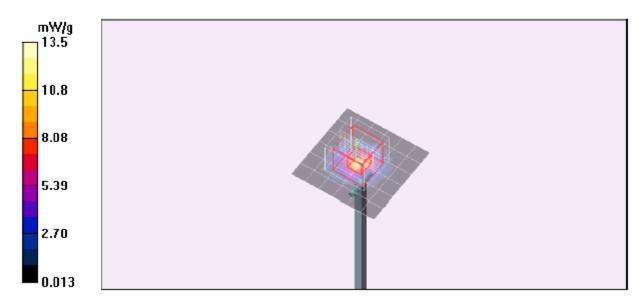
DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010


Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW, 5.8GHz/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

d=10mm, Pin=100mW, 5.8GHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid:

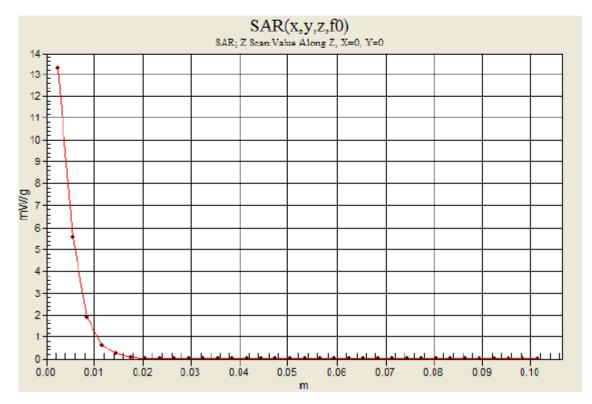
dx=4mm, dy=4mm, dz=2.5mm Reference Value = 51.0 V/m; Power Drift = 0.119 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.31 mW/g; SAR(10 g) = 2.08 mW/g Maximum value of SAR (measured) = 13.3 mW/g

Z-Axis PLOT for 5.8 GHz

Date/Time: 1/11/2011 10:28:03 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2_5 GHz


DUT: D5GHzV2; Type: D5GHzV2; Serial: 1075

Communication System: CW 5GHz; Frequency: 5800 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW, 5.8GHz/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm,

dz=3mm

Maximum value of SAR (measured) = 13.3 mW/g

Page 36 of 100

SYSTEM CHECK PLOT for 5.2 GHz

Date/Time: 1/14/2011 9:09:44 AM

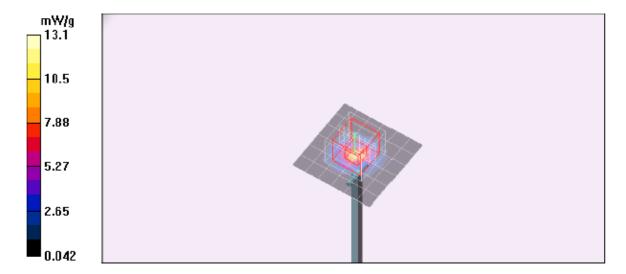
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.11 mho/m; ϵ_r = 49.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.2GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.1 mW/g

5.2GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 56.0 V/m; Power Drift = 0.065 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 7.56 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 13.2 mW/g

SYSTEM CHECK PLOT for 5.5 GHz

Date/Time: 1/14/2011 9:38:08 AM

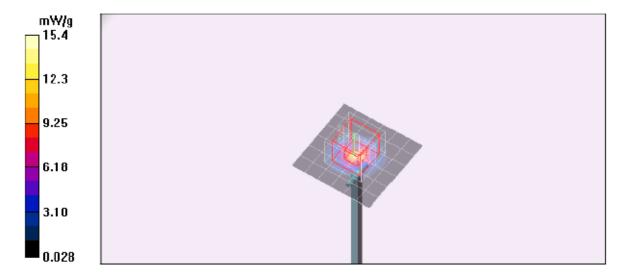
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.69 mho/m; ϵ_r = 49.3; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.5GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.4 mW/g

5.5GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 56.8 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 8.32 mW/g; SAR(10 g) = 2.38 mW/g Maximum value of SAR (measured) = 15.1 mW/g

Page 38 of 100

SYSTEM CHECK PLOT for 5.8 GHz

Date/Time: 1/14/2011 10:04:26 AM

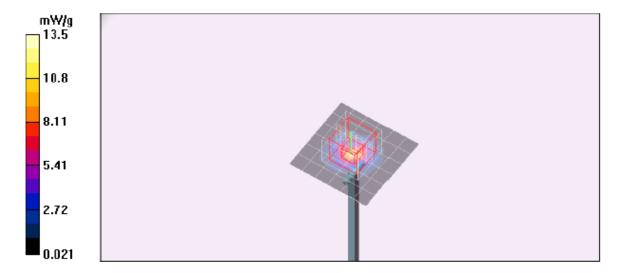
Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 6 mho/m; ϵ_r = 48.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5.8GHz, d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.5 mW/g

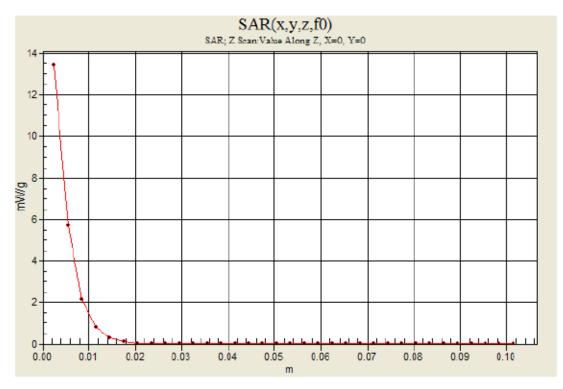
5.8GHz, d=10mm, Pin=100mW/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 52.0 V/m; Power Drift = -0.049 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 13.4 mW/g

Page 39 of 100

Z-Axis PLOT for 5.8 GHz

Date/Time: 1/14/2011 10:28:56 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D5GHzV2

DUT: Dipole 5200-5800MHz; Type: D5GHzV2; Serial: 1075

Communication System: System Check Signal - CW; Frequency: 5800 MHz; Duty Cycle: 1:1

5.8GHz, d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 13.4 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B-0810 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 40 of 100

SYSTEM CHECK PLOT for D835V2

Date/Time: 2/25/2011 5:52:40 PM

Test Laboratory: UL CCS

System Check D835V2 SN 4d002

DUT: Dipole D835V2; Type: D835V2; Serial: 4d002

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.987 mho/m; ϵ_r = 54.329; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

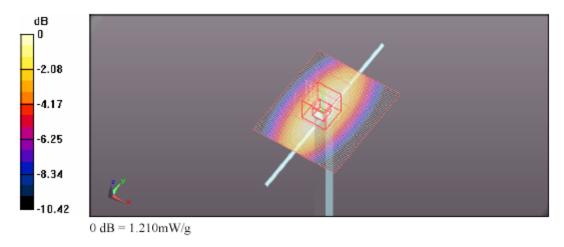
DASY5 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3686; ConvF(8.78, 8.78, 8.78); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1239; Calibrated: 11/17/2010


- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

D835V2/Pin=100 mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.214 mW/g

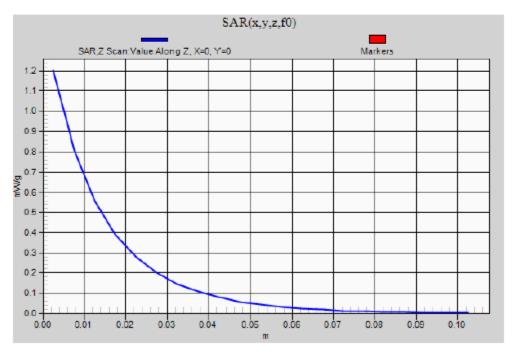
D835V2/Pin=100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.560 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.489 W/kg SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.651 mW/g Maximum value of SAR (measured) = 1.210 mW/g

Page 41 of 100

Z-Axis PLOT for D835V2

Date/Time: 2/25/2011 6:07:47 PM


Test Laboratory: UL CCS

System Check D835V2 SN 4d002

DUT: Dipole D835V2; Type: D835V2; Serial: 4d002

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

D835V2/Pin=100 mW/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.202 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 42 of 100

SYSTEM CHECK PLOT for D1900V2

Date/Time: 2/25/2011 7:52:39 PM

Test Laboratory: Compliance Certification Services (UL CCS)

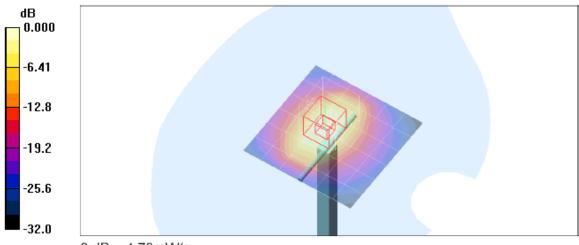
System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.49 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

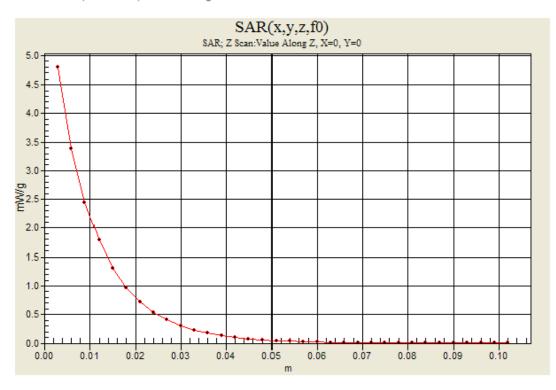
Maximum value of SAR (measured) = 3.33 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.7 V/m; Power Drift = 0.163 dB Peak SAR (extrapolated) = 6.91 W/kg SAR(1 g) = 3.8 mW/g; SAR(10 g) = 2 mW/gMaximum value of SAR (measured) = 4.78 mW/g

 $0 \, dB = 4.78 \, mW/g$

Z-Axis PLOT for D1900V2

Date/Time: 2/25/2011 8:08:03 PM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D1900V2

DUT: Dipole; Type: D1900V2; Serial: 5d043

Communication System: System Check Signal - CW; Frequency: 1900 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 4.80 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 44 of 100

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 45 of 100

11. POWER REDUCTION BY SENSING

SAR Testing Considerations & FCC pre-TCB testing guidance KDB 335737

11.1. iPad WIFI Exclusions for SAR Testing

The iPad does not have proximity sensors or back-off capabilities on WiFi.

