

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11 a/b/g/n + BT2.1

MODEL NUMBER: A1395

FCC ID: BCGA1395 IC: 579C-A1395

REPORT NUMBER: 10U13548-19, Revision A

ISSUE DATE: FEBRUARY 24, 2011

Prepared for APPLE, INC.
1 INFINITE LOOP
CUPERTINO, CA 95014, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	02/15/11	Initial Issue	F. Ibrahim
Α	02/24/11	Revised description of EUT setup section, removed MPE section, removed AV power sections, and added co-location info in section 5.5.	F. Ibrahim

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
4	4.1.	MEASURING INSTRUMENT CALIBRATION	6
4	4.2 .	SAMPLE CALCULATION	6
4	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQU	JIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
į	5. <i>4</i> .	SOFTWARE AND FIRMWARE	8
	5.5.	WORST-CASE CONFIGURATION AND MODE	8
	5.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	T AND MEASUREMENT EQUIPMENT	11
7.	ANT	ENNA PORT TEST RESULTS	12
;	7.1.	BASIC DATA RATE GFSK MODULATION	12
	7.1.1		
	7.1.2 7.1.3		
	7.1.4		
	7.1.5	5. OUTPUT POWER	33
	7.1.6	6. CONDUCTED SPURIOUS EMISSIONS	37
7		ENHANCED DATA RATE 8PSK MODULATION	
	7.2.1		
	7.2.2 7.2.3		
	7.2.4		
	7.2.5	5. OUTPUT POWER	67
	7.2.6	6. CONDUCTED SPURIOUS EMISSIONS	71
8.	RAD	DIATED TEST RESULTS	
8	3.1.	LIMITS AND PROCEDURE	80
8	3.2.	TRANSMITTER ABOVE 1 GHz	
	8.2.1		
	8.2.2		
8	3.3.	RECEIVER ABOVE 1 GHz	99

REPORT NO: 10U13548-19A	DATE: FEBRUARY 24, 2011
FCC ID: BCGA1395	IC: 579C-A1395

100	8.4. WORST-CASE BELOW 1 GHz	8
103	AC POWER LINE CONDUCTED EMISSIONS	9.
107	SETUP PHOTOS	10.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 INFINITE LOOP

CUPERTINO, CA, 95014, U.S.A.

EUT DESCRIPTION: 802.11a/b/g/n + BT 2.1

MODEL: A1395

SERIAL NUMBER: PT523312

DATE TESTED: FEBRUARY 5-12, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM

EMC SUPERVISOR

UL CCS

TOM CHEN EMC ENGINEER

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

DESCRIPTION OF EUT 5.1.

802.11 a/b/g/n + BT2.1

The radio module is manufactured by Apple, Inc.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	13.94	24.77
2402 - 2480	Enhanced 8PSK	13.80	23.99

DESCRIPTION OF AVAILABLE ANTENNAS 5.3.

The radio utilizes the following antenna:

Antenna Name	Description	Manufacturer	Cable Length
631-1482 WiFi / Bluetooth	PIFA	Amphenol / Tyco	81.6 mm

	631-1482 WiFi / Bluetooth
	Peak Gain (includes Cable)
Freq [GHz]	dBi
2.4-2.484	0.59
5,15 - 5,25	4.07
5,25 - 5,35	4.2
5.47-5.725	4.21
5.725-5.85	3,57

5.4. SOFTWARE AND FIRMWARE

The firmware installed on the EUT was version 4.221.50.2 (BCM MFGTEST)

The EUT driver rev: 0x4dd3202

The test utility software: wl.exe version: 4.218 RC175.1

The test utility software used during testing was Bluetooth Test Mode with CBT.

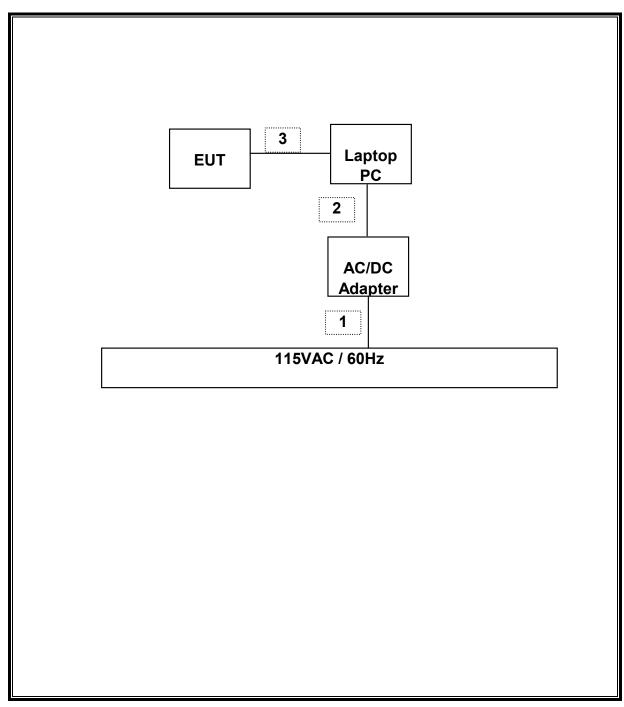
5.5. WORST-CASE CONFIGURATION AND MODE

For radiated emissions below 1 GHz and Power Line Conducted Emissions, the worst-case configuration is determined to be the mode and channel with the highest output power

To determine the worst-position of highest emissions, the EUT's antenna was investigated for X, Y, Z positions, and the worst position was turned out to be a Y-position.

Radiated Co-located BE and Harmonics was performed for worst-case mode which was 11a in the 5.3 GHz band and it was found that the results of the co-located are not worse than the non-co-located testing, therefore, co-located for DTS band is not necessary.

5.6. DESCRIPTION OF TEST SETUP


SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Apple	A1286	W8917005998	DoC		
Laptop AC Adapter	Apple	A1290	N/A	DoC		

I/O CABLES

	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	Un-shielded	2m	N/A		
2	DC	1	DC	Un-shielded	2m	N/A		
3	USB	1	USB	Un-shielded	1m	Connect to Laptop		

SETUP DIAGRAM FOR TESTS

Note: laptop PC was used to control the operation of the EUT.

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/11		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/11		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/12/11		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/11		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11		
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR		
High Pass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/30/11		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	05/08/11		
Peak Power Meter	Boonton	4541	C01186	03/01/11		
Peak Power Sensor	Boonton	57318	C01202	02/23/11		

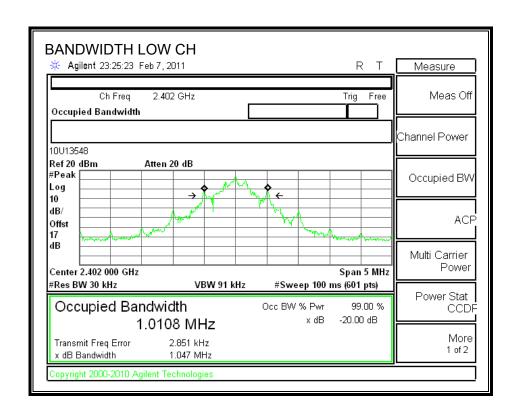
7. ANTENNA PORT TEST RESULTS

7.1. BASIC DATA RATE GFSK MODULATION

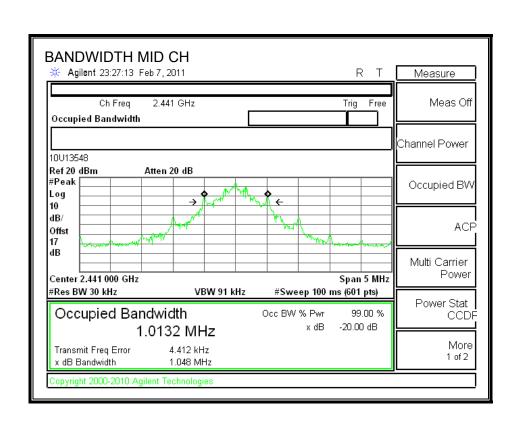
7.1.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

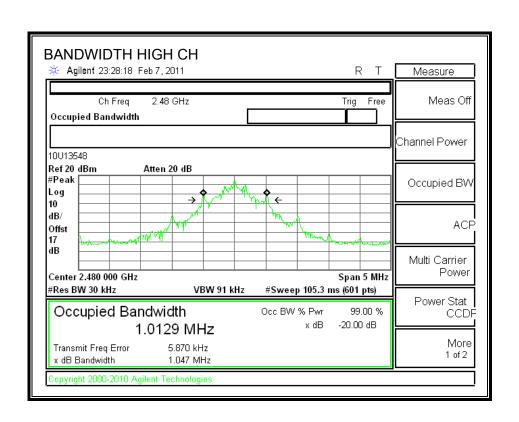

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.


