

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11 a/b/g/n + BT2.1

MODEL NUMBER: A1395

FCC ID: BCGA1395 IC: 579C-A1395

REPORT NUMBER: 10U13548-1, Revision B

ISSUE DATE: MARCH 01, 2011

Prepared for APPLE, INC.
1 INFINITE LOOP CUPERTINO, CA 95014, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	12/29/10	Initial Issue	F. Ibrahim
A	02/22/11	Revised model number, FCC ID, and IC ID.	A. Zaffar
B 03/01/11 MPE section,		Revised description of EUT setup section, removed MPE section, removed AV power section and added co-location data for 5.8 GHz band.	F. Ibrahim

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. F	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	
5. E0	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
5.4.	SOFTWARE AND FIRMWARE	
5.5.	WORST-CASE CONFIGURATION AND MODE	
5.6.	DESCRIPTION OF TEST SETUP	10
6. TE	EST AND MEASUREMENT EQUIPMENT	12
7. Al	NTENNA PORT TEST RESULTS	13
7.1.		
	1.1. 6 dB BANDWIDTH	
	1.2. 99% BANDWIDTH	
	1.4. POWER SPECTRAL DENSITY	
7.	1.5. CONDUCTED SPURIOUS EMISSIONS	26
7.2.	and the second s	33
	2.1. 6 dB BANDWIDTH	
	2.2. 99% BANDWIDTH	
	2.4. POWER SPECTRAL DENSITY	42
7.2	2.5. CONDUCTED SPURIOUS EMISSIONS	46
7.3.		
	3.1. 6 dB BANDWIDTH	
	3.3. OUTPUT POWER	
7.3	3.4. POWER SPECTRAL DENSITY	62
7.3	3.5. CONDUCTED SPURIOUS EMISSIONS	66
7.4.		
	4.1. 6 dB BANDWIDTH	
	4.2. 99% BANDWIDTH	

	7.4.4.	POWER SPECTRAL DENSITY	
	7.4.5.	CONDUCTED SPURIOUS EMISSIONS	86
	7.5. 80	02.11n HT20 MODE IN THE 5.8 GHz BAND	93
	7.5.1.	6 dB BANDWIDTH	93
	7.5.2.	99% BANDWIDTH	
	7.5.3.	OUTPUT POWER	
	7.5.4.	POWER SPECTRAL DENSITY	
	7.5.5.	CONDUCTED SPURIOUS EMISSIONS	106
8.	RADIA ¹	TED TEST RESULTS	113
ė	8.1. LI	MITS AND PROCEDURE	113
Č	8.2. TF	RANSMITTER ABOVE 1 GHz	114
	8.2.1.	TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND	
	8.2.2.	TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND	
	8.2.3.		
	8.2.4.		
	8.2.5.	TX ABOVE 1 GHz FOR 802.11n HT20 MODE IN THE 5.8 GHz BAND	142
Č	8.3. C	O-LOCATION WORST CASE TX ABOVE 1 GHz (802.11n / 5.8 GHz BAND)	143
ě	8.4. RI	ECEIVER ABOVE 1 GHz	144
	8.4.1.	RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 2.4 GHz BAND	144
	8.4.2.	RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 5.8 GHz BAND	145
ć	8. <i>5.</i> W	ORST-CASE BELOW 1 GHz	146
9.	AC PO	WER LINE CONDUCTED EMISSIONS	149
10	QET.	LID PHOTOS	153

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 INFINITE LOOP

CUPERTINO, CA, 95014, U.S.A.

EUT DESCRIPTION: 802.11a/b/g/n + BT 2.1

MODEL: A1395

SERIAL NUMBER: PT523312

DATE TESTED: DECEMBER 13, 2010 – FEBRUARY 28, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

TOM CHEN EMC ENGINEER

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

802.11 a/b/g/n + BT2.1

The radio module is manufactured by Apple, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	21.20	131.83
2412 - 2462	802.11g	24.40	275.42
2412 - 2462	802.11n HT20	24.50	281.84

Frequency Range	uency Range Mode Output Power		Output Power
(MHz)		(dBm)	(mW)
5745 - 5825	802.11a	24.40	275.42
5745 - 5825	802.11n HT20	24.50	281.84

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes the following antenna:

Antenna Name	Description	Manufacturer	Cable Length
631-1482 WiFi / Bluetooth	PIFA	Amphenol / Tyco	81.6 mm

	631-1482 WiFi / Bluetooth
	Peak Gain (includes Cable)
Freq [GHz]	dBi
2.4-2.484	0.59
5,15 - 5,25	4.07
5,25 - 5,35	4.2
5.47-5.725	4.21
5.725-5.85	3.57

5.4. SOFTWARE AND FIRMWARE

The firmware installed on the EUT was version 4.221.50.2 (BCM MFGTEST)

The EUT driver rev: 0x4dd3202

The test utility software: wl.exe version: 4.218 RC175.1

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case data rate for each mode is determined to be as follows, based on preliminary tests of the chipset utilized in this radio.

All final tests in the 802.11b mode were made at 1 Mb/s.

All final tests in the 802.11g mode were made at 6 Mb/s.

All final tests in the 802.11a mode were made at 6 Mb/s.

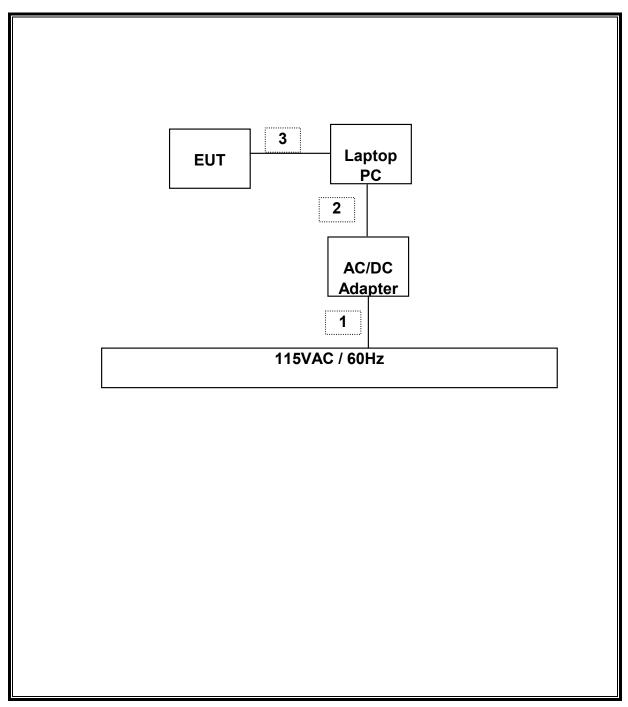
All final tests in the 802.11n HT20 SISO mode were made at MCS0.

For radiated emissions below 1 GHz and Power Line Conducted Emissions, the worst-case configuration is determined to be the mode and channel with the highest output power

To determine the worst-position of highest emissions, the EUT's antenna was investigated for X, Y, Z positions, and the worst position was turned out to be a Y-position.

Radiated Co-located BE and Harmonics was performed in the 5.8 GHz band for worst-case channel.

5.6. DESCRIPTION OF TEST SETUP


SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number FCC ID					
Laptop	Apple	A1286	W8917005998	DoC	
Laptop AC Adapter	Apple	A1290	N/A	DoC	

I/O CABLES

I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	1	US 115V	Un-shielded	2m	N/A	
2	DC	1	DC	Un-shielded	2m	N/A	
3	USB	1	USB	Un-shielded	1m	Connect to Laptop	

SETUP DIAGRAM FOR TESTS

Note: Laptop PC was used to control the operation of the EUT.

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/11	
Antenna, Hom, 18 GHz	EMCO	3115	C00945	06/29/11	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/06/11	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/12/11	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/11	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11	
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR	
High Pass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/30/11	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	05/08/11	
Peak Power Meter	Boonton	4541	C01186	03/01/11	
Peak Power Sensor	Boonton	57318	C01202	02/23/11	

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

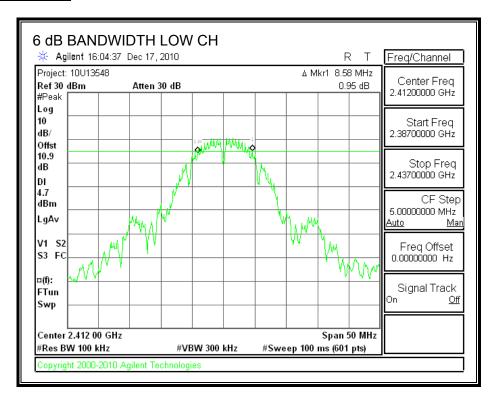
7.1.1. 6 dB BANDWIDTH

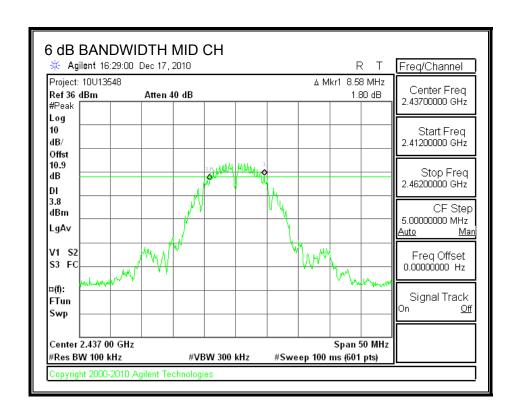
LIMITS

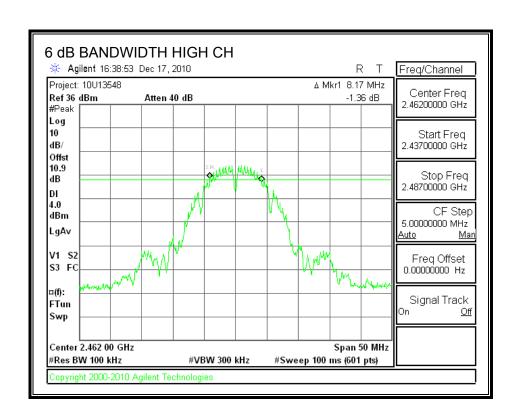
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

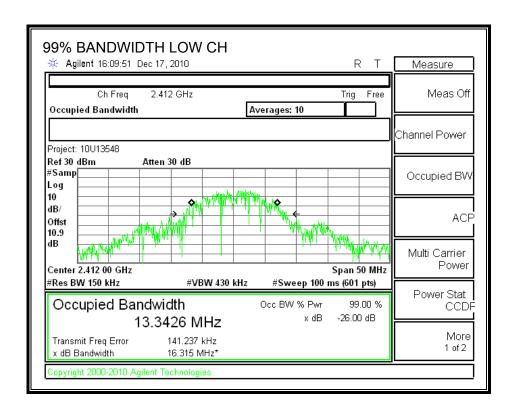
Channel	hannel Frequency 6 dB Bandwidth		Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	8.58	0.5
Middle	2437	8.58	0.5
High	2462	8.17	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

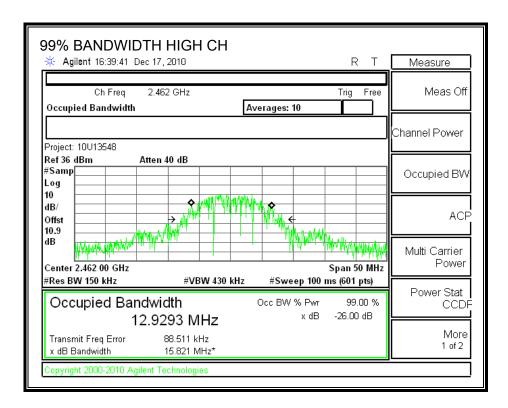
LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	13.3426		
Middle	2437	13.1031		
High	2462	12.9293		

99% BANDWIDTH

REPORT NO: 10U13548-1B

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using wide bandwidth peak power meter.