11.2. Additional SAR Testing for the Back Surface and Top Edge

Based on discussions with the FCC it was determined that additional SAR testing is required. The additional testing required testing at a conservative distance from the iPad with the power back-off disabled via special development software. Details about the proximity sensor operation, and special development software are included in a separate document titled "Operational Description".

Proximity Sensor Status Table – Back Surface In Conservative Proximity Sensor Operation

Distance to Back Surface of iPad (mm)	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0
Proximity Sensor Status	ON	ON	ON	OFF	OFF	OFF	OFF	OFF

Proximity Sensor Status Table – Top Edge Secondary Portrait In Conservative Proximity Sensor Operation

Distance to Top Edge of iPad (mm)	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5
Proximity Sensor Status	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF

11.3. Method of SAR Measurement With and Without Back-off Enabled

Based on the above proximity sensor activation vs. distance results, the iPad was tested at zero spacing, back-off enabled and additionally at a conservative test distance of 9.5 mm on the top edge and 10 mm on back surface with back-off disabled (maximum power).

To test SAR with back-off enabled at zero spacing, the iPad was placed in maximum power transmit mode (with back-off enabled) with a base station simulator. The device was then positioned under the tissue equivalent liquid-filled flat phantom at zero distance.

To test SAR with back-off disabled at 9.5 mm, the iPad utilized special development software. The ability to disable the back-off is not available in the production release of software. The device was placed in maximum power transmit mode with a base station simulator. The iPad was then positioned under the tissue equivalent liquid-filled flat phantom at a distance of 9.5mm when in the "Top Edge – Secondary Portrait" orientation and at 10mm when in "Tablet Mode-Back surface" and tested with the back-off disabled.

Page 46 of 100

11.4. Summary Table of Power Reduction dB Levels per Mode and Band

Back Sensor/Cellular band

	A1396 Back Surface, Cellular Band																
Distance in mm	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Proximity sensor with reduced power activation	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
GPRS 1 Slot / Cellular Band /dBm (by 2.3 db)	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	33	33	33	33	33	33
GPRS 2 Slots / Cellular Band /dBm (by 4.4 dB)	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	32.2	32.2	32.2	32.2	32.2	32.2
EDGE 1 Slot / Cellular Band / dBm (NO REDUCTION)	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6
EDGE 2 Slots / Cellular Band / dBm (NO REDUCTION)	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6
R99 / Cellular Band / dBm (by 2.5 dB)	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	24.1	24.1	24.1	24.1	24.1	24.1
HSDPA Sub-Test 1 / Cellular Band / dBm (by 2.5 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	24.1	24.1	24.1	24.1	24.1	24.1
HSDPA Sub-Test 2 / Cellular Band / dBm (by 1.8 dB)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	22.3	22.3	22.3	22.3	22.3	22.3
HSDPA Sub-Test 3 / Cellular Band / dBm (by 1.8 dB)	20	20	20	20	20	20	20	20	20	20	20	21.8	21.8	21.8	21.8	21.8	21.8
HSDPA Sub-Test 4 / Cellular Band / dBm (by 1.8 dB)	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	21.7	21.7	21.7	21.7	21.7	21.7
HSUPA Sub-Test 1 / Cellular Band / dBm (by 2.6 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	24.1	24.1	24.1	24.1	24.1	24.1
HSUPA Sub-Test 2 / Cellular Band / dBm (by 0.9 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	22.4	22.4	22.4	22.4	22.4	22.4
HSUPA Sub-Test 3 / Cellular Band / dBm (by 1.7 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	23.2	23.2	23.2	23.2	23.2	23.2
HSUPA Sub-Test 4 / Cellular Band / dBm (by 0.8 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	22.3	22.3	22.3	22.3	22.3	22.3
HSUPA Sub-Test 5 / Cellular Band / dBm (by 2.5 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	24	24	24	24	24	24

Back Sensor/PCS band

			A1396	5 Back	Surfa	ce, PC	S Ban	d									
Distance in mm	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Proximity sensor with reduced power activation	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
GPRS 1 Slot / PCS Band /dBm (by 5.1 dB)	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	30.6	30.6	30.6	30.6	30.6	30.6
GPRS 2 Slots / PCS Band /dBm (by 6 dB)	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	28.6	28.6	28.6	28.6	28.6	28.6
EDGE 1 Slot / PCS Band / dBm (NO REDUCTION)	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5
EDGE 2 Slots / PCS Band / dBm (By 4 dB)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	26.5	26.5	26.5	26.5	26.5	26.5
R99 / PCS Band / dBm (by 6.1 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	22.5	22.5	22.5	22.5	22.5	22.5
HSDPA Sub-Test 1 / PCS Band / dBm (by 6.1 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	22.5	22.5	22.5	22.5	22.5	22.5
HSDPA Sub-Test 2 / PCS Band / dBm (by 6 dB)	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	21.8	21.8	21.8	21.8	21.8	21.8
HSDPA Sub-Test 3 / PCS Band / dBm (by 6 dB)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	21.3	21.3	21.3	21.3	21.3	21.3
HSDPA Sub-Test 4 / PCS Band / dBm (by 6.2 dB)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	21.2	21.2	21.2	21.2	21.2	21.2
HSUPA Sub-Test 1 / PCS Band / dBm (by 6.1 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	22.4	22.4	22.4	22.4	22.4	22.4
HSUPA Sub-Test 2 / PCS Band / dBm (by 4.4 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	20.7	20.7	20.7	20.7	20.7	20.7
HSUPA Sub-Test 3 / PCS Band / dBm (by 5.3 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	21.6	21.6	21.6	21.6	21.6	21.6
HSUPA Sub-Test 4 / PCS Band / dBm (by 4.4 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	20.7	20.7	20.7	20.7	20.7	20.7
HSUPA Sub-Test 5 / PCS Band / dBm (by 6.1 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	22.4	22.4	22.4	22.4	22.4	22.4

Page 47 of 100

Top Edge Sensor/Cellular band

N	/lodel	1396 T	op Ed	ge (Se	conda	iry Po	rtrait)	/ Cell	ular B	and							
Distance in mm	0	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5
Proximity sensor with reduced power activation	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
GPRS 1 Slot / Cellular Band /dBm (by 2.3 db)	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	30.70	33	33	33	33	33	33
GPRS 2 Slots / Cellular Band /dBm (by 4.4 dB)	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	27.8	32.2	32.2	32.2	32.2	32.2	32.2
EDGE 1 Slot / Cellular Band / dBm (NO REDUCTION)	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6
EDGE 2 Slots / Cellular Band / dBm (NO REDUCTION)	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6
R99 / Cellular Band / dBm (by 2.5 dB)	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	24.1	24.1	24.1	24.1	24.1	24.1
HSDPA Sub-Test 1 / Cellular Band / dBm (by 2.5 dB)	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	21.6	24.1	24.1	24.1	24.1	24.1	24.1
HSDPA Sub-Test 2 / Cellular Band / dBm (by 1.8 dB)	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	20.5	22.3	22.3	22.3	22.3	22.3	22.3
HSDPA Sub-Test 3 / Cellular Band / dBm (by 1.8 dB)	20	20	20	20	20	20	20	20	20	20	20	21.8	21.8	21.8	21.8	21.8	21.8
HSDPA Sub-Test 4 / Cellular Band / dBm (by 1.8 dB)	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	21.7	21.7	21.7	21.7	21.7	21.7
HSUPA Sub-Test 1 / Cellular Band / dBm (by 2.6 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	24.1	24.1	24.1	24.1	24.1	24.1
HSUPA Sub-Test 2 / Cellular Band / dBm (by 0.9 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	22.4	22.4	22.4	22.4	22.4	22.4
HSUPA Sub-Test 3 / Cellular Band / dBm (by 1.7 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	23.2	23.2	23.2	23.2	23.2	23.2
HSUPA Sub-Test 4 / Cellular Band / dBm (by 0.8 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	22.3	22.3	22.3	22.3	22.3	22.3
HSUPA Sub-Test 5 / Cellular Band / dBm (by 2.5 dB)	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	21.5	24	24	24	24	24	24

Top Edge Sensor/PCS band

	Mode	el 1396	Тор Е	dge (S	Secon	dary P	ortrai	it)/P	CS Ba	nd							
Distance in mm	0	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5
Proximity sensor with reduced power activation	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
GPRS 1 Slot / PCS Band /dBm (by 5.1 dB)	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	30.6	30.6	30.6	30.6	30.6	30.6
GPRS 2 Slots / PCS Band /dBm (by 6 dB)	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	22.6	28.6	28.6	28.6	28.6	28.6	28.6
EDGE 1 Slot / PCS Band / dBm (NO REDUCTION)	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5
EDGE 2 Slots / PCS Band / dBm (by 4 dB)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	26.5	26.5	26.5	26.5	26.5	26.5
R99 / PCS Band / dBm (by 6.1 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	22.5	22.5	22.5	22.5	22.5	22.5
HSDPA Sub-Test 1 / PCS Band / dBm (by 6.1 dB)	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	22.5	22.5	22.5	22.5	22.5	22.5
HSDPA Sub-Test 2 / PCS Band / dBm (by 6 dB)	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	21.8	21.8	21.8	21.8	21.8	21.8
HSDPA Sub-Test 3 / PCS Band / dBm (by 6 dB)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	21.3	21.3	21.3	21.3	21.3	21.3
HSDPA Sub-Test 4 / PCS Band / dBm (by 6.2 dB)	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	21.2	21.2	21.2	21.2	21.2	21.2
HSUPA Sub-Test 1 / PCS Band / dBm (by 6.1 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	22.4	22.4	22.4	22.4	22.4	22.4
HSUPA Sub-Test 2 / PCS Band / dBm (by 4.4 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	20.7	20.7	20.7	20.7	20.7	20.7
HSUPA Sub-Test 3 / PCS Band / dBm (by 5.3 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	21.6	21.6	21.6	21.6	21.6	21.6
HSUPA Sub-Test 4 / PCS Band / dBm (by 4.4 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	20.7	20.7	20.7	20.7	20.7	20.7
HSUPA Sub-Test 5 / PCS Band / dBm (by 6.1 dB)	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	16.3	22.4	22.4	22.4	22.4	22.4	22.4