RESULTS

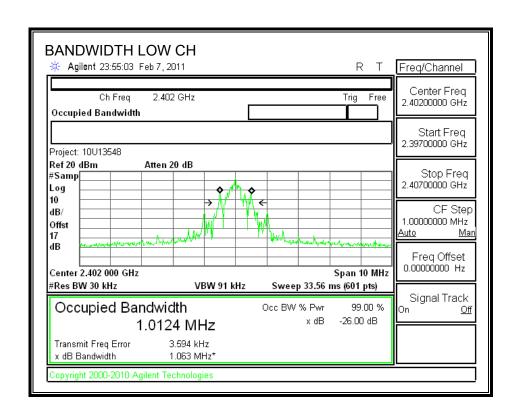
Channel	el Frequency 20 dB Bandwidth		99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1047.0	1012.4
Middle	2441	1048.0	1018.4
High	2480	1047.0	1019.2

20 dB BANDWIDTH


REPORT NO: 10U13548-19A FCC ID: BCGA1395

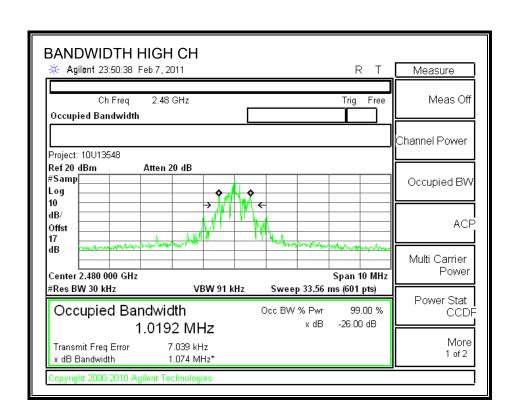
DATE: FEBRUARY 24, 2011

IC: 579C-A1395


REPORT NO: 10U13548-19A FCC ID: BCGA1395

DATE: FEBRUARY 24, 2011

IC: 579C-A1395


99% BANDWIDTH

REPORT NO: 10U13548-19A FCC ID: BCGA1395 DATE: FEBRUARY 24, 2011

IC: 579C-A1395

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395

IC: 579C-A1395

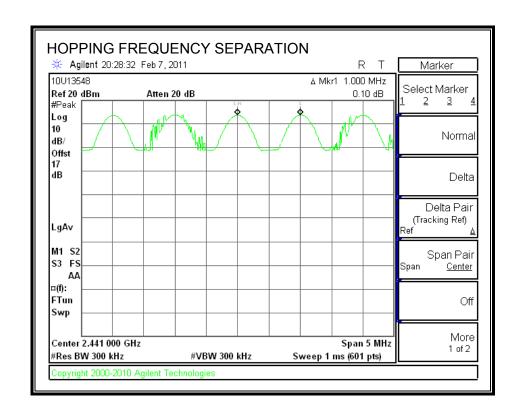
7.1.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

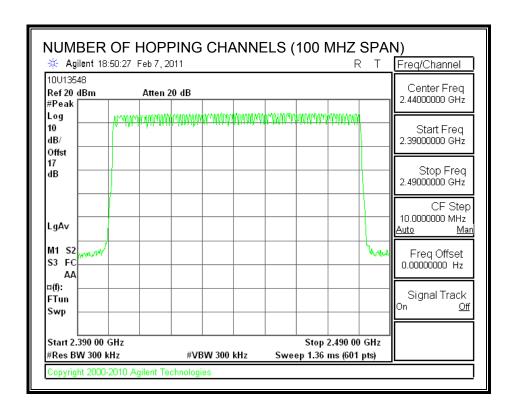
7.1.3. NUMBER OF HOPPING CHANNELS

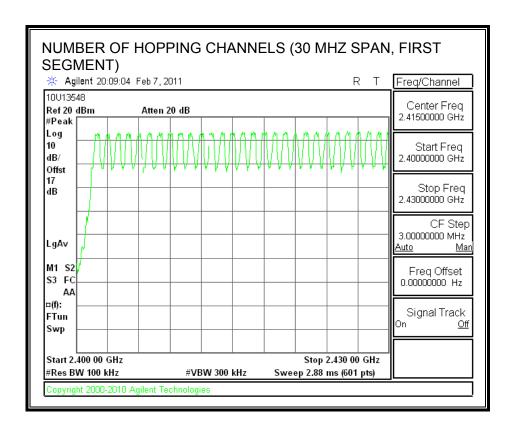
LIMIT

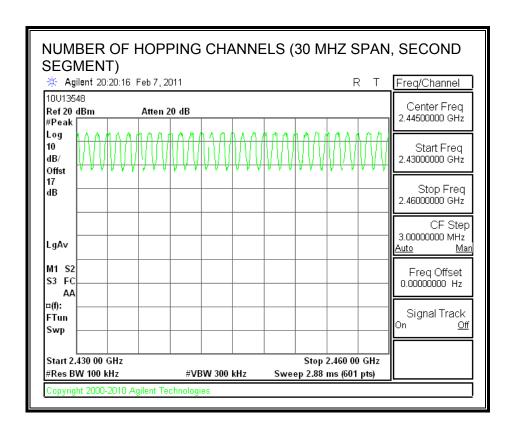
FCC §15.247 (a) (1) (iii)

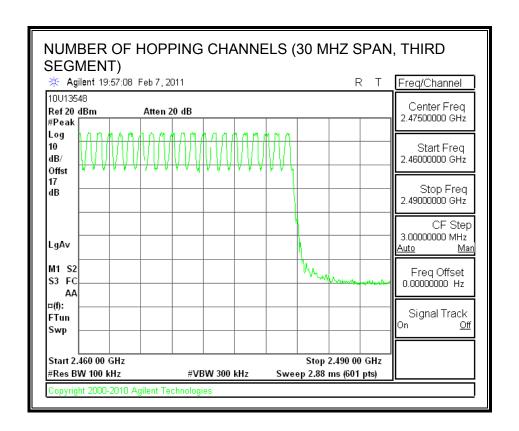
IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS


79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.1.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

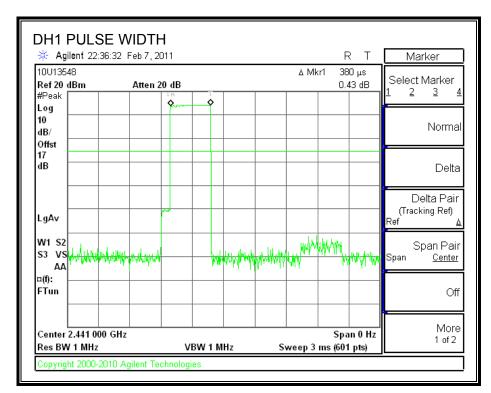
IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

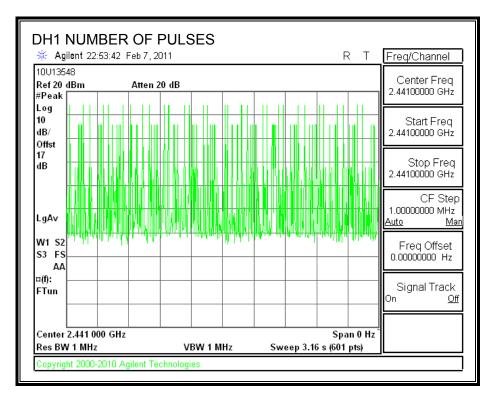
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

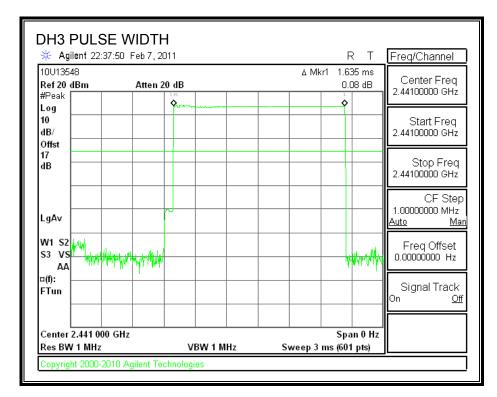
The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

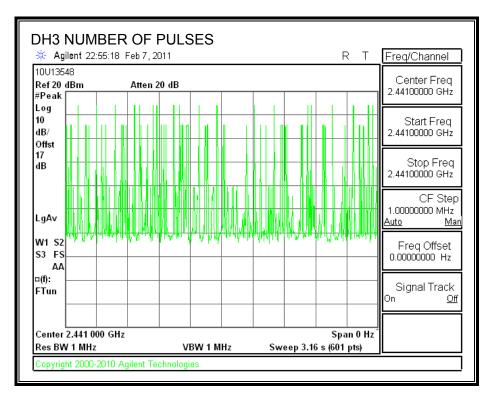

RESULTS

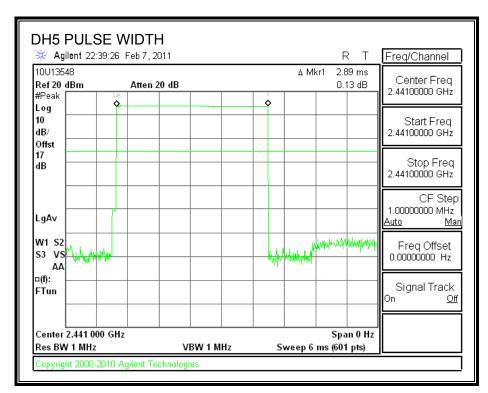
Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

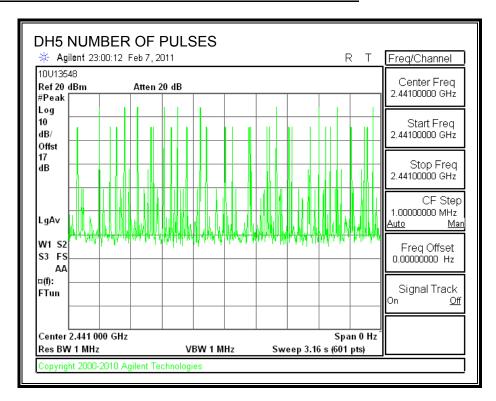

GFSK Mode

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of (sec)	Limit (sec)	Margin (sec)
DH1	0.38	31	0.118	0.4	0.282
DH3	1.635	19	0.311	0.4	0.089
DH5	2.89	10	0.289	0.4	0.111


PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

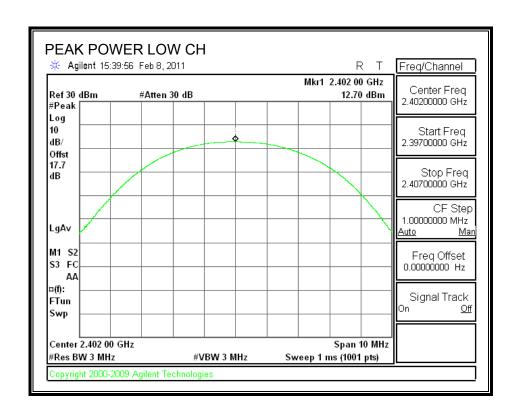
7.1.5. OUTPUT POWER

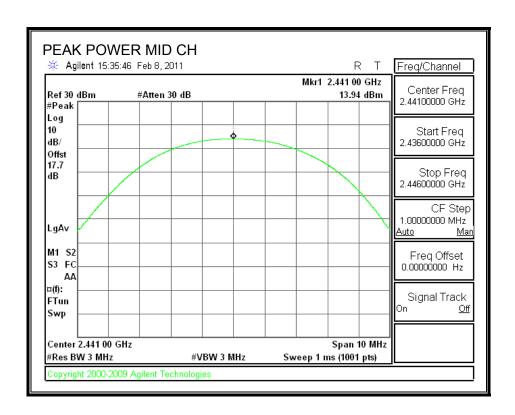
LIMIT

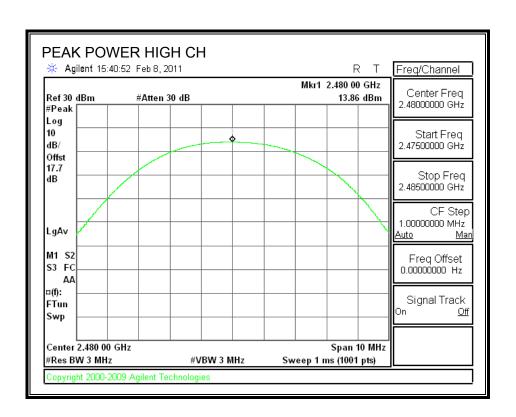
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.70	30	-17.30
Middle	2441	13.94	30	-16.06
High	2480	13.86	30	-16.14

OUTPUT POWER

7.1.6. CONDUCTED SPURIOUS EMISSIONS

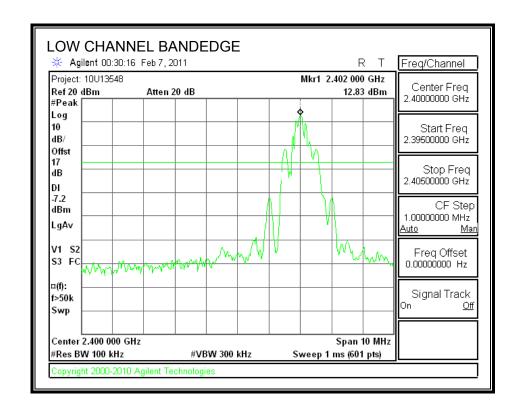
LIMITS

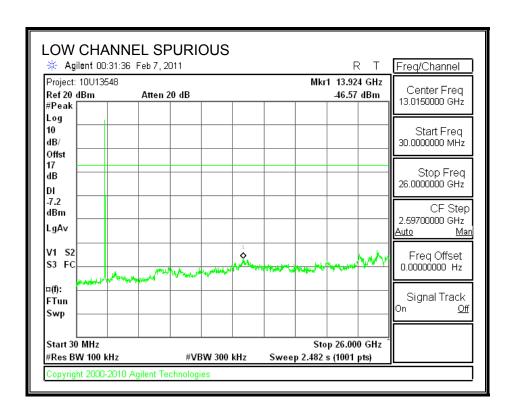
FCC §15.247 (d)

IC RSS-210 A8.5

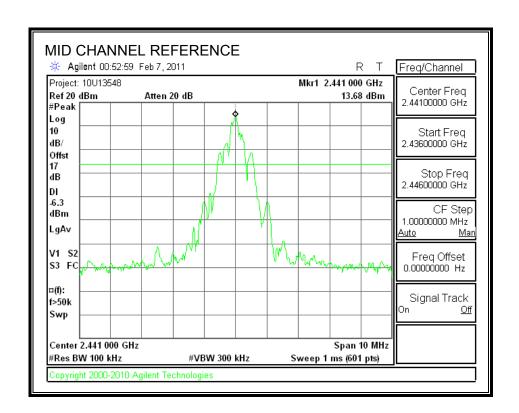
Limit = -20 dBc

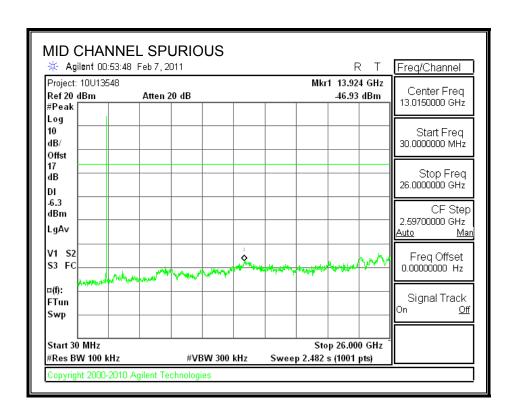
TEST PROCEDURE

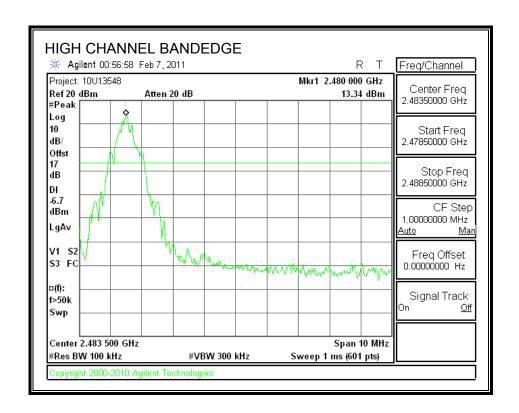

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

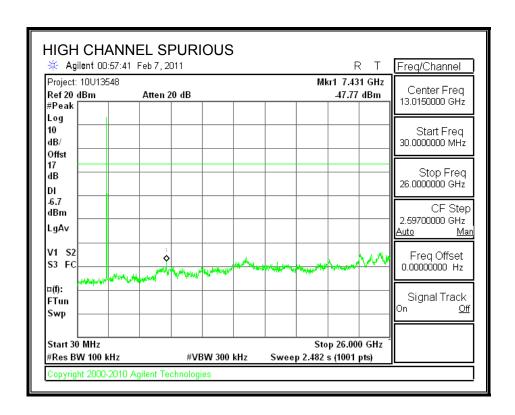

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

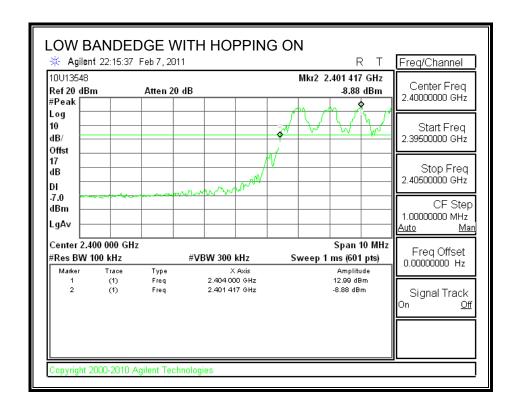
The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.


RESULTS

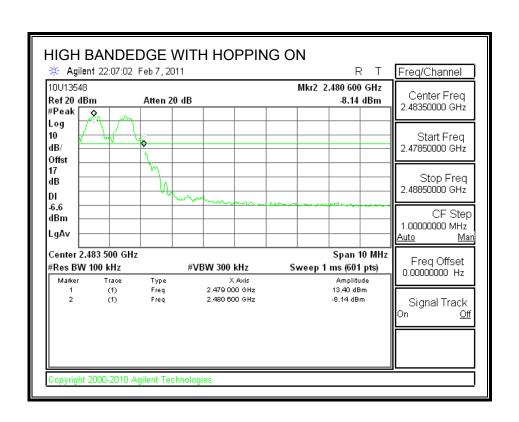

SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL



SPURIOUS EMISSIONS, HIGH CHANNEL



SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395

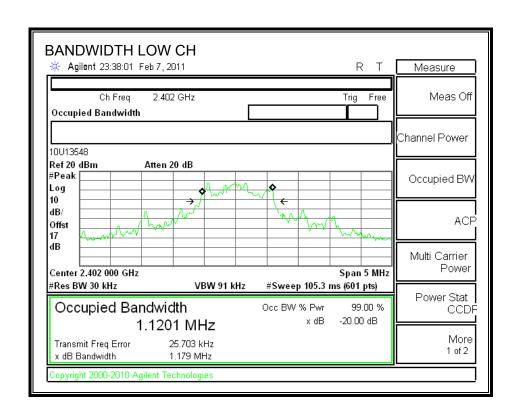
IC: 579C-A1395

7.2. ENHANCED DATA RATE 8PSK MODULATION

7.2.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

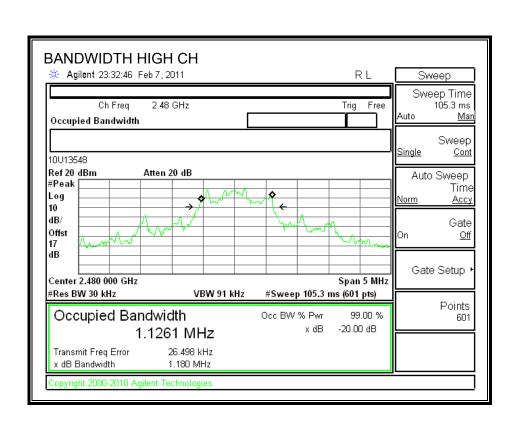

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth	
	(MHz)	(kHz)	(kHz)	
Low	2402	1179	1077.3	
Middle	2441	1184	1100.9	
High	2480	1180	1108.3	

