

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11 a/b/g/n 2X2 ACCESS POINT

MODEL NUMBER: A1392

FCC ID: BCGA1392 IC: 579C-A1392

REPORT NUMBER: 12U14633-1

ISSUE DATE: SEPTEMBER 25, 2012

Prepared for APPLE, INC.
1 INFINITE LOOP
CUPERTINO, CA 95014, U.S.A.

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue ev. Date Revisions		Revised By
	09/25/12	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.		ATTESTATION OF TEST RESULTS	. 6
2.	. T	TEST METHODOLOGY	. 7
3.	F	FACILITIES AND ACCREDITATION	. 7
4.		CALIBRATION AND UNCERTAINTY	. 7
	4.1	. MEASURING INSTRUMENT CALIBRATION	. 7
	4.2	SAMPLE CALCULATION	. 7
	4.3	B. MEASUREMENT UNCERTAINTY	. 7
5.	. E	EQUIPMENT UNDER TEST	. 8
	5.1	DESCRIPTION OF EUT	. 8
	5.2	P. MAXIMUM OUTPUT POWER	. 8
	5.3	B. DESCRIPTION OF AVAILABLE ANTENNAS	. 8
	5.4	9. SOFTWARE AND FIRMWARE	. 9
	5.5	5. WORST-CASE CONFIGURATION AND MODE	. 9
	5.6	6. DESCRIPTION OF TEST SETUP	10
6.	. T	TEST AND MEASUREMENT EQUIPMENT	12
7.		ANTENNA PORT TEST RESULTS	13
	7.1		
	-	7.1.1. ON TIME AND DUTY CYCLE RESULTS	13
	_	7.1.2. MEASUREMENT METHOD FOR POWER AND PPSD7.1.3. MEASUREMENT METHOD FOR AVG SPURIOUS EMISSIONS ABOVE 1 GHZ	
		7.1.4. DUTY CYCLE PLOTS	
	7.2	2. 802.11a MODE IN THE 5.2 GHz BAND	16
		TO A SOUR DANIES AND THE	10
		7.2.1. 26 dB BANDWIDTH	16
		7.2.2. 99% BANDWIDTH	16 20
	7	7.2.2. 99% BANDWIDTH	16 20 25
	7 7	7.2.2. 99% BANDWIDTH	16 20 25 26
	7 7	7.2.2. 99% BANDWIDTH	16 20 25 26 32
	7.3 7.3	7.2.2. 99% BANDWIDTH	16 25 26 32 <i>37</i> 37
	7.3 7.3	7.2.2. 99% BANDWIDTH	16 20 25 26 32 37 41
	7.3 7.3 7.7	7.2.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46
	7.3 7.3 7.7 7	7.2.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46 47
	7.3 7.3 7.7 7	7.2.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46 47 53
	7.3 7.3 7.7 7 7 7	7.2.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46 47 53 58
	7.3 7.3 7.7 7 7 7.4 7	7.2.2. 99% BANDWIDTH 7.2.3. AVERAGE POWER 7.2.4. OUTPUT POWER AND PPSD 7.2.5. PEAK EXCURSION 8. 802.11n HT20 MODE IN THE 5.2 GHz BAND 7.3.1. 26 dB BANDWIDTH 7.3.2. 99% BANDWIDTH 7.3.3. AVERAGE POWER 7.3.4. OUTPUT POWER AND PPSD 7.3.5. PEAK EXCURSION 8. 802.11n HT40 MODE IN THE 5.2 GHz BAND 7.4.1. 26 dB BANDWIDTH 7.4.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46 47 53 58 58
	7.3 7.3 7.7 7 7 7 7.4 7	7.2.2. 99% BANDWIDTH. 7.2.3. AVERAGE POWER. 7.2.4. OUTPUT POWER AND PPSD. 7.2.5. PEAK EXCURSION. 8. 802.11n HT20 MODE IN THE 5.2 GHz BAND. 7.3.1. 26 dB BANDWIDTH. 7.3.2. 99% BANDWIDTH. 7.3.3. AVERAGE POWER. 7.3.4. OUTPUT POWER AND PPSD. 7.3.5. PEAK EXCURSION. 8. 802.11n HT40 MODE IN THE 5.2 GHz BAND. 7.4.1. 26 dB BANDWIDTH. 7.4.2. 99% BANDWIDTH. 7.4.3. AVERAGE POWER.	16 20 25 26 37 37 41 46 47 53 58 61 64
	7.3 7.3 7.7 7 7 7.4 7	7.2.2. 99% BANDWIDTH 7.2.3. AVERAGE POWER 7.2.4. OUTPUT POWER AND PPSD 7.2.5. PEAK EXCURSION 8. 802.11n HT20 MODE IN THE 5.2 GHz BAND 7.3.1. 26 dB BANDWIDTH 7.3.2. 99% BANDWIDTH 7.3.3. AVERAGE POWER 7.3.4. OUTPUT POWER AND PPSD 7.3.5. PEAK EXCURSION 8. 802.11n HT40 MODE IN THE 5.2 GHz BAND 7.4.1. 26 dB BANDWIDTH 7.4.2. 99% BANDWIDTH	16 20 25 26 32 37 41 46 47 53 58 61 64 65

1 00 ID. DOOK	11002	10. 37 30 K 1332
7.5. 802.	11a MODE IN THE 5.3 GHz BAND	72
7.5.1.	26 dB BANDWIDTH	72
7.5.2.	99% BANDWIDTH	77
	AVERAGE POWER	
7.5.4.	OUTPUT POWER AND PPSD	83
7.5.5.	PEAK EXCURSION	89
7.6. 802.	11n HT20 MODE IN THE 5.3 GHz BAND	0.4
	26 dB BANDWIDTH	
	99% BANDWIDTH	
	AVERAGE POWER	
	OUTPUT POWER AND PPSD	
	PEAK EXCURSION	
	11n HT40 MODE IN THE 5.3 GHz BAND	
	26 dB BANDWIDTH	
	99% BANDWIDTH	
	AVERAGE POWER	
	OUTPUT POWER AND PPSD	
7.7.5.	PEAK EXCURSION	127
7.8. 802.	11a MODE IN THE 5.6 GHz BAND	130
7.8.1.	26 dB BANDWIDTH	130
7.8.2.	99% BANDWIDTH	135
7.8.3.	OUTPUT POWER AND PPSD	140
7.8.4.	PEAK EXCURSION	146
7.0 802	11n HT20 MODE IN THE 5.6 GHz BAND	151
	26 dB BANDWIDTH	
	99% BANDWIDTH	
_	OUTPUT POWER AND PPSD	
	PEAK EXCURSION	
	2.11n HT40 MODE IN THE 5.6 GHz BAND	
7.10.1.	26 dB BANDWIDTH	
7.10.2.	99% BANDWIDTH	
7.10.3.	AVERAGE POWER	
•	OUTPUT POWER AND PPSD	
7.10.5.	PEAK EXCURSION	189
O DADIATE	ED TEST RESULTS	104
8.1. LIMI	TS AND PROCEDURE	194
8.2. TRA	NSMITTER ABOVE 1 GHz	195
	TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND	
	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND	
	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND	
	TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND	
	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND	
	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND	
	TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND	
	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND	
8.2.9.	TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BAND	222
	RST-CASE BELOW 1 GHz	
o.s. wor	NOT-CASE DELOTE I GIZ	∠∠0

9.	AC P	OWER LINE CONDUCTED EMISSIONS	229
10.	MA	XIMUM PERMISSIBLE EXPOSURE	234
11.	DY	NAMIC FREQUENCY SELECTION	238
1	1.1.	OVERVIEW	238
-	11.1.1		
	11.1.2	TEST AND MEASUREMENT SYSTEM	241
	11.1.3	8. SETUP OF EUT	244
	11.1.4	DESCRIPTION OF EUT	245
1	1.2.	RESULTS FOR 20 MHz BANDWIDTH	246
	11.2.1	. TEST CHANNEL	246
	11.2.2	RADAR WAVEFORMS AND TRAFFIC	246
	11.2.3		
	11.2.4		
	11.2.5		
	11.2.6		_
	11.2.7		
1	1.3.	RESULTS FOR 40 MHz BANDWIDTH	_
	11.3.1		273
	11.3.2		
	11.3.3		
	11.3.4 11.3.5		
	11.3.6		
	11.3.7		
	11.3.8		
12.	SE	TUP PHOTOS	301
1	2.1.	ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP	301
1	2.2.	RADIATED RF MEASUREMENT SETUP	302
1	2.3.	POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP	304
1	2.4.	DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP	306

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: APPLE, INC.

1 INFINITE LOOP

CUPERTINO, CA 95014, U.S.A.

EUT DESCRIPTION: 802.11 a/b/g/n 2X2 ACCESS POINT

MODEL: A1392

SERIAL NUMBER: C86H809NF2R9 (RADIATED UNIT),

PT602637 (CONDUCTED UNIT)

DATE TESTED: MARCH 12 – MAY 18, 2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 9 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

TOM CHEN
EMC ENGINEER
UL CCS

Page 6 of 307

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11 a/b/g/n transceiver Access Point.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	15.03	31.84
5180 - 5240	802.11n HT20	14.55	28.51
5190 - 5230	802.11n HT40	16.52	44.87
5260 - 5320	802.11a	21.08	128.23
5260 - 5320	802.11n HT20	20.95	124.45
5270 - 5310	802.11n HT40	22.21	166.34
5500 - 5700	802.11a	21.98	157.76
5500 - 5700	802.11n HT20	22.08	161.44
5510 - 5670	802.11n HT40	21.95	156.68

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes 2 IFA integrated antennas, with the following peak gains in dBi:

Frequency Range (MHz)	Ant0	Ant1
2400-2483.5	1.49	1.82
5150-5250	0.93	1.88
5250-5350	1.54	2.07
5470-5725	3.09	3.28
5745-5850	2.74	3.11

5.4. SOFTWARE AND FIRMWARE

The Utility software installed in the EUT during testing was ART v3.3.

The firmware installed in the EUT during testing was v7.6.2.d1auto20120216T6T0030-T0T

5.5. WORST-CASE CONFIGURATION AND MODE

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected.

Worst-case data rates as provided by the manufacturer are:

For 11b mode: 1Mbps For 11g mode: 6Mbps

For 11n HT20 (2.4 GHz band): MCS0

For 11a mode: 6Mbps (5.2 GHz, 5.3 GHz, 5.6 GHz, 5.8 GHz bands) For 11n HT20 (5.2 GHz, 5.3 GHz, 5.6 GHz, 5.8 GHz bands): MCS0 For 11n HT40 (5.2 GHz, 5.3 GHz, 5.6 GHz, 5.8 GHz bands): MCS0

EUT only has one orientation (laid down on the desktop) and it was tested in that orientation.

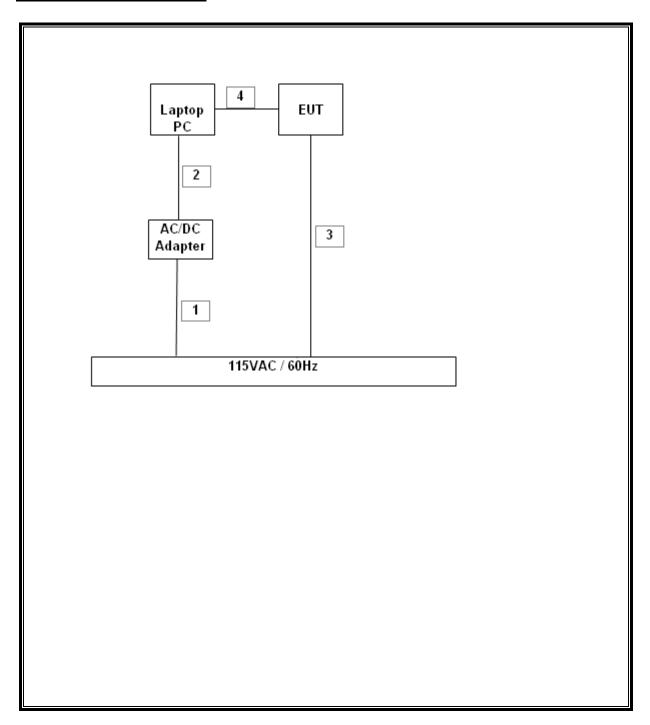
Since EUT passed radiated with antenna, no conducted spurious was performed.

Page 9 of 307

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial N							
AC Adapter	Apple	A1184	N/A				
Laptop PC	Apple	MacBook Pro	AOU269116				


I/O CABLES

	I/O CABLE LIST								
Cable No.	Port	#of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks			
1	AC	1	AC	Unshielded	2m	N/A			
2	DC	1	DC	Unshielded	2.5m	N/A			
3	AC	1	AC	Unshielded	2m	N/A			
4	Ethernet	1	RJ45	Shielded	1.5m	N/A			

TEST SETUP

The Access Point EUT is controlled externally with a laptop, via Ethernet.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Due			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	07/14/12			
Antenna, Horn, 18 GHz	EMCO	3115	C00945	06/29/12			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	11/11/12			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	07/12/12			
Horn Antenna, 26.5 GHz	ARA	MWH-1826/B	C00589	07/28/12			
Horn Antenna, 40 GHz	ARA	MWH-2640/B	C00981	06/14/12			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	03/14/13			
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684	CNR			
High Pass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01159	05/11/12			
Peak Power Meter	Agilent	N1911A	1260847C	08/04/12			
Peak Power Sensor	Agilent	E9323A	1244073F	08/04/12			
Reject Filter, 5.725-5.825 GHz	Micro-Tronics	BRC13192	N02676	CNR			
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR			
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02682	CNR			
EMI Test Receiver, 30MHz	R&S	ESHS 20	N02396	08/19/13			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	12/13/12			

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

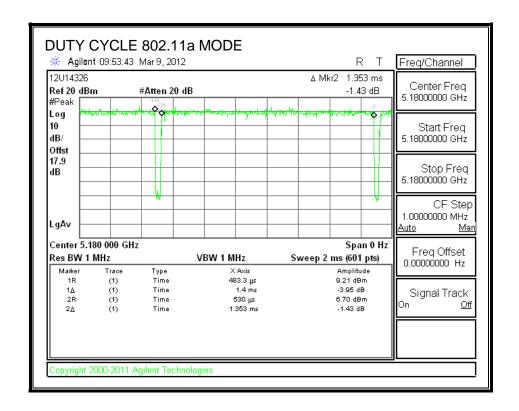
PROCEDURE

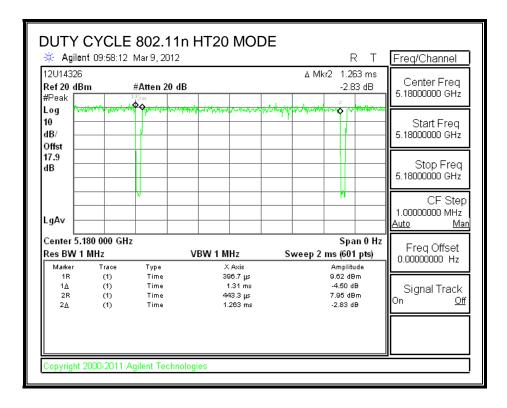
KDB 789033 Zero-Span Spectrum Analyzer Method.

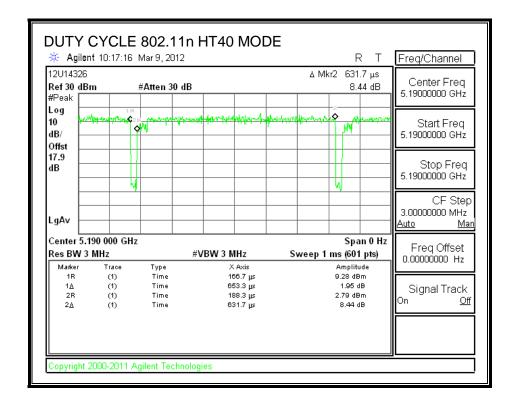
7.1.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 20 MHz	1.353	1.400	0.966	96.6%	0.15	0.739
802.11n HT20	1.263	1.310	0.964	96.4%	0.16	0.792
802.11n HT40	0.6317	0.6533	0.967	96.7%	0.15	1.583

7.1.2. MEASUREMENT METHOD FOR POWER AND PPSD


The Duty Cycle is less than 98% and not consistent therefore KDB 789033 Method SA-3 Alternative with Power RMS Averaging is used.


7.1.3. MEASUREMENT METHOD FOR AVG SPURIOUS EMISSIONS ABOVE 1 GHz

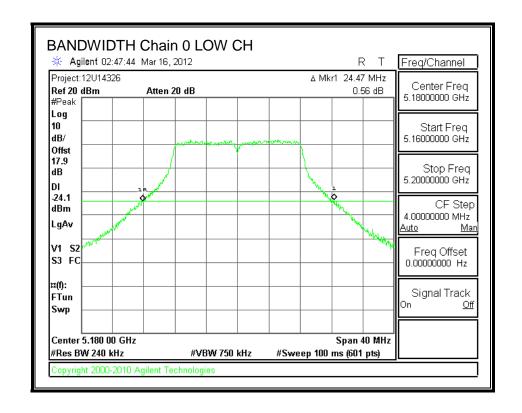

The Duty Cycle is less than 98% and consistent, KDB 789033 Method VB with Power RMS Averaging is used.

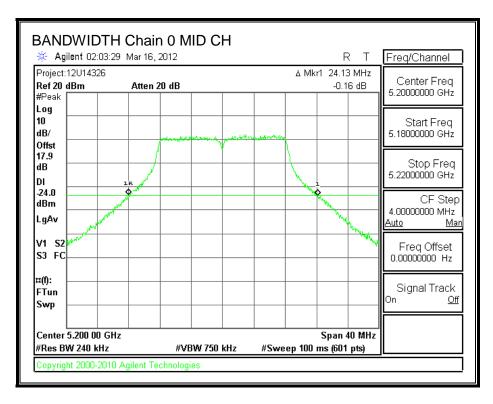
Page 13 of 307

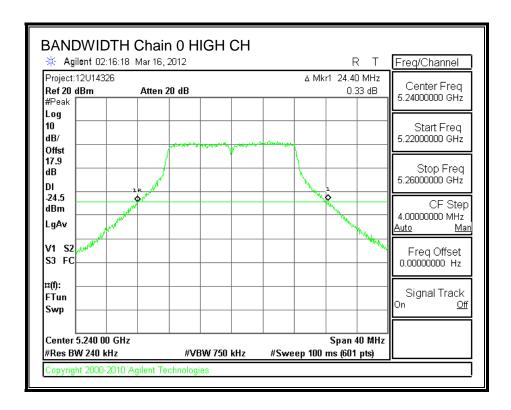
7.1.4. DUTY CYCLE PLOTS

7.2. 802.11a MODE IN THE 5.2 GHz BAND

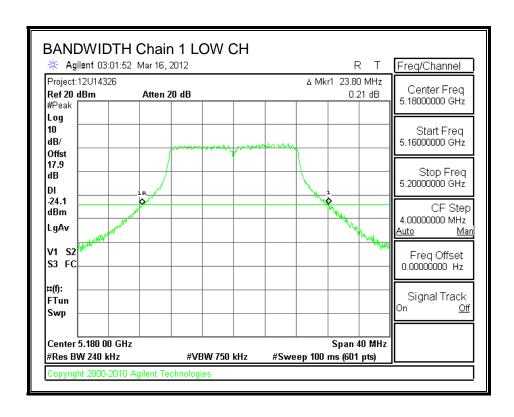
7.2.1. 26 dB BANDWIDTH

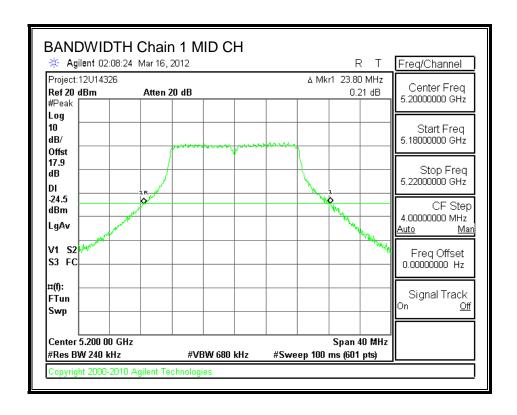

LIMITS

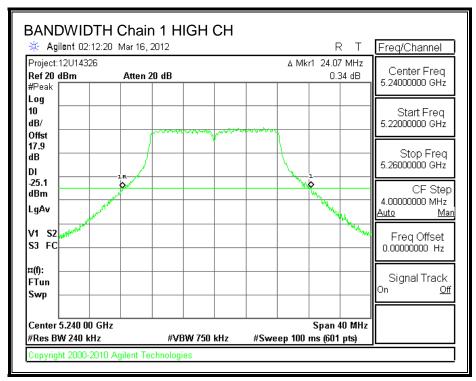

None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	24.47	23.80
Mid	5200	24.13	23.80
High	5240	24.40	24.07