Page 48 of 100

12. RF OUTPUT POWER VERIFICATION

12.1. GPRS & EGPRS

GPRS (GMSK) - Coding Scheme: CS1

						Tx Conduc	cted F	ower (dBi	m)	
Band	Ch #	Freq.		Avg bu	irst Pv	vr	w/ Pi	roximity S	ensor	Power Back-off
Danu	011#	(MHz)	1 slot	Frame Avg Pwr	2 slot	Frame Avg Pwr	1 slot	Frame Avg Pwr	2 slot	Frame Avg Pwr
	128	824.2	33.0	24.0	32.1	26.1	31	21.7	28	21.7
GSM850	190	836.6	33.0	24.0	32.1	26.1	31	21.7	28	21.8
	251	848.8	33.0	24.0	32.2	26.2	31	21.7	28	21.7
	512	1850.2	30.6	21.6	28.4	22.4	25.5	16.5	22.5	16.5
GSM1900	661	1880	30.6	21.6	28.5	22.5	25.5	16.5	22.6	16.6
	810	1909.8	30.5	21.5	28.6	22.6	25.5	16.5	22.5	16.5

EGPRS (8PSK) - Coding Scheme: MCS5

						Tx Conduc	cted F	ower (dB	m)	
Band	Ch #	Freq.		Avg bu	irst Pv	vr	w/ P	roximity S	ensor	Power Back-off
Danu	CII #	(MHz)	1 alot	Frame	2 slot	Frame	1 slot	Frame		Frame Avg Pwr
			1 slot	Avg Pwr	2 5101	Avg Pwr	1 5101	Avg Pwr	2 5101	Frame Avy Pwi
	128	824.2	27.5	18.5	27.5	21.5	27.5	18.5	27.5	21.5
GSM850	190	836.6	27.5	18.5	27.6	21.6	27.5	18.5	27.6	21.6
	251	848.8	27.6	18.6	27.6	21.6	27.6	18.6	27.6	21.6
	512	1850.2	26.5	17.5	26.5	20.5	26.5	16.5	22.5	16.5
GSM1900	661	1880	26.5	17.5	26.5	20.5	26.5	16.5	22.5	16.5
	810	1909.8	26.4	17.4	26.4	20.4	26.4	16.4	22.5	16.5

Note: According to KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE vo1, noted in the following sections indicated below may be considered to determine SAR test reduction requirements for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance.

- 1. Since the source-based time-averaged output power for EGPRS mode is lower than that in the GPRS mode, therefore Body SAR test reduction is applicable for this device.
- 2. Based on output power above and time slots, the following worst-case configurations were chosen for Body SAR testing.
 - a. GPRS850 2 time slots
 - b. GPRS1900 2 time slots

Page 49 of 100

12.2. UMTS (WCDMA)

RELEASE 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The EUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

	Mode	Rel99
	Subtest	-
	Loopback Mode	Test Mode 1
WCDMA General Settings	Rel99 RMC	12.2kbps RMC
WCDIMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

<u>Results</u>

Rel 99 (12.2kps RMC)

					Tx Condu	ucted Power (dBm)
Band	Mode	UL Ch #	DL Ch #	f (MHz)	Avg Pwr	w/ Proximity Sensor Power Back-off
UMTS850	Rel 99	4132	4357	826.4	24.1	21.6
(Band V)	12.2kbps	4183	4408	836.6	24.1	21.5
(Dana V)	RMC	4233	4458	846.6	24.1	21.6
UMTS1900	Rel 99	9262	9662	1852.4	22.5	16.4
(Band II)	12.2kbps	9400	9800	1880.0	22.4	16.4
(Band II)	RMC	9538	9938	1907.6	22.4	16.3

Page 50 of 100

<u>HSDPA</u>

The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA
	Subtest	1	2	3	4
	Loopback Mode	Test Mode 1			
	Rel99 RMC	12.2kbps RMC			
	HSDPA FRC	H-Set1			
	Power Control Algorithm	Algorithm 2			
WCDMA	βc	2/15	12/15	15/15	15/15
General Settings	βd	15/15	15/15	8/15	4/15
Settings	Bd (SF)	64		•	
	βc/βd	2/15	12/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	MPR (dB)	0	0	0.5	0.5
	D _{ACK}	8		•	
	D _{NAK}	8			
HSDPA	DCQI	8			
Specific	Ack-Nack repetition factor	3			
Settings	CQI Feedback (Table 5.2B.4)	4ms			
	CQI Repetition Factor (Table 5.2B.4)	2			
	Ahs =βhs/βc	30/15			

<u>Results</u> Rel 6 HSDPA

					Tx Cond	ducted Power (dBm)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	w/ Proximity sensor power back-off
		4132	4357	826.4	24.1	21.5
	Subtest 1	4183	4408	836.6	24.1	21.5
		4233	4458	846.6	24.1	21.5
		4132	4357	826.4	22.3	20.5
	Subtest 2	4183	4408	836.6	22.2	20.4
UMTS850		4233	4458	846.6	22.3	20.3
(Band V)		4132	4357	826.4	21.8	20.0
	Subtest 3	4183	4408	836.0	21.7	19.9
		4233	4458	846.6	21.8	19.8
		4132	4357	826.4	21.7	19.9
	Subtest 4	4183	4408	836.4	21.7	19.8
		4233	4458	846.6	21.7	19.8
		9262	9662	1852.4	22.5	16.4
	Subtest 1	9400	9800	1880.0	22.4	16.4
		9538	9938	1907.6	22.4	16.3
		9262	9662	1852.4	21.8	15.8
	Subtest 2	9400	9800	1880.0	21.8	15.8
UMTS1900		9538	9938	1907.6	21.8	15.8
(Band II)		9262	9662	1852.4	21.3	15.3
	Subtest 3	9400	9800	1880.0	21.2	15.2
		9538	9938	1907.6	21.2	15.3
		9262	9662	1852.4	21.2	15.2
	Subtest 4	9400	9800	1880.0	21.2	15.2
		9538	9938	1907.6	21.2	15.3

Note: KDB 941225 D01 – Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is < 75% of the SAR limit.

Page 51 of 100

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	Rel6 HSPA	Rel6 HSPA	Rel6 HSPA	Rel6 HSPA	Rel6 HSPA
	Subtest	1	2	3	4	5
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2kbps RMC				
	HSDPA FRC	H-Set1				
	HSUPA Test	HSUPA Loopba	ick			
	Power Control Algorithm	Algorithm2				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15
General	βd	15/15	15/15	9/15	15/15	15/15
Settings	βес	209/225	12/15	30/15	2/15	24/15
Settings	βc/βd	11/15	6/15	15/9	2/15	15/15
	βhs	22/15	12/15	30/15	4/15	30/15
				47/15		
	βed	1309/225	94/75	47/15	56/75	134/15
	CM (dB)	1.0	3.0	2.0	3.0	1.0
	MPR (dB)	0	2	1	2	0
	DACK	8				
	DNAK	8				
HSDPA	DCQI	8				
Specific	Ack-Nack repetition factor	3				
Settings	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs = β hs/ β c	30/15				
	D E-DPCCH	6	8	8	5	7
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	21
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9
HSUPA Specific Settings	Reference E_TFCIs	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO 4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27	

Results

Rel 6 HSDPA/HSUPA

					Avg	Tx Pwr (dBm)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)		w/ Proximity sensor
				, , , , , , , , , , , , , , , , , , ,	Avg Pwr	power back-off
		4132	4357	826.4	24.1	21.5
	Subtest 1	4182	4407	836.4	23.8	21.5
		4233	4458	846.6	24.0	21.5
		4132	4357	826.4	22.4	21.3
	Subtest 2	4182	4407	836.4	22.2	21.5
		4233	4458	846.6	22.3	21.5
UMTS850		4132	4357	826.4	23.2	21.5
	Subtest 3	4182	4407	836.4	23.0	21.5
(Band V)		4233	4458	846.6	23.1	21.3
		4132	4357	826.4	22.3	21.5
	Subtest 4	4182	4407	836.4	22.1	21.5
		4233	4458	846.6	22.2	21.4
		4132	4357	826.4	24.0	21.5
	Subtest 5	4182	4407	836.4	23.8	21.5
		4233	4458	846.6	24.0	21.5
		9262	9662	1852.4	22.4	16.3
	Subtest 1	9400	9800	1880.0	22.4	16.3
		9538	9938	1907.6	22.4	16.2
		9262	9662	1852.4	20.7	16.3
	Subtest 2	9400	9800	1880.0	20.7	16.3
		9538	9938	1907.6	20.6	16.3
UMTS1900		9262	9662	1852.4	21.5	16.2
(Band II)	Subtest 3	9400	9800	1880.0	21.6	16.3
(Dallu II)		9538	9938	1907.6	21.6	16.3
		9262	9662	1852.4	20.6	16.2
	Subtest 4	9400	9800	1880.0	20.7	16.3
		9538	9938	1907.6	20.6	16.3
		9262	9662	1852.4	22.4	16.2
	Subtest 5	9400	9800	1880.0	22.4	16.3
		9538	9938	1907.6	22.4	16.3

Note: KDB 941225 D01 – Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2kbps RMC is \leq 75% of the SAR limit.