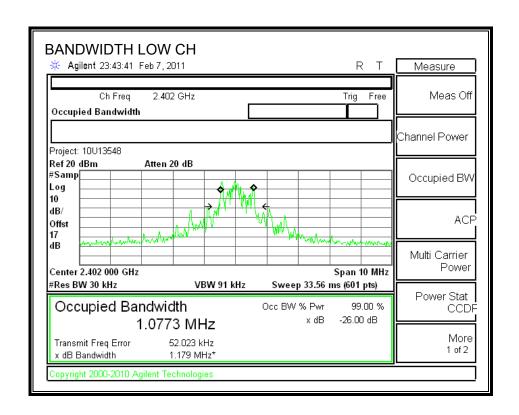
20 dB BANDWIDTH


REPORT NO: 10U13548-19A FCC ID: BCGA1395

BANDWIDTH MID CH Agilent 23:34:54 Feb 7, 2011 R Т Measure Ch Freq 2.441 GHz Trig Free Meas Off Occupied Bandwidth Channel Power 10U13548 Ref 20 dBm Atten 20 dB #Peak Occupied BW Log 10 dB/ ACP Offst 17 dΒ Multi Carrier Power Center 2.441 000 GHz Span 5 MHz #Res BW 30 kHz VBW 91 kHz #Sweep 105.3 ms (601 pts) Power Stat Occupied Bandwidth Occ BW % Pwr 99.00 % CCDF -20.00 dB x dB 1.1227 MHz More Transmit Freq Error 26.689 kHz 1 of 2 x dB Bandwidth 1.184 MHz opyright 2000-2010 Agilent Technologies

DATE: FEBRUARY 24, 2011

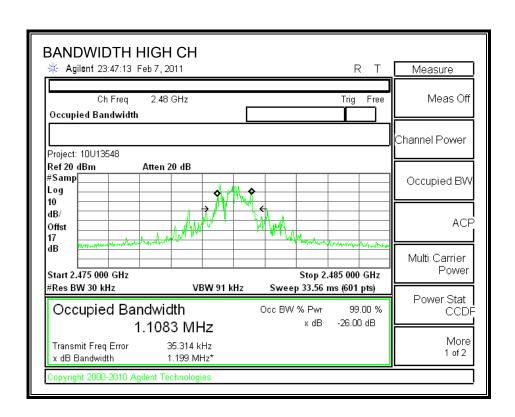
IC: 579C-A1395


REPORT NO: 10U13548-19A FCC ID: BCGA1395

DATE: FEBRUARY 24, 2011

IC: 579C-A1395

99% BANDWIDTH



REPORT NO: 10U13548-19A FCC ID: BCGA1395 DATE: FEBRUARY 24, 2011

IC: 579C-A1395

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395

IC: 579C-A1395

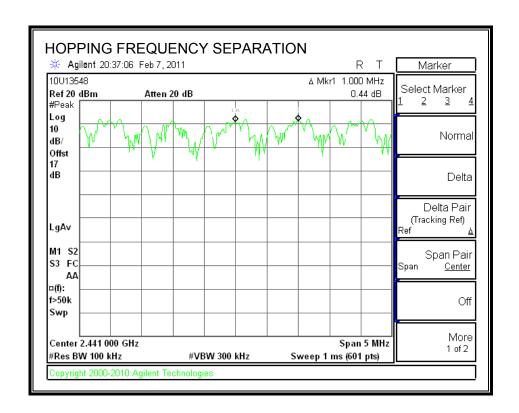
7.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

HOPPING FREQUENCY SEPARATION

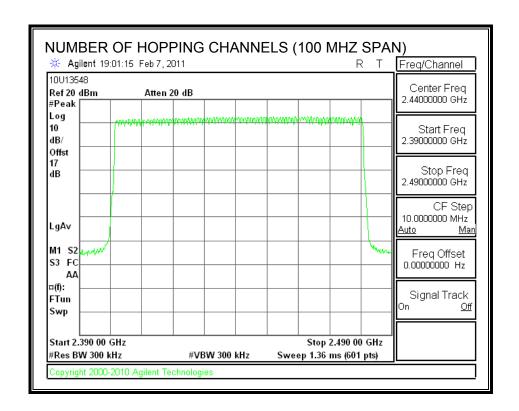
7.2.3. NUMBER OF HOPPING CHANNELS

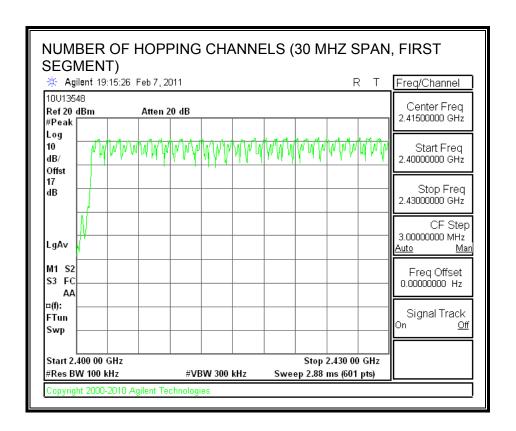
LIMIT

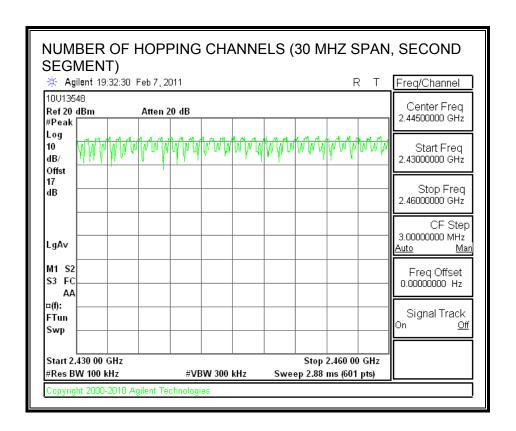
FCC §15.247 (a) (1) (iii)

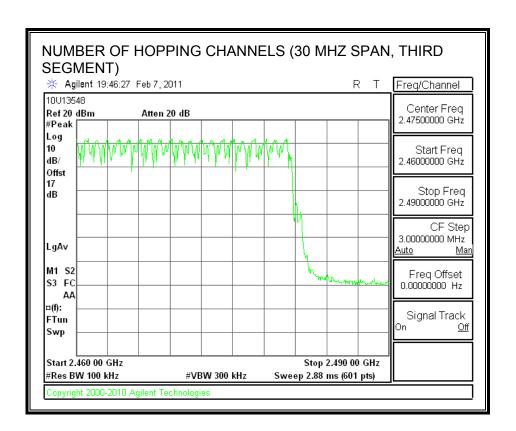
IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.


RESULTS


79 Channels observed.

NUMBER OF HOPPING CHANNELS

7.2.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

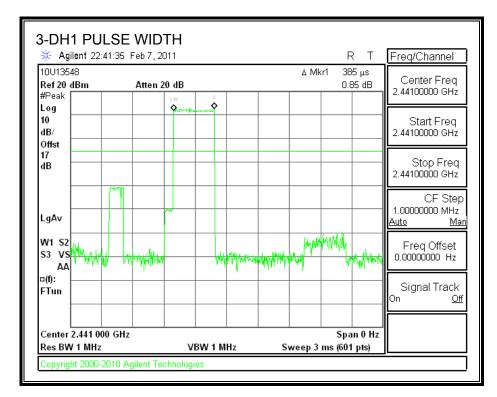
IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

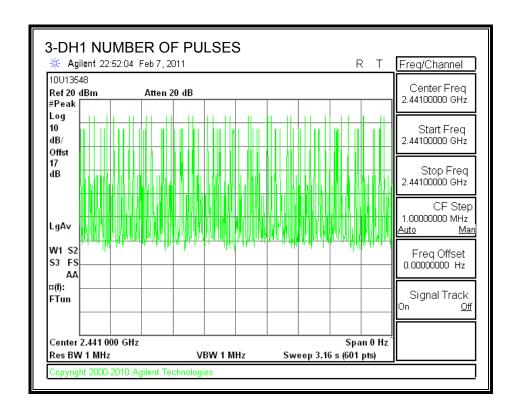
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

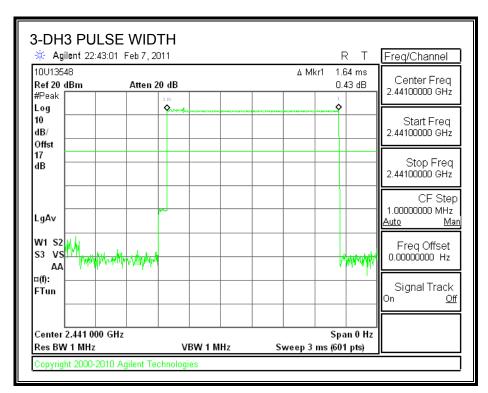
The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

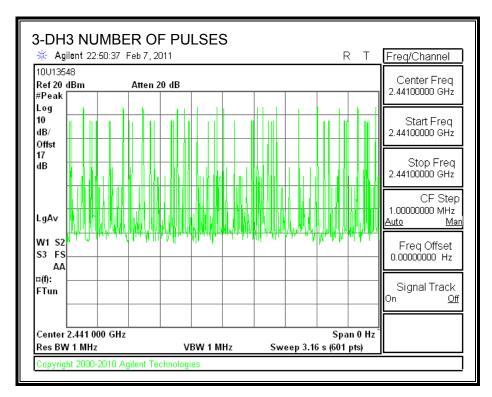

RESULTS

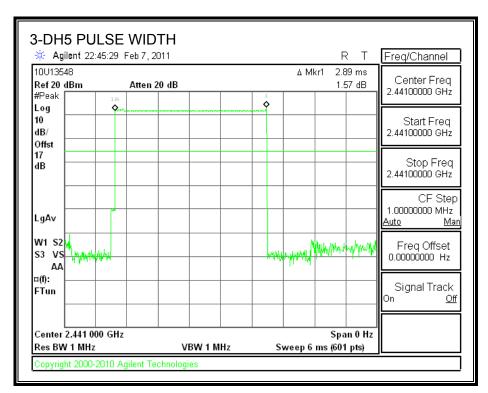
Time Of Occupancy = 10 * xx pulses * yy msec = zz msec