RESULTS

Channel	Frequency	Peak Power	Attenuator and	Output	Limit	Margin
		Meter Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	10.20	10.8	21.00	30	-9.00
Middle	2437	9.90	10.8	20.70	30	-9.30
High	2462	10.40	10.8	21.20	30	-8.80

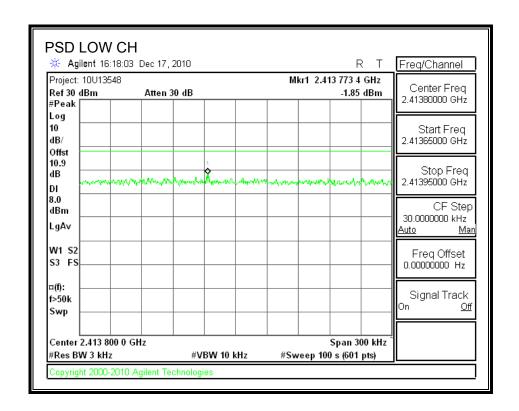
7.1.4. POWER SPECTRAL DENSITY

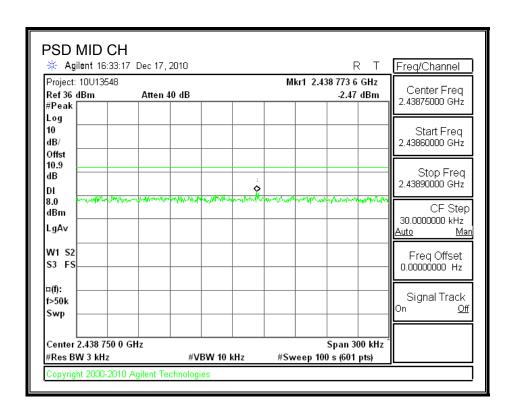
LIMITS

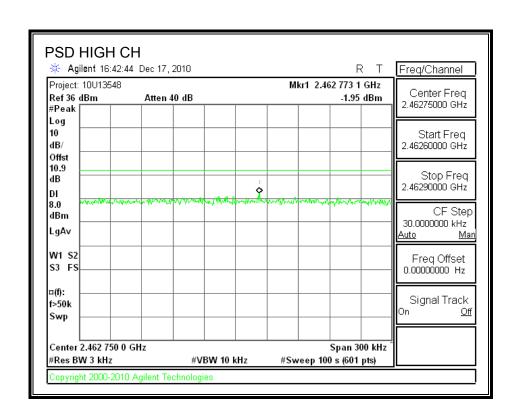
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-1.85	8	-9.85
Middle	2437	-2.47	8	-10.47
High	2462	-1.95	8	-9.95

POWER SPECTRAL DENSITY

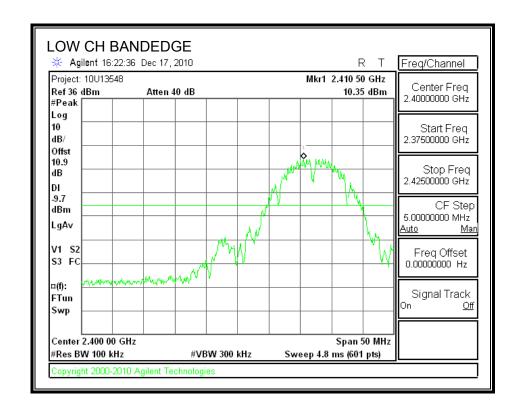
7.1.5. CONDUCTED SPURIOUS EMISSIONS

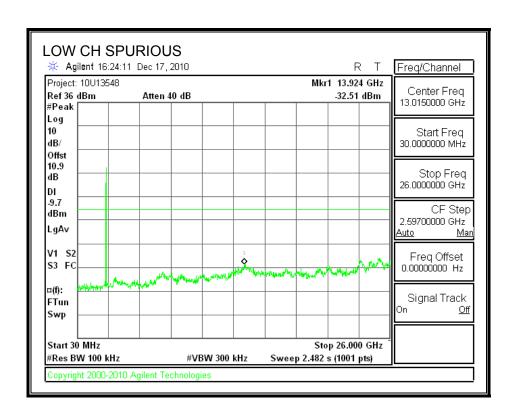
LIMITS

FCC §15.247 (d)

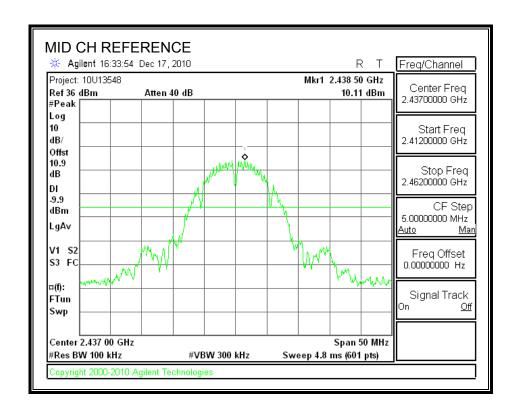
IC RSS-210 A8.5

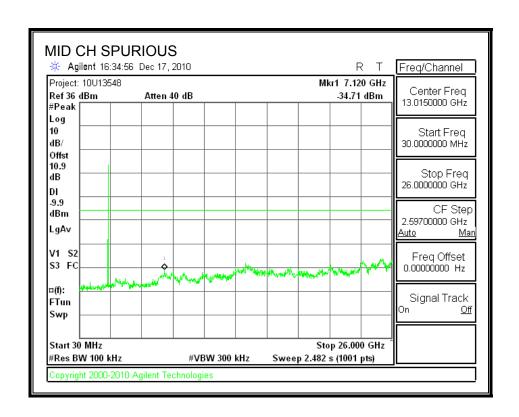
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.


TEST PROCEDURE

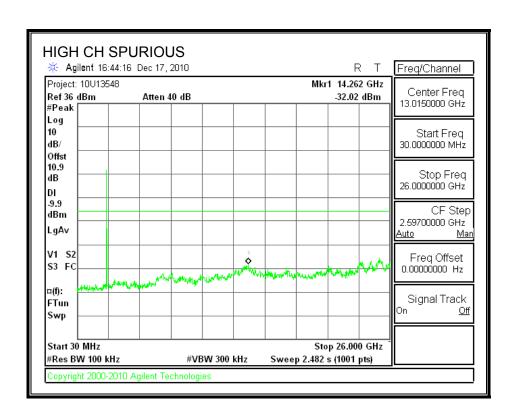

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

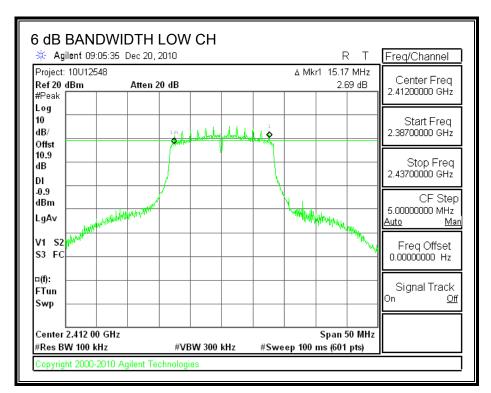
7.2.1. 6 dB BANDWIDTH

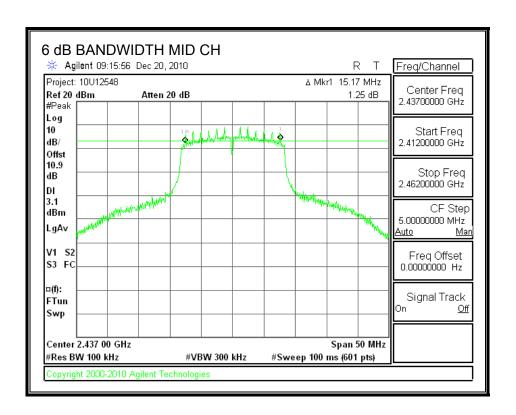
LIMITS

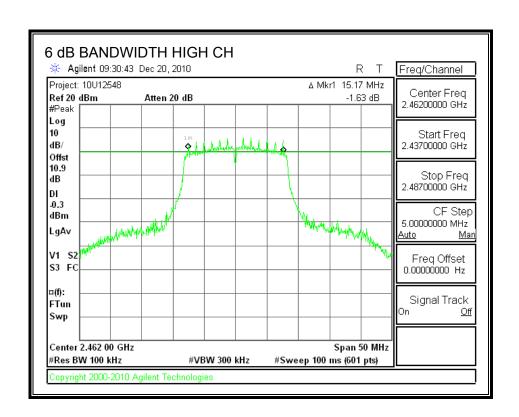
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

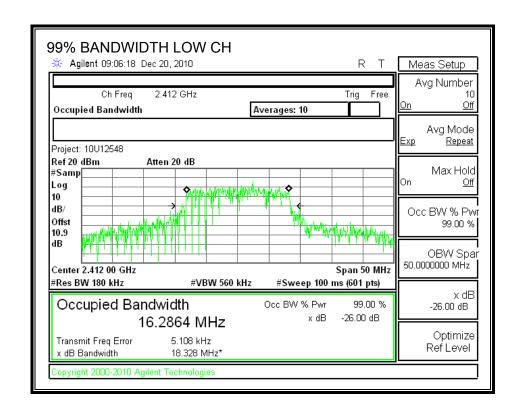
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.17	0.5
Middle	2437	15.17	0.5
High	2462	15.17	0.5

6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

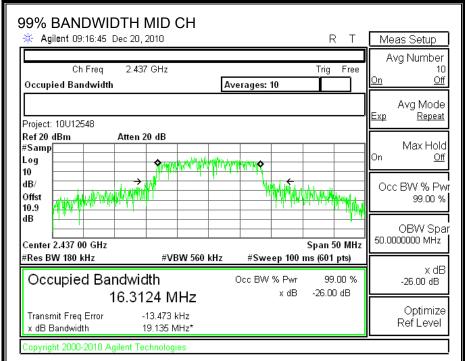
LIMITS

None; for reporting purposes only.

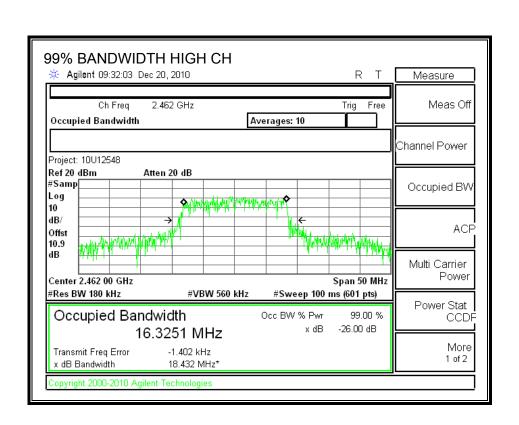

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.2864
Middle	2437	16.3124
High	2462	16.3251

99% BANDWIDTH



REPORT NO: 10U13548-1B FCC ID: BCGA1395 DATE: MARCH 01, 2011

IC: 579C-A1395

REPORT NO: 10U13548-1B FCC ID: BCGA1395

DATE: MARCH 01, 2011

IC: 579C-A1395

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using a wide bandwidth peak power meter.

RESULTS

Channel	Frequency	Peak Power	Attenuator and	Output	Limit	Margin
		Meter Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	11.5	10.8	22.30	30	-7.70
Middle	2437	13.6	10.8	24.40	30	-5.60
High	2462	12.2	10.8	23.00	30	-7.00

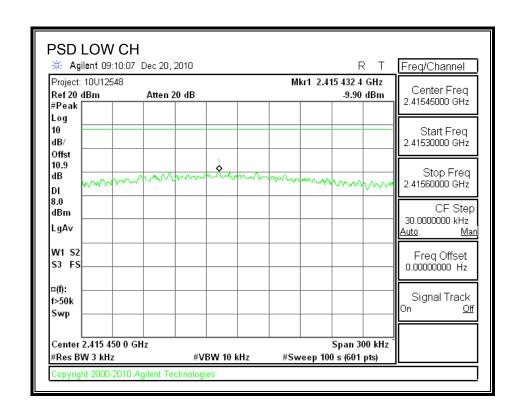
7.2.4. POWER SPECTRAL DENSITY

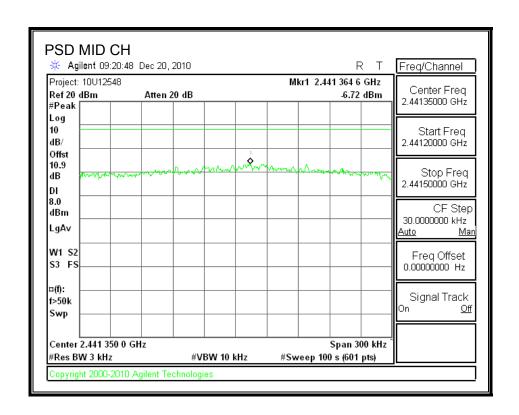
LIMITS

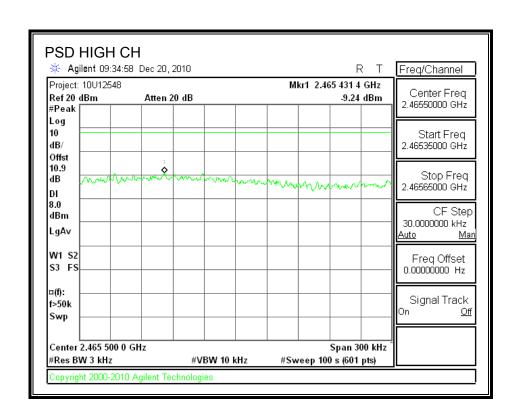
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-9.90	8	-17.90
Middle	2437	-6.72	8	-14.72
High	2462	-9.24	8	-17.24