12.3. WiFi

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, wl_tools, which enable then engineer to control the frequency and output power of the module. Such program is not accessible by the end user.

802.11bg mode (2.4 GHz band)

Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
	1	2412	15.7
802.11b	6	2437	15.6
	11	2462	15.5
	1	2412	14.0
802.11g	6	2437	15.5
	11	2462	15.0
	1	2412	13.0
802.11n (HT20)	6	2437	15.5
	11	2462	14.0

Note: KDB 248227, SAR is not required for 802.11g /HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 54 of 100

802.11a mode

Band	Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
		36	5180	15.5
5.2 GHz	802.11a	40	5200	15.7
		48	5240	15.5
		52	5260	15.6
5.3 GHz	802.11a	60	5300	15.6
		64	5320	15.5
		100	5500	15.5
5.6 GHz	802.11a	120	5600	15.7
		140	5700	15.5
		149	5745	17.0
5.8 GHz	802.11a	157	5785	17.0
		165	5825	17.0

802.11n HT20

Band	Mode	Channel	Freq. (MHz)	Avg Pwr (dBm)
	802.11n	36	5180	14.0
5.2 GHz	HT20	40	5200	14.0
	11120	48	5240	14.0
	802.11n	52	5260	15.5
5.3 GHz	602.111 HT20	60	5300	15.5
	11120	64	5320	15.5
	000.11m	100	5500	15.5
5.6 GHz	802.11n HT20	120	5600	15.5
	11120	140	5700	15.5
	802.11n	149	5745	17.0
5.8 GHz	802.1 m HT20	157	5785	17.0
	11120	165	5825	17.0

Page 55 of 100

13. SUMMARY OF SAR TEST RESULTS

13.1. GPRS/EGPRS

Back surface - With Proximity sensor activated with power back-off

Direct contact/0 mm between EUT-to-Flat Phantoms (8 mm distance from WWAN Main antenna-to-user)

Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	wode	5101	CH NO.	(MHz)	(dBm)	1-g	10-g
			128	824.2	27.7	0.808	0.438
		2	190	836.6	27.8	0.908	0.493
	GPRS		251	848.8	27.7	1.010	0.546
	GFRS		128	824.2	30.7	0.814	0.442
		1	190	836.6	30.7	0.918	0.495
850			251	848.8	30.7	1.000	0.546
000			128	824.2	27.5		
		2	190	836.6	27.6		
	*EGPRS		251	848.8	27.6	0.961	0.518
	LOINO		128	824.2	27.5		
		1	190	836.6	27.5		
			251	848.8	27.6	0.492	0.270
Band	Mode	Slot	Ch No	Freq.	Avg Pwr	SAR (mW/g)
Band	Mode	Slot	Ch No.	(MHz)	(dBm)	1-g	10-g
Band	Mode		Ch No. 512				
Band	Mode	Slot 2		(MHz)	(dBm)	1-g	10-g
Band			512 661 512	(MHz) 1850.2	(dBm) 22.5	1-g 0.969	10-g 0.450
Band	Mode	2	512 661 512 512	(MHz) 1850.2 1880.0	(dBm) 22.5 22.6	<mark>1-g</mark> 0.969 1.020	10-g 0.450 0.467
Band			512 661 512 512 661	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0	(dBm) 22.5 22.6 22.5 25.5 25.5	1-g 0.969 1.020 1.010 0.949 0.992	10-g 0.450 0.467 0.458
		2	512 661 512 512	(MHz) 1850.2 1880.0 1850.2 1850.2	(dBm) 22.5 22.6 22.5 25.5	1-g 0.969 1.020 1.010 0.949	10-g 0.450 0.467 0.458 0.442
Band 1900		2	512 661 512 512 661	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5	1-g 0.969 1.020 1.010 0.949 0.992	10-g 0.450 0.467 0.458 0.442 0.456
		2	512 661 512 512 661 512 512 512 661	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1850.2 1880.0	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 0.969 1.020 1.010 0.949 0.992	10-g 0.450 0.467 0.458 0.442 0.456
	GPRS	2	512 661 512 512 661 512 512 661 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 0.969 1.020 1.010 0.949 0.992 1.030	10-g 0.450 0.467 0.458 0.442 0.456 0.465
		2 1 2	512 661 512 512 661 512 512 661 512 512 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 0.969 1.020 1.010 0.949 0.992 1.030	10-g 0.450 0.467 0.458 0.442 0.456 0.465
	GPRS	2	512 661 512 512 661 512 512 661 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 0.969 1.020 1.010 0.949 0.992 1.030	10-g 0.450 0.467 0.458 0.442 0.456 0.465

*EGPRS output power is not higher than GPRS but are selected tested to verify the SAR value. (KDB 941225)

<u>Back surface</u> – Use Special Development Software to disable Proximity sensor – No power back-off.

With 10 mm separation distance from Back Surface of the EUT-to-user.

Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	woue	5101	CITINO.	(MHz)	(dBm)	1-g	10-g
			128	824.2	32.1		
850	GPRS	2	190	836.6	32.1	0.463	0.294
			251	848.8	32.2		
Band	Mode	Slot	Ch No	Freq.	Avg Pwr	SAR (mW/g)
Band	Mode	Slot	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band	Mode	Slot	Ch No. 512				<u> </u>
Band 1900	Mode GPRS	Slot 2		(MHz)	(dBm)		<u> </u>

Page 56 of 100

Primary Landscape (no power back-off)

Direct contact / 0 mm between EUT-to-Flat Phantoms (WWAN Antenna-to-user distance: <u>35.3</u> mm)

				Freq.	Avg Pwr	SAR (mW/g)
Band	Mode	Slot	Ch No.	(MHz)	(dBm)	1-g	10-g
850	GPRS	2	190	836.6	32.1	0.104	0.056
000	GENS	1	190	836.6	33.0	0.103	0.056
Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	Mode	3101	CITINO.	(MHz)	(dBm)	1-g	10-g
1900	GPRS	2	661	1880.0	28.5	0.060	0.029
1900	GENS	1	661	1880.0	30.6	0.058	0.028

Secondary Landscape (no power back-off)

Direct contact / 0 cm between EUT-to-Flat phantom (WWAN Antenna-to-User distance: 100 mm)

Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	Mode	500	CITNO.	(MHz)	(dBm)	1-g	10-g
850	GPRS	2	190	836.6	32.1	0.028	0.014
850	GFKS	1	190	836.6	33.0	0.027	0.014
Pand	Modo	Slot		Freq.	Avg Pwr	SAR (mW/g)
Band	Mode	Slot	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	<u>SAR (</u> 1-g	mW/g) 10-g
Band 1900	Mode GPRS	Slot 2	Ch No. 661				

Primary Portrait (No SAR)

With <u>227 mm separation distance from WWAN Main antenna-to-user</u>.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Page 57 of 100

<u>Secondary Portrait / Top Edge</u> - With Proximity sensor activated with power back-off Direct contact / 0 cm between FUT-to-Flat phantom (WWAN-To-user distance: 3 68 mm)

			o i lac priarita			stance: <u>3.68</u>	
Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Dana	Widde	0.01	On No.	(MHz)	(dBm)	1-g	10-g
			128	824.2	27.7	1.080	0.639
		2	190	836.6	27.8	1.130	0.651
	GPRS		251	848.8	27.7	1.180	0.674
	GENS		128	824.2	30.7	1.090	0.648
		1	190	836.6	30.7	1.150	0.660
850			251	848.8	30.7	1.180	0.674
850			128	824.2	27.5		
		2	190	836.6	27.6		
	*EGPRS		251	848.8	27.6	1.140	0.654
	EGEKS		128	824.2	27.5		
		1	190	836.6	27.5		
			251	848.8	27.6	0.578	0.332
Band	Mode	Slot	Ch No	Freq.	Avg Pwr	SAR (mW/g)
Band	Mode	Slot	Ch No.	Freq. (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band	Mode		Ch No. 512				
Band	Mode	Slot 2		(MHz)	(dBm)	1-g	10-g
Band			512	(MHz) 1850.2	(dBm) 22.5	<mark>1-g</mark> 1.190	10-g 0.592
Band	Mode		512 661	(MHz) 1850.2 1880.0	(dBm) 22.5 22.6	<mark>1-g</mark> 1.190 1.140	10-g 0.592 0.560
Band			512 661 512	(MHz) 1850.2 1880.0 1850.2	(dBm) 22.5 22.6 22.5	<mark>1-g</mark> 1.190 1.140 1.040	10-g 0.592 0.560 0.509
		2	512 661 512 512	(MHz) 1850.2 1880.0 1850.2 1850.2	(dBm) 22.5 22.6 22.5 25.5	1-g 1.190 1.140 1.040 1.180	10-g 0.592 0.560 0.509 0.584
Band 1900		2	512 661 512 512 661	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0	(dBm) 22.5 22.6 22.5 25.5 25.5	1-g 1.190 1.140 1.040 1.180 1.080	10-g 0.592 0.560 0.509 0.584 0.532
		2	512 661 512 512 661 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5	1-g 1.190 1.140 1.040 1.180 1.080 1.040	10-g 0.592 0.560 0.509 0.584 0.532 0.510
	GPRS	2	512 661 512 512 661 512 512 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 25.5	1-g 1.190 1.140 1.040 1.180 1.080 1.040	10-g 0.592 0.560 0.509 0.584 0.532 0.510
		2	512 661 512 512 661 512 512 512 661	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1850.2 1880.0	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 1.190 1.140 1.040 1.180 1.080 1.040	10-g 0.592 0.560 0.509 0.584 0.532 0.510
	GPRS	2	512 661 512 512 661 512 512 512 661 512	(MHz) 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2 1850.2 1880.0 1850.2	(dBm) 22.5 22.6 22.5 25.5 25.5 25.5 25.5 22.5 22	1-g 1.190 1.140 1.040 1.180 1.080 1.040 1.150	10-g 0.592 0.560 0.509 0.584 0.532 0.510 0.570

*EGPRS output power is not higher than GPRS but are selected tested to verify the SAR value. (KDB 941225)

<u>Secondary Portrait / Top Edge</u> - Use Special Development Software to disable Proximity sensor – No power back-off.