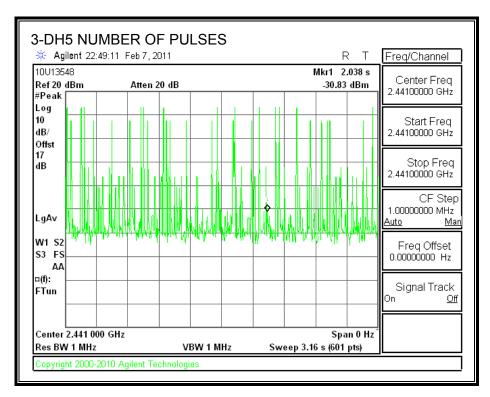

8PSK Mode

DH Packet	Pulse Width	Number of Pulses in 3.16 seconds	Average Time of Occupancy	Limit	Margin
	(msec)		(sec)	(sec)	(sec)
3DH1	0.385	31	0.119	0.4	-0.281
3DH3	1.64	16	0.262	0.4	-0.138
3DH5	2.89	13	0.376	0.4	-0.024


PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD


PULSE WIDTH


NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

PULSE WIDTH

NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

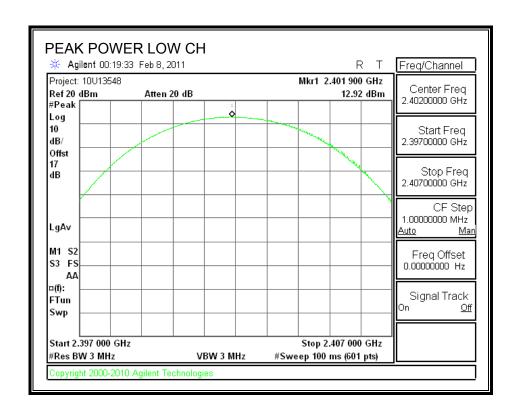
7.2.5. OUTPUT POWER

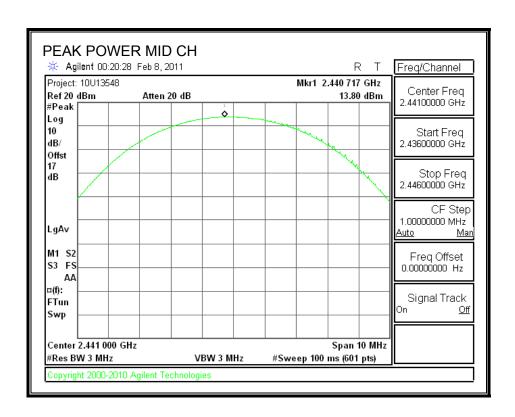
LIMIT

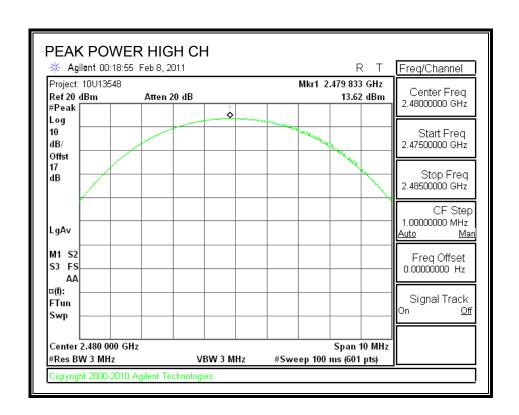
§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.


RESULTS

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	12.92	30	-17.08
Middle	2441	13.80	30	-16.20
High	2480	13.62	30	-16.38

OUTPUT POWER

7.2.6. CONDUCTED SPURIOUS EMISSIONS

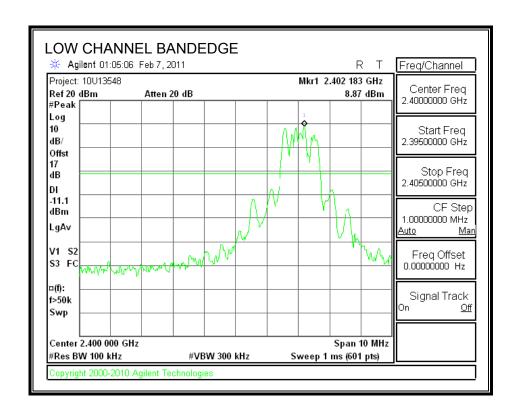
LIMITS

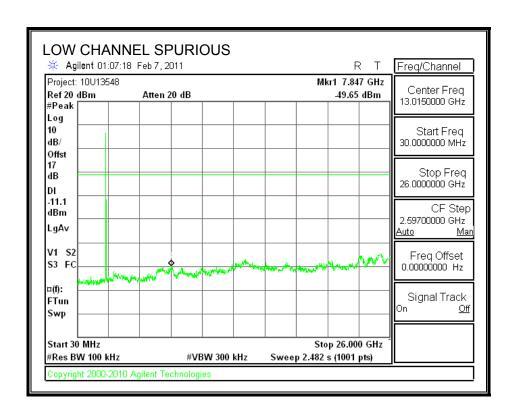
FCC §15.247 (d)

IC RSS-210 A8.5

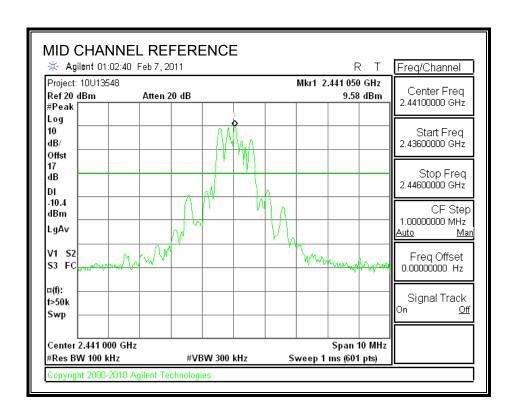
Limit = -20 dBc

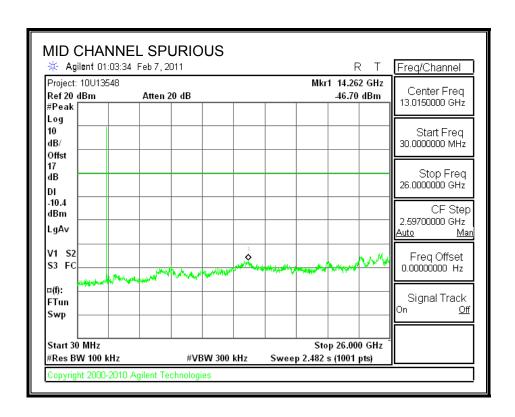
TEST PROCEDURE

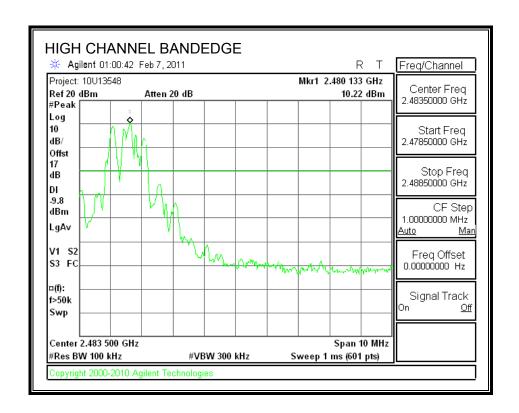

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

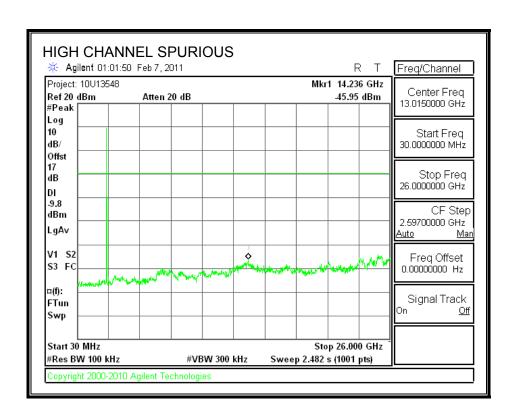

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

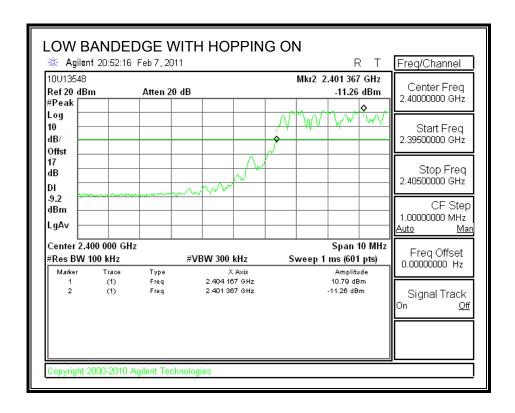
The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

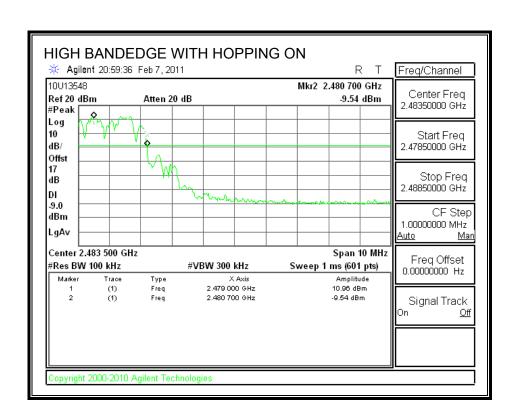

RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

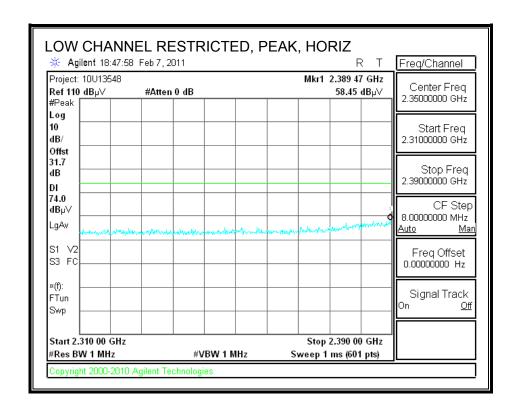
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