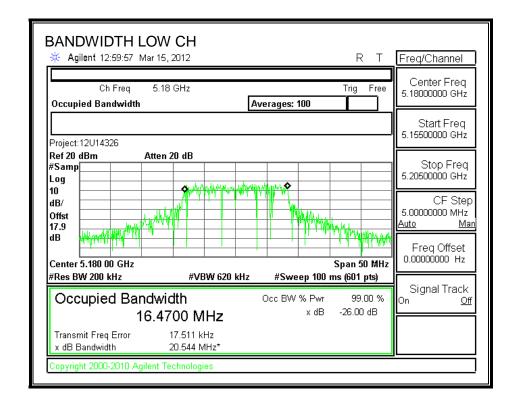

26 dB BANDWIDTH, Chain 0

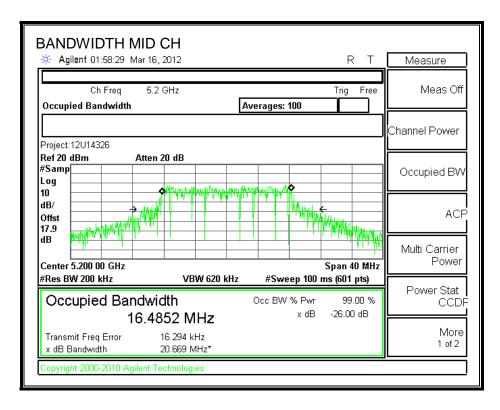


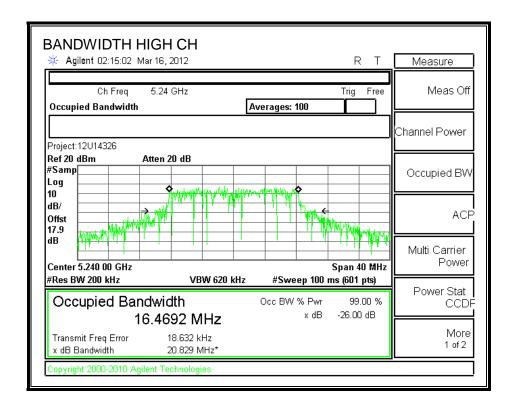


26 dB BANDWIDTH, Chain 1

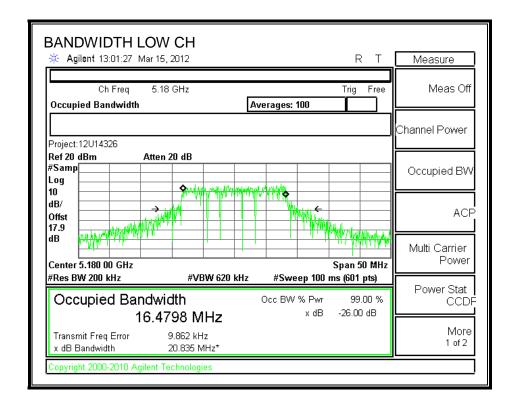
7.2.2. 99% BANDWIDTH

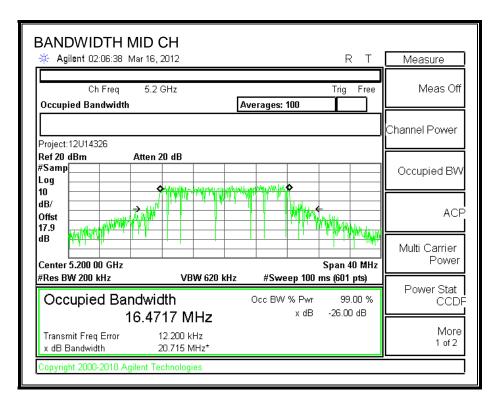

LIMITS

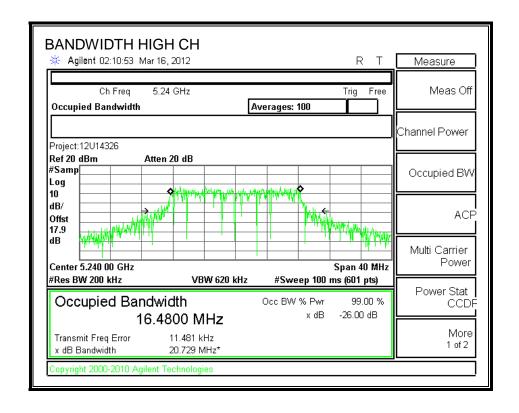

None; for reporting purposes only.


RESULTS

Channel	annel Frequency		99% BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Low	5180	16.4700	16.4798	
Mid	5200	16.4852	16.4717	
High	5240	16.4692	16.4800	


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total	
		Power	Power	Power	
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	5180	11.60	12.10	14.87	
Mid	5200	11.90	11.80	14.86	
High	5240	11.00	11.30	14.16	

7.2.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
0.93	1.88	4.43

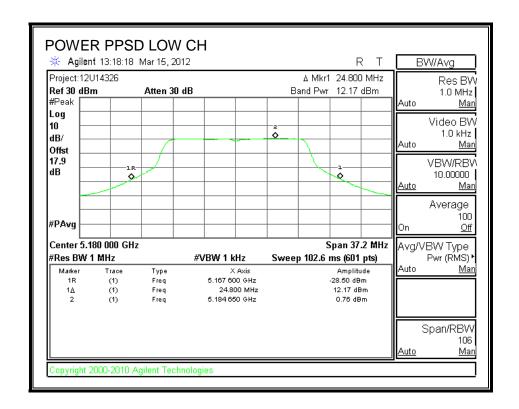
Page 26 of 307

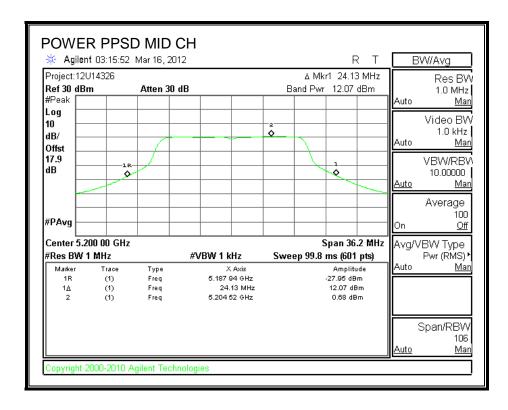
UL CCS FORM NO: CCSUP4701E 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

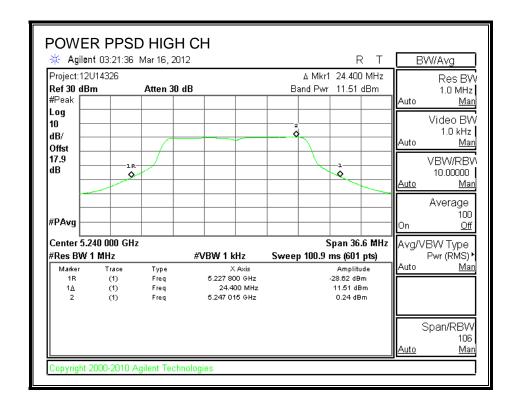
RESULTS

Limits

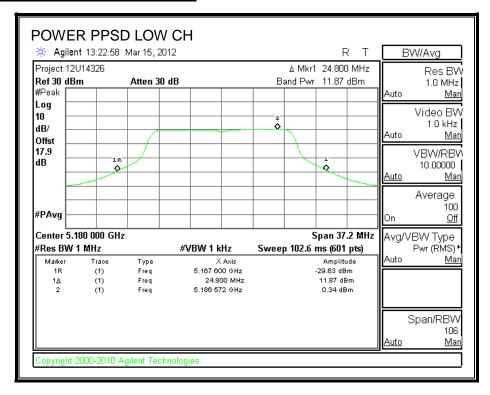
Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	23.8	17.77	4.43	17.00	4.00
Mid	5200	17	23.8	17.77	4.43	17.00	4.00
High	5240	17	24.1	17.81	4.43	17.00	4.00

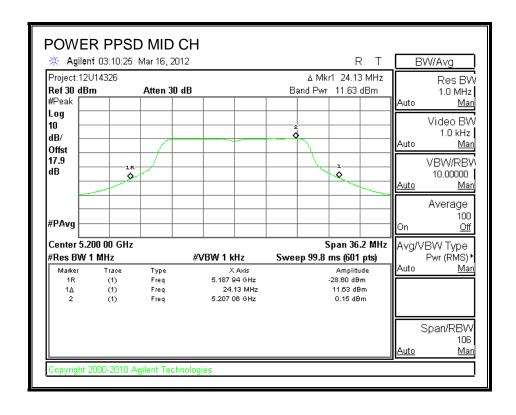

Output Power Results

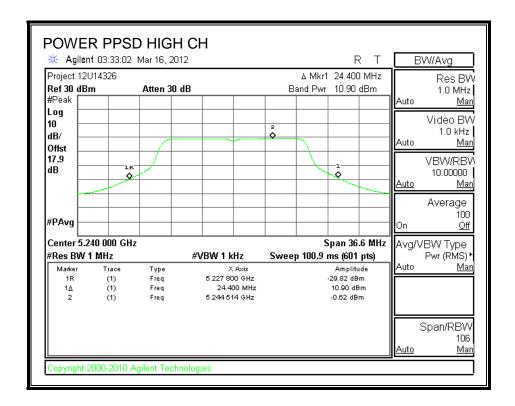

Channel	Frequency	Chain 0 Chain 1		Total	Power	Power
		Meas Meas		Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	12.17	11.87	15.03	17.00	-1.97
Mid	5200	12.07	11.63	14.87	17.00	-2.13
High	5240	11.51	10.90	14.22	17.00	-2.78


PPSD Results

11 02 Notatio							
Channel	Frequency	Chain 0 Chain '		Total	PPSD	PPSD	
		Meas	Meas	Corr'd	Limit	Margin	
		PPSD	PPSD	PPSD			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5180	0.76	0.34	3.57	4.00	-0.43	
Mid	5200	0.68	0.15	3.43	4.00	-0.57	
High	5240	0.24	-0.62	2.84	4.00	-1.16	


OUTPUT POWER AND PPSD CHAIN 0

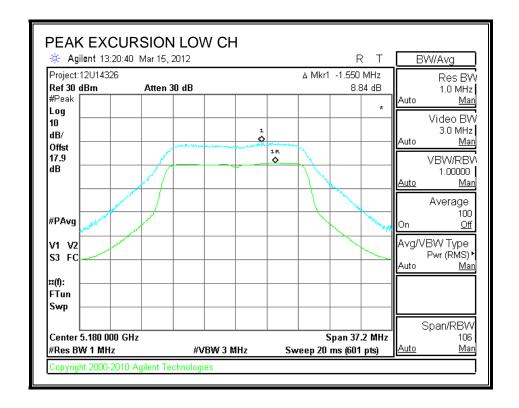


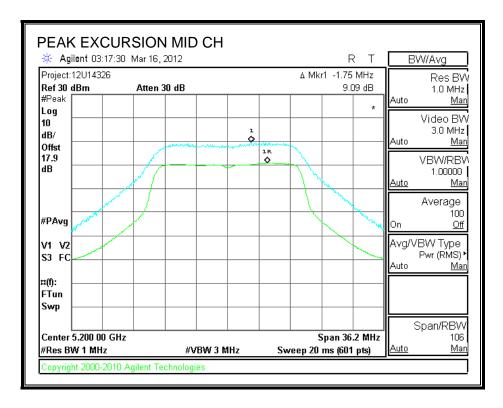


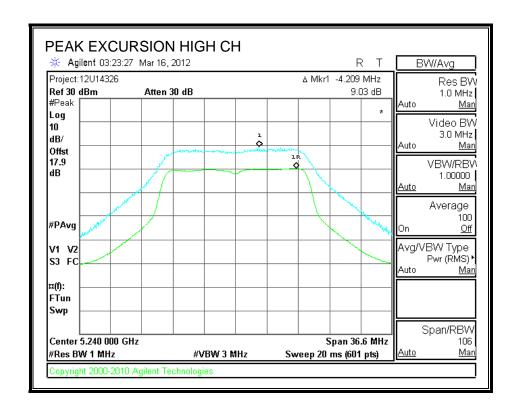
OUTPUT POWER AND PPSD CHAIN 1

7.2.5. PEAK EXCURSION

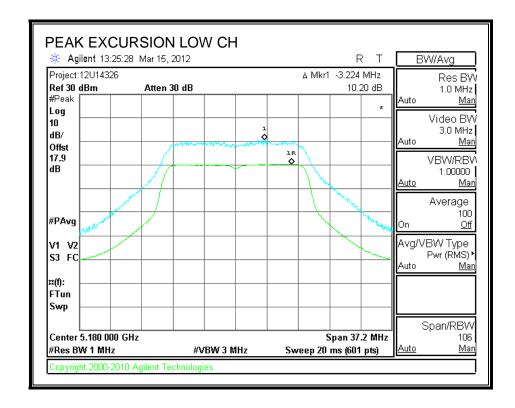
LIMITS

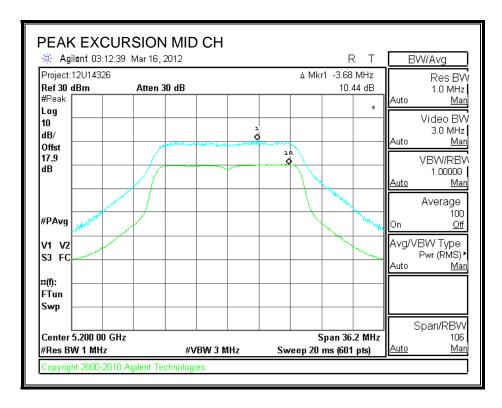

FCC §15.407 (a) (6)

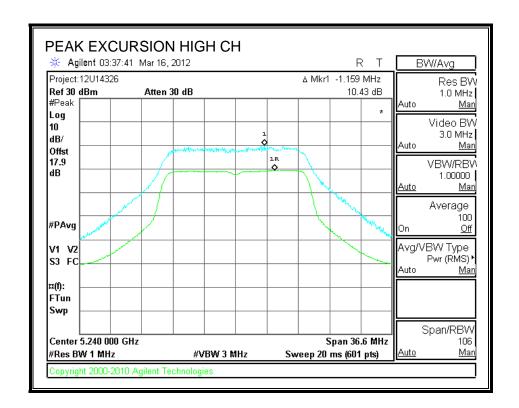

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5180	8.84	10.20	13	-2.8
Mid	5200	9.09	10.44	13	-2.6
High	5240	9.03	10.43	13	-2.6

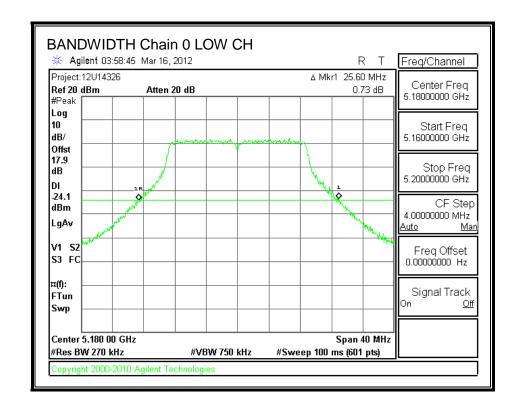

PEAK EXCURSION CHAIN 0

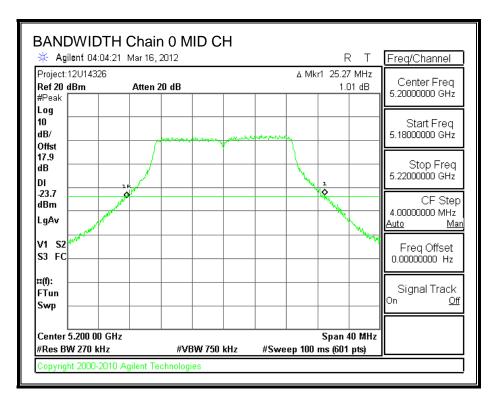


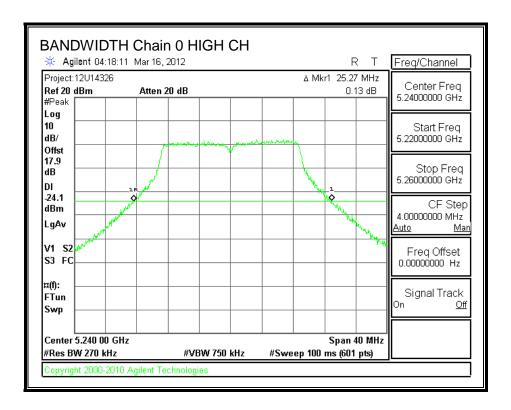


PEAK EXCURSION CHAIN 1

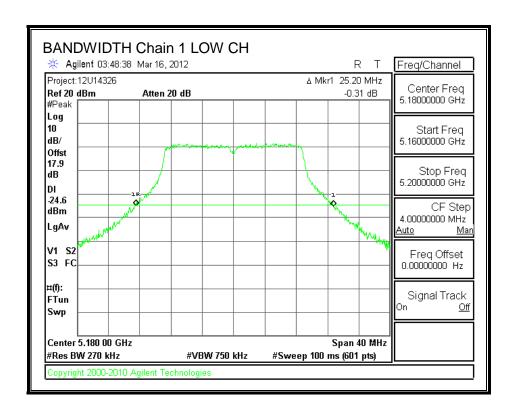
7.3. 802.11n HT20 MODE IN THE 5.2 GHz BAND

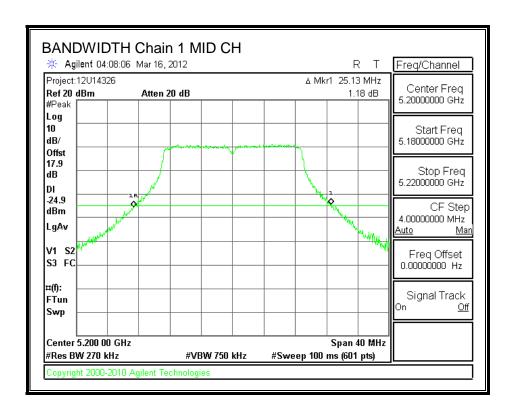

7.3.1. 26 dB BANDWIDTH

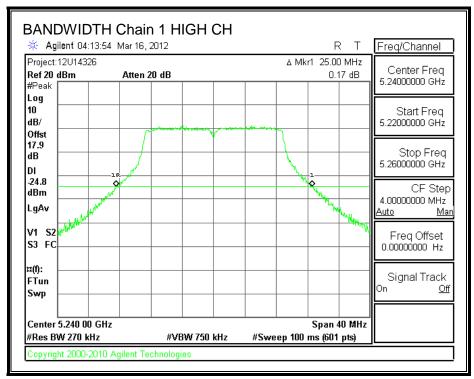

LIMITS


None; for reporting purposes only.