With <u>9.5 mm separation distance from Top Edge of the EUT-to-user.</u>

Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	Mode	500	CITNO.	(MHz)	(dBm)	1-g	10-g
			128	824.2	32.1		
850	GPRS	2	190	836.6	32.1	0.420	0.273
			251	848.8	32.2		
Band	Mode	Slot	Ch No.	Freq.	Avg Pwr	SAR (mW/g)
Danu	Mode	500	CITINO.	(MHz)	(dBm)	1-g	10-g
			512	1850.2	28.4	1.300	0.728
		2	661	1880.0	28.5	1.250	0.697
1900	GPRS		512	1850.2	28.6	1.190	0.658
1300	GI KS		512	1850.2	30.6	1.000	0.563
		1	661	1880.0	30.6	0.983	0.549
			512	1850.2	30.5	0.950	0.529

Page 58 of 100

WORST-CASE SAR TEST LPOTS FOR GPRS850

Date/Time: 1/23/2011 12:52:47 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_GSM835

DUT: Apple; Type: NA; Serial: NA

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.995 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

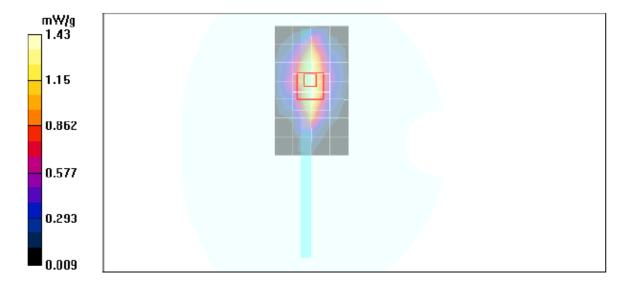
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS_2 slot_H ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.43 mW/g

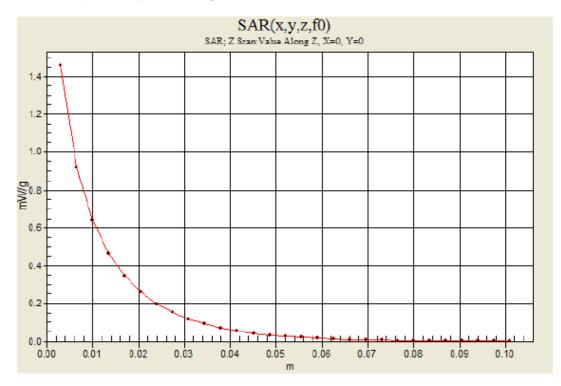
GPRS_2 slot_H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 38.3 V/m; Power Drift = -0.104 dB Peak SAR (extrapolated) = 2.35 W/kg SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.674 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.46 mW/g

Z-axis Plot

Date/Time: 1/23/2011 1:10:19 PM

Test Laboratory: Compliance Certification Services (UL CCS)


Secondary portrait_GSM835

DUT: Apple; Type: NA; Serial: NA

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

GPRS_2 slot_H ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.46 mW/g

Page 60 of 100

Date/Time: 1/21/2011 2:11:12 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_GSM1900

DUT: Apple; Type: NA; Serial: NA

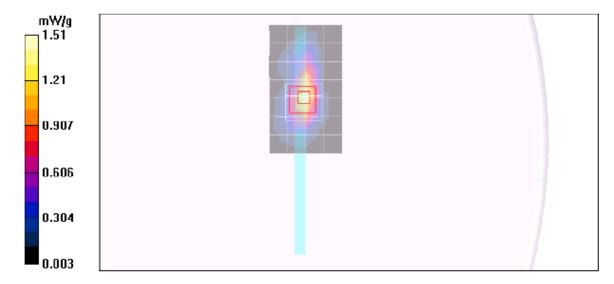
Communication System: PCS1900; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.46 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS_2 slot_L ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.51 mW/g

GPRS_2 slot_L ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

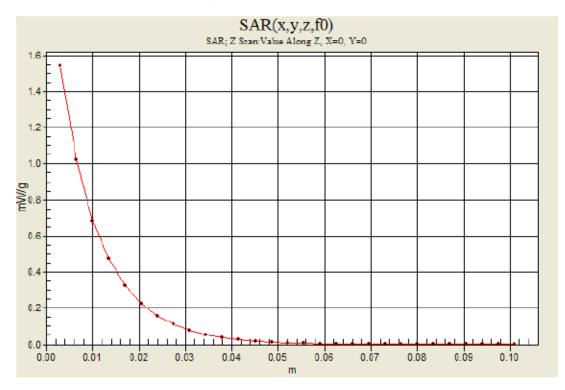
Reference Value = 32.2 V/m; Power Drift = 0.182 dB Peak SAR (extrapolated) = 2.25 W/kg SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.592 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.55 mW/g

Z-axis Plot

Date/Time: 1/21/2011 2:29:10 PM

Test Laboratory: Compliance Certification Services (UL CCS)


Secondary portrait_GSM1900

DUT: Apple; Type: NA; Serial: NA

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4

GPRS_2 slot_L ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.55 mW/g

Page 62 of 100

Date/Time: 2/26/2011 4:03:16 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_GSM1900

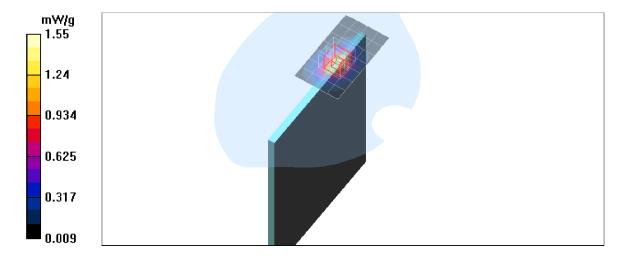
DUT: Apple; Type: NA; Serial: NA

Communication System: PCS1900; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.43 mho/m; ϵ_r = 53.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


GPRS_2 slot_L ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.55 mW/g

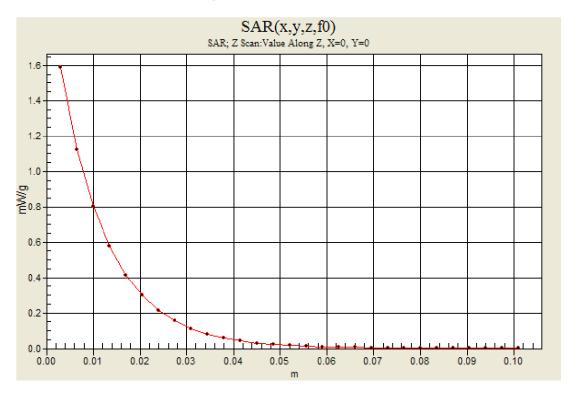
GPRS_2 slot_L ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 32.9 V/m; Power Drift = -0.146 dB Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.728 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Page 63 of 100

Date/Time: 2/26/2011 4:23:56 PM

Test Laboratory: Compliance Certification Services (UL CCS)


Secondary portrait_GSM1900

DUT: Apple; Type: NA; Serial: NA

Communication System: PCS1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4

GPRS_2 slot_L ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.59 mW/g

Page 64 of 100

13.2. UMTS (WCDMA)

Back Surface - With Proximity sensor activated with power back-off

Direct contact/0 mm between EUT-to-Flat Phantoms (8 mm distance from WWAN Main antenna-to-user)

Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)
Danu	NIDUE	OL CITNO.	DE CITINO.	1 (IVII 12)	(dBm)	1-g	10-g
	R99	4132	4357	826.4	21.6	0.759	0.409
Band V	12.2kbps RMC	4183	4408	836.6	21.5	0.902	0.486
		4233	4458	846.6	21.6	0.917	0.495
Pand	Modo			f (M/Ц→)	Avg Pwr	SAR (mW/g)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band		UL Ch No. 9262	DL Ch No. 9662	f (MHz) 1850.2			,
Band Band II	Mode R99 12.2kbps RMC			, , ,	(dBm)	1-g	10-g

<u>Back Surface</u> - Use Special Development Software to disable Proximity sensor – No power backoff.

With <u>10 mm separation distance from Back of the EUT-to-user.</u>

Pand	and Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
Danu					(dBm)	1-g	10-g
D00	4132	4357	826.4	24.1			
Band V	R99 12.2kbps RMC	4183	4408	836.6	24.1	0.410	0.261
		4233	4458	846.6	24.1		
	Mada						
Band	Mode			f (M4H7)	Avg Pwr	SAR (mW/g)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band		UL Ch No. 9262	DL Ch No. 9662	f (MHz) 1850.2			•
Band Band II	Mode R99 12.2kbps RMC			. ,	(dBm)		•

Primary Landscape (no power back-off)

Direct contact/0 mm between EUT-to-Flat Phantoms (35.3 mm distance from WWAN Main antenna-to-user.)