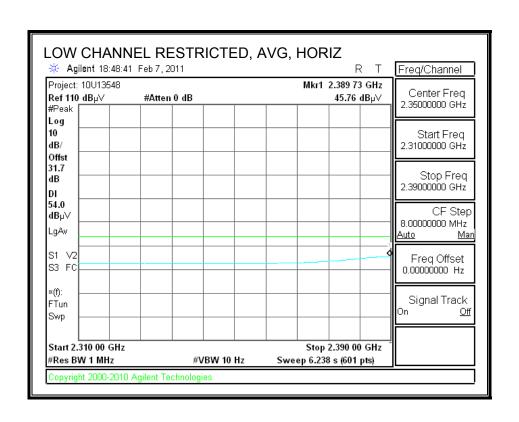
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

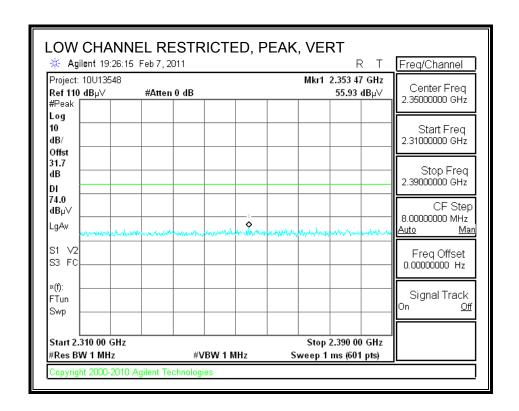
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

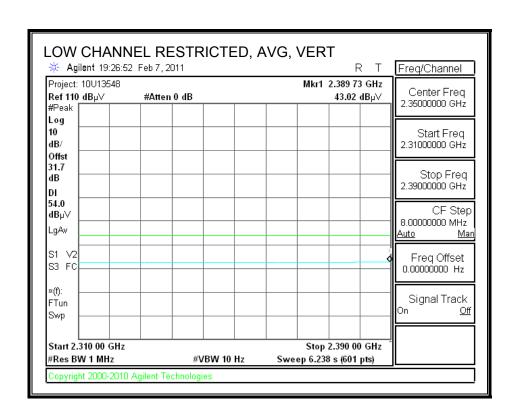

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

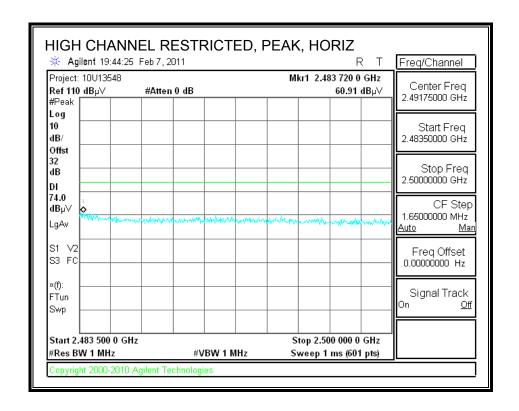
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

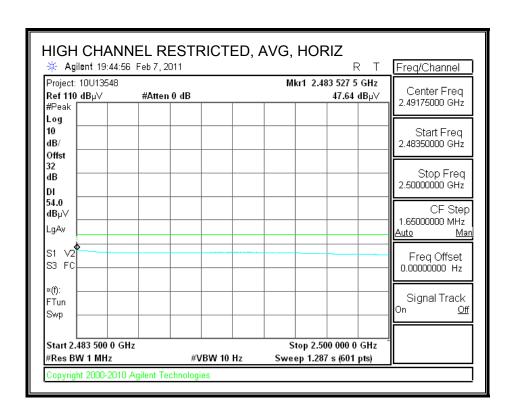

8.2. TRANSMITTER ABOVE 1 GHz

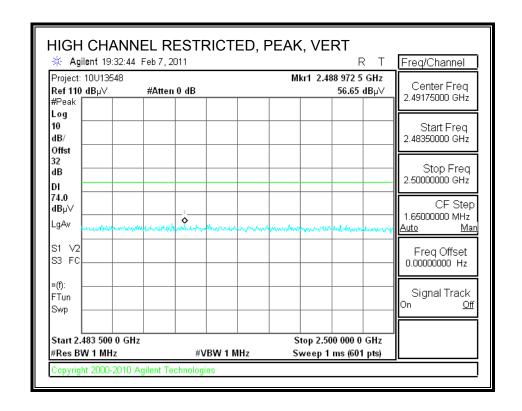
8.2.1. BASIC DATA RATE GFSK MODULATION

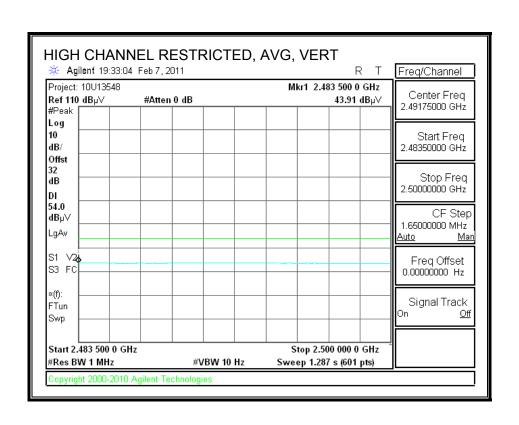

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)


REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)


REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 FCC ID: BCGA1395

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 10U13548-19A FCC ID: BCGA1395

DATE: FEBRUARY 24, 2011

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 IC: 579C-A1395 FCC ID: BCGA1395

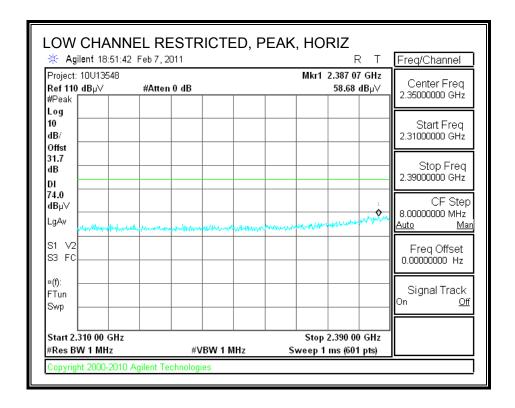
HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

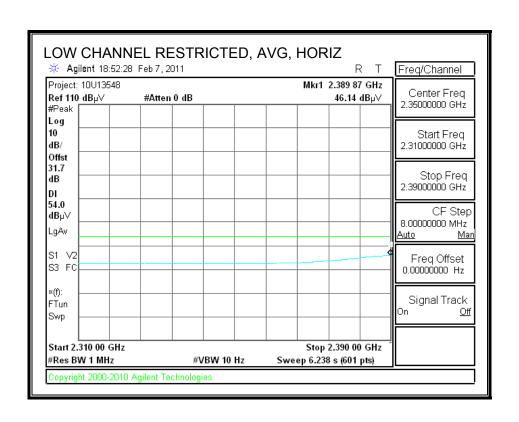
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen 02/09/11 Date: 10U13548 Project #: FCC Class B Test Target: Mode Oper: GFSK, TX mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