POWER SPECTRAL DENSITY

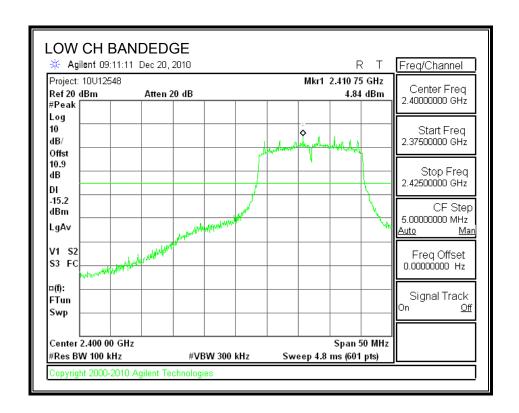
7.2.5. CONDUCTED SPURIOUS EMISSIONS

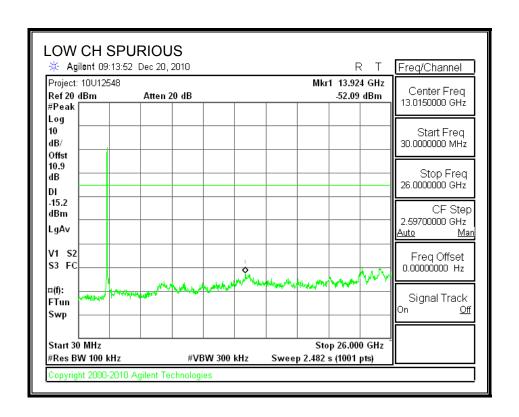
LIMITS

FCC §15.247 (d)

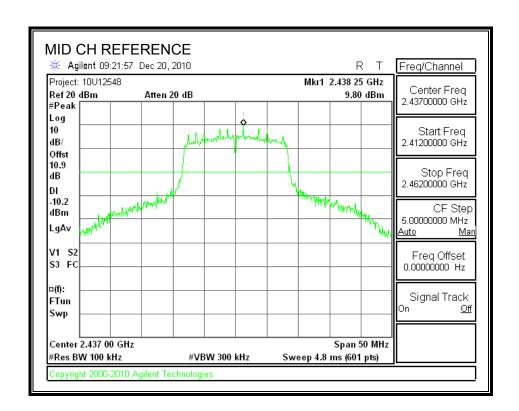
IC RSS-210 A8.5

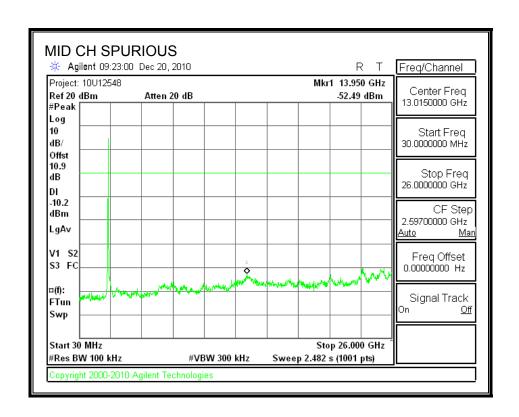
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

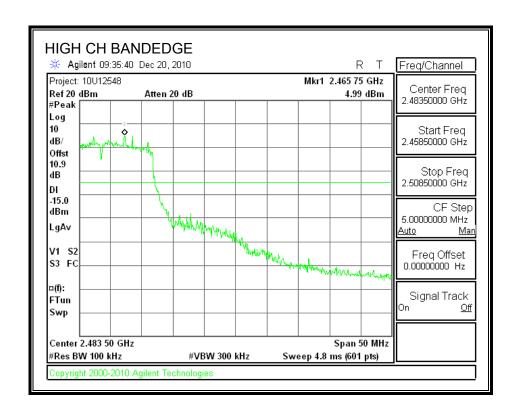

TEST PROCEDURE

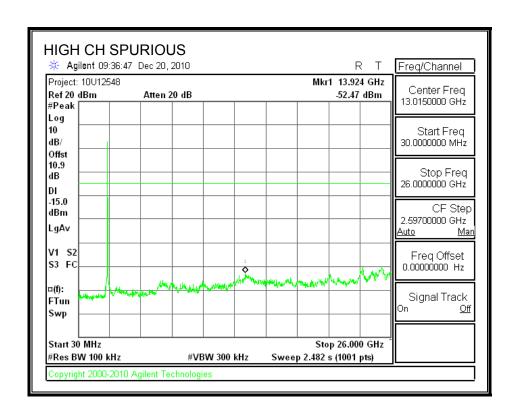

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

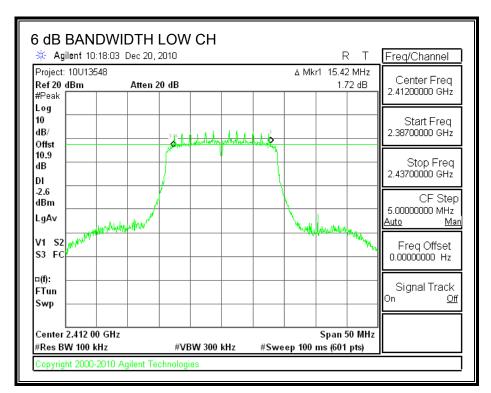
7.3.1. 6 dB BANDWIDTH

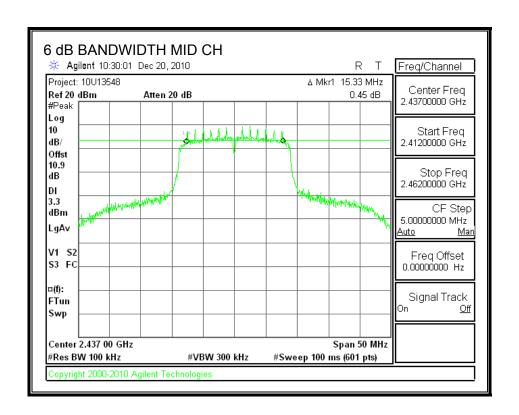
LIMITS

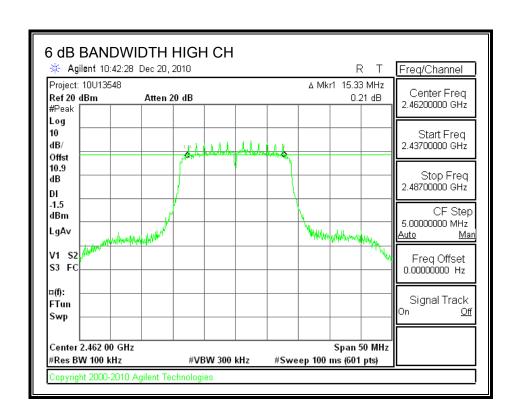
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

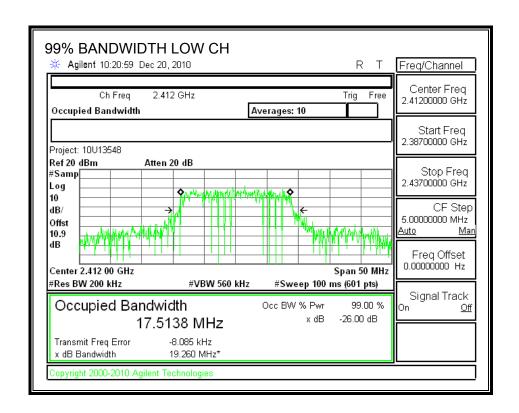
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	15.42	0.5
Middle	2437	15.33	0.5
High	2462	15.33	0.5

6 dB BANDWIDTH

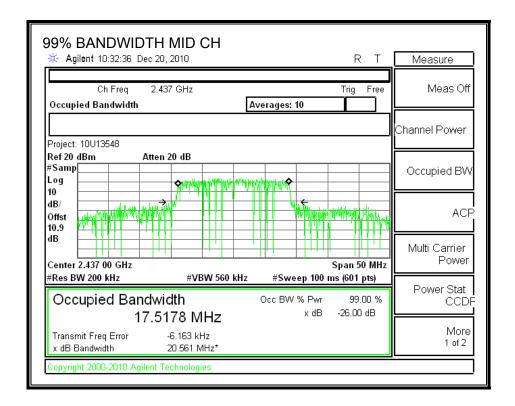
7.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.5138
Middle	2437	17.5178
High	2462	17.4654

99% BANDWIDTH

REPORT NO: 10U13548-1B FCC ID: BCGA1395

REPORT NO: 10U13548-1B FCC ID: BCGA1395 DATE: MARCH 01, 2011

IC: 579C-A1395

7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using a wide bandwidth peak power meter.

RESULTS

Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	11.4	10.8	22.20	30	-7.80
Middle	2437	13.7	10.8	24.50	30	-5.50
High	2462	11.3	10.8	22.10	30	-7.90

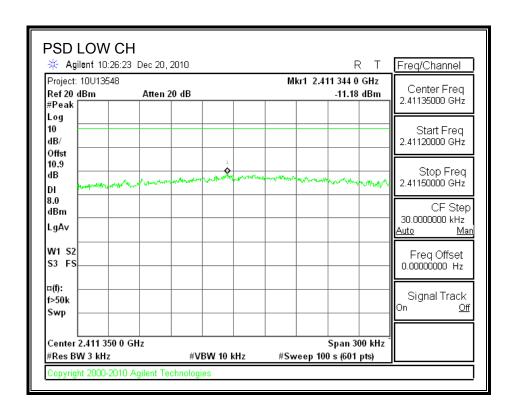
7.3.4. POWER SPECTRAL DENSITY

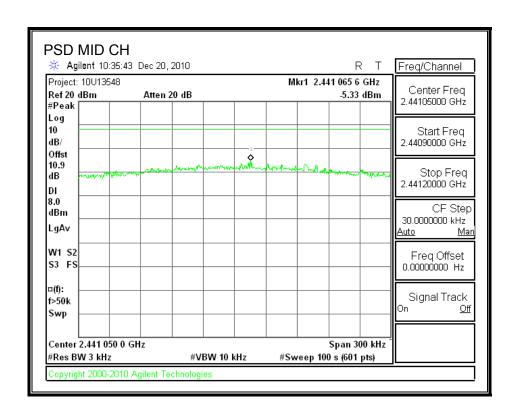
LIMITS

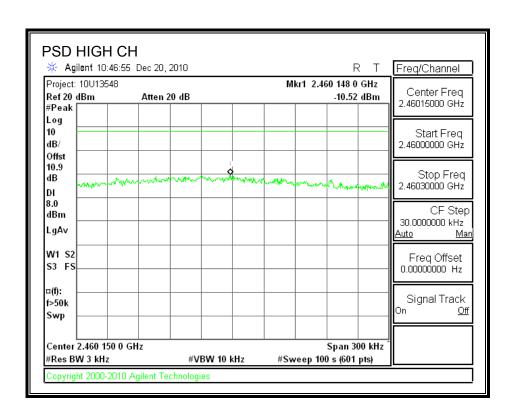
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-11.18	8	-19.18
Middle	2437	-5.33	8	-13.33
High	2462	-10.52	8	-18.52

POWER SPECTRAL DENSITY

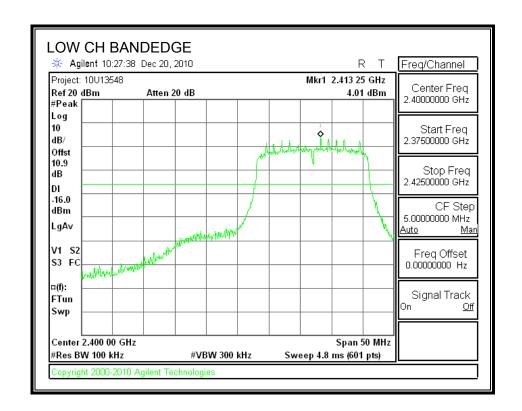
7.3.5. CONDUCTED SPURIOUS EMISSIONS

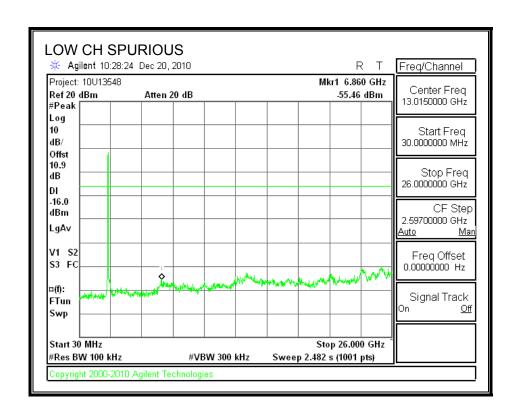
LIMITS

FCC §15.247 (d)

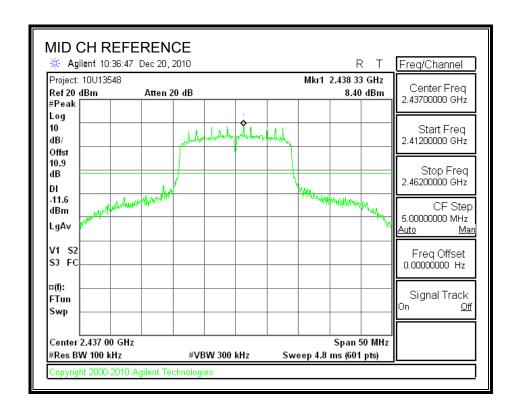
IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