Pand	Band Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
Danu					(dBm)	1-g	10-g
	D00	4132	4357	826.4	24.1		
Band V	and V R99	4183	4408	836.6	24.1	0.177	0.097
	12.2kbps RMC	4233	4458	846.6	24.1		
Dand Mada			f (M/Ц→)				
Band	Mode			f (MHZ)	Avg Pwr	SAR (mW/g)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band		UL Ch No. 9262	DL Ch No. 9662	f (MHz) 1850.2			U ,
Band Band II	Mode R99 12.2kbps RMC				(dBm)		U ,

Secondary Landscape (no power back-off)

Direct contact/0 mm between EUT-to-Flat Phantoms (100 mm distance from WWAN Main antenna-to-user)

Band	Mode	UL Ch No. D	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
Danu			DE CITINO.		(dBm)	1-g	10-g
	ind V R99 12.2kbps RMC	4132	4357	826.4	24.1		
Band V		4183	4408	836.6	24.1	0.048	0.024
		4233	4458	846.6	24.1		
	Maria						
Band	Mode			f (MH7)	Avg Pwr	SAR (mW/g)
Band	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr (dBm)	SAR (1-g	mW/g) 10-g
Band		UL Ch No. 9262	DL Ch No. 9662	f (MHz) 1850.2			U /
Band Band II	Mode R99 12.2kbps RMC			. ,	(dBm)		U /

Primary Portrait (No SAR)

With <u>227 mm separation distance from WWAN Main antenna-to-user.</u>

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Page 66 of 100

Secondary Portrait / Top Edge - With Proximity sensor activated with power back-off

Direct contact/0 mm between EUT-to-Flat Phantoms (3.68 mm distance from WWAN Main antenna-to-user.)								
Band	Mode	UL Ch No.		f (MHz)	Avg Pwr	SAR (mW/g)	
Dallu	Mode	OL CHINO.	DE CITINO.		(dBm)	1-g	10-g	
	D 00	4132	4357	826.4	21.6	1.050	0.618	

	Band V	12.2kbps RMC	4183	4408	836.6	21.5	1.110	0.637
			4233	4458	846.6	21.6	1.120	0.639
	Band Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
					(dBm)	1-g	10-g	
		R99	9262	9662	1850.2	16.4	1.130	0.559
	Band II	12.2kbps RMC	9400	9800	1880.0	16.4	1.160	0.574
		12.2K0ps RIVIC	9538	9938	1907.6	16.3	1.090	0.534

Secondary Portrait / Top Edge - - Use Special Development Software to disable Proximity sensor – No power back-off.

With <u>9.5 mm</u> separation distance from Top Edge of the EUT-to-user.

	Band Mode	Mode	UL Ch No.	DL Ch No.	f (MHz)	Avg Pwr	SAR (mW/g)	
		OL CHINO.	DE CITINO.	1 (1VII 12)	(dBm)	1-g	10-g	
		R99	4132	4357	826.4	24.1		
	Band V	12.2kbps RMC	4183	4408	836.6	24.1	0.413	0.269
	12.2KDpS RIVIC	4233	4458	846.6	24.1			
1								m M/a
	Band Mode	UL Ch No. DL Ch N	DI Ch No	f (MHz)	Avg Pwr	SAR (mW/g)	
			DE OITINO.		(dBm)	1-a	10-a	

Band	wode	UL CH NO.	DE CH NO.	I (IVI⊟Z)	(dBm)	1-g	10-g
	D 00	9262	9662	1850.2	22.5	1.230	0.682
	R99 12.2kbps RMC	9400	9800	1880.0	22.4	1.440	0.798
Band II		9538	9938	1907.6	22.4	1.280	0.707
Danu II	Rel 6 HSDPA	9262	9662	1850.2	22.5	1.110	0.622
	Subtest 1	9400	9800	1880.0	22.4	1.340	0.749
	Sublest	9538	9938	1907.6	22.4	1.180	0.660

Page 67 of 100

WORST-CASE SAR TEST LPOTS FOR UMTS BAND V

Date/Time: 1/23/2011 4:22:22 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_UMTS Band V

DUT: Apple; Type: NA; Serial: NA

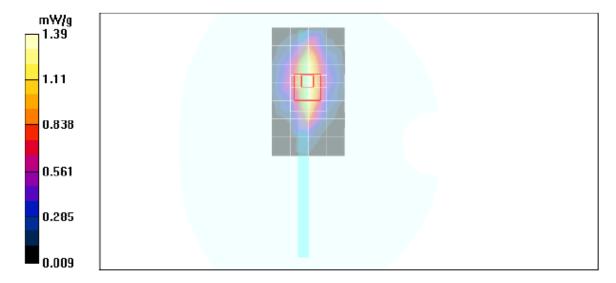
Communication System: UMTS Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.994 mho/m; ϵ_r = 54.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(8.79, 8.79, 8.79); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

UMTS Band V_H ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.39 mW/g

UMTS Band V_H ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

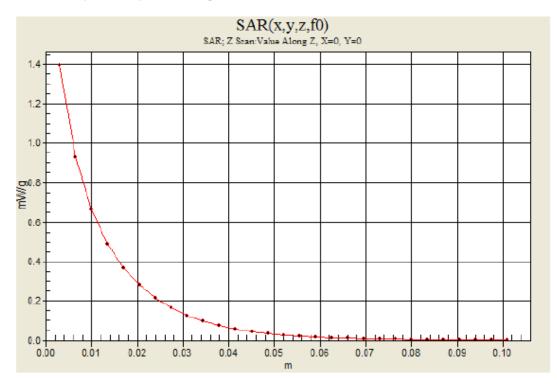
Reference Value = 37.4 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 2.26 W/kg SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.639 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Page 68 of 100

Z-axis Plot

Date/Time: 1/23/2011 4:39:57 PM

Test Laboratory: Compliance Certification Services (UL CCS)


Secondary portrait_UMTS Band V

DUT: Apple; Type: NA; Serial: NA

Communication System: UMTS Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

UMTS Band V_H ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.40 mW/g

Page 69 of 100

Date/Time: 1/21/2011 4:57:37 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_UMTS Band II

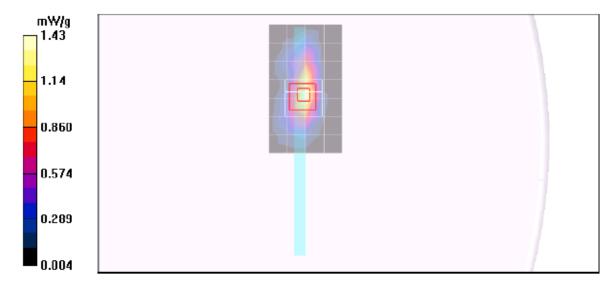
DUT: Apple; Type: NA; Serial: NA

Communication System: UMTS Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


UMTS Band II_M ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.43 mW/g

UMTS Band II_M ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 31.2 V/m; Power Drift = 0.168 dB

Peak SAR (extrapolated) = 2.24 W/kg

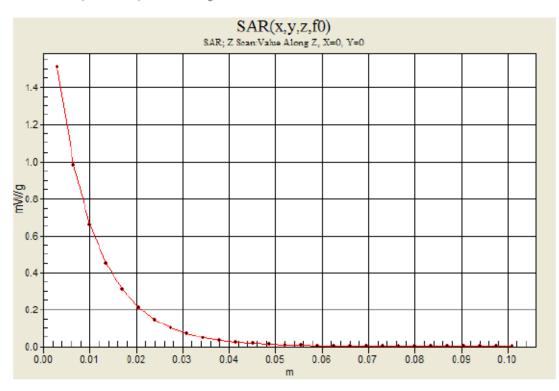
SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.574 mW/g

Maximum value of SAR (measured) = 1.51 mW/g

Page 70 of 100

Z-axis Plot

Date/Time: 1/21/2011 5:15:38 PM


Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_UMTS Band II

DUT: Apple; Type: NA; Serial: NA

Communication System: UMTS Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

UMTS Band II_M ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Maximum value of SAR (measured) = 1.51 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B-081047173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 71 of 100

Date/Time: 2/26/2011 12:43:21 PM

Test Laboratory: Compliance Certification Services (UL CCS)

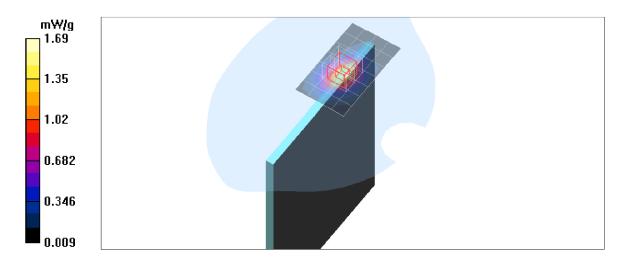
Secondary portrait_UMTS Band II

DUT: Apple; Type: NA; Serial: NA

Communication System: UMTS Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.46 mho/m; ϵ_r = 53; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(7.33, 7.33, 7.33); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

UMTS Band II_M ch/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

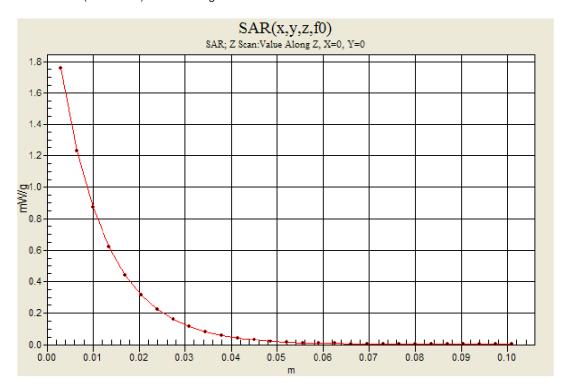
Maximum value of \overline{SAR} (measured) = 1.69 mW/g

UMTS Band II_M ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = $\overline{34.8}$ V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 2.42 W/kg **SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.798 mW/g** Maximum value of SAR (measured) = 1.75 mW/g

Page 72 of 100

Date/Time: 2/26/2011 1:01:16 PM


Test Laboratory: Compliance Certification Services (UL CCS)

Secondary portrait_UMTS Band II

DUT: Apple; Type: NA; Serial: NA

Communication System: UMTS Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

UMTS Band II_M ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Maximum value of SAR (measured) = 1.76 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 73 of 100

13.3. 2.4 GHZ BAND

Back Surface

Direct contact / 0 cm from device-to-flat phantom. (WiFi/BT antenna-to-user distance: 8 mm).

Mode	Channel f (MHz)		Avg Pwr	Results	(mW/g)
Mode	Channel	T (IVITIZ)	(dBm)	1g-SAR	10g-SAR
802.11b	6	2437	15.7	0.083	0.040

Primary Landscape

Direction contact / 0 cm from device-to-flat phantom (WiFi/BT antenna-to-user: 44.6 mm)

Mode	Channel	f (MHz)	Avg Pwr	Results	(mW/g)
Mode	Channel	T (IMF12)	(dBm)	1g-SAR	10g-SAR
802.11b	6	2437	15.7	0.042	0.020

Secondary Landscape (No SAR)

With <u>112 mm</u> separation distance from WiFi/BT antenna-to-user.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Primary Portrait

Direct contact / 0 cm from device-to-flat phantom (WiFi/BT antenna-to-user: 3.75 mm).