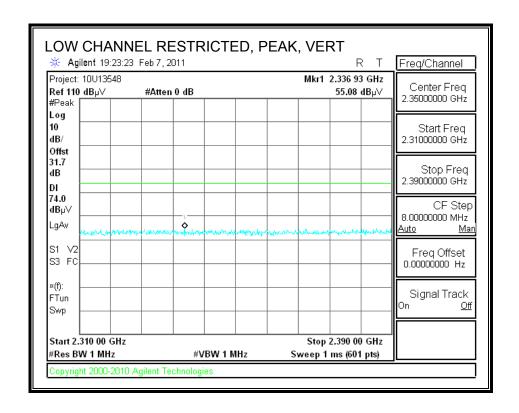

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
2402MHz	GFSK												
4.804	3.0	41.9	33.0	5.8	-36.5	0.0	0.6	44.8	74.0	-29.2	v	P	
4.804	3.0	34.1	33.0	5.8	-36.5	0.0	0.6	37.0	54.0	-17.0	v	A	
12.010	3.0	35.1	39.0	9.7	-35.4	0.0	0.9	49.3	74.0	-24.7	v	P	
12.010	3.0	22.8	39.0	9.7	-35.4	0.0	0.9	37.0	54.0	-17.0	v	A	
2402MHz	GFSK												
4.804	3.0	46.4	33.0	5.8	-36.5	0.0	0.6	49.3	74.0	-24.7	H	P	
4.804	3.0	39.1	33.0	5.8	-36.5	0.0	0.6	42.1	54.0	-11.9	H	A	
12.010	3.0	35.4	39.0	9.7	-35.4	0.0	0.9	49.6	74.0	-24.4	H	P	
12.010	3.0	22.9	39.0	9.7	-35.4	0.0	0.9	37.1	54.0	-16.9	H	A	
2441MHz	GFSK												
4.882	3.0	44.5	33.1	5.8	-36.5	0.0	0.6	47.6	74.0	-26.4	H	P	
4.882	3.0	37.0	33.1	5.8	-36.5	0.0	0.6	40.1	54.0	-13.9	H	A	
7.323	3.0	41.4	35.3	7.3	-36.2	0.0	0.6	48.4	74.0	-25.6	H	P	
7.323	3.0	32.5	35.3	7.3	-36.2	0.0	0.6	39.5	54.0	-14.5	H	A	
2441MHz	GFSK												
4.882	3.0	39.4	33.1	5.8	-36.5	0.0	0.6	42.5	74.0	-31.5	v	P	
4.882	3.0	28.7	33.1	5.8	-36.5	0.0	0.6	31.8	54.0	-22.2	V	A	
7.323	3.0	38.5	35.3	7.3	-36.2	0.0	0.6	45.5	74.0	-28.5	v	P	
7.323	3.0	27.8	35.3	7.3	-36.2	0.0	0.6	34.8	54.0	-19.2	v	A	
2480MHz	GFSK												
4.960	3.0	37.6	33.2	5.9	-36.5	0.0	0.6	40.8	74.0	-33.2	v	P	
4.960	3.0	26.7	33.2	5.9	-36.5	0.0	0.6	30.0	54.0	-24.0	v	A	
7.440	3.0	39.2	35.5	7.3	-36.2	0.0	0.6	46.4	74.0	-27.6	V	P	
7.440	3.0	29.3	35.5	7.3	-36.2	0.0	0.6	36.5	54.0	-17.5	V	A	
2480MHz	GFSK		Ĭ										
4.960	3.0	41.9	33.2	5.9	-36.5	0.0	0.6	45.2	74.0	-28.8	H	P	
4.960	3.0	33.8	33.2	5.9	-36.5	0.0	0.6	37.1	54.0	-16.9	H	A	
7.440	3.0	43.9	35.5	7.3	-36.2	0.0	0.6	51.2	74.0	-22.8	H	P	
7.440	3.0	36.3	35.5	7.3	-36.2	0.0	0.6	43.6	54.0	-10.4	Н	A	

Rev. 4.1.2.7

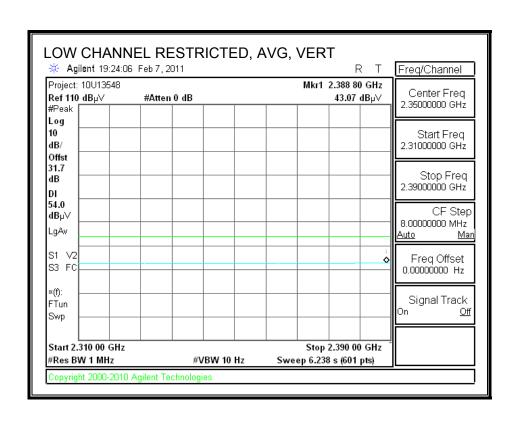

Note: No other emissions were detected above the system noise floor.

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

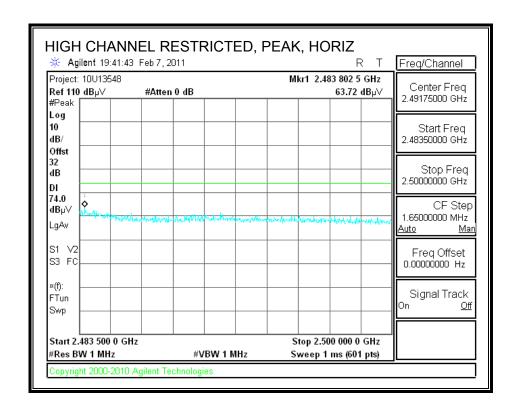


REPORT NO: 10U13548-19A FCC ID: BCGA1395



DATE: FEBRUARY 24, 2011

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

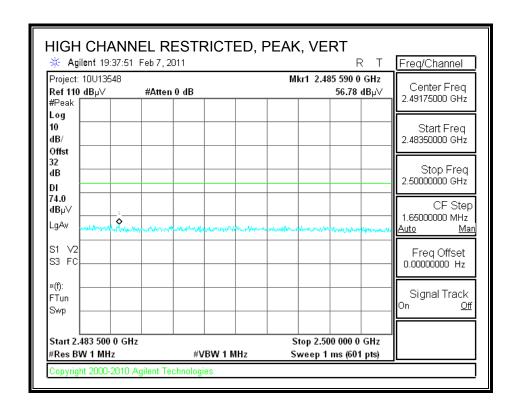


REPORT NO: 10U13548-19A FCC ID: BCGA1395

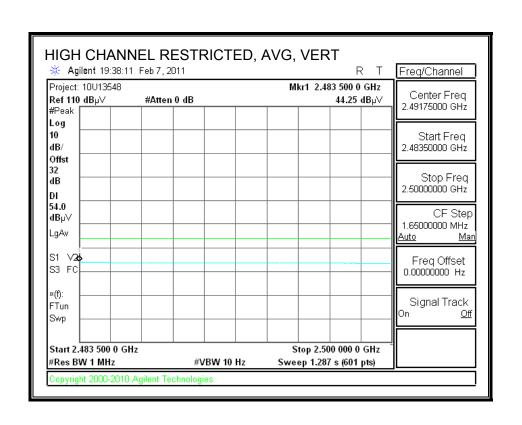


DATE: FEBRUARY 24, 2011

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



REPORT NO: 10U13548-19A FCC ID: BCGA1395



DATE: FEBRUARY 24, 2011

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 10U13548-19A FCC ID: BCGA1395

DATE: FEBRUARY 24, 2011

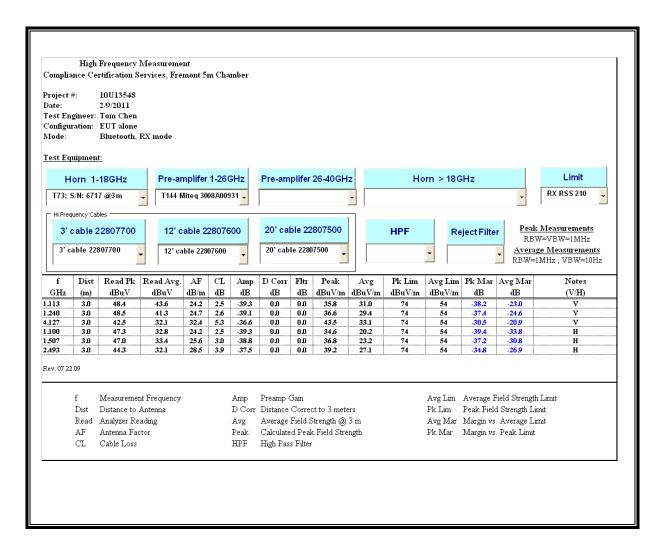
REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 IC: 579C-A1395 FCC ID: BCGA1395

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

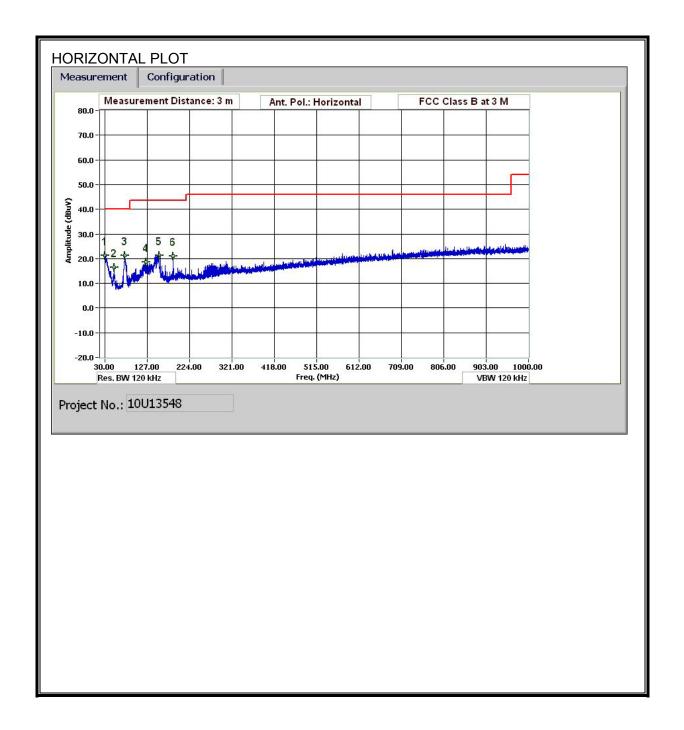
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen 02/09/11 Date: 10U13548 Project #: FCC Class B Test Target: Mode Oper: 8PSK, TX mode