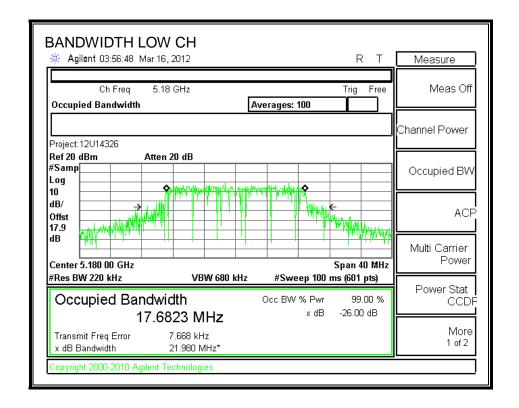
Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	25.60	25.20
Mid	5200	25.27	25.13
High	5240	25.27	25.00

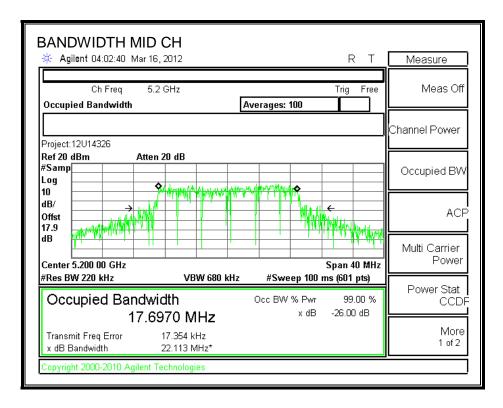

26 dB BANDWIDTH, Chain 0

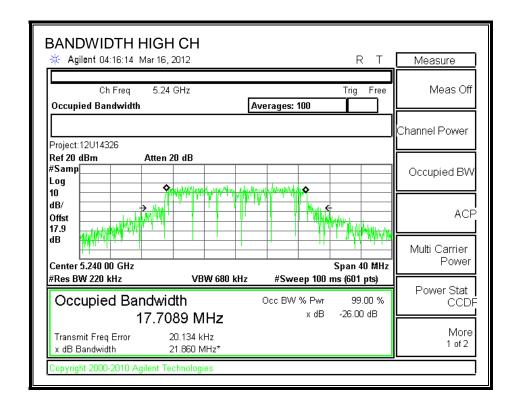




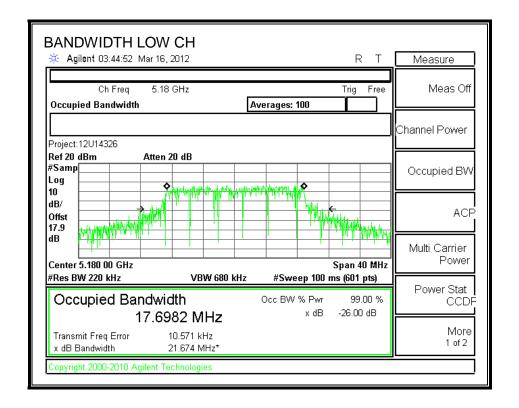
26 dB BANDWIDTH, Chain 1

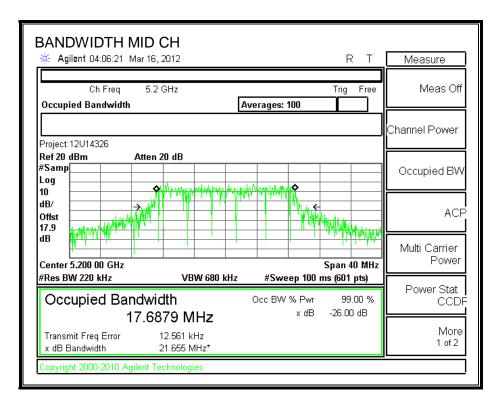

7.3.2. 99% BANDWIDTH

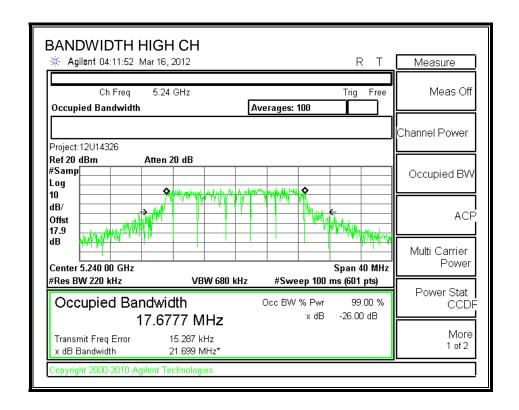

LIMITS


None; for reporting purposes only.

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	17.6823	17.6982
Mid	5200	17.6970	17.6879
High	5240	17.7089	17.6777


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	11.40	11.50	14.46
Mid	5200	11.40	11.40	14.41
High	5240	11.10	11.50	14.31

7.3.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

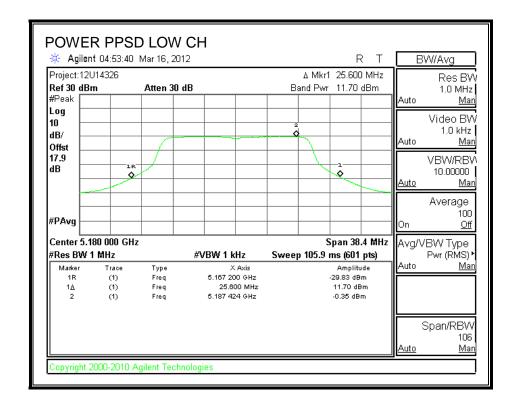
The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

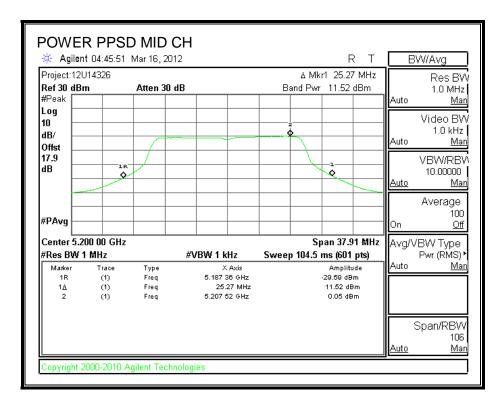
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
0.93	1.88	1.43

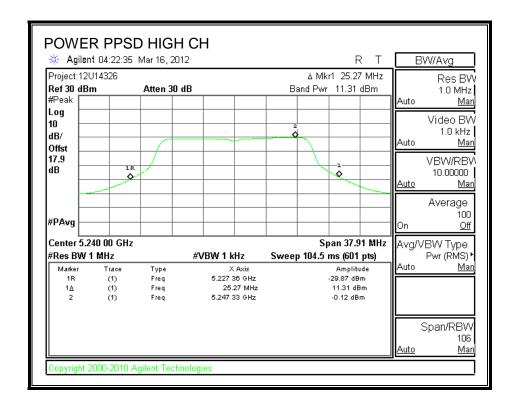
RESULTS

Limits

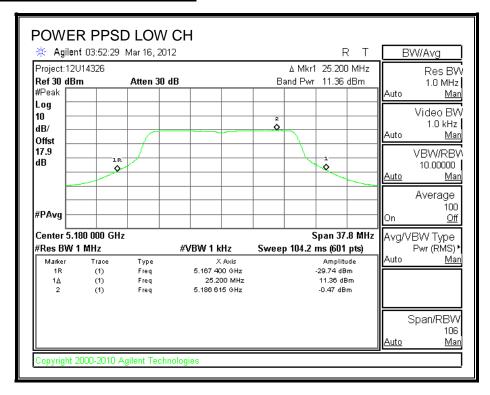
Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	25.20	18.01	1.43	17.00	4.00
Mid	5200	17	25.13	18.00	1.43	17.00	4.00
High	5240	17	25.00	17.98	1.43	17.00	4.00

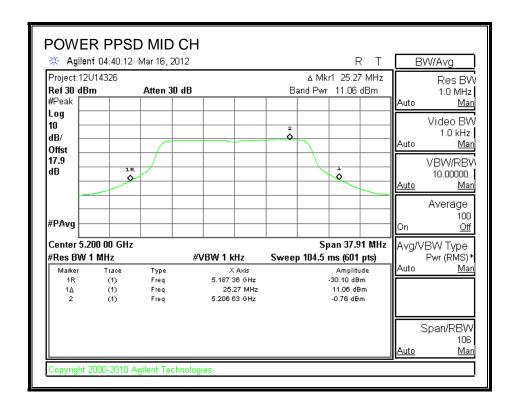

Output Power Results

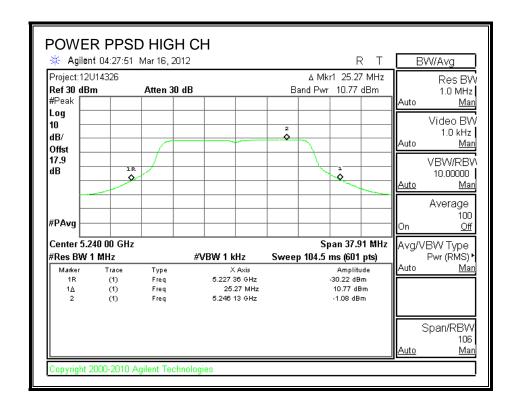

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	11.70	11.36	14.55	17.00	-2.45
Mid	5200	11.52	11.06	14.31	17.00	-2.69
High	5240	11.31	10.77	14.06	17.00	-2.94


PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-0.35	-0.47	2.60	4.00	-1.40
Mid	5200	0.05	-0.76	2.67	4.00	-1.33
High	5240	-0.12	-1.08	2.44	4.00	-1.56

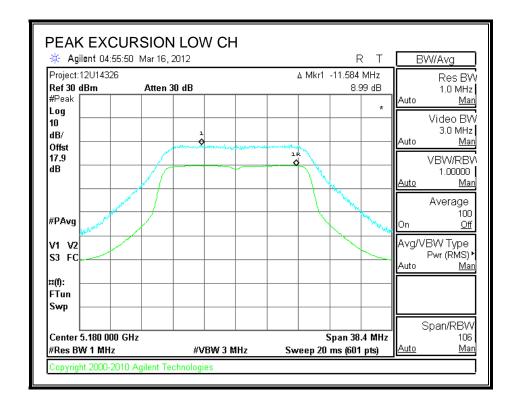

OUTPUT POWER AND PPSD CHAIN 0

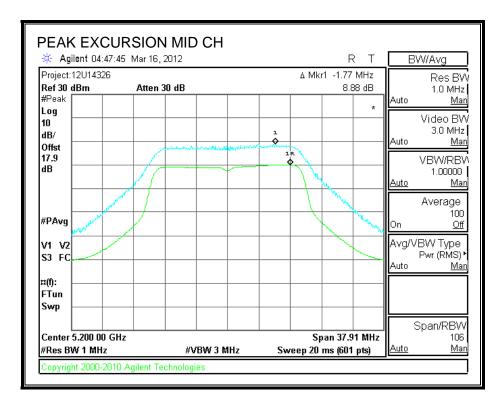


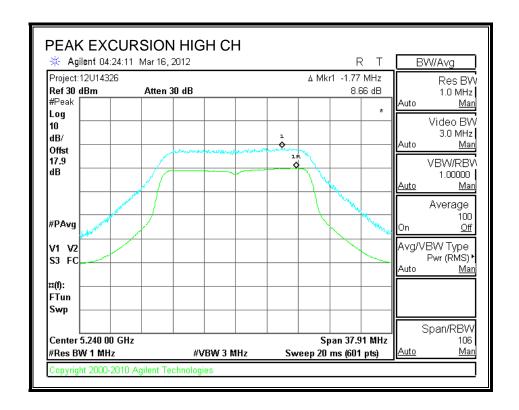


OUTPUT POWER AND PPSD CHAIN 1

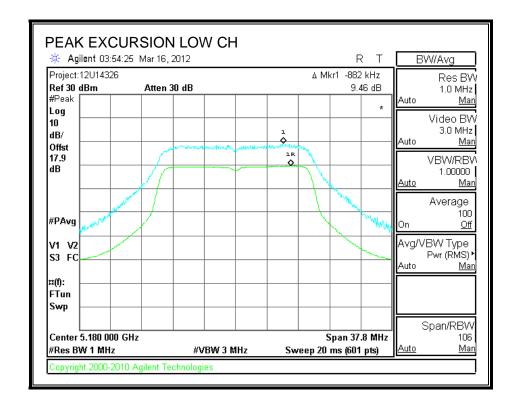
7.3.5. PEAK EXCURSION

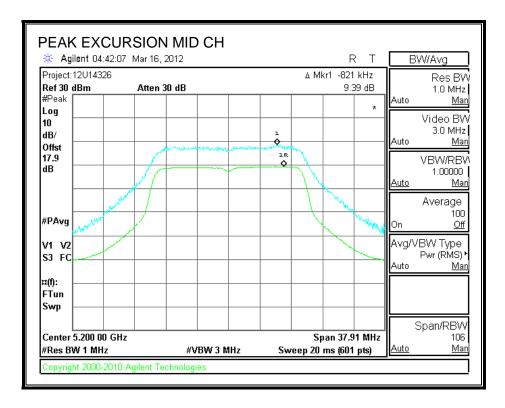

LIMITS

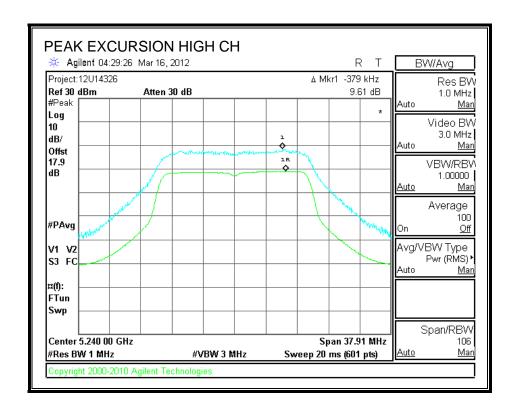

FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5180	8.99	9.46	13	-3.5
Mid	5200	8.88	9.39	13	-3.6
High	5240	8.66	9.61	13	-3.4

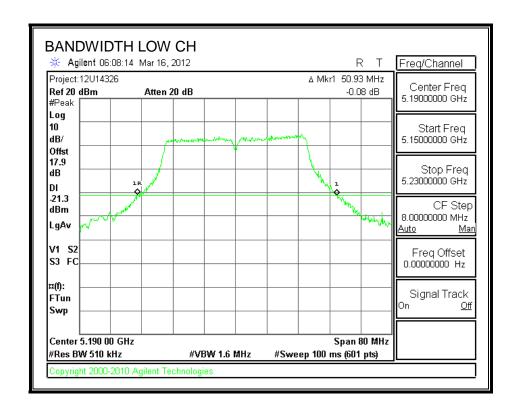

PEAK EXCURSION CHAIN 0

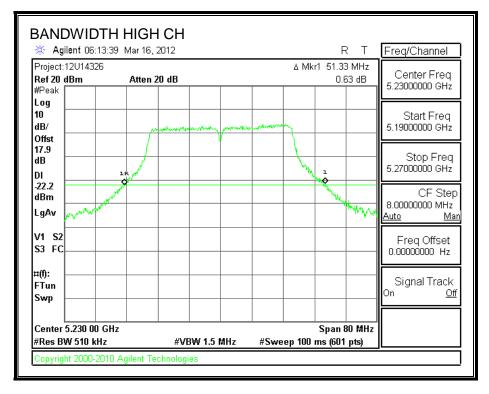




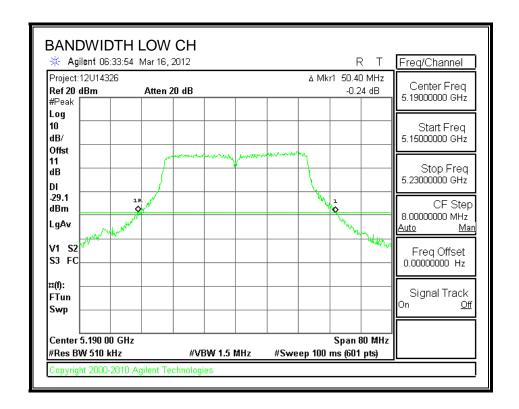
PEAK EXCURSION CHAIN 1

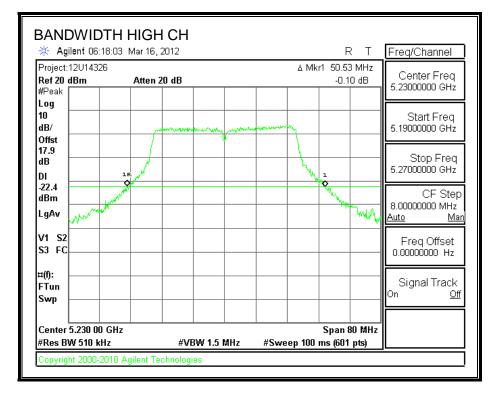
7.4. 802.11n HT40 MODE IN THE 5.2 GHz BAND


7.4.1. 26 dB BANDWIDTH

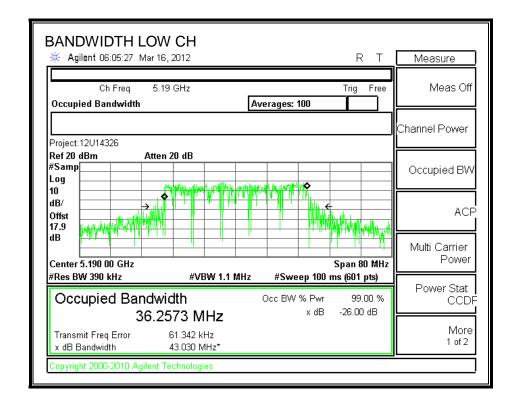

LIMITS

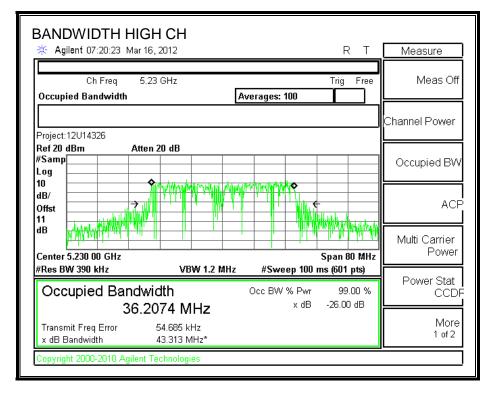
None; for reporting purposes only.


Channe	l Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5190	50.93	50.40
High	5230	51.33	50.53

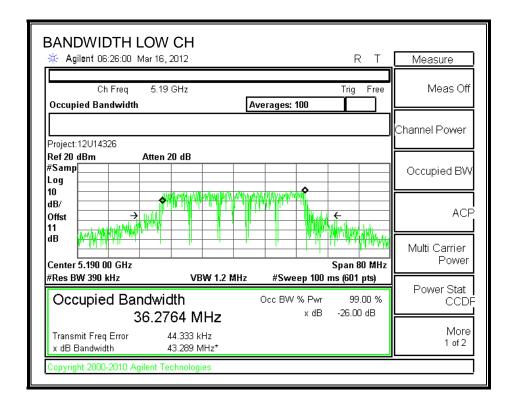

26 dB BANDWIDTH CHAIN 0

26 dB BANDWIDTH CHAIN 1


7.4.2. 99% BANDWIDTH


LIMITS

None; for reporting purposes only.


Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5190	36.2573	36.2764
High	5230	36.2074	36.2519

99% BANDWIDTH CHAIN 0

99% BANDWIDTH CHAIN 1

7.4.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5190	13.60	13.50	16.56
High	5230	13.10	12.90	16.01

7.4.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

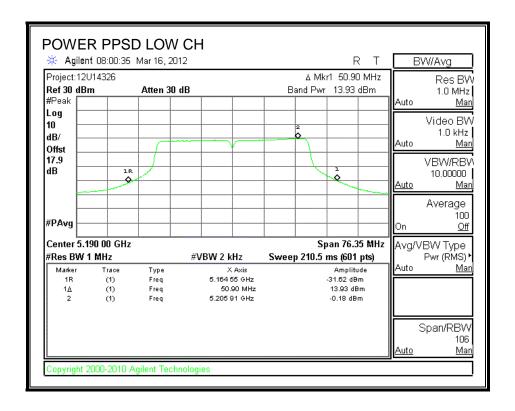
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
0.93	1.88	1.43

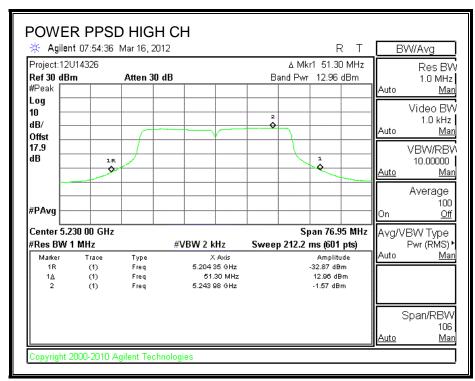
Page 65 of 307

RESULTS

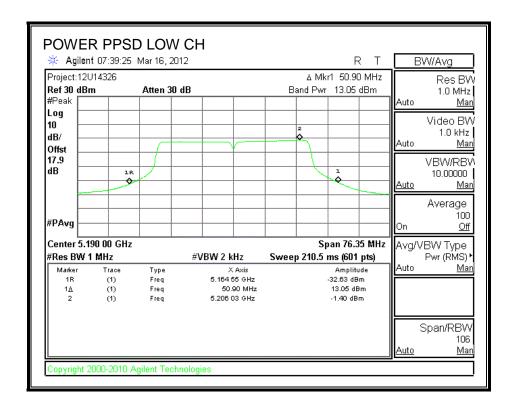
Limits

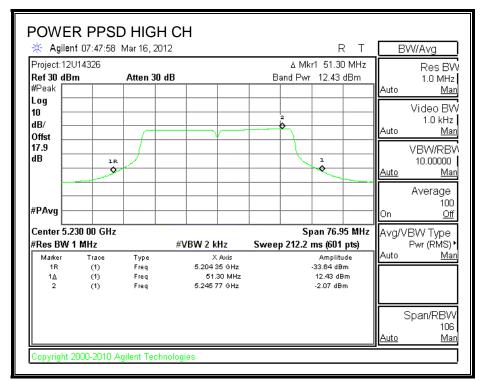
Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5190	17	50.40	21.02	1.43	17.00	4.00
High	5230	17	50.53	21.04	1.43	17.00	4.00


Output Power Results


Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	13.93	13.05	16.52	17.00	-0.48
High	5230	12.96	12.43	15.72	17.00	-1.28

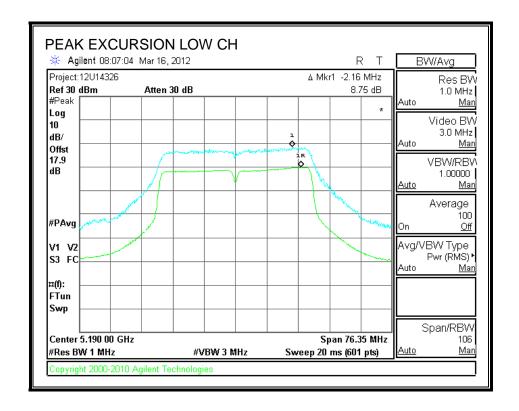
PPSD Results

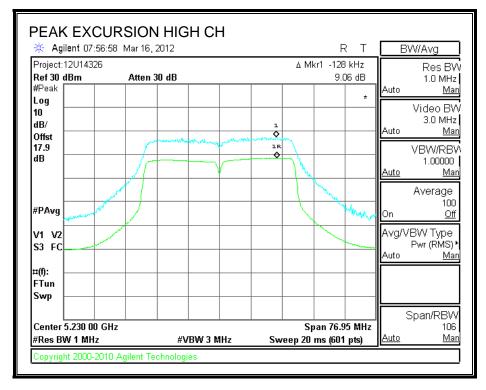

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	-0.18	-1.40	2.26	4.00	-1.74


OUTPUT POWER AND PPSD CHAIN 0

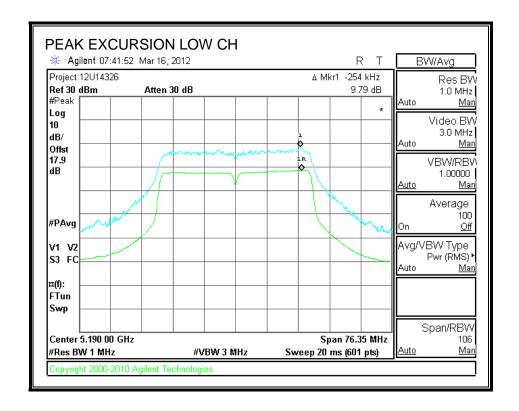
OUTPUT POWER AND PPSD CHAIN 1

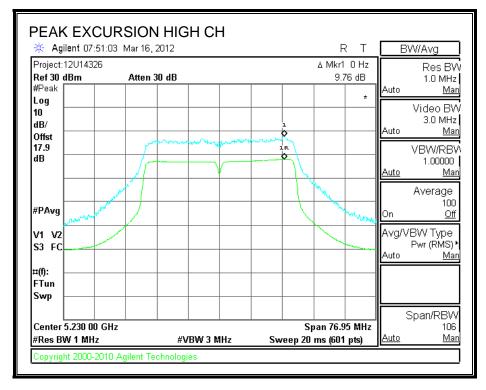
7.4.5. PEAK EXCURSION


LIMITS


FCC §15.407 (a) (6)

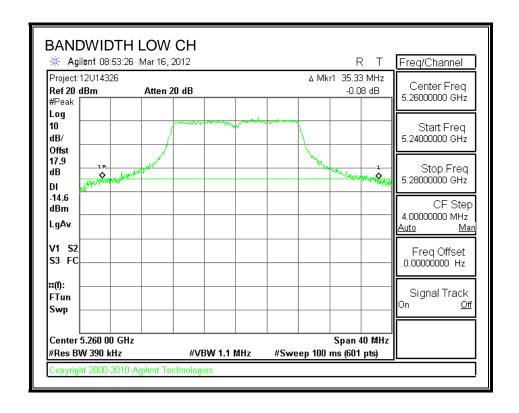
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

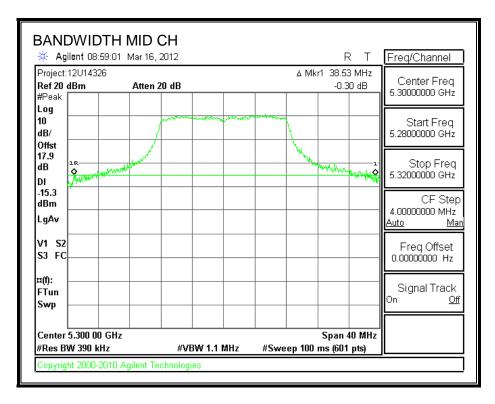

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5190	8.75	9.79	13	-3.2
High	5230	9.06	9.76	13	-3.2

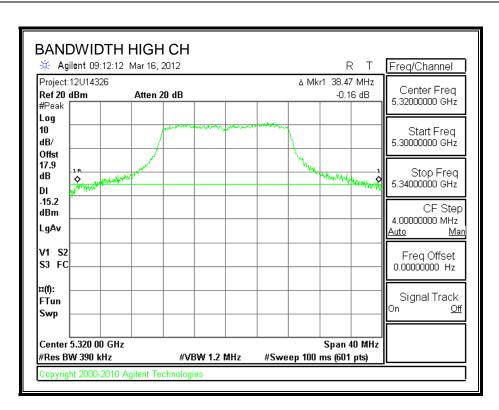

PEAK EXCURSION CHAIN 0

PEAK EXCURSION CHAIN 1

7.5. 802.11a MODE IN THE 5.3 GHz BAND

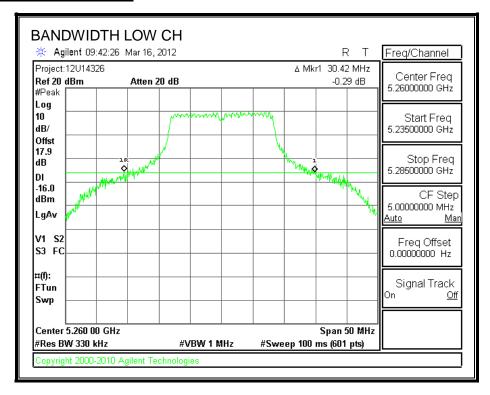

7.5.1. 26 dB BANDWIDTH

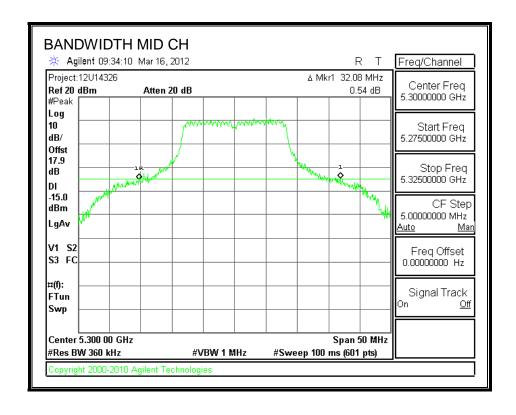

LIMITS

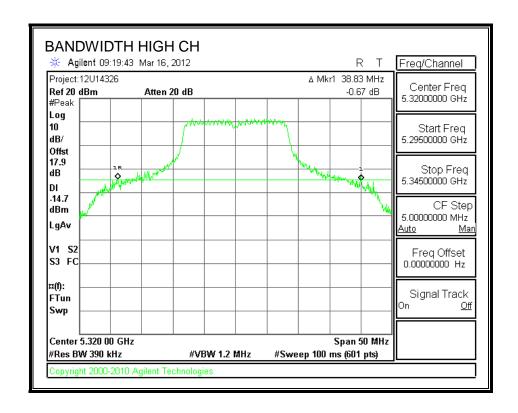

None; for reporting purposes only.

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	35.33	30.42
Mid	5300	38.53	32.08
High	5320	38.47	38.83

26 dB BANDWIDTH CHAIN 0



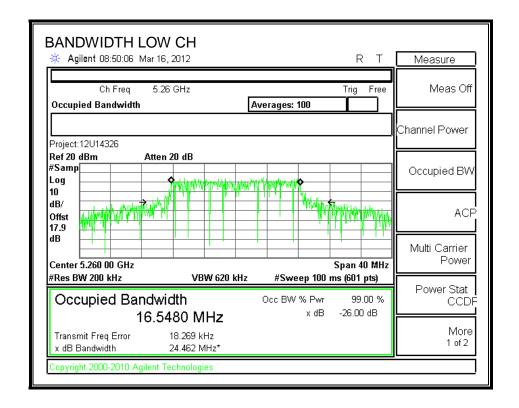


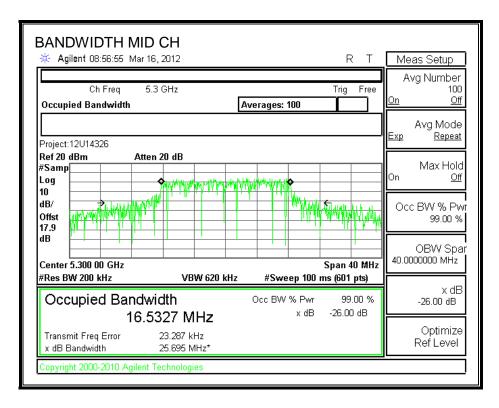

DATE: SEPTEMBER 25, 2012

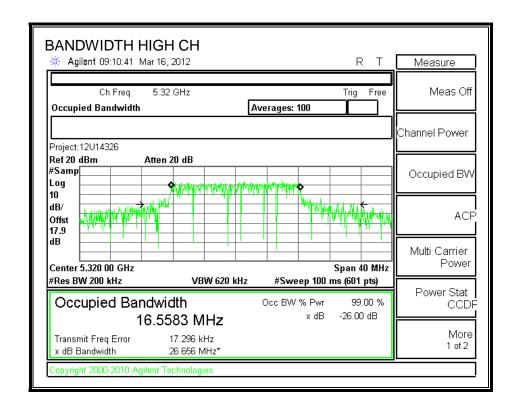
IC: 579C-A1392

26 dB BANDWIDTH CHAIN 1

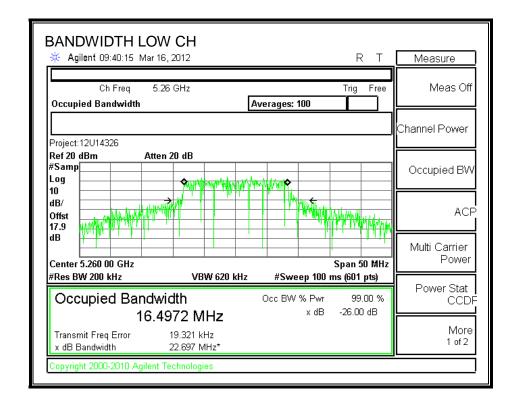
7.5.2. 99% BANDWIDTH

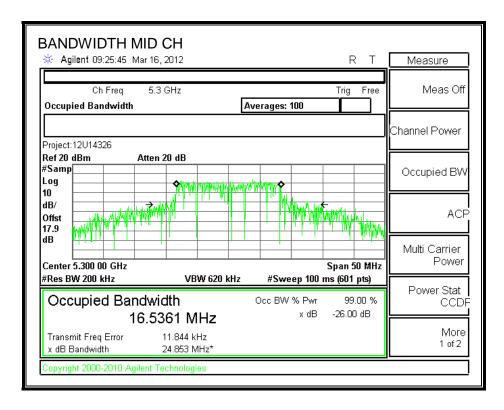

LIMITS

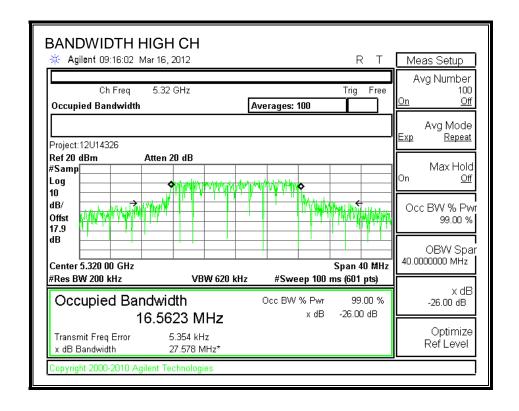

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Low	5260	16.5480	16.4972	
Mid	5300	16.5327	16.5361	
High	5320	16.5583	16.5623	


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.5.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	17.60	18.05	20.84
Mid	5300	18.10	17.60	20.87
High	5320	17.60	18.00	20.81

7.5.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

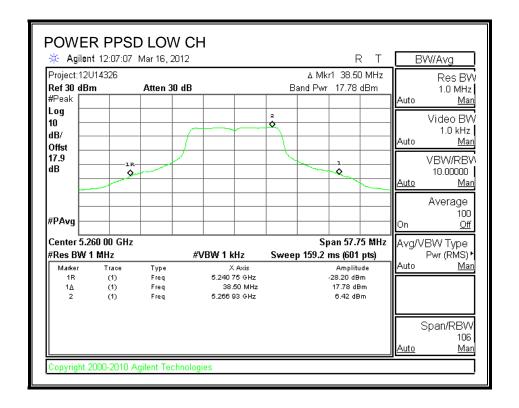
Chain 0	Chain 1	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
1.54	2.07	4.82

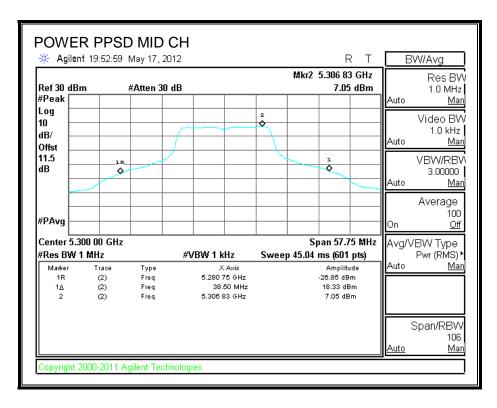
Page 83 of 307

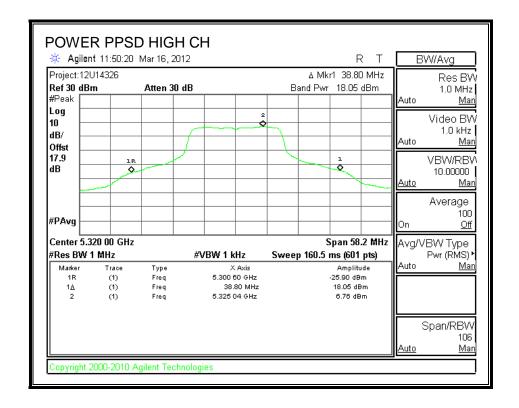
RESULTS

Limits

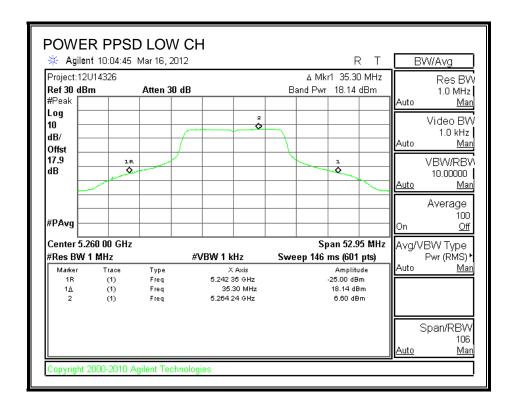
Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5260	24	30.42	25.83	4.82	24.00	11.00
Mid	5300	24	32.08	26.06	4.82	24.00	11.00
High	5320	24	38.47	26.85	4.82	24.00	11.00

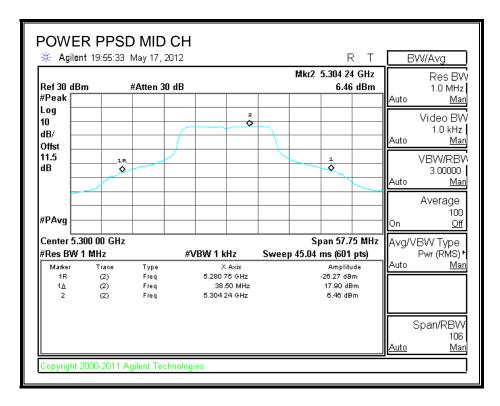

Output Power Results

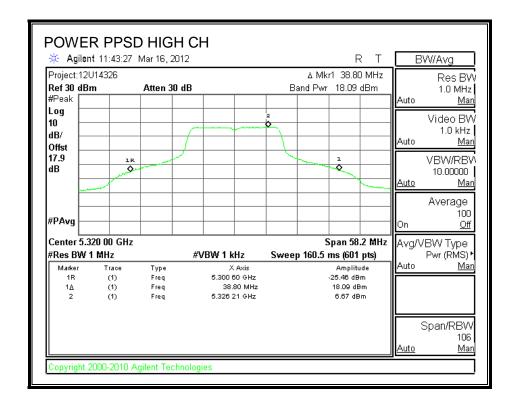

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.78	18.14	20.97	24.00	-3.03
Mid	5300	18.33	17.90	21.13	24.00	-2.87
High	5320	18.05	18.09	21.08	24.00	-2.92


PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD		
		Meas	Meas	Corr'd	Limit	Margin		
		PPSD	PPSD	PPSD				
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)		
Low	5260	6.42	6.60	9.52	11.00	-1.48		
Mid	5300	7.05	6.46	9.78	11.00	-1.22		
High	5320	6.76	6.67	9.73	11.00	-1.27		


OUTPUT POWER AND PPSD CHAIN 0

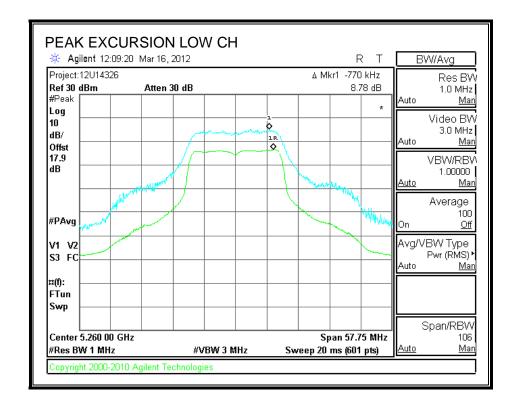


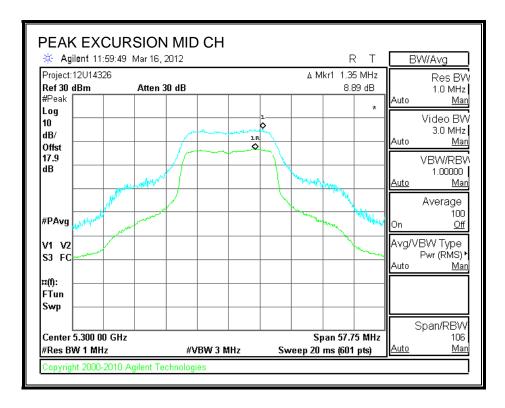


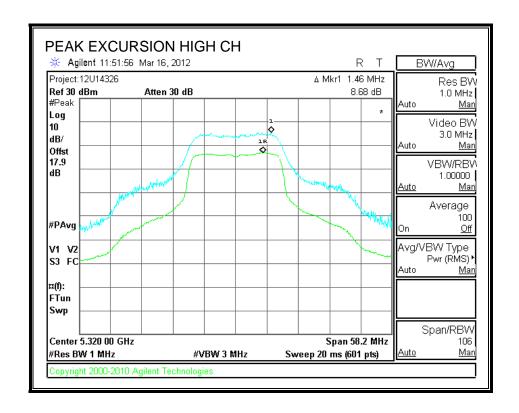
OUTPUT POWER AND PPSD CHAIN 1

7.5.5. PEAK EXCURSION

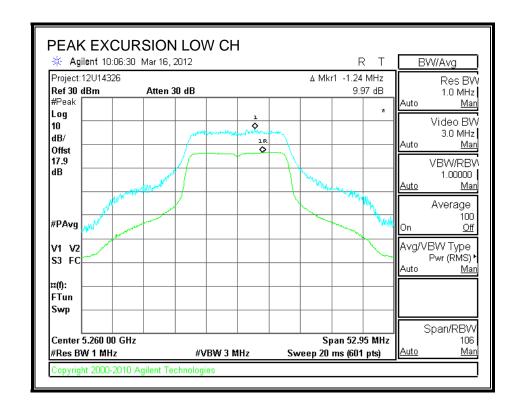
LIMITS


FCC §15.407 (a) (6)