Mode	Channel	f (N/IЦ→)	Avg Pwr	Results (mW/g)	
Mode	ode Channel f (MHz)		(dBm)	1g-SAR	10g-SAR
	1	2412	15.7	1.070	0.361
802.11b	6	2437	15.7	0.922	0.310
	11	2462	15.5	0.893	0.303

Secondary Portrait (No SAR)

Separation distance: <u>227 mm</u> from WiFi/BT antenna-to-phantom

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

WORST-CASE SAR TEST LPOTS FOR 2.4 GHz

Date/Time: 1/17/2011 5:29:07 PM

Test Laboratory: Compliance Certification Services (UL CCS)

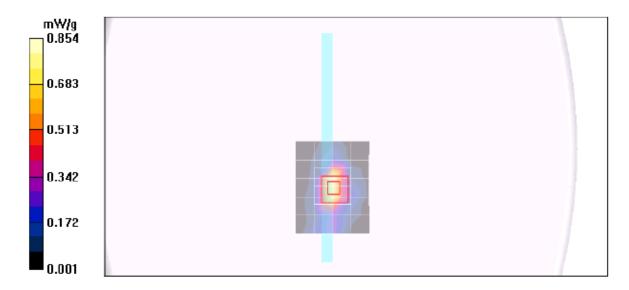
11b_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.94 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b L-ch/Area Scan (5x6x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.854 mW/g

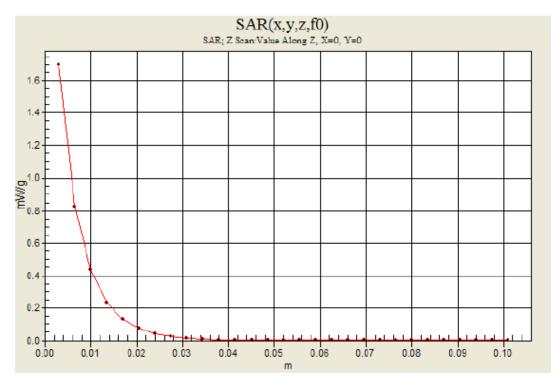
802.11b L-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 21.2 V/m; Power Drift = 0.054 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.361 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 mW/g

Z-axis Plot

Date/Time: 1/17/2011 5:46:29 PM

Test Laboratory: Compliance Certification Services (UL CCS)


11b_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2412 MHz; Duty Cycle: 1:1

802.11b L-ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.70 mW/g

FORM NO: CCSUP4031B-0810 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 76 of 100

13.4. 5 GHZ BANDS

Back Surface

Direct contact / 0 cm distance from device-to-flat phantom (WiFi/BT antenna-to-user: 8 mm).

Band Mode		Channel	f (MHz)	Avg Pwr	Results	(mW/g)
Danu	WOUE	Mode Channel f (MH		(dBm)	1g-SAR	10g-SAR
5.2 GHz	802.11a Legacy	40	5200	15.7	0.063	0.026
5.3 GHz	802.11a Legacy	60	5300	15.6	0.046	0.016
5.6 GHz	802.11a Legacy	120	5600	15.7	0.086	0.037
5.8 GHz	802.11a Legacy	157	5785	17.0	0.064	0.026

Primary Landscape

Direct contact / 0 cm distance from device-to-flat phantom (WiFi/BT antenna-to-user: 44.6 mm).

Band	Modo	Mode Channel		Avg Pwr	Results	(mW/g)
Danu	Mode Channel		f (MHz)	(dBm)	1g-SAR	10g-SAR
5.2 GHz	802.11a Legacy	40	5200	15.7	0.013	0.00461
5.3 GHz	802.11a Legacy	60	5300	15.6	0.019	0.0078
5.6 GHz	802.11a Legacy	120	5600	15.7	0.040	0.015
5.8 GHz	802.11a Legacy	157	5785	17.0	0.053	0.021

Secondary Landscape (No SAR)

With <u>112 mm</u> separation distance from WiFi/BT antenna-to-user.

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Primary Portrait

Direct contact/ 0 cm distance from device-to-flat phantom. (WiFi/BT antenna-to-user:3.75 mm).

Band	Mode	Mode Channel		Avg Pwr	Results	ults (mW/g)	
Danu	wode	Channer	f (MHz)	(dBm)	1g-SAR	10g-SAR	
5.2 GHz	802.11a Legacy	40	5200	15.7	0.788	0.246	
		52	5260	15.6	0.810	0.281	
5.3 GHz	802.11a Legacy	60	5300	15.6	0.822	0.292	
		64	5320	15.5	0.758	0.266	
5.6 GHz	802.11a Legacy	120	5600	15.7	0.679	0.231	
5.8 GHz	802.11a Legacy	157	5785	17.0	0.621	0.198	

Secondary Portrait /Top Edge (No SAR)

Separation distance: <u>227 mm</u> from WiFi/BT antenna-to-phantom

Note: This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

WORST-CASE SAR PLOTS FOR 5 GHz BANDS

5.2 GHz Band

Date/Time: 1/11/2011 12:18:24 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.2GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

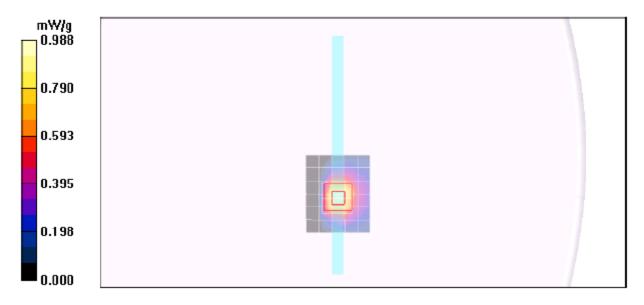
Communication System: 802.11abgn; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.29 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


802.11a_ch 40/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.988 mW/g

802.11a_ch 40/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 14.8 V/m; Power Drift = 0.131 dB

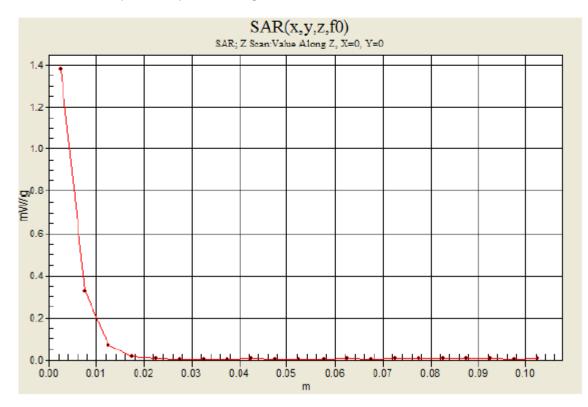
Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 0.788 mW/g; SAR(10 g) = 0.246 mW/g

Maximum value of SAR (measured) = 1.38 mW/g

5.2 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 12:36:30 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.2GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1

802.11a ch 40/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.38 mW/g

Page 79 of 100

5.3 GHz Band

Date/Time: 1/11/2011 1:29:35 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.3GHz_Primary portrait

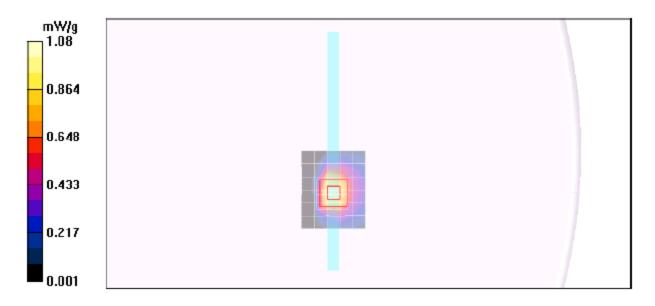
DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.36 mho/m; ϵ_r = 47.3; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg


- Probe: EX3DV4 SN3749; ConvF(3.88, 3.88, 3.88); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 60/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm

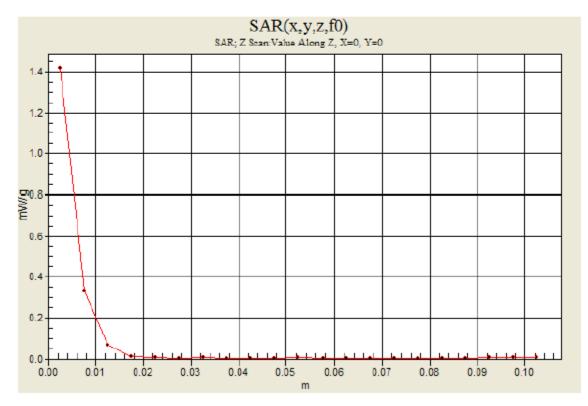
Maximum value of SAR (measured) = 1.08 mW/g

802.11a_ch 60/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 15.5 V/m; Power Drift = -0.139 dB

Peak SAR (extrapolated) = 2.61 W/kg SAR(1 g) = 0.822 mW/g; SAR(10 g) = 0.292 mW/g Maximum value of SAR (measured) = 1.41 mW/g

5.3 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 1:47:33 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.3GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5300 MHz; Duty Cycle: 1:1

802.11a_ch 60/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.42 mW/g

Page 81 of 100

5.6 GHz Band

Date/Time: 1/11/2011 3:56:01 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.6GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.61 mho/m; ϵ_r = 47.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