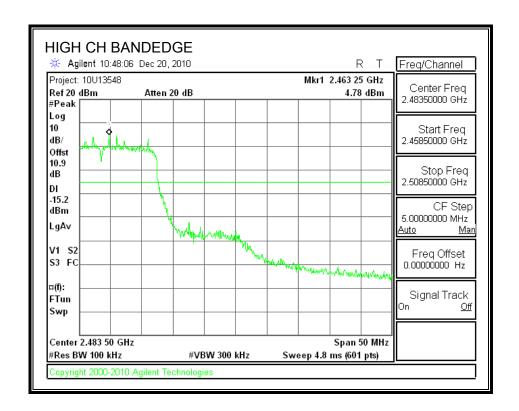

TEST PROCEDURE

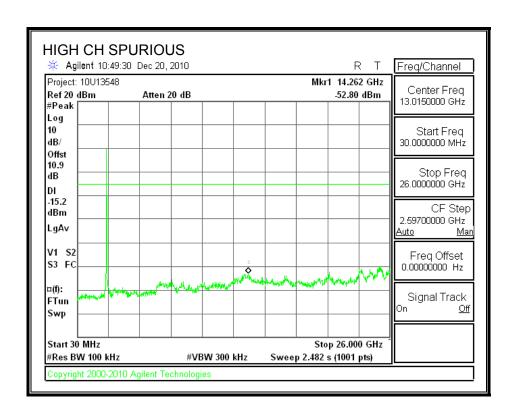

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.4. 802.11a MODE IN THE 5.8 GHz BAND

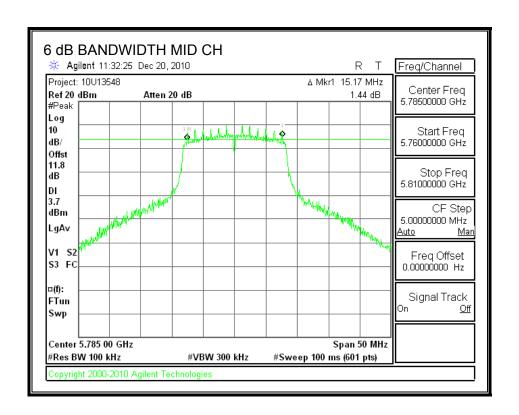
7.4.1. 6 dB BANDWIDTH

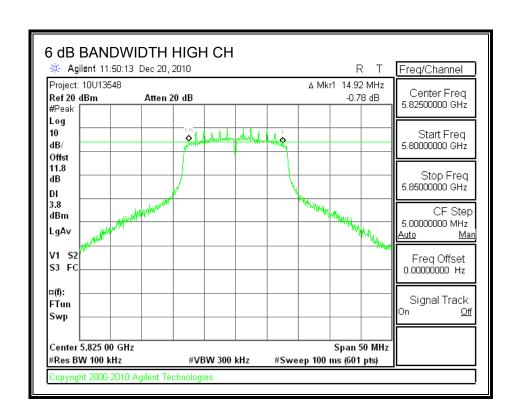
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

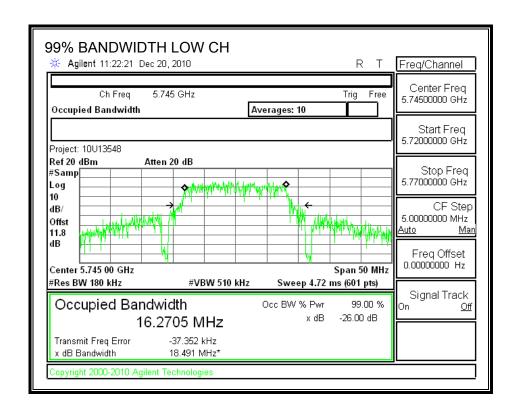

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit	
	(MHz)	(MHz)	(MHz)	
Low	5745	15.17	0.5	
Middle	5785	15.17	0.5	
High	5825	14.92	0.5	

6 dB BANDWIDTH

7.4.2. 99% BANDWIDTH

LIMITS

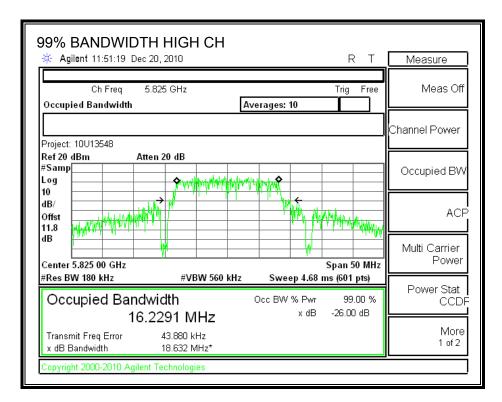

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.2705
Middle	5785	16.3084
High	5825	16.2291

99% BANDWIDTH



REPORT NO: 10U13548-1B FCC ID: BCGA1395

DATE: MARCH 01, 2011

IC: 579C-A1395

REPORT NO: 10U13548-1B

7.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using a wide bandwidth peak power meter.

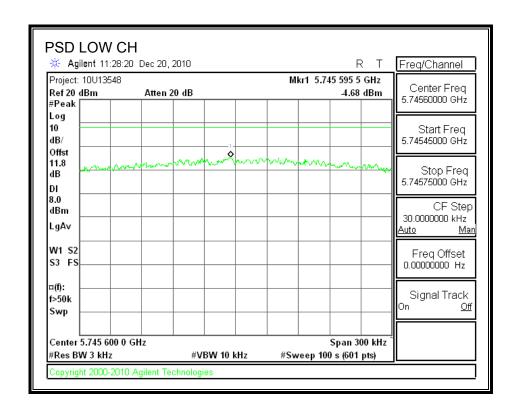
Channel	Frequency	Spectrum Attenuator and		Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	5745	12.6	11.8	24.40	30	-5.60
Middle	5785	12.4	11.8	24.20	30	-5.80
High	5825	12.4	11.8	24.20	30	-5.80

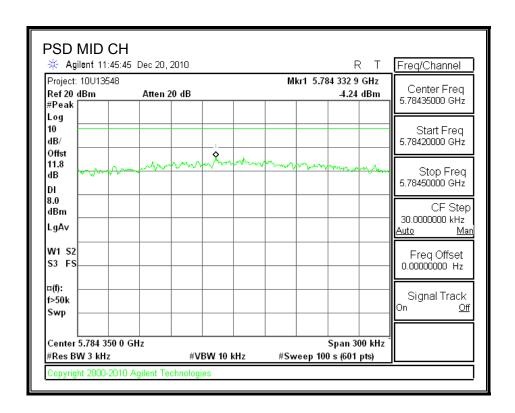
7.4.4. POWER SPECTRAL DENSITY

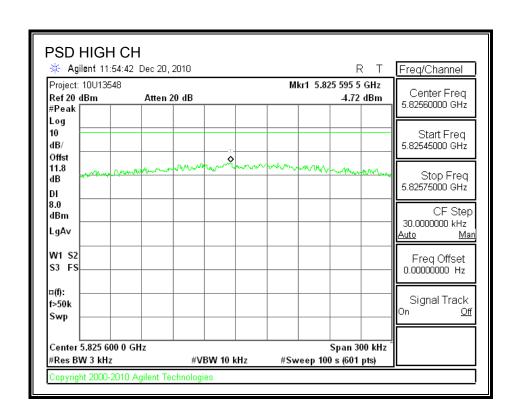
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-4.68	8	-12.68
Middle	5785	-4.24	8	-12.24
High	5825	-4.72	8	-12.72

POWER SPECTRAL DENSITY

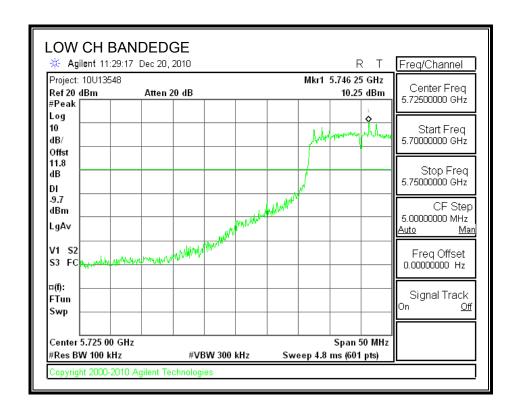
7.4.5. CONDUCTED SPURIOUS EMISSIONS

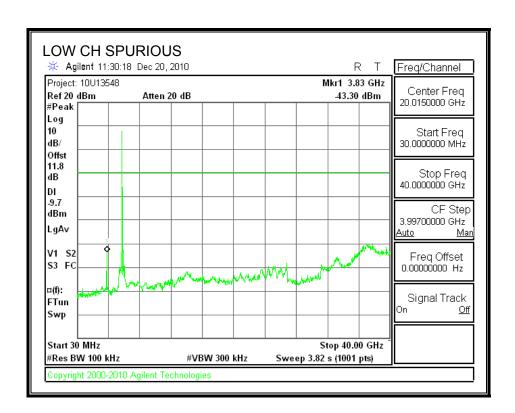
LIMITS

FCC §15.247 (d)

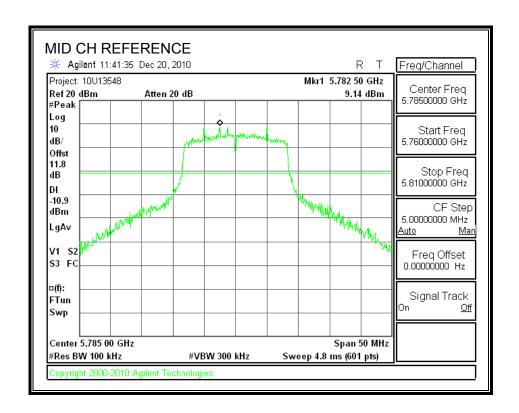
IC RSS-210 A8.5

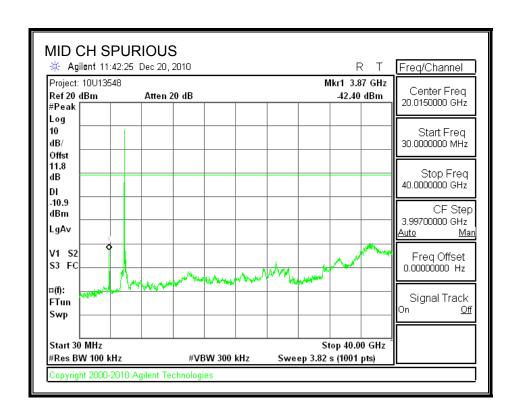
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

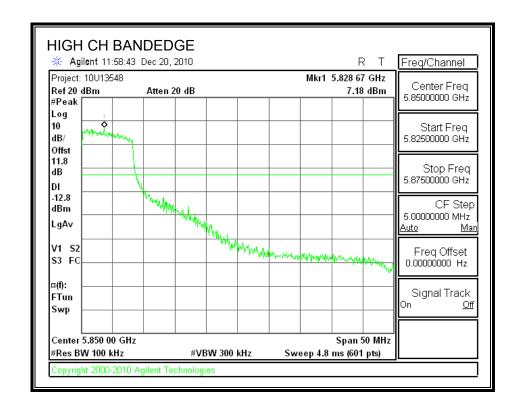

TEST PROCEDURE

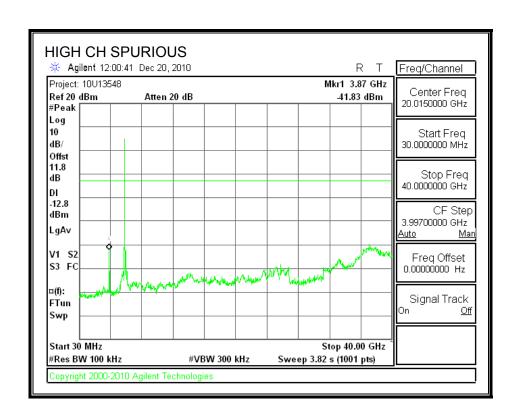

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

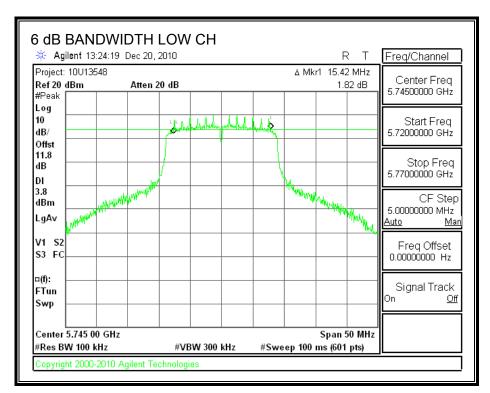
7.5. 802.11n HT20 MODE IN THE 5.8 GHz BAND

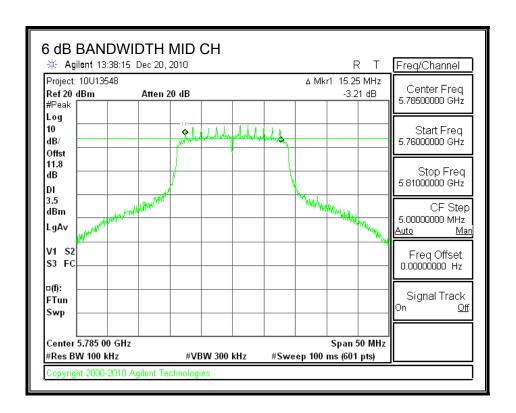
7.5.1. 6 dB BANDWIDTH

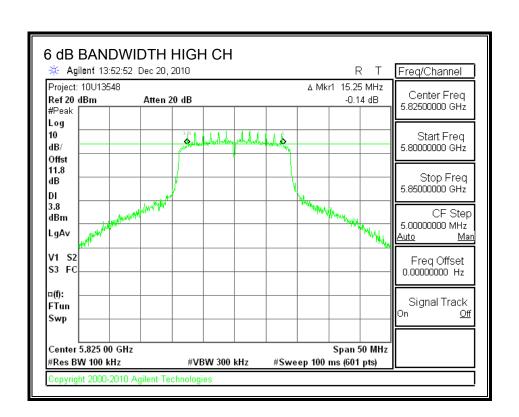
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