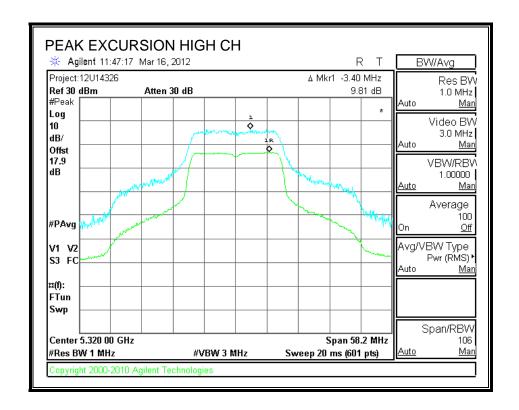

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5260	8.78	9.97	13	-3.0
Mid	5300	8.89	9.82	13	-3.2
High	5320	8.68	9.81	13	-3.2


PEAK EXCURSION CHAIN 0

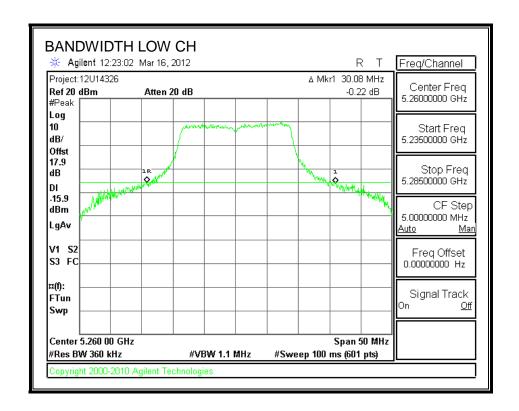


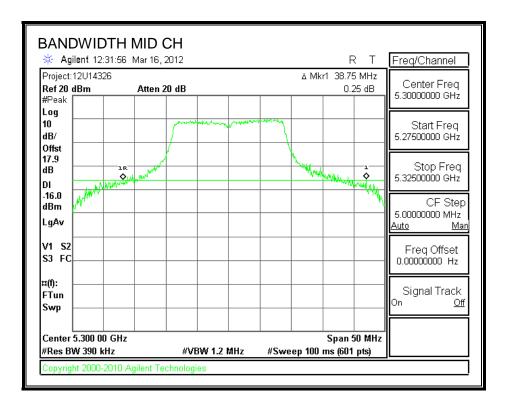


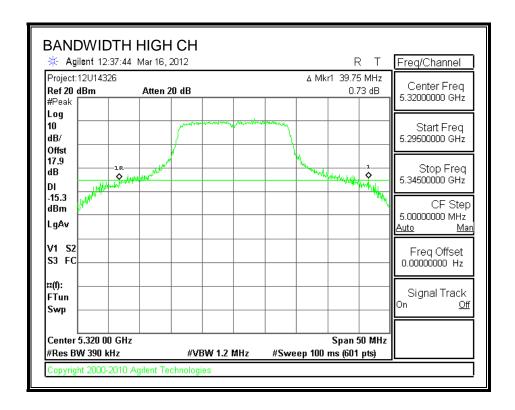
PEAK EXCURSION CHAIN 1

7.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND

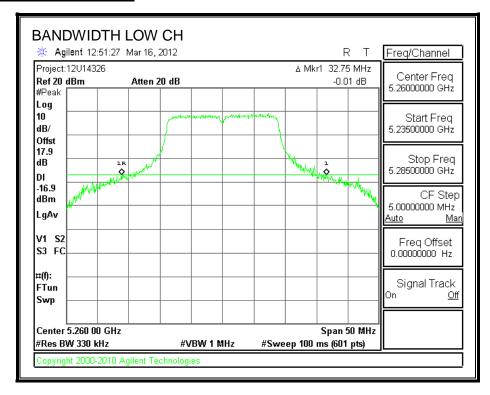
7.6.1. 26 dB BANDWIDTH

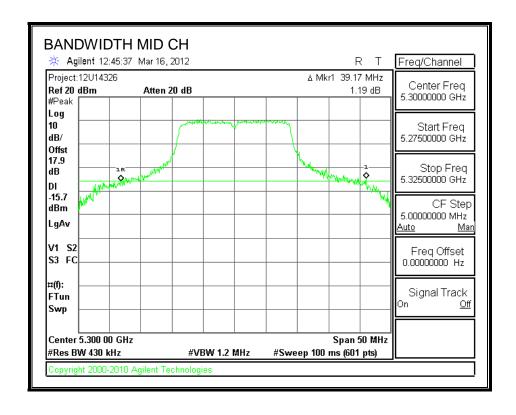

LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB BW	26 dB BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Low	5260	30.08	32.75	
Mid	5300	38.75	39.17	
High	5320	39.75	43.58	


26 dB BANDWIDTH CHAIN 0



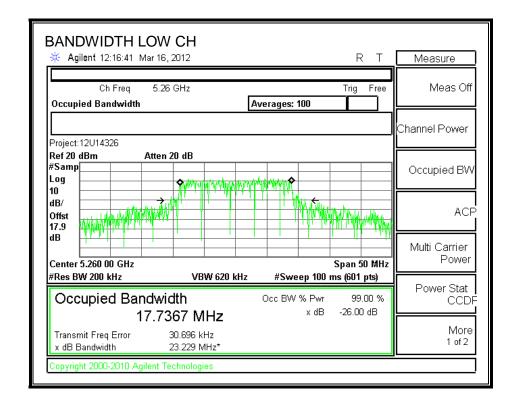
26 dB BANDWIDTH CHAIN 1

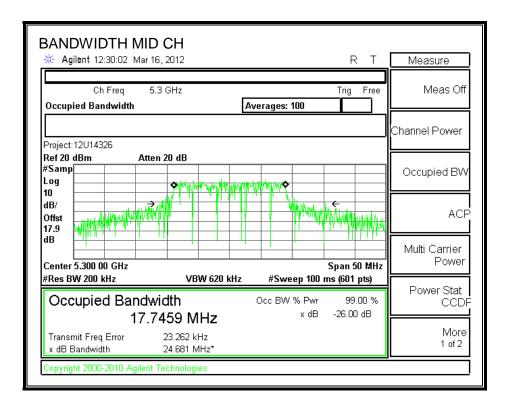
Copyright 2000-2010 Agilent Technologies

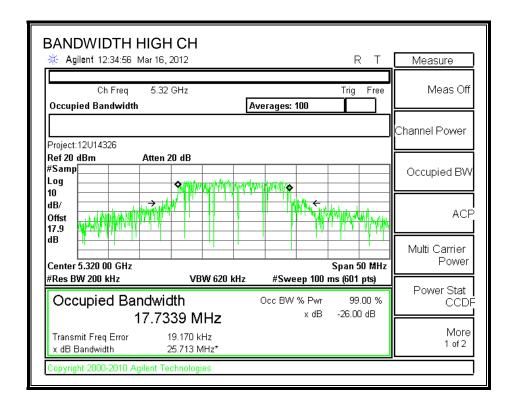
DATE: SEPTEMBER 25, 2012

IC: 579C-A1392

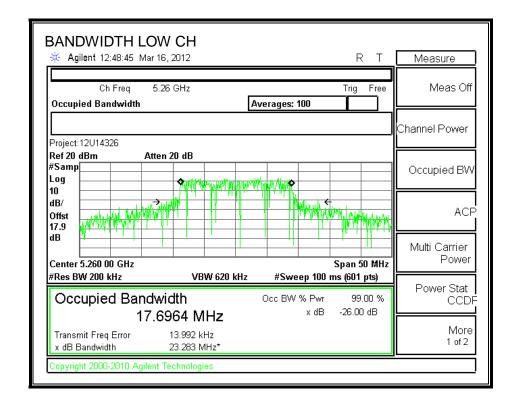
7.6.2. 99% BANDWIDTH

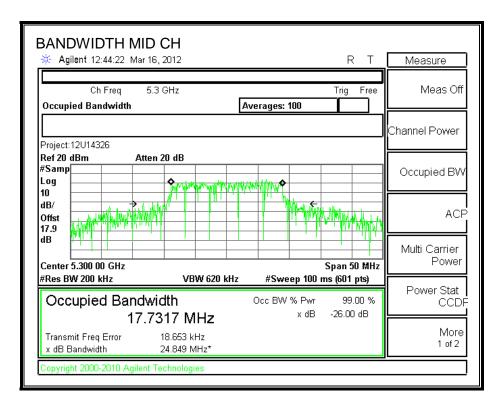

LIMITS

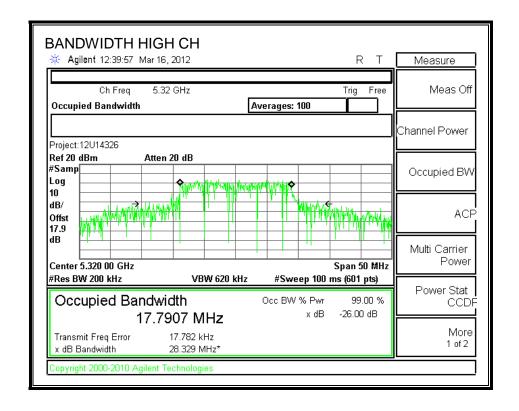

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Low	5260	17.7367	17.6964	
Mid	5300	17.7459	17.7317	
High	5320	17.7339	17.7907	


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.6.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	17.70	17.60	20.66
Mid	5300	18.05	17.55	20.82
High	5320	18.10	17.65	20.89

7.6.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

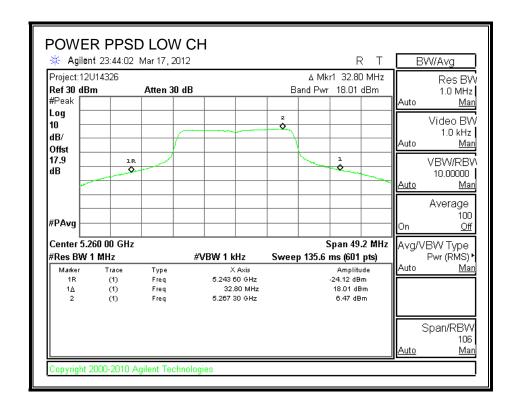
The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

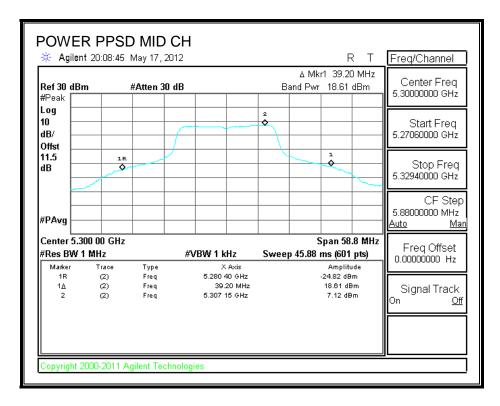
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
1.54	2.07	1.81

RESULTS

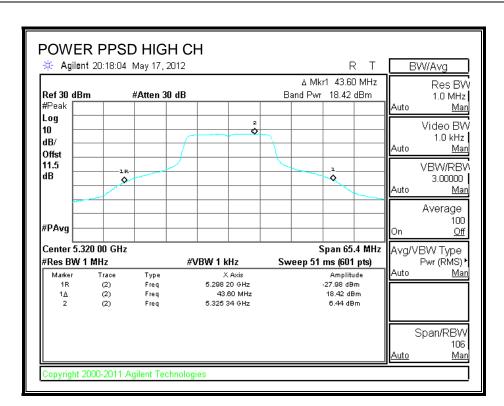
Limits

Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5260	24	30.08	25.78	1.81	24.00	11.00
Mid	5300	24	38.75	26.88	1.81	24.00	11.00
High	5320	24	39.75	26.99	1.81	24.00	11.00

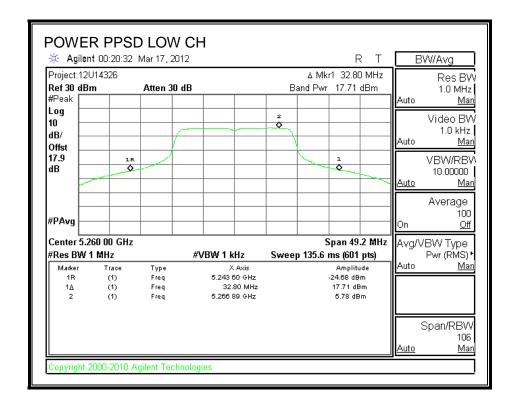

Output Power Results

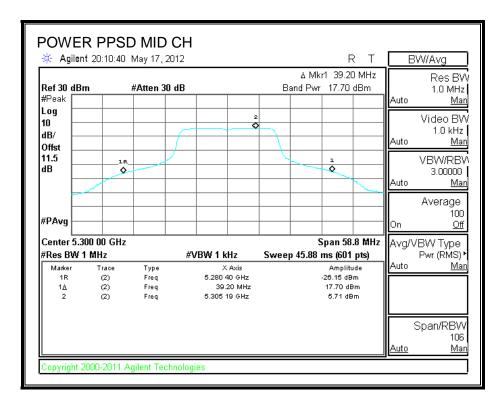

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	18.01	17.71	20.87	24.00	-3.13
Mid	5300	18.61	17.70	21.19	24.00	-2.81
High	5320	18.42	17.82	21.14	24.00	-2.86

PPSD Results

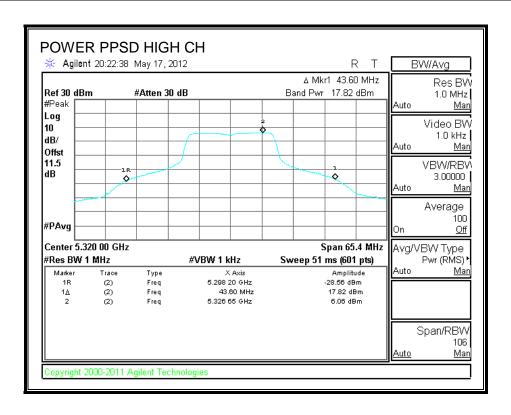

11 OD Results											
Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD					
		Meas	Meas	Corr'd	Limit	Margin					
		PPSD	PPSD	PPSD							
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)					
Low	5260	6.47	5.78	9.15	11.00	-1.85					
Mid	5300	7.12	5.71	9.48	11.00	-1.52					
High	5320	6.44	6.06	9.26	11.00	-1.74					

OUTPUT POWER AND PPSD CHAIN 0


REPORT NO: 12U14633-1 FCC ID: BCGA1392



DATE: SEPTEMBER 25, 2012


IC: 579C-A1392

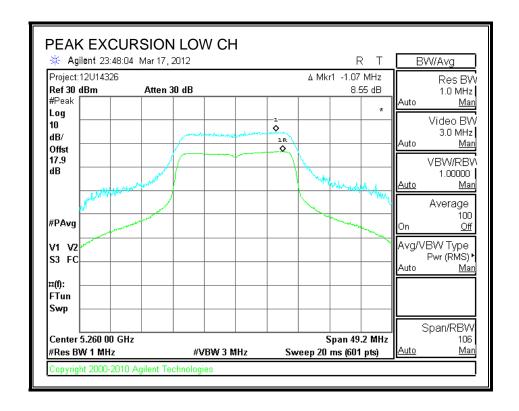
OUTPUT POWER AND PPSD CHAIN 1

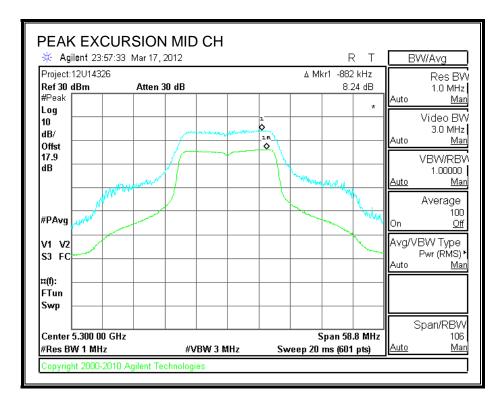
REPORT NO: 12U14633-1 DATE: SEPTEMBER 25, 2012 FCC ID: BCGA1392

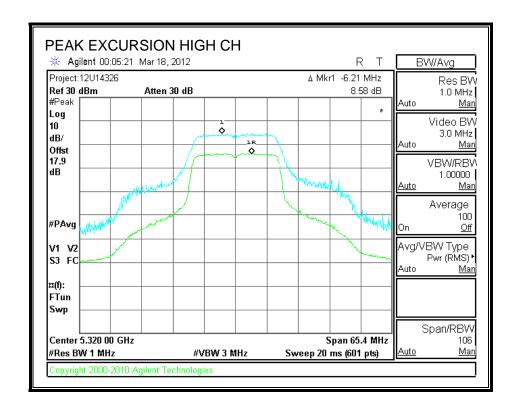
IC: 579C-A1392

7.6.5. PEAK EXCURSION

LIMITS

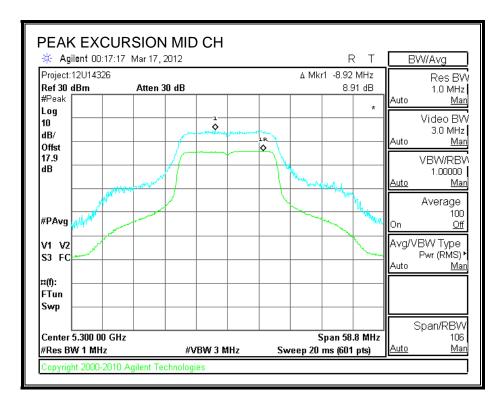

FCC §15.407 (a) (6)

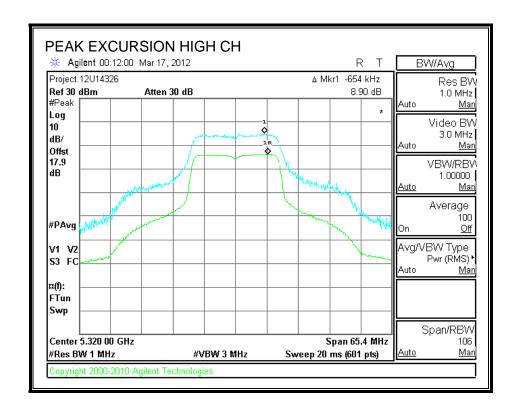

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0			Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5260	8.55	9.14	13	-3.9
Mid	5300	8.24	8.91	13	-4.1
High	5320	8.58	8.90	13	-4.1

PEAK EXCURSION CHAIN 0

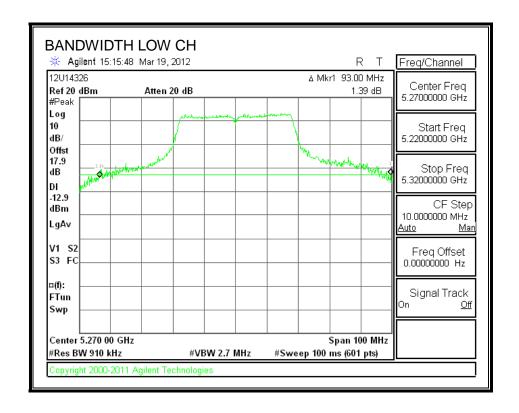


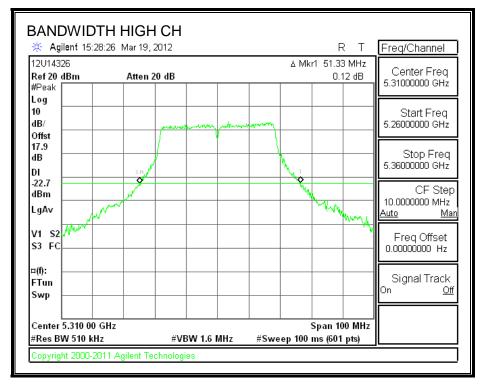


PEAK EXCURSION CHAIN 1

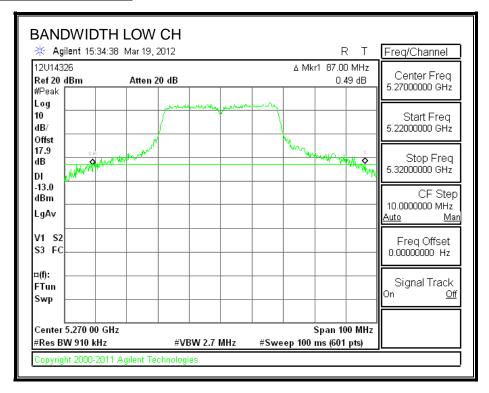
7.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