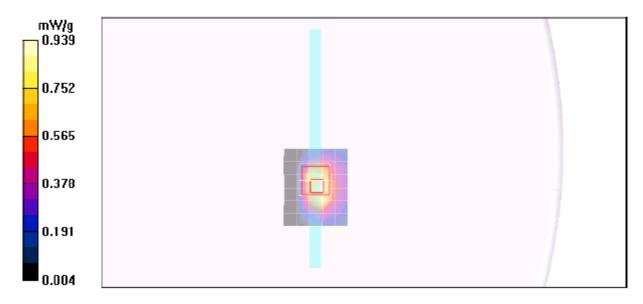
Probe: EX3DV4 - SN3749; ConvF(3.36, 3.36, 3.36); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


802.11a_ch 120/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.939 mW/g

802.11a_ch 120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 14.6 V/m; Power Drift = 0.051 dB

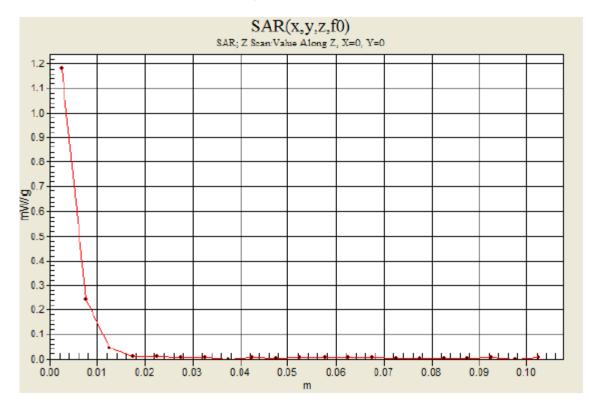
Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 0.679 mW/g; SAR(10 g) = 0.231 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

5.6 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 4:14:07 PM


Test Laboratory: Compliance Certification Services (UL CCS)

5.6GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5600 MHz; Duty Cycle: 1:1

802.11a_ch 120/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.18 mW/g

Page 83 of 100

5.8 GHz Band

Date/Time: 1/11/2011 4:47:36 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.8GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz; σ = 6.06 mho/m; ϵ_r = 46.5; ρ = 1000 kg/m³ Phantom section: Flat Section

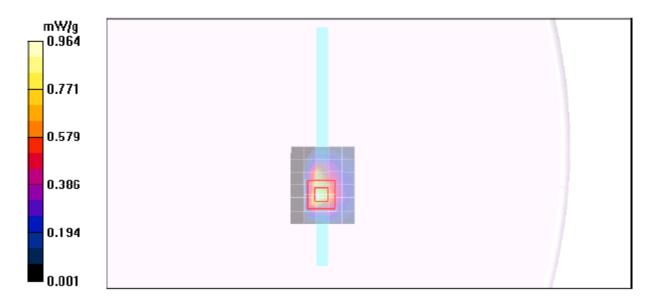
Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

 Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

Probe: EX3DV4 - SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 157/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.964 mW/g

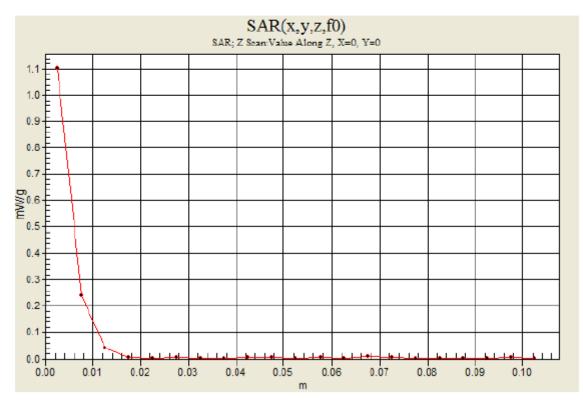
802.11a_ch 157/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 14.3 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 2.10 W/kg SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.198 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.12 mW/g

5.8 GHz Band - Z-axis Plot

Date/Time: 1/11/2011 5:05:47 PM

Test Laboratory: Compliance Certification Services (UL CCS)


5.8GHz_Primary portrait

DUT: Apple; Type: NA; Serial: NA

Communication System: 802.11abgn; Frequency: 5785 MHz; Duty Cycle: 1:1

802.11a_ch 157/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.10 mW/g

Page 85 of 100

14. KDB 447498 SIMULTANEOUS TRANSMISSION SAR EVAULATIONS

Acc. to KDB 447498 3) b) ii)

(1) for the antennas that are located < 5 cm from the persons

Finding: When the EUT is positioned at the bottom face configuration, WWAN and WiFi antennas are located < 5 cm from persons.

The sum of the stand-a	lone SAR and the SAR to	peak location se	paration ratios

WWAN (GSM/UMTS) and WiFi (2.4 & 5 GHz bands)						
Test position	Highe	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location
Test position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio
	GPRS850	1.180	n/a*	1.180	n/a	n/a
Secondary	GPRS1900	1.190	11/a	1.190	n/a	n/a
portrait / top	Highe	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location
Edge with	WW	AN	WiFi 5G	(W/kg)	Separation (cm)	Ratio
Power back-off	GPRS850	1.180	~/~*	1.180	n/a	n/a
	GPRS1900	1.190	n/a*	1.190	n/a	n/a
Test position	Highe	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location
Test position	ŴŴ	AN	WiFi 2.4G	(Ŵ/kg)	Separation (cm)	Ratio
	GPRS850	1.010	0.083	1.093	n/a	n/a
Back Surface /	UMTS 1900	1.090		1.173	n/a	n/a
With Power	Highest 1-g SAR (W/k		V/kg)	Σ 1g SAR	SAR to peak location	
Back-off	WWAN		WiFi 5G	(W/kg)	Separation (cm)	Ratio
Dack-OII	GPRS850	1.010	0.086	1.096	n/a	n/a
	UMTS 1900	1.090	0.000	1.176	n/a	n/a
Test position	Highe	st 1-g SAR (V	V/kg)	Σ 1g SAR SAR to peak		location
rest position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio
Secondary	GPRS850	0.420	n/a*	0.420	n/a	n/a
portrait / Top	UMTS 1900	1.440	11/a	1.440	n/a	n/a
Edge with	Highe	st 1-g SAR (V	V/kg)	Σ 1g SAR	SAR to peak	location
special	WW		WiFi 5G	(W/kg)	Separation (cm)	Ratio
development	GPRS850	0.420	n/a*	0.420	n/a	n/a
software to	UMTS 1900	1.440	11/a	1.440	n/a	n/a
Test position	Highe	st 1-g SAR (V	Ŵ/kg)	Σ 1g SAR	SAR to peak	location
rest position	WW	AN	WiFi 2.4G	(W/kg)	Separation (cm)	Ratio
Back Surface	GPRS850	0.463	0.083	0.546	n/a	n/a
with special	UMTS 1900	0.762	0.005	0.845	n/a	n/a
development		st 1-g SAR (V		Σ 1g SAR	SAR to peak	location
software to	WW	AN	WiFi 5G	(W/kg)	Separation (cm)	Ratio
disable the	GPRS850	0.463	0.086	0.549	n/a	n/a
sensor- no	UMTS 1900	0.762	0.000	0.848	n/a	n/a

WIFI (2.4 & 5 GHZ bands) and WWAN (GSM/OWITS)								
Test position	Highest 1-g SAR (W/kg)			Σ 1g SAR	SAR to peak	location		
rest position	WW	AN	N WiFi 2.4G		Separation (cm)	Ratio		
	UMTS Cell	n/a**	1.07	1.07	n/a	n/a		
	UMTS PCS	n/a**		1.07	n/a	n/a		
Primary	Highest 1-g SAR (W/kg)			Σ 1g SAR	SAR to peak	location		
portrait	WW	AN	WiFi 5G	(W/kg)	Separation (cm)	Ratio		
	UMTS Cell	n/a**	0.822	0.822	n/a	n/a		
	UMTS PCS	n/a**	0.022	0.822	n/a	n/a		

WiFi (2.4 & 5 GHz bands) and WWAN (GSM/UMTS)

Notes:

- *: WiFi antenna is located at Bottom edge (Primary portrait); antenna-to-top edge distance is more than 20 cm. Therefore secondary portrait is excluded from SAR evaluation for WiFi.
- **: WWAN (GSM/UMTS) antenna is located at Top edge (Secondary portrait); antenna-to-bottom edge distance is more than 20 cm. Therefore primary portrait is excluded from SAR evaluation for WWAN (GSM/UMTS).

CONCLUSIONS:

WWAN (GSM/UMTS) and WiFi (2.4 GHz & 5 GHz bands):

Simultaneous transmission is SAR not required for WWAN & WiFi because the sum of the 1-g SAR is < 1.6 W/kg.

WWAN (GSM/UMTS) and Bluetooth:

Simultaneous transmission is SAR not required for WWAN & Bluetooth because stand alone SAR is not required for Bluetooth (output power is $\leq 60/f(GHz)$ mW).

WiFi 5GHz bands and Bluetooth:

Simultaneous transmission is SAR not required for WiFi 5GHz bands & Bluetooth because stand alone SAR is not required for Bluetooth (output power is $\leq 60/f(GHz)$ mW).

Page 87 of 100

15. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1-1	SAR Test Plots for GSM850	21
1-2	SAR Test Plots for GSM1900	21
1-3	SAR Test Plots for UMTS BAND V	9
1-4	SAR Test Plots for UMTS BAND II	9
1-5	SAR Test Plots for 2.4 GHz	6
1-6	SAR Test Plots for 5 GHz	18
1-7	SAR Test Plots for Cell band Without Proximity sensor	8
1-8	SAR Test Plots for PCS band Without Proximity sensor	16
2-1	Certificate of E-Field Probe - EX3DV4 SN 3749	11
2-2	Certificate of E-Field Probe - EX3DV4 SN 3686	11
3	Certificate of System Validation Dipole D835V2 SN:4d002 (with extended calibration verification data)	11
4	Certificate of System Validation Dipole D1900V2 SN:5d043 (with extended calibration verification data)	11
5	Certificate of System Validation Dipole D2450 SN:706	9
6	Certificate of System Validation Dipole - D5GHzV2 SN:1075 (with extended calibration verification data)	11

Page 88 of 100