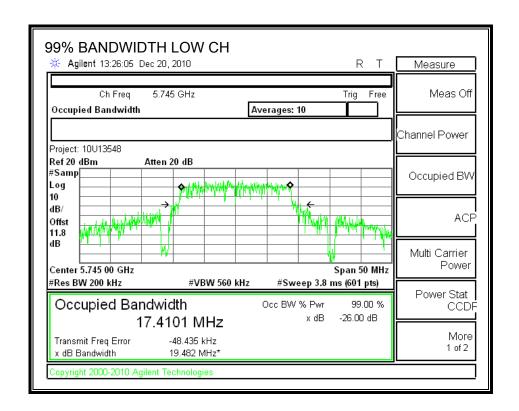

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

Channel	Frequency	6 dB Bandwidth	Minimum Limit	
	(MHz)	(MHz)	(MHz)	
Low	5745	15.42	0.5	
Middle	5785	15.25	0.5	
High	5825	15.25	0.5	

6 dB BANDWIDTH

7.5.2. 99% BANDWIDTH

LIMITS

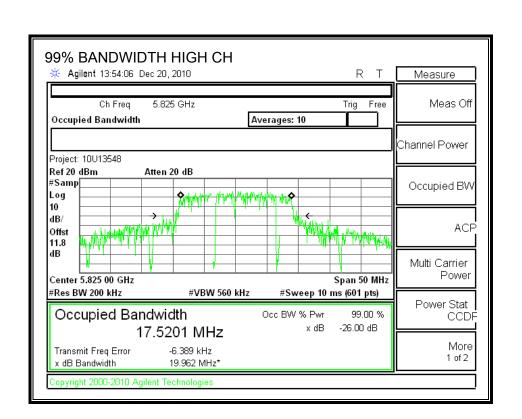

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	17.4101
Middle	5785	17.3341
High	5825	17.5201

99% BANDWIDTH



REPORT NO: 10U13548-1B FCC ID: BCGA1395

DATE: MARCH 01, 2011

IC: 579C-A1395

REPORT NO: 10U13548-1B FCC ID: BCGA1395

DATE: MARCH 01, 2011

IC: 579C-A1395

7.5.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using a wide bandwidth peak power meter.

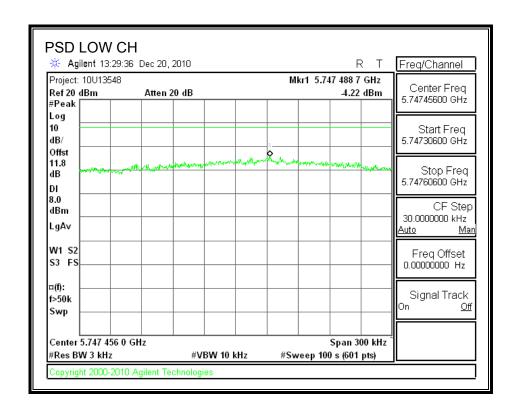
Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	5745	12.7	11.8	24.50	30	-5.50
Middle	5785	12.4	11.8	24.20	30	-5.80
High	5825	12.4	11.8	24.20	30	-5.80

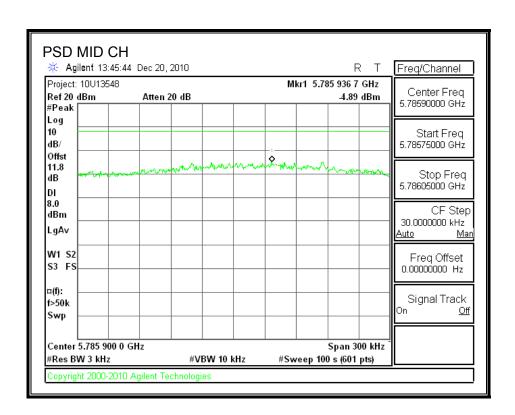
7.5.4. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	-4.22	8	-12.22
Middle	5785	-4.89	8	-12.89
High	5825	-5.15	8	-13.15

POWER SPECTRAL DENSITY

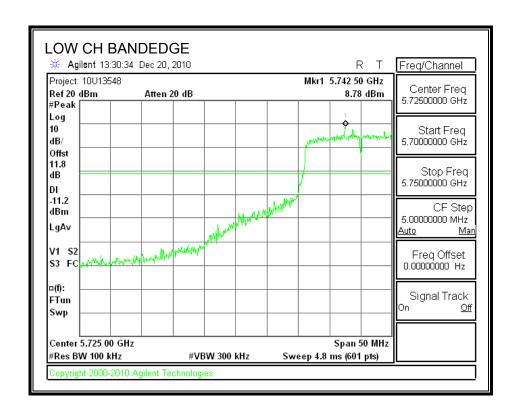
7.5.5. CONDUCTED SPURIOUS EMISSIONS

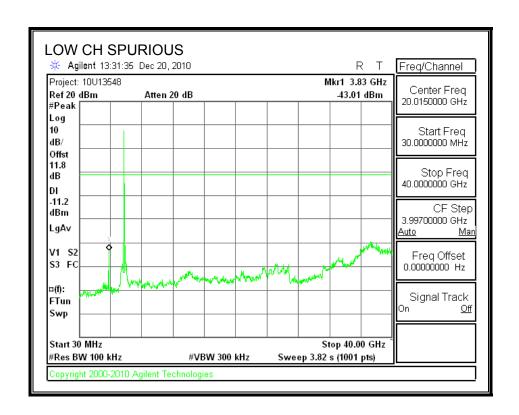
LIMITS

FCC §15.247 (d)

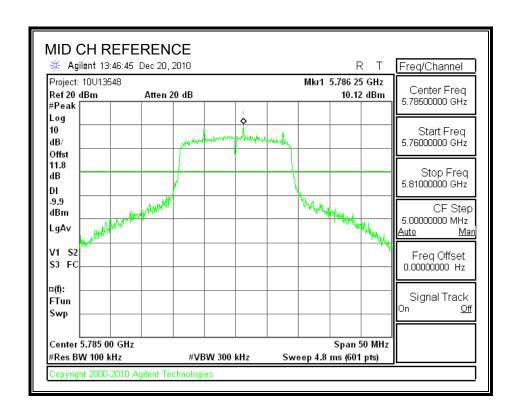
IC RSS-210 A8.5

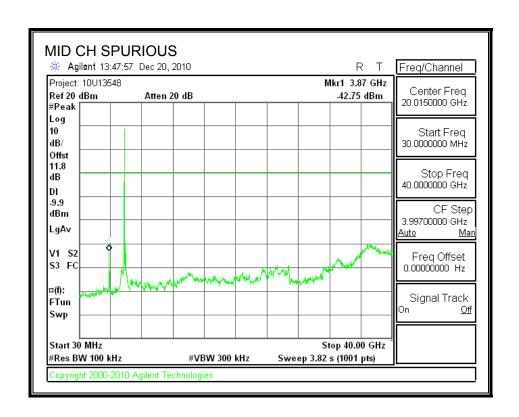
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

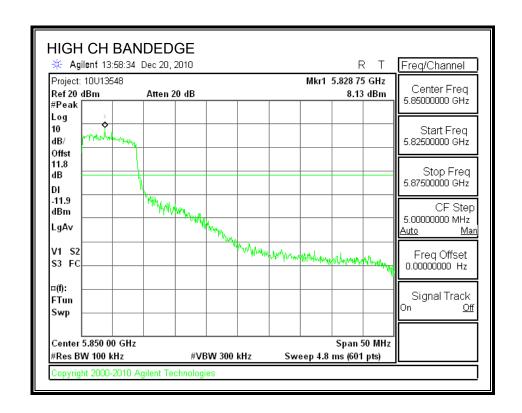

TEST PROCEDURE

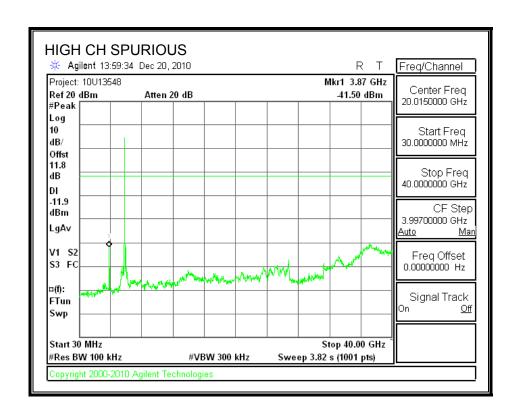

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

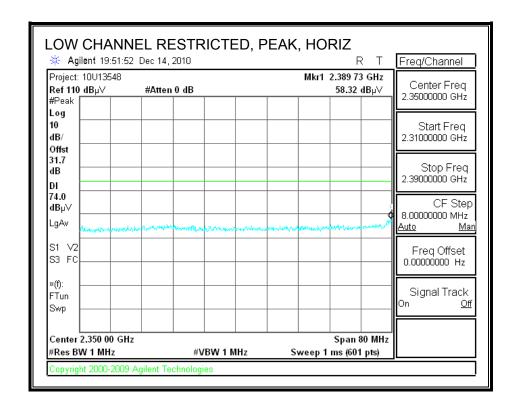
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

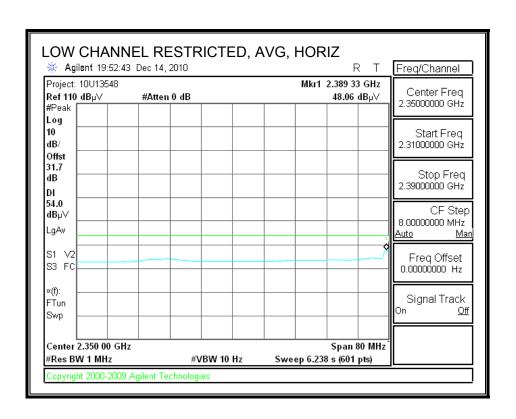
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

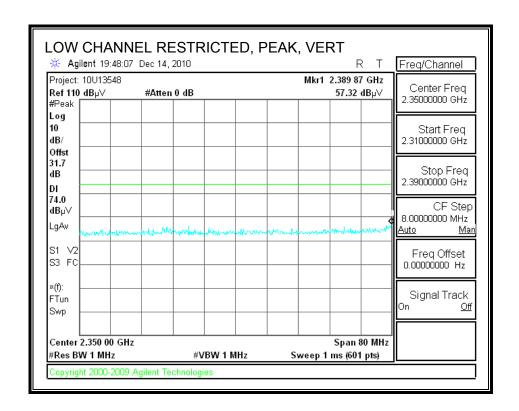
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

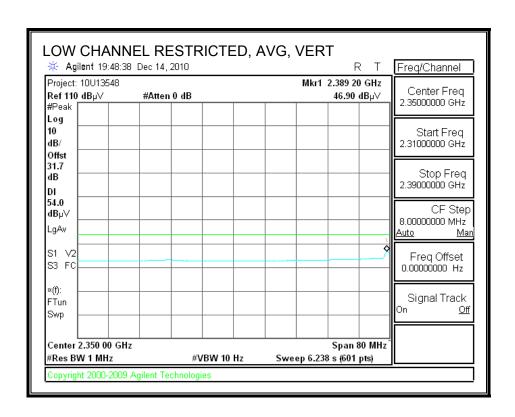

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable 5 GHz band.