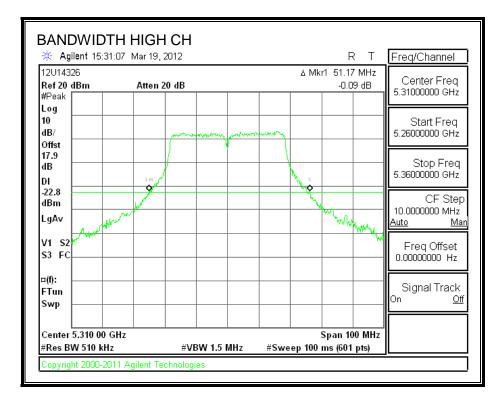
7.7.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

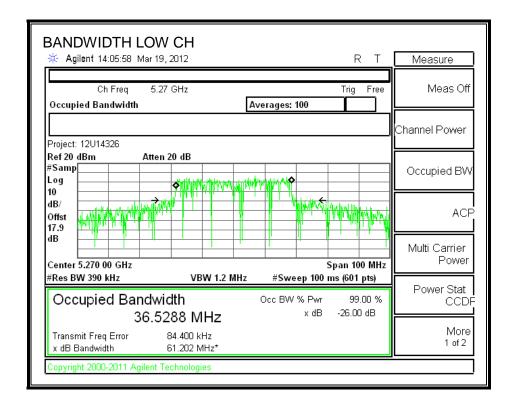
RESULTS

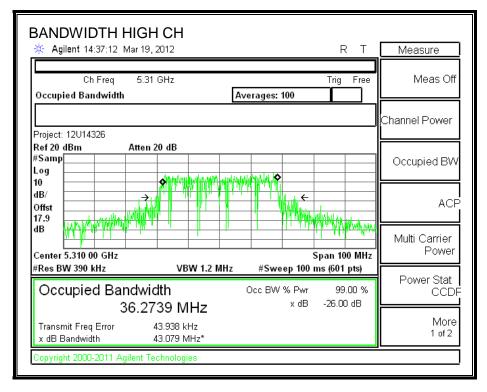

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5270	93.00	87.00
High	5310	51.33	51.17


26 dB BANDWIDTH CHAIN 0

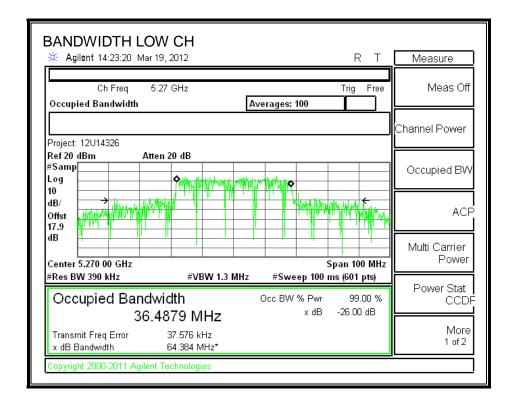
26 dB BANDWIDTH CHAIN 1

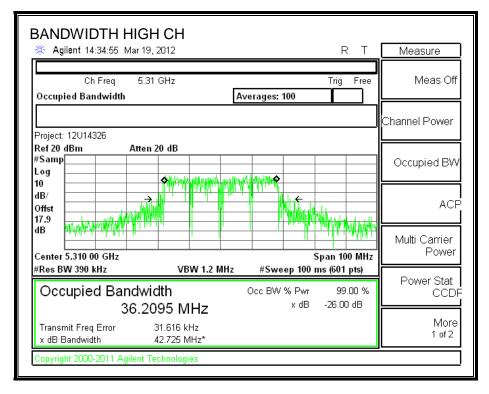
7.7.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS


Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5270	36.5288	36.4879
High	5310	36.2739	36.2095


99% BANDWIDTH CHAIN 0

99% BANDWIDTH CHAIN 1

7.7.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5270	19.00	18.90	21.96
High	5310	13.50	12.80	16.17

7.7.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

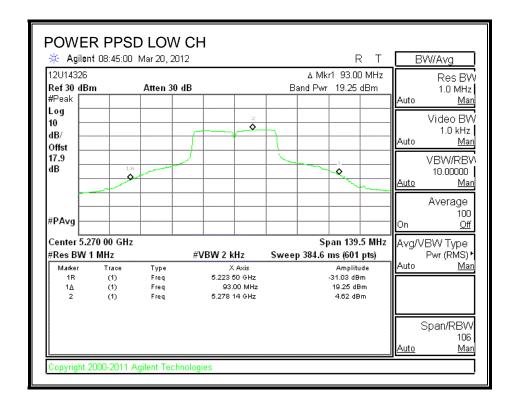
The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

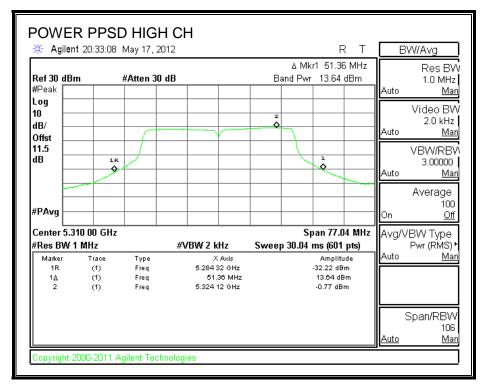
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
1.54	2.07	1.81

RESULTS

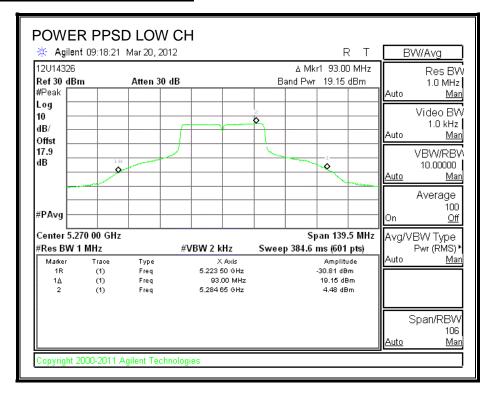
Limits

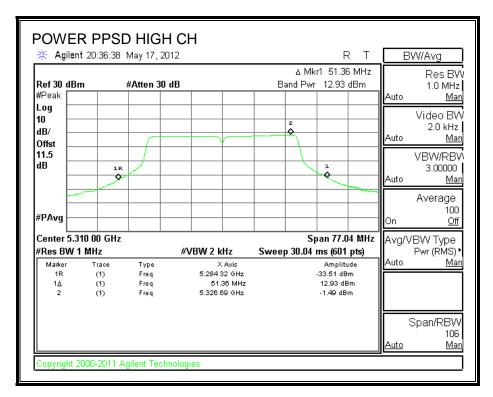
Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5270	24	87.00	30.40	1.81	24.00	11.00
High	5310	24	51.17	28.09	1.81	24.00	11.00


Output Power Results


Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5270	19.25	19.15	22.21	24.00	-1.79
High	5310	13.64	12.93	16.31	24.00	-7.69

PPSD Results

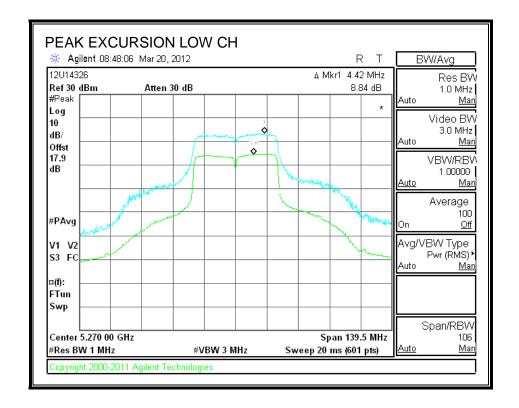

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	(MHz) 5270	(dBm) 4.62	(dBm) 4.48	(dBm) 7.56	(dBm) 11.00	(dB) -3.44

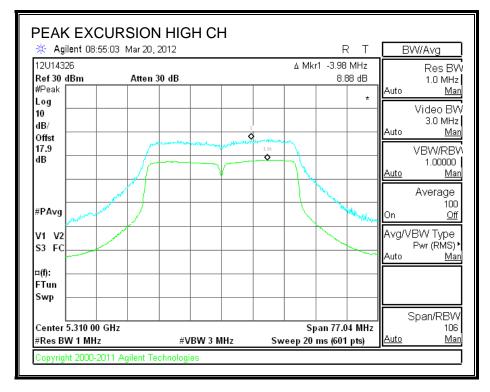

OUTPUT POWER AND PPSD CHAIN 0

OUTPUT POWER AND PPSD CHAIN 1

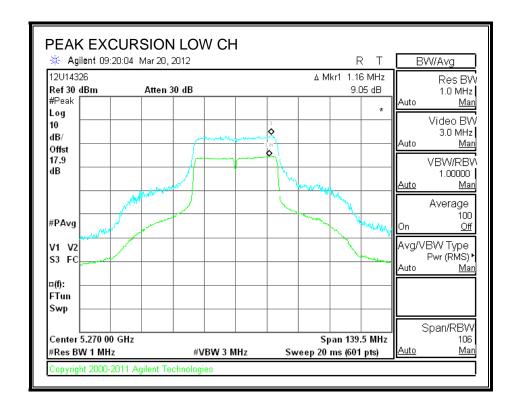
7.7.5. PEAK EXCURSION

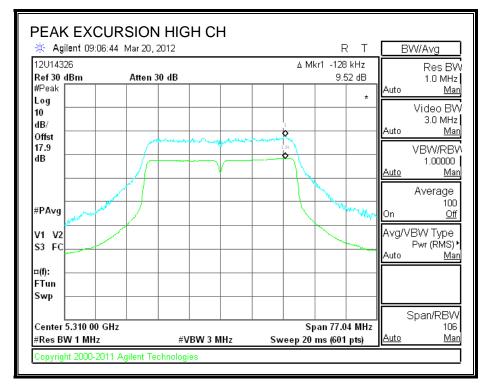
LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

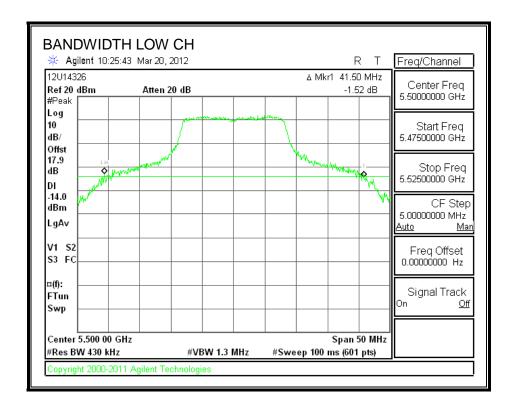

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5270	8.84	9.05	13	-4.0
High	5310	8.88	9.52	13	-3.5

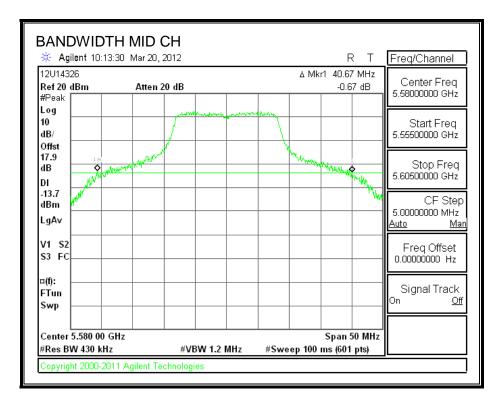

PEAK EXCURSION CHAIN 0

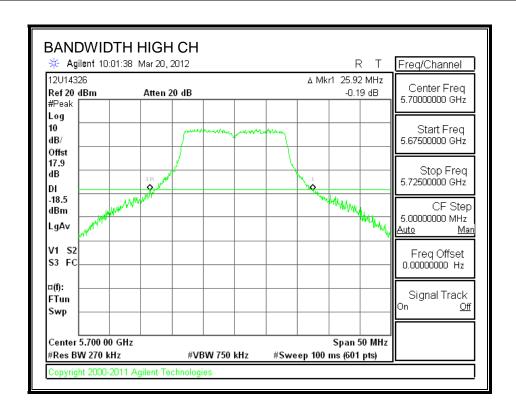
PEAK EXCURSION CHAIN 1

7.8. 802.11a MODE IN THE 5.6 GHz BAND

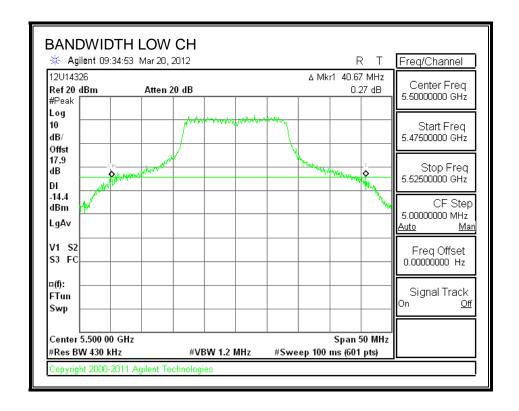
7.8.1. 26 dB BANDWIDTH

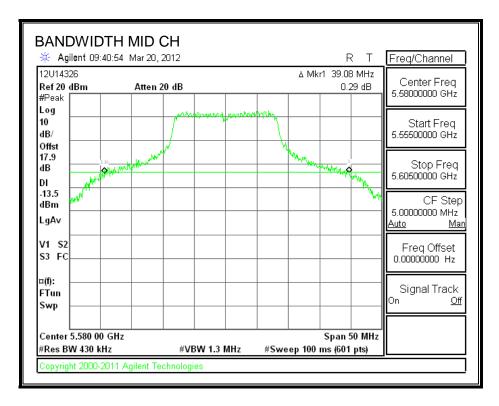

LIMITS

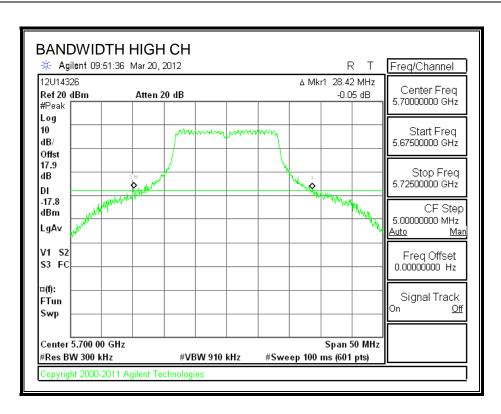

None; for reporting purposes only.


RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	41.50	40.67
Mid	5580	40.67	39.08
High	5700	25.92	28.42


26 dB BANDWIDTH CHAIN 0



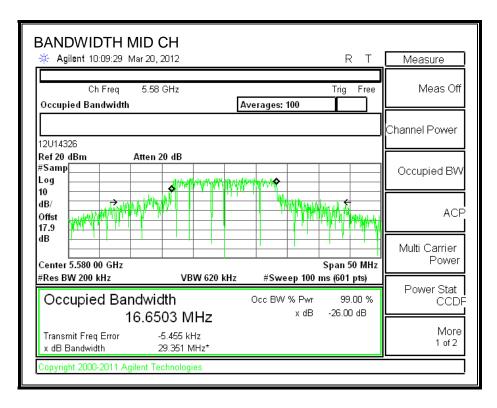


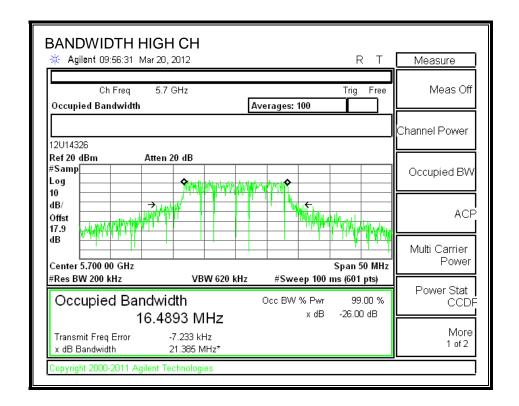
26 dB BANDWIDTH CHAIN 1

IC: 579C-A1392

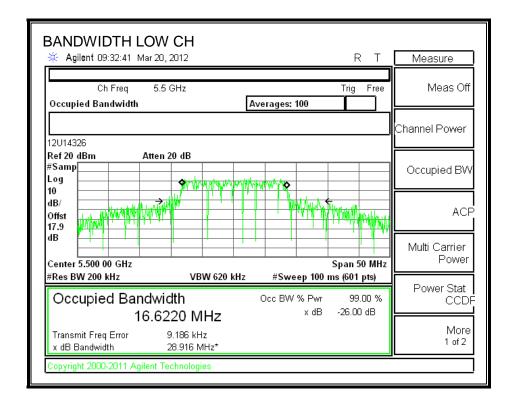
7.8.2. 99% BANDWIDTH

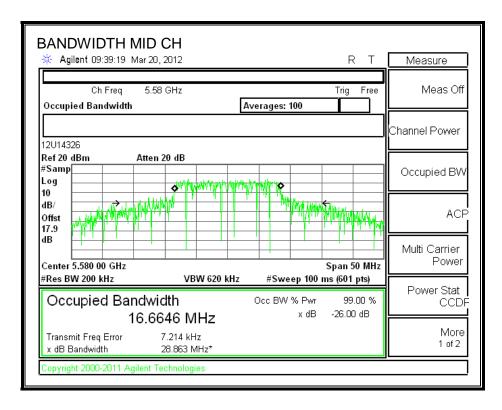

LIMITS

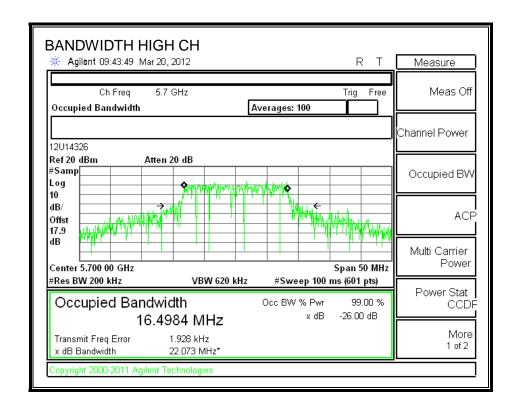

None; for reporting purposes only.