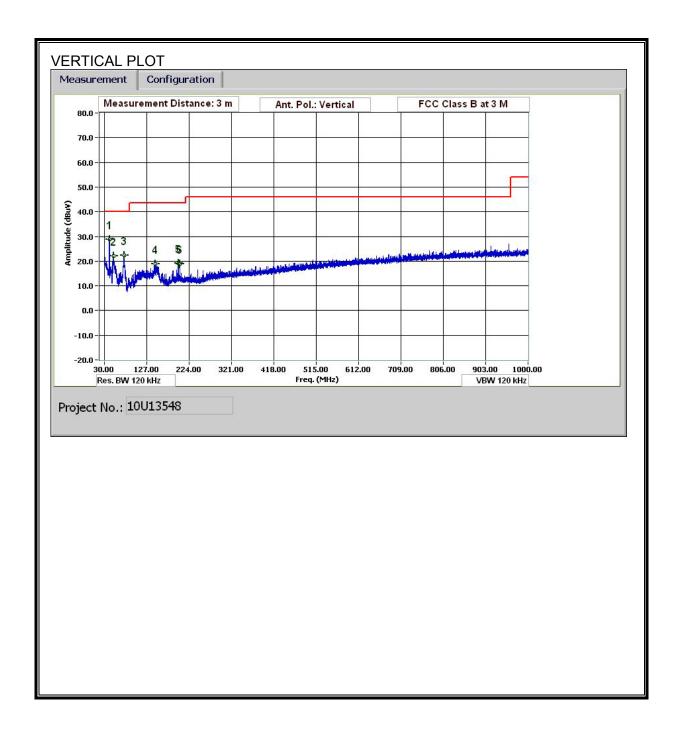

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m		Margin dB	Ant. Pol. V/H	Det. P/A/OP	Notes
2402MHz		ш.	100,311					120 411711	and a rivine		****	11112 Q1	
4.804	3.0	40.6	33.0	5.8	-36.5	0.0	0.6	43.6	74.0	-30.5	v	P	
4.804	3.0	30.9	33.0	5.8	-36.5	0.0	0.6	33.8	54.0	-20.2	! 	A	
4.004 12.010	3.0	35.0	39.0	9.7	-35.4	0.0	0.9	49.2	74.0	-24.8	V V	<u> </u>	
12.010	3.0	35.0 22.7	ф	9.7 9.7	-35.4		0.9			-17.1	v	P	
		44.(39.0	9.7	-35.4	0.0	0.7	36.9	54.0	-17.1	v	A	
2402MHz		40 =	22.0		200				740		TT		
4.804	3.0	43.7	33.0	5.8	-36.5	0.0	0.6	46.6	74.0	-27.4	H	P	
4.804	3.0	35.6	33.0	5.8	-36.5	0.0	0.6	38.5	54.0	-15.5	H	A	
12.010	3.0	35.3	39.0	9.7	-35.4	0.0	0.9	49.5	74.0	-24.5	H	P	
12.010	3.0	22.7	39.0	9.7	-35.4	0.0	0.9	36.9	54.0	-17.1	H	A	
2441MHz			ļ										
4.882	3.0	41.3	33.1	5.8	-36.5	0.0	0.6	44.4	74.0	-29.6	H	P	
4.882	3.0	32.2	33.1	5.8	-36.5	0.0	0.6	35.3	54.0	-18.7	H	A	
7.323	3.0	39.8	35.3	7.3	-36.2	0.0	0.6	46.8	74.0	-27.2	H	P	
7.323	3.0	27.7	35.3	7.3	-36.2	0.0	0.6	34.7	54.0	-19.3	H	A	
2441MHz	8PSK												
4.882	3.0	38.6	33.1	5.8	-36.5	0.0	0.6	41.7	74.0	-32.3	V	P	
4.882	3.0	26.9	33.1	5.8	-36.5	0.0	0.6	30.0	54.0	-24.0	V	A	
7.323	3.0	37.3	35.3	7.3	-36.2	0.0	0.6	44.3	74.0	-29.7	v	P	
7.323	3.0	24.8	35.3	7.3	-36.2	0.0	0.6	31.8	54.0	-22.2	V	A	
2480MHz	8PSK		•										
4.960	3.0	40.5	33.2	5.9	-36.5	0.0	0.6	43.8	74.0	-30.2	Н	P	
4.960	3.0	30.8	33.2	5.9	-36.5	0.0	0.6	34.1	54.0	-19.9	Н	A	
7.440	3.0	40.7	35.5	7.3	-36.2	0.0	0.6	48.0	74.0	-26.0	H	P	
7.440	3.0	29.9	35.5	7.3	-36.2	0.0	0.6	37.2	54.0	-16.8	H	A	
2480MHz								† · · · · · ·					
4.960	3.0	37.8	33.2	5.9	-36.5	0.0	0.6	41.0	74.0	-33.0	v	P	
4.960	3.0	25.6	33.2	5.9	-36.5	0.0	0.6	28.9	54.0	-25.1	v	Ā	
7.440	3.0	37.4	35.5	7.3	-36.2	0.0	0.6	44.6	74.0	-29.4	v	P	
7.440	3.0	25.4	35.5	7.3	-36.2	0.0	0.6	32.7	54.0	-21.3	v	Ā	

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

8.3. RECEIVER ABOVE 1 GHz



8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 02/07/11
Project #: 10U13548
Test Target: FCC Class B
Mode Oper: TX mode, Worst case

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters

 Read
 Analyzer Reading
 Filter
 Filter Insert Loss

 AF
 Antenna Factor
 Corr.
 Calculated Field Strength

 CL
 Cable Loss
 Limit
 Field Strength Limit

						1 1							
f	Dist	Read	AF	$^{\rm CL}$	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dB	dB	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Vertical													
41.4	3.0	43.5	13.0	0.6	28.4	0.0	0.0	28.7	40.0	-11.3	V	P	
51.361	3.0	41.5	8.3	0.6	28.4	0.0	0.0	22.1	40.0	-17.9	v	P	
75.002	3.0	42.3	7.7	0.8	28.3	0.0	0.0	22.4	40.0	-17.6	V	P	
146.765	3.0	33.1	12.8	1.1	28.3	0.0	0.0	18.8	43.5	-24.7	V	P	
199.087	3.0	34.1	11.9	1.2	28.2	0.0	0.0	19.0	43.5	-24.5	v	P	
202.807	3.0	33.8	12.0	1.3	28.2	0.0	0.0	18.8	43.5	-24.7	V	P	
Horizontal													
30.48	3.0	29.2	19.9	0.5	28.4	0.0	0.0	21.2	40.0	-18.8	H	P	
51.601	3.0	35.9	8.3	0.6	28.4	0.0	0.0	16.5	40.0	-23.5	H	P	
75.362	3.0	41.3	7.7	0.8	28.3	0.0	0.0	21.3	40.0	-18.7	н	P	
123.484	3.0	32.1	13.7	1.1	28.3	0.0	0.0	18.5	43.5	-25.0	н	P	
153.965	3.0	36.2	12.2	1.1	28.3	0.0	0.0	21.3	43.5	-22.2	H	P	
186.126	3.0	36.9	11.3	1.2	28.2	0.0	0.0	21.1	43.5	-22.4	Н	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 IC: 579C-A1395 FCC ID: BCGA1395

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

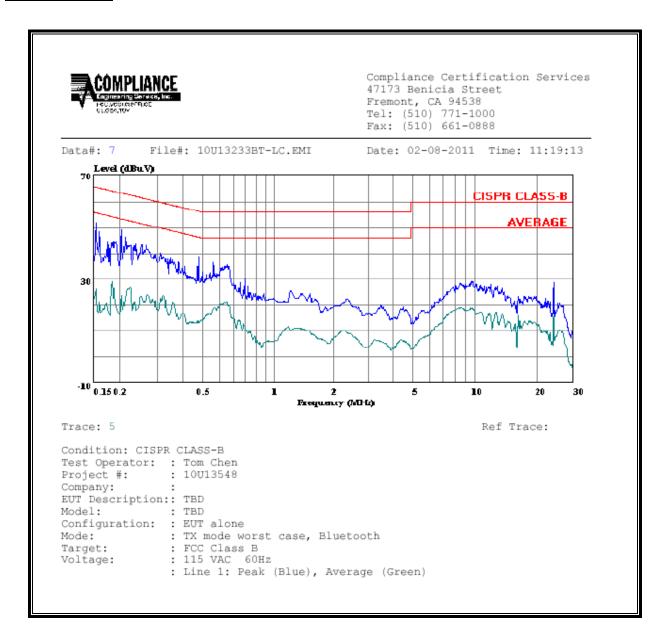
Frequency of Emission (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56 °	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

Decreases with the logarithm of the frequency.

TEST PROCEDURE

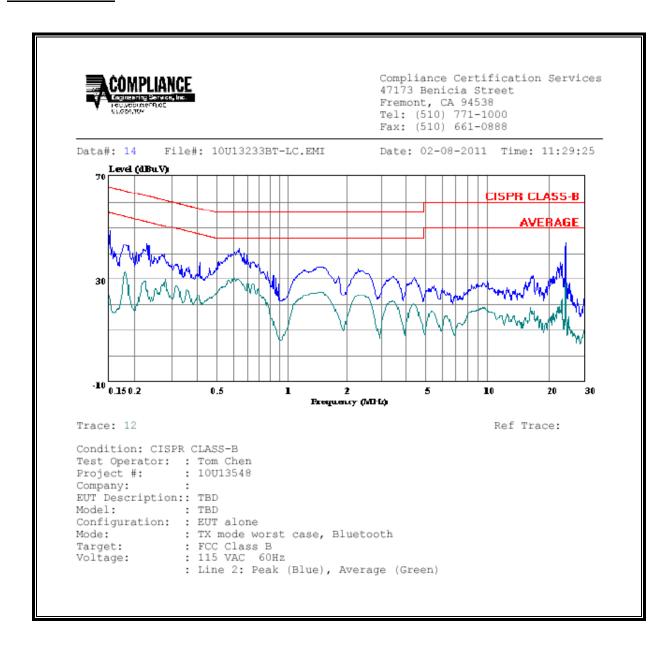
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

6 WORST EMISSIONS


	CONDUCTED EMISSIONS DATA (115VAC 60Hz)												
Freq.		Reading		Closs	Limit	EN_B	Marg	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2				
0.15	52.15		26.29	0.00	65.84	55.84	-13.69	-29.55	L1				
0.20	49.37		23.99	0.00	63.45	53.45	-14.08	-29.46	L1				
0.21	46.48		23.13	0.00	63.13	53.13	-16.65	-30.00	L1				
0.15	48.81		20.81	0.00	65.89	55.89	-17.08	-35.08	L2				
0.18	43.43		31.26	0.00	64.63	54.63	-21.20	-23.37	L2				
0.64	41.94		29.60	0.00	56.00	46.00	-14.06	-16.40	L2				
6 Worst l	Data 												

LINE 1 RESULTS

REPORT NO: 10U13548-19A DATE: FEBRUARY 24, 2011 IC: 579C-A1395 FCC ID: BCGA1395

LINE 2 RESULTS