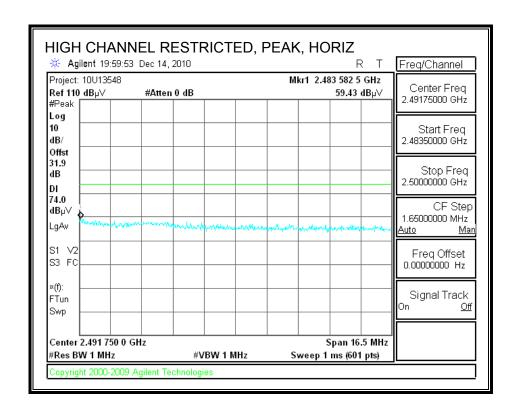
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND

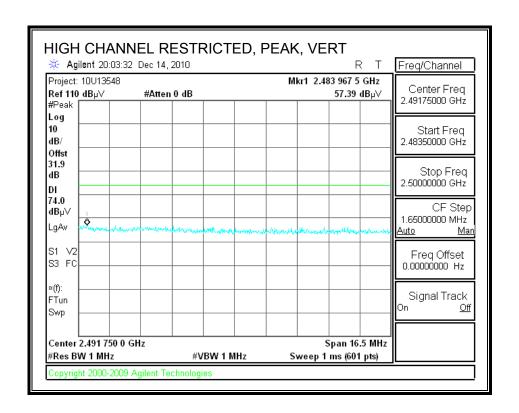

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395

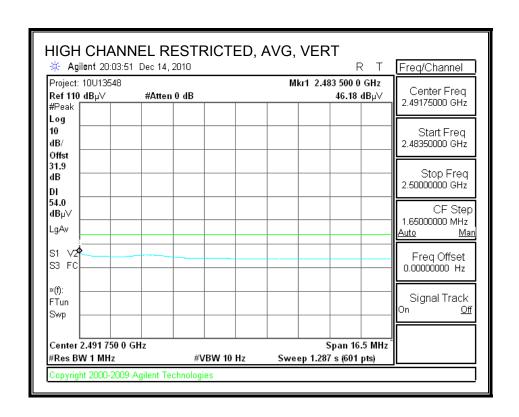

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

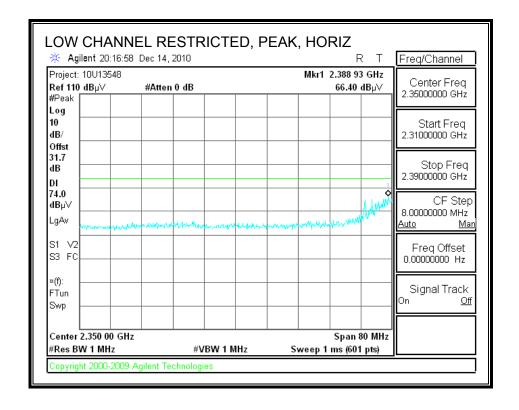
REPORT NO: 10U13548-1B FCC ID: BCGA1395

DATE: MARCH 01, 2011

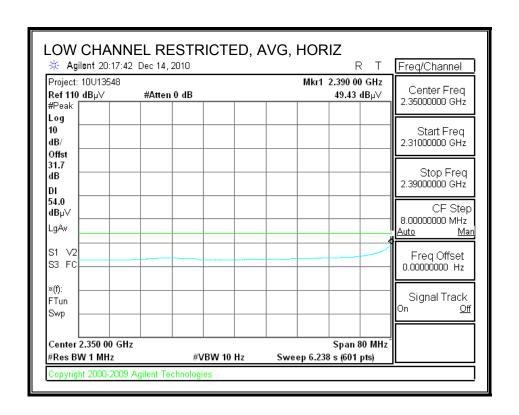
HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

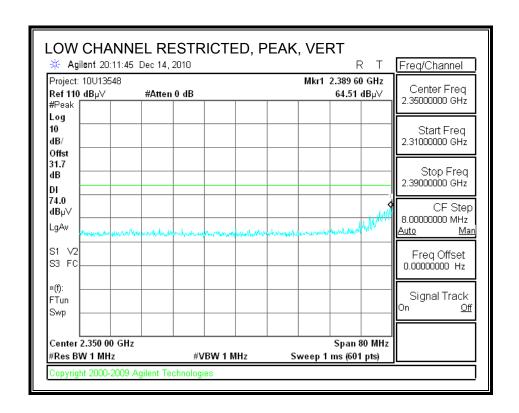
Compliance Certification Services, Fremont 5m Chamber


Test Engr: Tom chen Date: 12/13/10 10U13548 Project #: FCC Class B Test Target: TX mode, 802.11b Mode Oper:

> Average Field Strength Limit f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

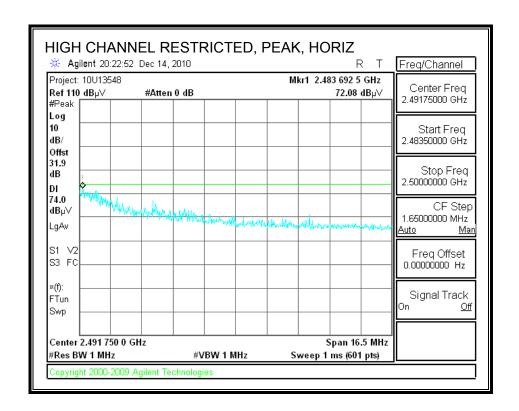

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
2412 MHz	Low CI	H, b mode	2										
4.824	3.0	42.5	32.8	5.8	-34.8	0.0	0.0	46.2	74.0	-27.8	V	P	
4.824	3.0	36.8	32.8	5.8	-34.8	0.0	0.0	40.6	54.0	-13.4	V	A	
12.060	3.0	34.1	38.5	9.8	-32.4	0.0	0.0	50.0	74.0	-24.0	V	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.9	54.0	-16.1	V	A	
2412 MHz	Low Cl	H, b mode	2										
4.824	3.0	47.8	32.8	5.8	-34.8	0.0	0.0	51.5	74.0	-22.5	H	P	
4.824	3.0	45.1	32.8	5.8	-34.8	0.0	0.0	48.8	54.0	-5.2	H	A	
12.060	3.0	34.3	38.5	9.8	-32.4	0.0	0.0	50.1	74.0	- 23.9	H	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.8	54.0	-16.2	H	A	
2437 MHz	Mid CI	I, b mode	•			ĺ							
4.874	3.0	44.6	32.8	5.8	-34.9	0.0	0.0	48.4	74.0	-25.6	H	P	
4.874	3.0	43.0	32.8	5.8	-34.9	0.0	0.0	46.8	54.0	-7.2	H	A	
7.311	3.0	38.3	35.2	7.3	-34.7	0.0	0.0	46.1	74.0	-27.9	H	P	
7.311	3.0	26.5	35.2	7.3	-34.7	0.0	0.0	34.3	54.0	-19.7	H	A	
2437 MHz	Mid CI	I, b mode	<u> </u>										
4.874	3.0	39.8	32.8	5.8	-34.9	0.0	0.0	43.6	74.0	-30.4	V	P	
4.874	3.0	32.4	32.8	5.8	-34.9	0.0	0.0	36.2	54.0	-17.8	V	A	
7.311	3.0	37.6	35.2	7.3	-34.7	0.0	0.0	45.4	74.0	-28.6	V	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	V	A	
2462 MHz	High C	H, b mod	le										
4.924	3.0	39.6	32.8	5.9	-34.9	0.0	0.0	43.5	74.0	-30.5	V	P	
4.924	3.0	31.4	32.8	5.9	-34.9	0.0	0.0	35.2	54.0	-18.8	V	A	
7.386	3.0	37.6	35.3	7.3	-34.6	0.0	0.0	45.5	74.0	-28.5	V	P	
7.386	3.0	25.4	35.3	7.3	-34.6	0.0	0.0	33.4	54.0	-20.6	V	A	
2462 MHz	High C	H, b mod	le										
4.924	3.0	42.6	32.8	5.9	-34.9	0.0	0.0	46.5	74.0	-27.5	H	P	
4.924	3.0	36.7	32.8	5.9	-34.9	0.0	0.0	40.6	54.0	-13.4	H	A	
7.386	3.0	38.7	35.3	7.3	-34.6	0.0	0.0	46.7	74.0	-27.3	H	P	
7.386	3.0	26.3	35.3	7.3	-34.6	0.0	0.0	34.3	54.0	-19.7	H	A	

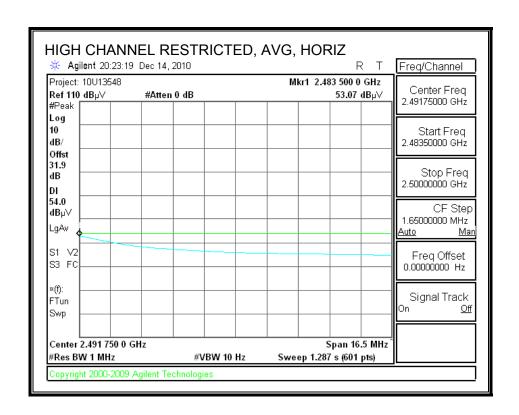
8.2.2. TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND

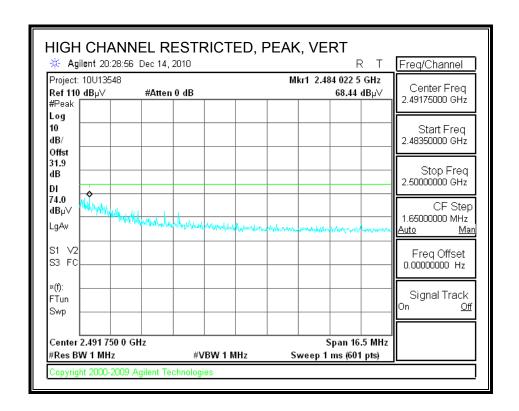

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395

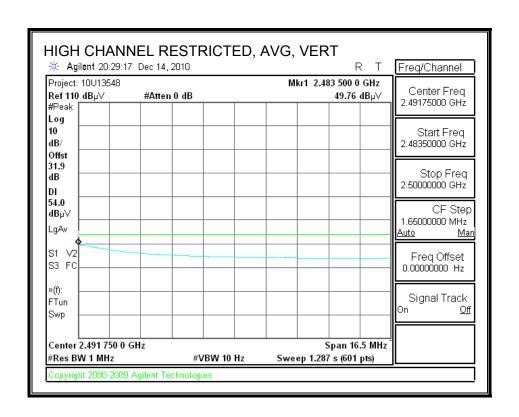
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




REPORT NO: 10U13548-1B FCC ID: BCGA1395


DATE: MARCH 01, 2011

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

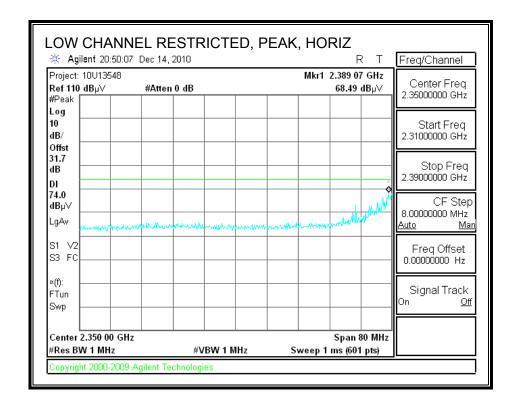
REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395

HARMONICS AND SPURIOUS EMISSIONS

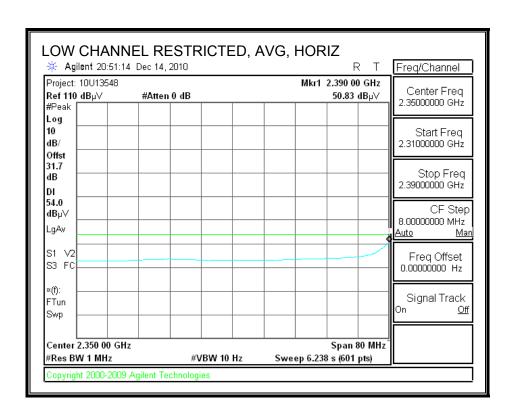
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

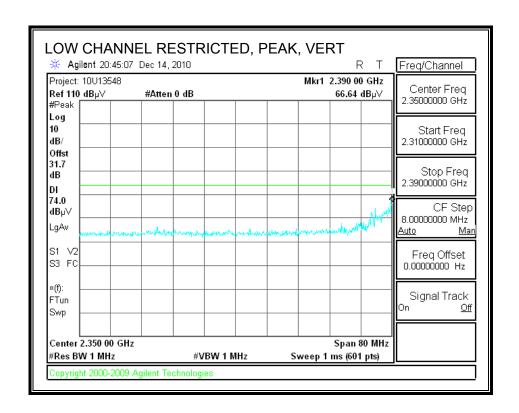
Test Engr: Tom chen Date: 12/13/10 Project #: 10U13548 FCC Class B Test Target: Mode Oper: TX mode, 802.11g

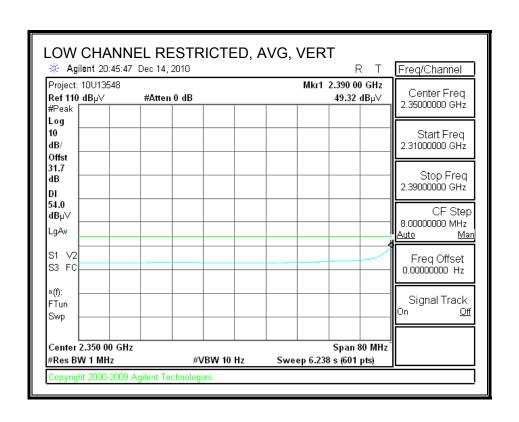

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength
>
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