RESULTS

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	16.7678	16.6220
Mid	5580	16.6503	16.6646
High	5700	16.4893	16.4984


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.8.3. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

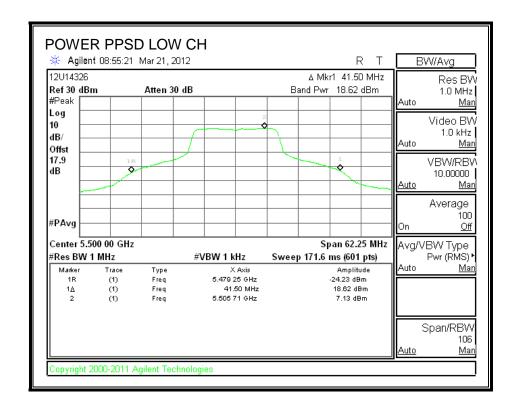
The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

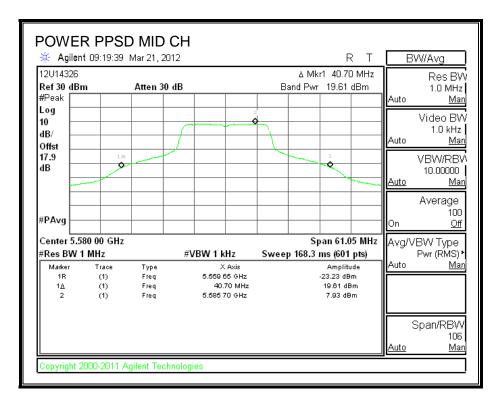
Chain 0	Chain 1	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.09	3.28	6.20

RESULTS

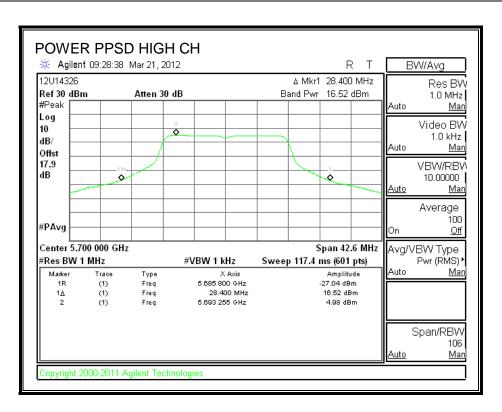
Limits

Channel	Frequency	Fixed	В	11 + 10 Log B Directional		Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5500	24	40.67	27.09	6.20	23.80	10.80
Mid	5580	24	39.08	26.92	6.20	23.80	10.80
High	5700	24	25.92	25.14	6.20	23.80	10.80

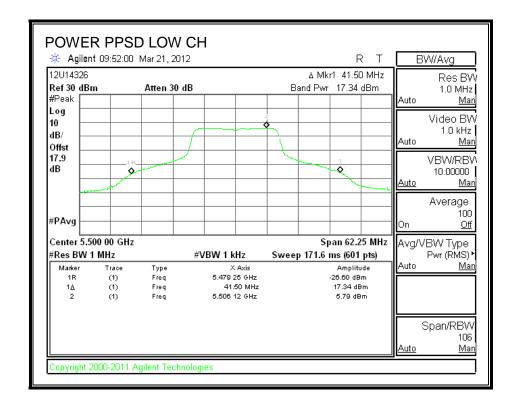

Output Power Results

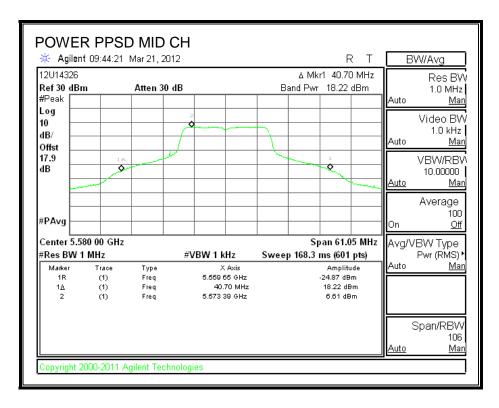

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power		
		Meas	Meas	Corr'd	Limit	Margin		
		Power	Power	Power				
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)		
Low	5500	18.62	17.34	21.04	23.80	-2.76		
Mid	5580	19.61	18.22	21.98	23.80	-1.82		
High	5700	16.52	16.27	19.40	23.80	-4.40		

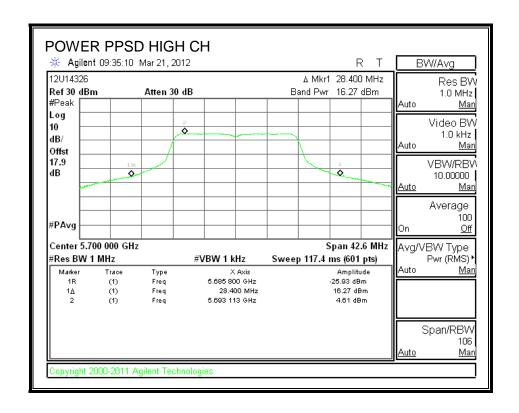
PPSD Results


Channel	Frequency	Chain 0 Chain 1		Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	7.13	5.79	9.52	10.80	-1.28
Mid	5580	7.93	6.61	10.33	10.80	-0.47
High	5700	4.98	4.61	7.81	10.80	-2.99

OUTPUT POWER AND PPSD CHAIN 0



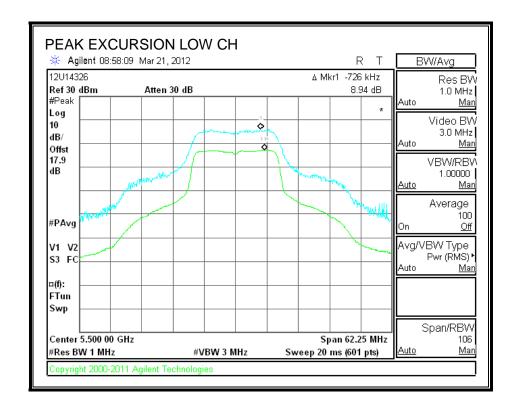

REPORT NO: 12U14633-1 DATE: SEPTEMBER 25, 2012 FCC ID: BCGA1392

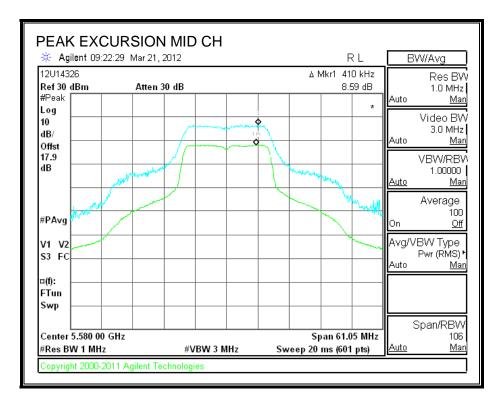


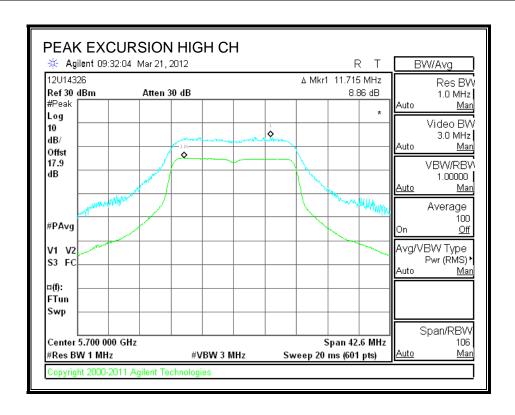
IC: 579C-A1392

OUTPUT POWER AND PPSD CHAIN 1

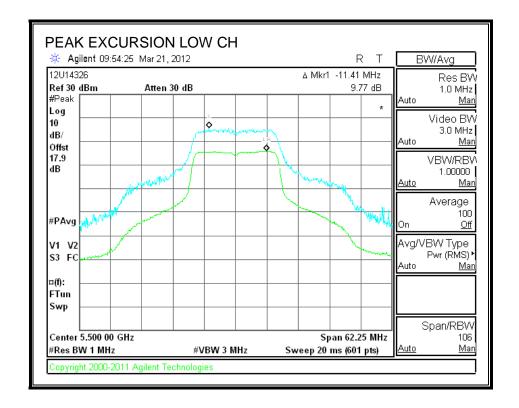
7.8.4. PEAK EXCURSION

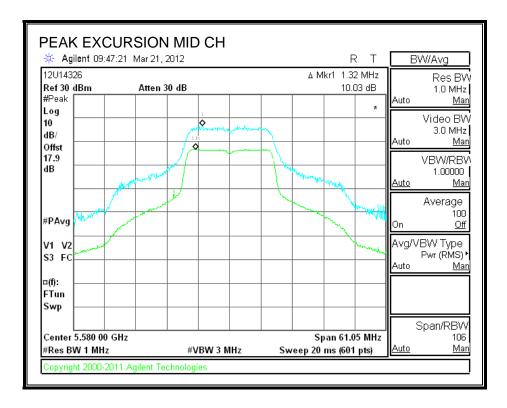

LIMITS

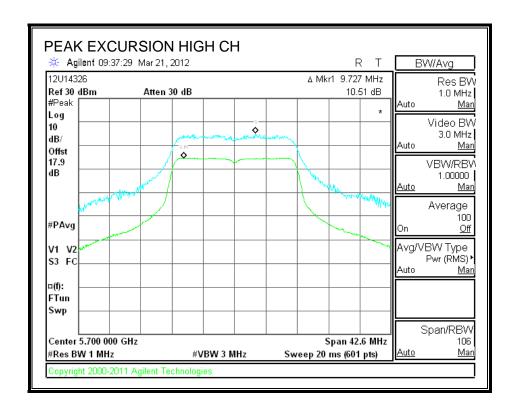

FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5500	8.94	9.77	13	-3.2
Mid	5580	8.59	10.03	13	-3.0
High	5700	8.86	10.51	13	-2.5

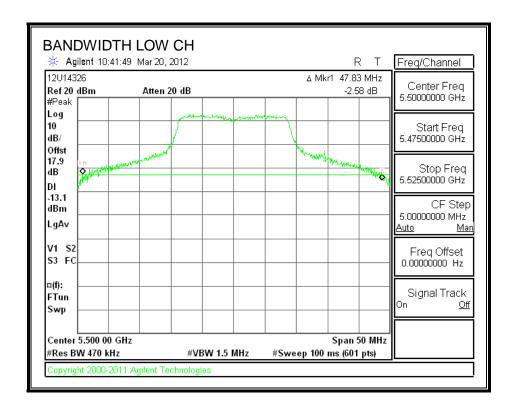

PEAK EXCURSION CHAIN 0

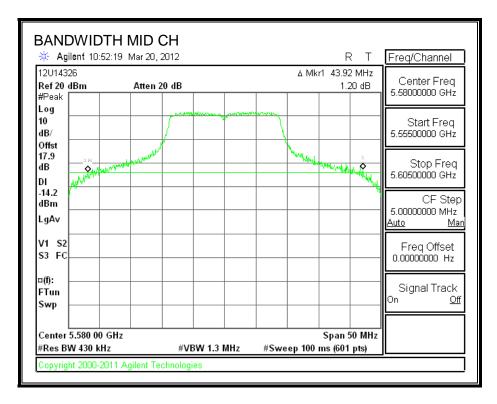


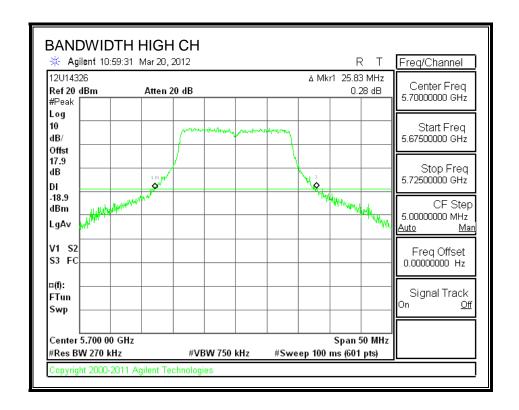


PEAK EXCURSION CHAIN 1

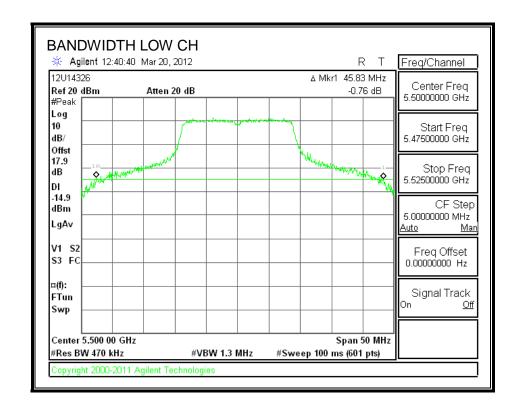
7.9. 802.11n HT20 MODE IN THE 5.6 GHz BAND

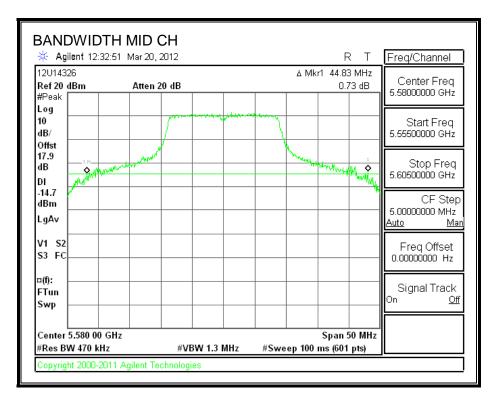

7.9.1. 26 dB BANDWIDTH


LIMITS


None; for reporting purposes only.

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	47.83	45.83
Mid	5580	43.92	44.83
High	5700	25.83	36.67


26 dB BANDWIDTH CHAIN 0

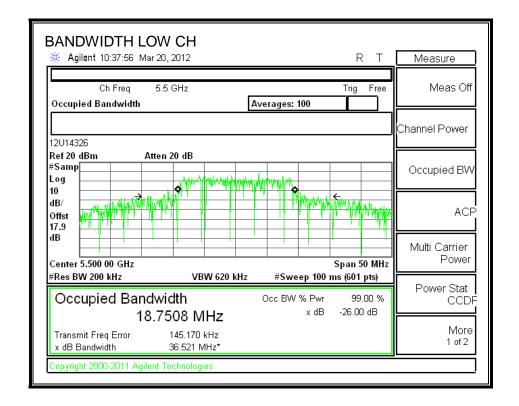


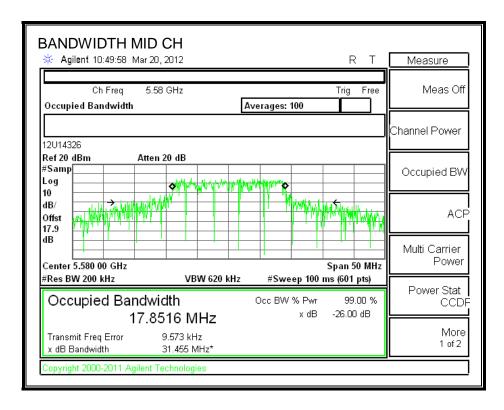
26 dB BANDWIDTH CHAIN 1

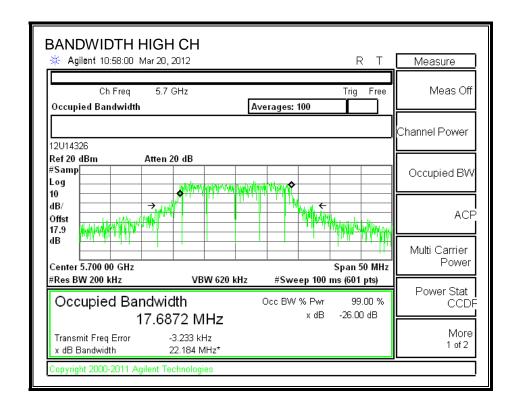
Copyright 2000-2011 Agilent Technologie:

DATE: SEPTEMBER 25, 2012

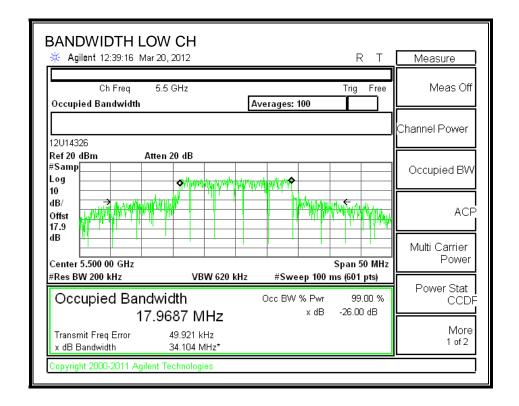
IC: 579C-A1392

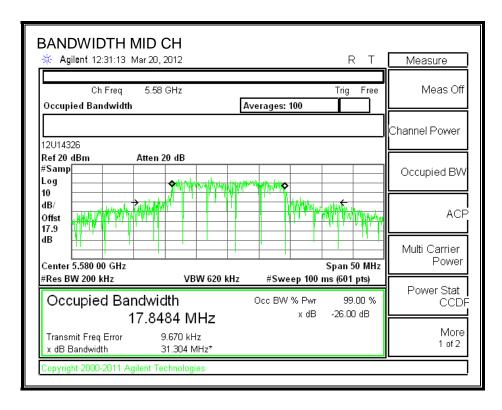

7.9.2. 99% BANDWIDTH

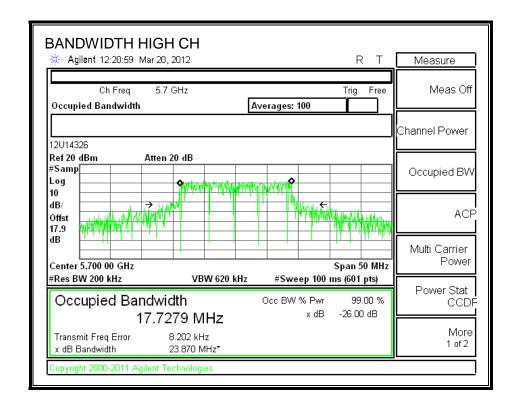

LIMITS


None; for reporting purposes only.

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	18.7508	17.9687
Mid	5580	17.8516	17.8484
High	5700	17.6872	17.7279


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.9.3. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

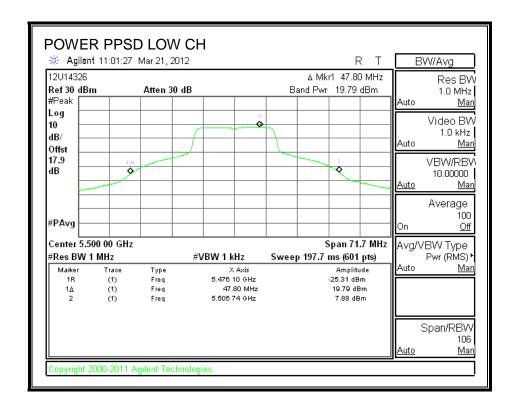
The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

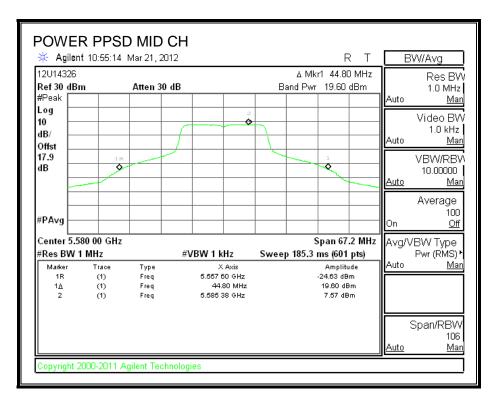
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.09	3.28	3.19

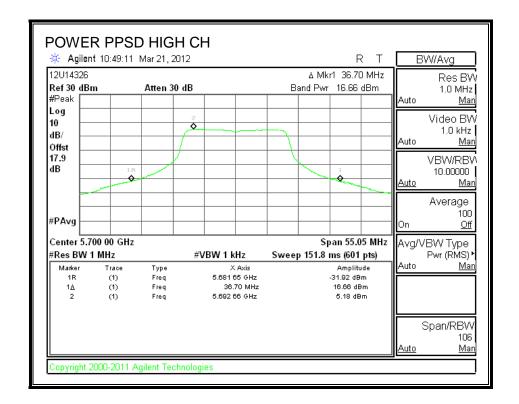
RESULTS

Limits

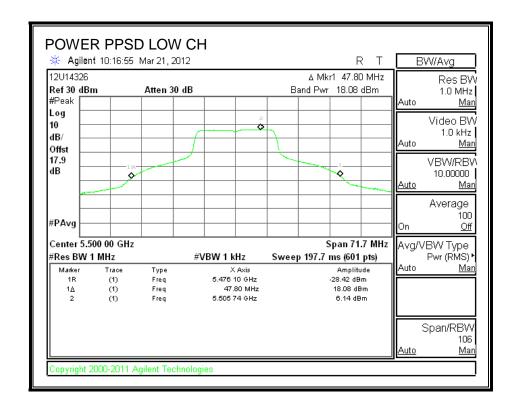
Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5500	24	45.83	27.61	3.19	24.00	11.00
Mid	5580	24	43.92	27.43	3.19	24.00	11.00
High	5700	24	25.83	25.12	3.19	24.00	11.00

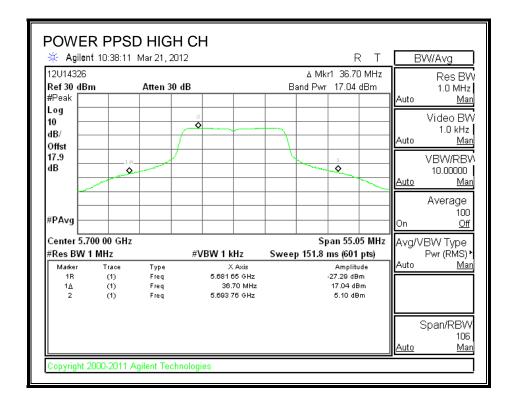

Output Power Results


Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	19.79	18.08	22.03	24.00	-1.97
Mid	5580	19.60	18.48	22.08	24.00	-1.92
High	5700	16.66	17.04	19.86	24.00	-4.14


PPSD Results

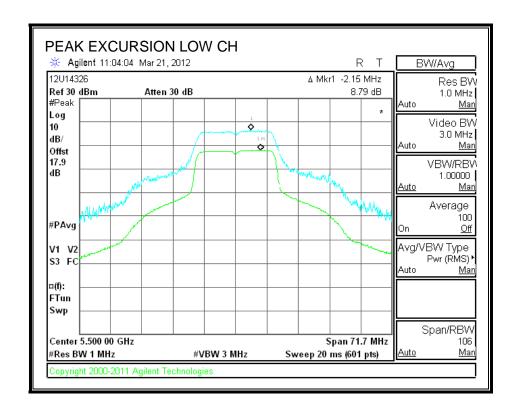
Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	7.88	6.14	10.11	11.00	-0.89
Mid	5580	7.57	6.55	10.10	11.00	-0.90
High	5700	5.18	5.10	8.15	11.00	-2.85