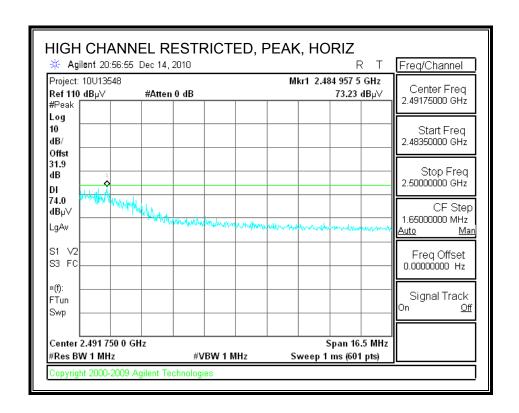
f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m		Margin dB	Ant. Pol. V/H	Det. P/A/QP	Notes
2412 MHz	Low Cl	H, g mode	<u> </u>										
4.824	3.0	41.5	32.8	5.8	-34.8	0.0	0.0	45.3	74.0	-28.7	H	P	
4.824	3.0	28.5	32.8	5.8	-34.8	0.0	0.0	32.2	54.0	-21.8	H	A	
12.060	3.0	34.1	38.5	9.8	-32.4	0.0	0.0	50.0	74.0	-24.0	Н	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.9	54.0	-16.1	Н	A	
2412 MHz	Low Cl	L g mode	<u> </u>										
4.824	3.0	37.8	32.8	5.8	-34.8	0.0	0.0	41.6	74.0	-32.4	V	P	
4.824	3.0	25.9	32.8	5.8	-34.8	0.0	0.0	29.7	54.0	-24.3	V	A	
12.060	3.0	34.1	38.5	9.8	-32.4	0.0	0.0	49.9	74.0	-24.1	v	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.8	54.0	-16.2	V	A	
2437 MHz	Mid CI	L g mode	······										
4.874	3.0	40.2	32.8	5.8	-34.9	0.0	0.0	44.0	74.0	-30.0	v	P	
4.874	3.0	27.8	32.8	5.8	-34.9	0.0	0.0	31.6	54.0	-22.4	V	A	
7.311	3.0	37.3	35.2	7.3	-34.7	0.0	0.0	45.1	74.0	-28.9	V	P	
7.311	3.0	24.9	35.2	7.3	-34.7	0.0	0.0	32.7	54.0	-21.3	V	A	
2437 MHz	Mid CI	L g mode	<u> </u>										
4.874	3.0	45.4	32.8	5.8	-34.9	0.0	0.0	49.2	74.0	-24.8	Н	P	
4.874	3.0	31.6	32.8	5.8	-34.9	0.0	0.0	35.4	54.0	-18.6	Н	A	
7.311	3.0	37.8	35.2	7.3	-34.7	0.0	0.0	45.6	74.0	-28.4	Н	P	
7.311	3.0	25.1	35.2	7.3	-34.7	0.0	0.0	32.9	54.0	-21.1	Н	A	
2462 MHz	High C	H, g mod	le										
4.924	3.0	37.9	32.8	5.9	-34.9	0.0	0.0	41.7	74.0	-32.3	H	P	
4.924	3.0	25.6	32.8	5.9	-34.9	0.0	0.0	29.5	54.0	-24.5	Н	A	
7.386	3.0	38.0	35.3	7.3	-34.6	0.0	0.0	46.0	74.0	-28.0	H	P	
7.386	3.0	24.9	35.3	7.3	-34.6	0.0	0.0	32.9	54.0	-21.1	Н	A	
2462 MHz		H, g mod	le										
4.924	3.0	38.2	32.8	5.9	-34.9	0.0	0.0	42.0	74.0	-32.0	V	P	
4.924	3.0	25.6	32.8	5.9	-34.9	0.0	0.0	29.5	54.0	-24.5	V	A	
7.386	3.0	37.2	35.3	7.3	-34.6	0.0	0.0	45.1	74.0	-28.9	V	P	
7.386	3.0	24.9	35.3	7.3	-34.6	0.0	0.0	32.9	54.0	-21.1	v	A	

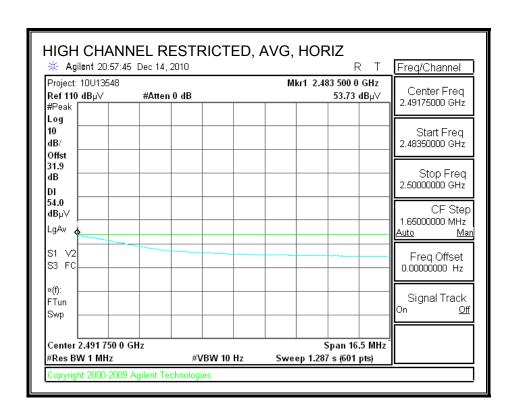

Rev. 4.1.2.7

8.2.3. TX ABOVE 1 GHz FOR 802.11n HT20 MODE IN THE 2.4 GHz BAND

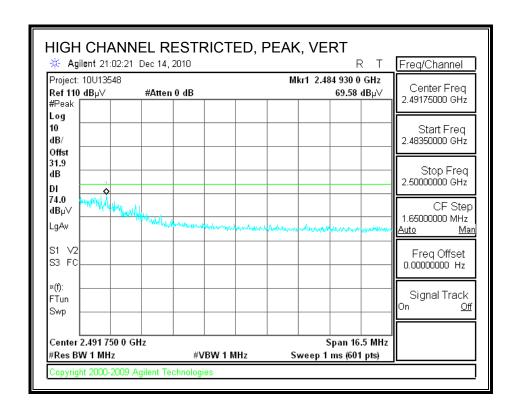

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395

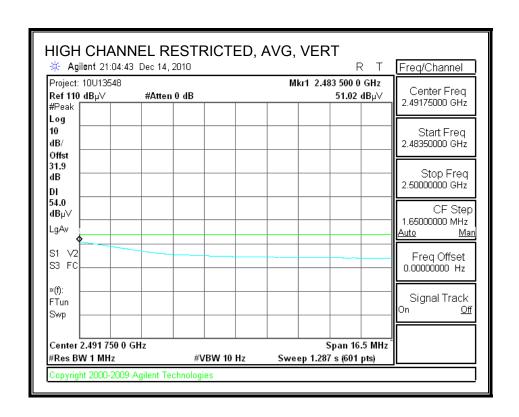

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 10U13548-1B DATE: MARCH 01, 2011 FCC ID: BCGA1395

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom chen Date: 12/13/10 Project #: 10U13548 FCC Class B Test Target: Mode Oper: TX mode, 802.11n

> Average Field Strength Limit f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

f	Dist	Read	AF	CL	-	D Corr		: :			Ant Pol		Notes
GHz	(m)	dBuV	dB/m	dВ	dB	dB	qR	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
2412 MHz	Low CI	H, HT20 1	node										
4.824	3.0	37.8	32.8	5.8	-34.8	0.0	0.0	41.5	74.0	-32.5	V	P	
4.824	3.0	25.9	32.8	5.8	-34.8	0.0	0.0	29.6	54.0	-24.4	V	A	
12.060	3.0	34.2	38.5	9.8	-32.4	0.0	0.0	50.1	74.0	-23.9	V	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.8	54.0	-16.2	V	A	
2412 MHz	Low Ci	H, HT20 1	node										
4.824	3.0	42.0	32.8	5.8	-34.8	0.0	0.0	45.7	74.0	- 28. 3	H	P	
4.824	3.0	28.7	32.8	5.8	-34.8	0.0	0.0	32.4	54.0	-21.6	H	A	
12.060	3.0	34.2	38.5	9.8	-32.4	0.0	0.0	50.0	74.0	-24.0	H	P	
12.060	3.0	22.0	38.5	9.8	-32.4	0.0	0.0	37.8	54.0	-16.2	H	A	
2437 MHz	Mid CI	I, HT20 r	node										
4.874	3.0	43.3	32.8	5.8	-34.9	0.0	0.0	47.1	74.0	-26.9	H	P	
4.874	3.0	30.6	32.8	5.8	-34.9	0.0	0.0	34.4	54.0	-19.6	H	A	
7.311	3.0	36.7	35.2	7.3	-34.7	0.0	0.0	44.5	74.0	-29.5	H	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	H	A	
2437 MHz	Mid CF	I, HT20 r	node										
4.874	3.0	39.5	32.8	5.8	-34.9	0.0	0.0	43.3	74.0	-30.7	V	P	
4.874	3.0	27.0	32.8	5.8	-34.9	0.0	0.0	30.8	54.0	-23.2	V	A	
7.311	3.0	37.3	35.2	7.3	-34.7	0.0	0.0	45.1	74.0	-28.9	V	P	
7.311	3.0	24.8	35.2	7.3	-34.7	0.0	0.0	32.6	54.0	-21.4	V	A	
2462 MHz	High C	H, HT20	mode										
4.924	3.0	37.4	32.8	5.9	-34.9	0.0	0.0	41.2	74.0	-32.8	V	P	
4.924	3.0	25.6	32.8	5.9	-34.9	0.0	0.0	29.5	54.0	-24.5	V	A	
7.386	3.0	37.0	35.3	7.3	-34.6	0.0	0.0	44.9	74.0	-29.1	V	P	
7.386	3.0	24.9	35.3	7.3	-34.6	0.0	0.0	32.8	54.0	-21.2	V	A	
2462 MHz	High C	H, HT20	mode										
4.924	3.0	38.8	32.8	5.9	-34.9	0.0	0.0	42.7	74.0	-31.3	H	P	
4.924	3.0	26.7	32.8	5.9	-34.9	0.0	0.0	30.6	54.0	- 23.4	H	A	
7.386	3.0	37.1	35.3	7.3	-34.6	0.0	0.0	45.1	74.0	-28.9	H	P	
7.386	3.0	24.9	35.3	7.3	-34.6	0.0	0.0	32.9	54.0	-21.1	Н	A	

8.2.4. TX ABOVE 1 GHz FOR 802.11a MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom chen 12/16/10 Date: Project #: 10U13548 FCC Class B Company: Test Target: FCC Class B Mode Oper: TX mode, 802.11a

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	Notes
GHz	(m)	dBuV	dB/m	dВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
5745 MH	z Low C	H											
11.490	3.0	35.9	38.1	9.5	-33.1	0.0	0.7	51.1	74.0	-22.9	V	P	
11.490	3.0	22.6	38.1	9.5	-33.1	0.0	0.7	37.8	54.0	-16.2	V	A	
11.490	3.0	34.8	38.1	9.5	-33.1	0.0	0.7	49.9	74.0	-24.1	H	P	
11.490	3.0	22.7	38.1	9.5	-33.1	0.0	0.7	37.8	54.0	-16.2	н	A	
5785 MH	z Mid Cl	H											
11.570	3.0	35.9	38.1	9.5	-33.0	0.0	0.7	51.3	74.0	-22.7	H	P	
11.570	3.0	22.2	38.1	9.5	-33.0	0.0	0.7	37.6	54.0	-16.4	Н	A	
11.570	3.0	34.8	38.1	9.5	-33.0	0.0	0.7	50.2	74.0	-23.8	V	P	
11.570	3.0	22.1	38.1	9.5	-33.0	0.0	0.7	37.4	54.0	-16.6	V	A	
5825 MH	z High (H											
11.650	3.0	34.8	38.2	9.6	-32.9	0.0	0.7	50.4	74.0	- 23.6	Н	P	
11.650	3.0	22.3	38.2	9.6	-32.9	0.0	0.7	37.9	54.0	-16.1	н	A	
11.650	3.0	34.8	38.2	9.6	-32.9	0.0	0.7	50.4	74.0	- 23.6	V	P	
11.650	3.0	22.4	38.2	9.6	-32.9	0.0	0.7	38.0	54.0	-16.0	v	A	

Rev. 4.1.2.7

8.2.5. TX ABOVE 1 GHz FOR 802.11n HT20 MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom chen 12/16/10 Date: Project #: 10U13548 FCC Class B Test Target:

Mode Oper: TX mode, 802.11n HT20

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ		:	dBuV/m	-	V/H	P/A/QP	
5745 MH	z Low C	H						1					
11.490	3.0	36.3	38.1	9.5	-33.1	0.0	0.7	51.4	74.0	-22.6	V	P	
11.490	3.0	22.7	38.1	9.5	-33.1	0.0	0.7	37.8	54.0	-16.2	V	A	
11.490	3.0	36.6	38.1	9.5	-33.1	0.0	0.7	51.8	74.0	-22.2	H	P	
11.490	3.0	23.3	38.1	9.5	-33.1	0.0	0.7	38.5	54.0	-15.5	H	A	
5785 MH	z Mid Cl	H											
11.570	3.0	35.5	38.1	9.5	-33.0	0.0	0.7	50.9	74.0	- 23.1	H	P	
11.570	3.0	22.2	38.1	9.5	-33.0	0.0	0.7	37.5	54.0	-16.5	Н	A	
11.570	3.0	34.9	38.1	9.5	-33.0	0.0	0.7	50.3	74.0	- 23.7	V	P	
11.570	3.0	22.1	38.1	9.5	-33.0	0.0	0.7	37.5	54.0	-16.5	V	A	
5825 MH:	z High (H											
11.650	3.0	34.2	38.2	9.6	-32.9	0.0	0.7	49.8	74.0	-24.2	V	P	•
11.650	3.0	22.3	38.2	9.6	-32.9	0.0	0.7	37.9	54.0	-16.1	V	A	•
11.650	3.0	34.6	38.2	9.6	-32.9	0.0	0.7	50.2	74.0	-23.8	Н	P	•
11.650	3.0	22.4	38.2	9.6	-32.9	0.0	0.7	37.9	54.0	-16.1	Н	A	

Rev. 4.1.2.7

CO-LOCATION WORST CASE TX ABOVE 1 GHz (802.11n / 5.8 8.3. GHz BAND)

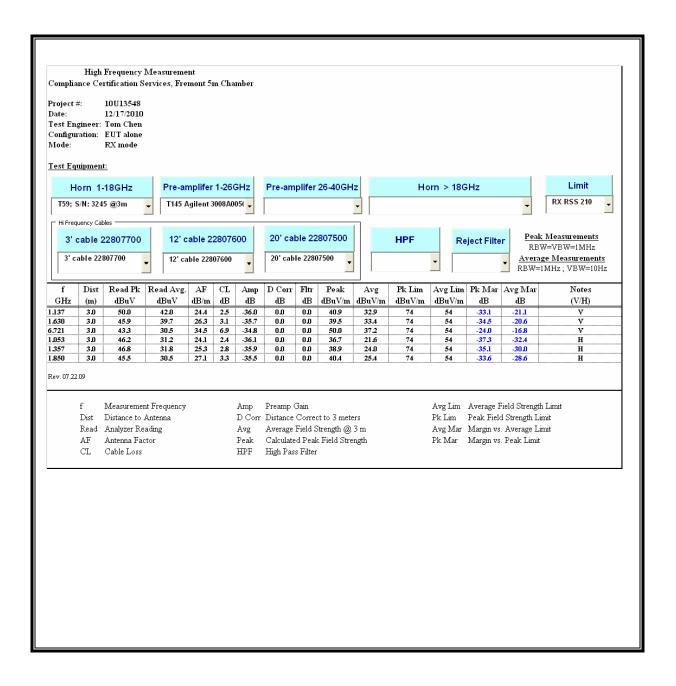
HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

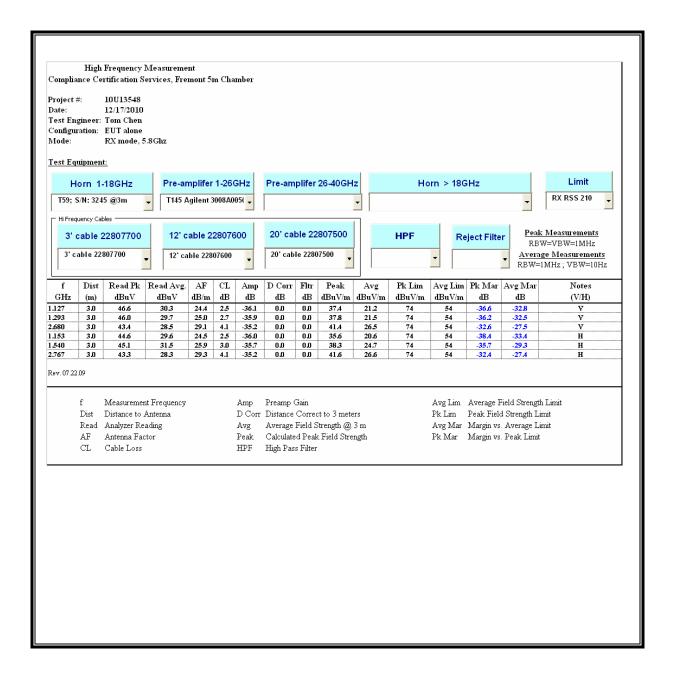
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom chen Date: 02/28/11 10U13548 Project #: FCC Class B Test Target:

TX mode, 802.11n HT20 / BT CH78 Mode Oper:

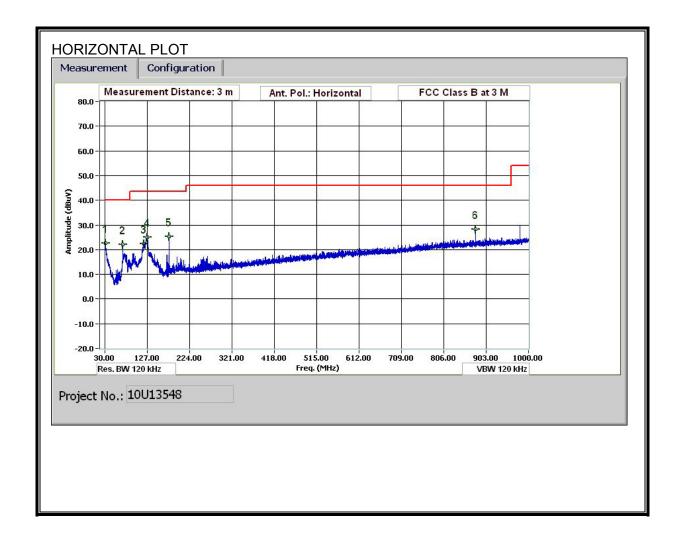

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
5745 MH:	Low Cl	H											
11.490	3.0	35.5	38.1	9.5	-33.1	0.0	0.7	50.6	74.0	-22.6	v	P	
11.490	3.0	21.9	38.1	9.5	-33.1	0.0	0.7	37.1	54.0	-16.2	v	A	
11.490	3.0	35.8	38.1	9.5	-33.1	0.0	0.7	51.0	74.0	-22.2	H	P	
11.490	3.0	22.5	38.1	9.5	-33.1	0.0	0.7	37.7	54.0	-15.5	H	A	
5785 MH	Mid CI	I											
11.570	3.0	34.8	38.1	9.5	-33.0	0.0	0.7	50.1	74.0	-23.1	H	P	
11.570	3.0	21.4	38.1	9.5	-33.0	0.0	0.7	36.8	54.0	-16.5	H	A	
11.570	3.0	34.1	38.1	9.5	-33.0	0.0	0.7	49.5	74.0	-23.7	v	P	
11.570	3.0	21.3	38.1	9.5	-33.0	0.0	0.7	36.7	54.0	-16.5	v	A	
5825 MH:	High C	H											
11.650	3.0	33.4	38.2	9.6	-32.9	0.0	0.7	49.0	74.0	-24.2	V	P	
11.650	3.0	21.5	38.2	9.6	-32.9	0.0	0.7	37.1	54.0	-16.1	v	A	
11.650	3.0	33.8	38.2	9.6	-32.9	0.0	0.7	49.4	74.0	-23.8	H	P	
11.650	3.0	21.6	38.2	9.6	-32.9	0.0	0.7	37.1	54.0	-16.1	Н	A	

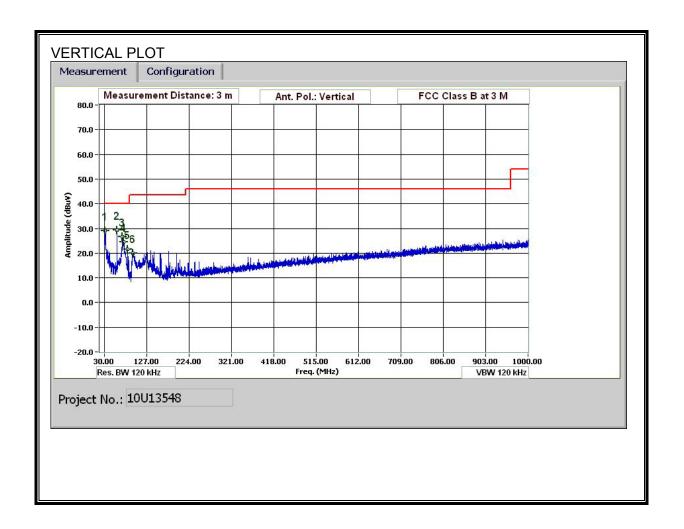

Rev. 4.1.2.7

8.4. RECEIVER ABOVE 1 GHz

8.4.1. RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 2.4 GHz BAND



8.4.2. RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 5.8 GHz BAND



8.5. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 12/17/10
Project #: 10U13548
Test Target: FCC Class B
Mode Oper: TX mode Worst case

f Measurement Frequency Amp Preamp Gain Margin Vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Pad	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Horizontal													
32.04	3.0	32.3	19.4	0.5	29.7	0.0	0.0	22.5	40.0	-17.5	H	P	
71.402	3.0	42.9	8.2	0.7	29.6	0.0	0.0	22.2	40.0	-17.8	H	P	
119.644	3.0	37.2	13.7	1.0	29.5	0.0	0.0	22.3	43.5	-21.2	H	P	
126.844	3.0	39.7	13.8	1.0	29.4	0.0	0.0	25.1	43.5	-18.4	H	P	
177.366	3.0	42.9	10.4	1.2	29.1	0.0	0.0	25.3	43.5	-18.2	H	P	
879.155	3.0	32.5	21.4	3.0	28.7	0.0	0.0	28.2	46.0	-17.8	Н	P	
Vertical													
32.04	3.0	38.8	19.4	0.5	29.7	0.0	0.0	29.0	40.0	-11.0	V	P	
59.041	3.0	50.5	7.9	0.7	29.6	0.0	0.0	29.5	40.0	-10.5	V	P	
70.802	3.0	47.3	8.2	0.7	29.6	0.0	0.0	26.6	40.0	-13.4	V	P	
74.162	3.0	45.3	8.0	0.8	29.6	0.0	0.0	24.4	40.0	-15.6	v	P	
83.642	3.0	42.7	7.6	0.8	29.6	0.0	0.0	21.5	40.0	-18.5	V	P	
94.923	3.0	39.7	8.8	0.9	29.5	0.0	0.0	19.8	43.5	-23.7	v	P	

Rev. 1.27.09

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

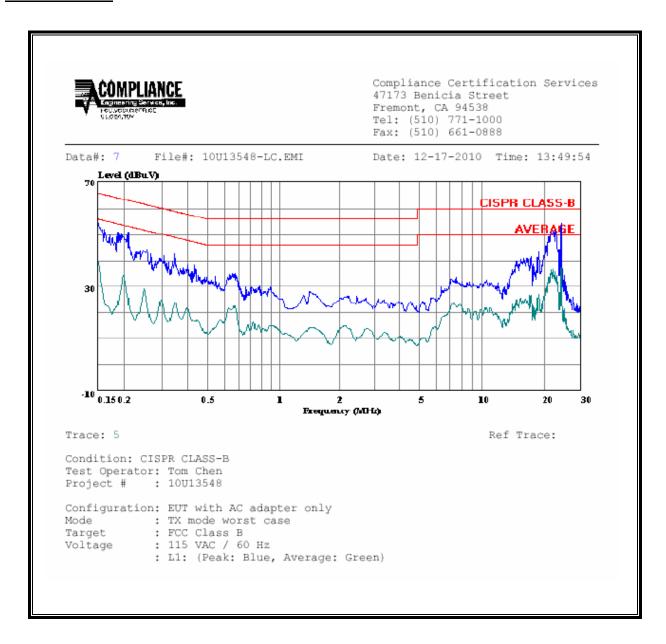
FCC §15.207 (a)

RSS-Gen 7.2.2

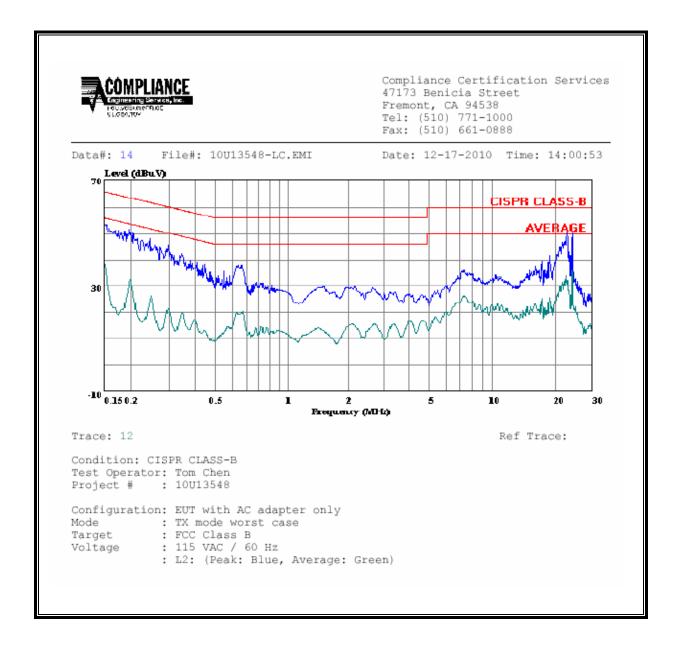
Frequency of Emission (MHz)	Conducted I.	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE


ANSI C63.4

RESULTS


6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)													
Freq.		Reading		Closs	Limit	EN_B	Marg	Remark						
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2					
0.15	52.60		34.66	0.00	65.84	55.84	-13.24	-21.18	L1					
0.21	51.08		25.61	0.00	63.28	53.28	-12.20	-27.67	L1					
24.01	54.58		45.07	0.00	60.00	50.00	-5.42	-4.93	L1					
0.15	53.47		33.40	0.00	65.84	55.84	-12.37	-22.44	L2					
0.20	51.52		31.87	0.00	63.82	53.82	-12.30	-21.95	L2					
22.90	50.47		32.17	0.00	60.00	50.00	-9.53	-17.83	L2					
6 Worst l	Data 													

LINE 1 RESULTS

LINE 2 RESULTS