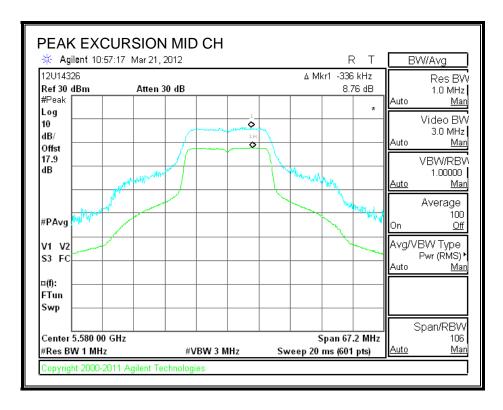

OUTPUT POWER AND PPSD CHAIN 0

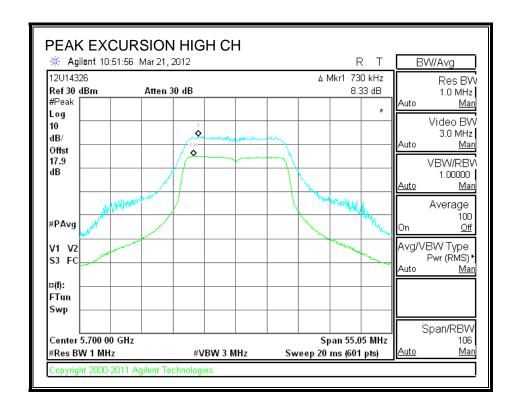


OUTPUT POWER AND PPSD CHAIN 1

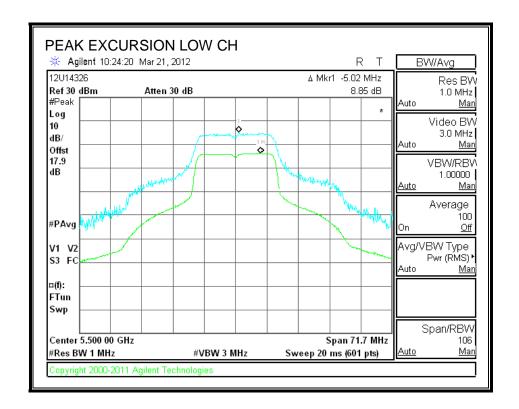
7.9.4. PEAK EXCURSION

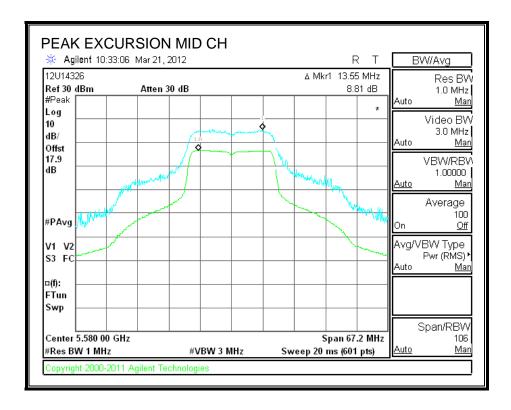

LIMITS

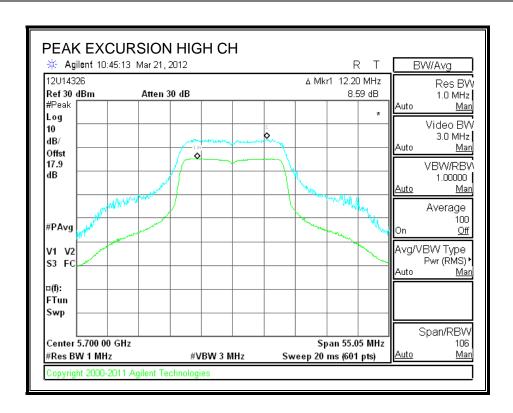

FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0			Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5500	8.79	8.85	13	-4.2
Mid	5580	8.76	8.81	13	-4.2
High	5700	8.33	8.59	13	-4.4

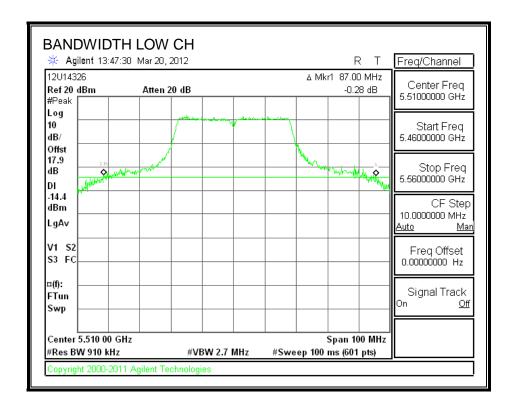

PEAK EXCURSION CHAIN 0

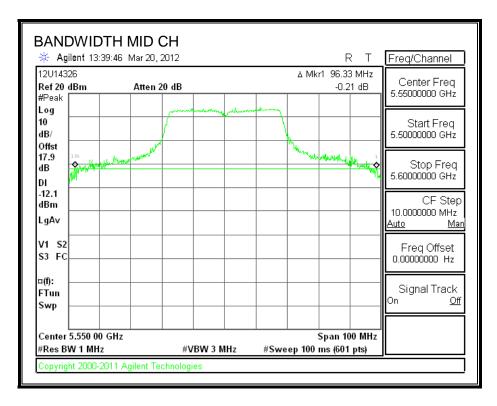


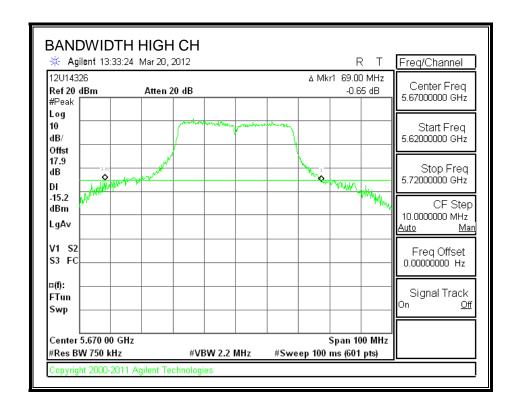


PEAK EXCURSION CHAIN 1

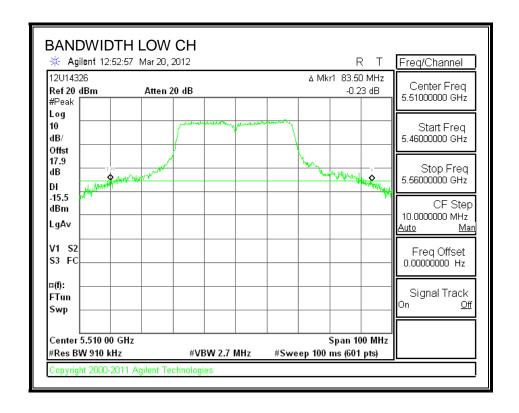
7.10. 802.11n HT40 MODE IN THE 5.6 GHz BAND


7.10.1. 26 dB BANDWIDTH

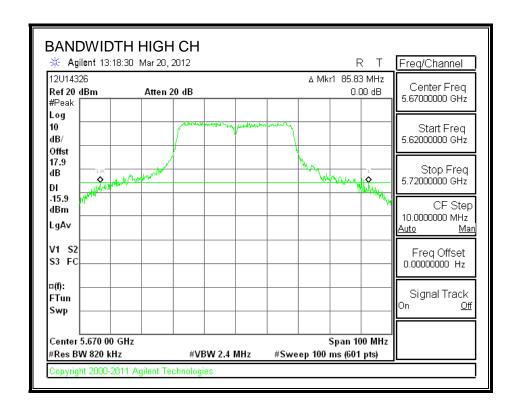

LIMITS


None; for reporting purposes only.

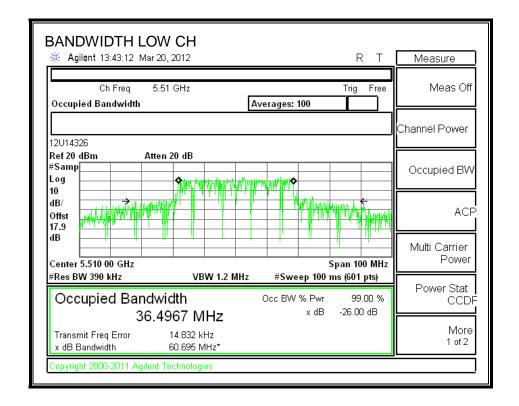
Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	87.00	83.50
Mid	5550	96.33	88.67
High	5670	69.00	85.83

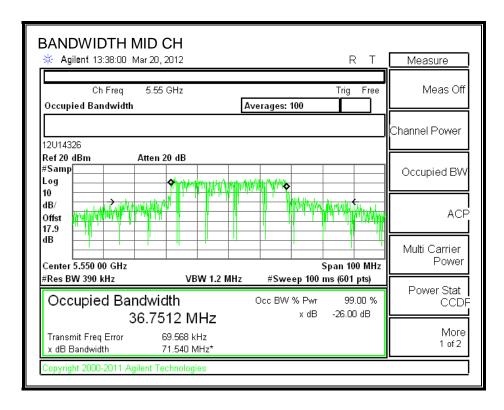

26 dB BANDWIDTH CHAIN 0

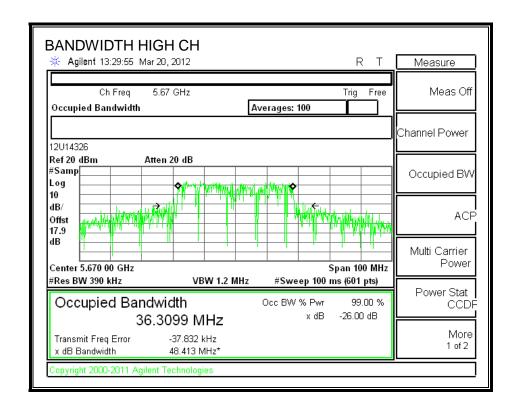




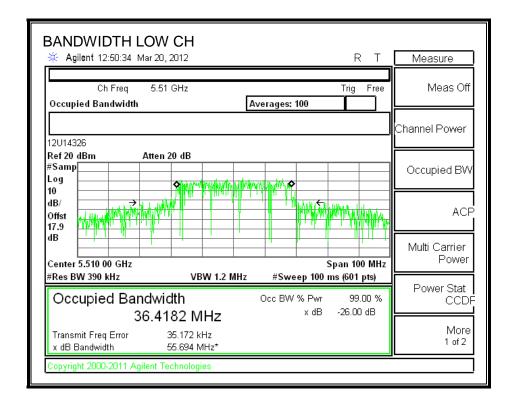
26 dB BANDWIDTH CHAIN 1

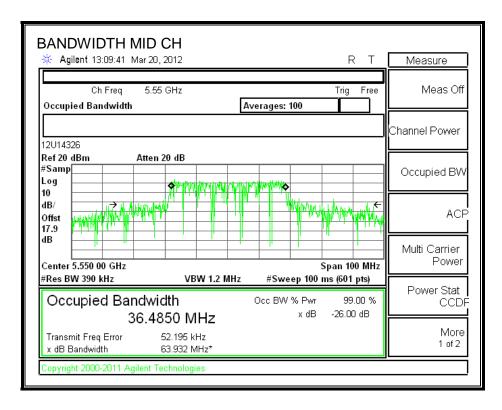

7.10.2. 99% BANDWIDTH

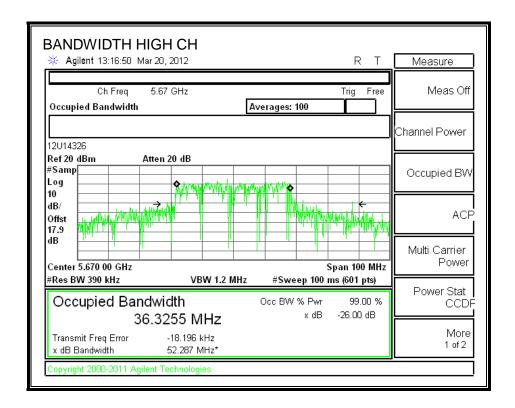

LIMITS


None; for reporting purposes only.

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	36.4967	36.4182
Mid	5550	36.7512	36.4850
High	5670	36.3099	36.3255


99% BANDWIDTH CHAIN 0





99% BANDWIDTH CHAIN 1

7.10.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5510	17.70	16.70	20.24
Mid	5550	19.10	17.80	21.51
High	5670	17.50	17.10	20.31

7.10.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (3)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

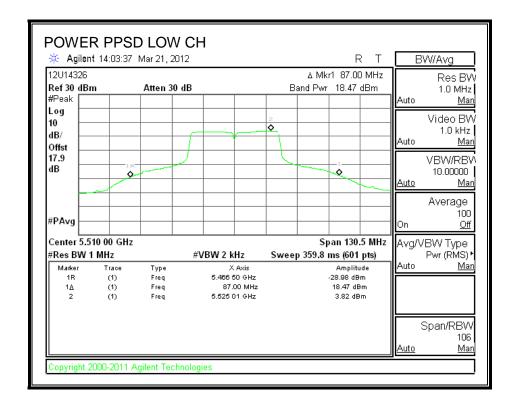
The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

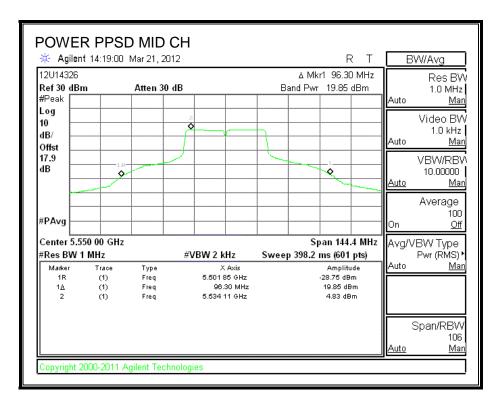
Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.09	3.29	3.19

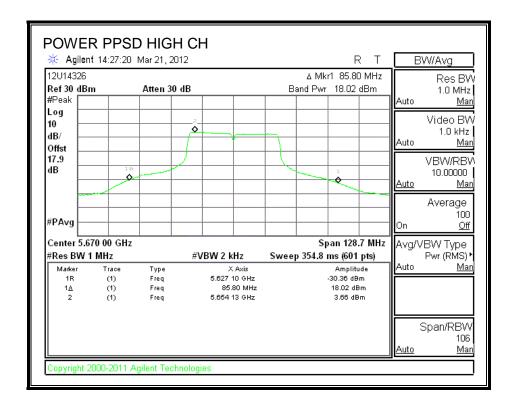
RESULTS

Limits

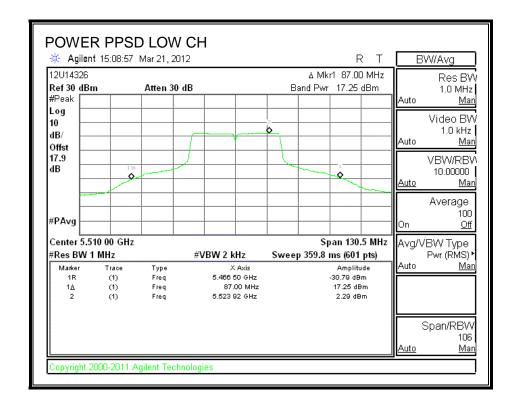
Channel	Frequency	Fixed	В	11 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5510	24	83.50	30.22	3.19	24.00	11.00
Mid	5550	24	88.67	30.48	3.19	24.00	11.00
High	5670	24	69.00	29.39	3.19	24.00	11.00

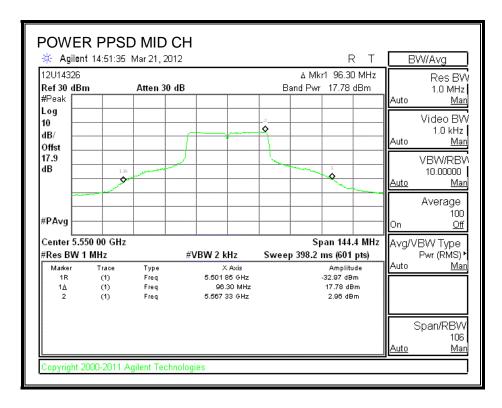

Output Power Results

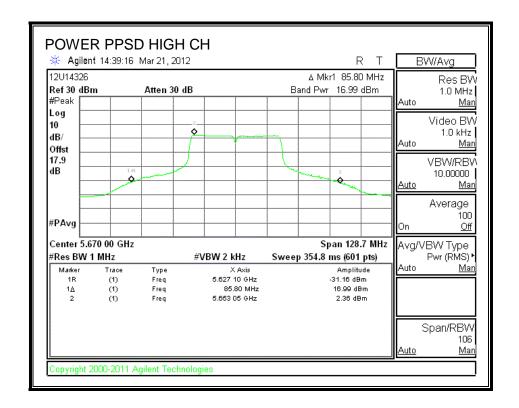

		-				
Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	18.47	17.25	20.91	24.00	-3.09
Mid	5550	19.85	17.78	21.95	24.00	-2.05
High	5670	18.02	16.99	20.55	24.00	-3.45


PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	3.82	2.29	6.13	11.00	-4.87
Mid	5550	4.83	2.96	7.01	11.00	-3.99
High	5670	3.66	2.36	6.07	11.00	-4.93


OUTPUT POWER AND PPSD CHAIN 0

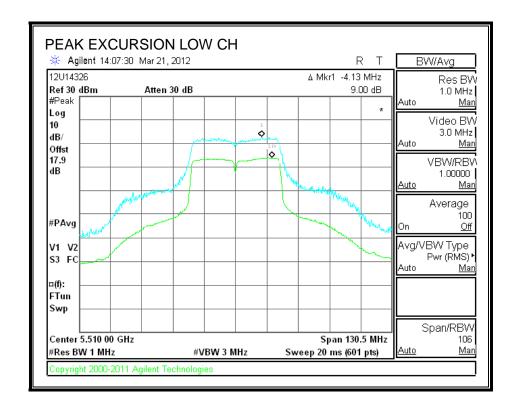


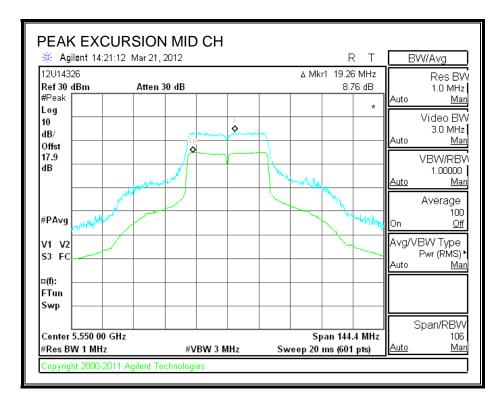


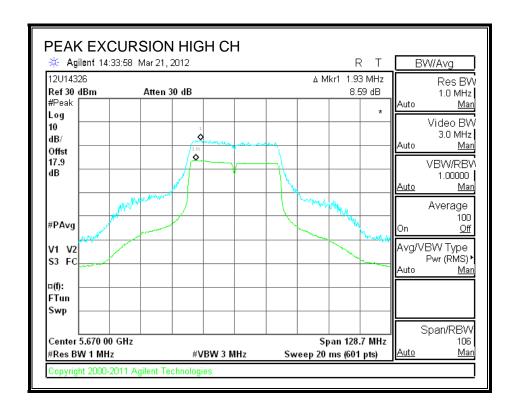
OUTPUT POWER AND PPSD CHAIN 1

7.10.5. PEAK EXCURSION

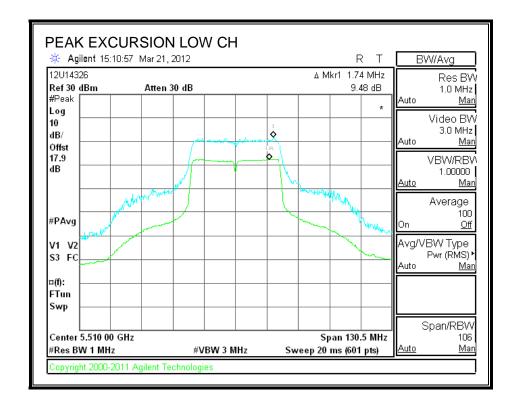
LIMITS

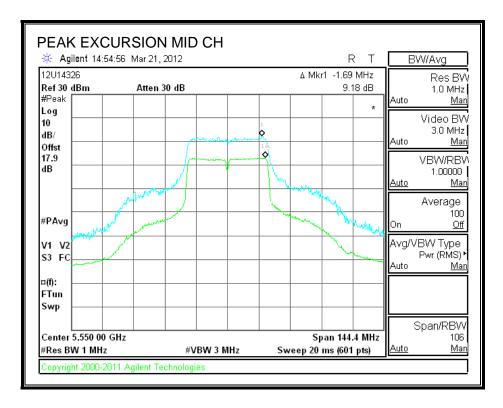

FCC §15.407 (a) (6)

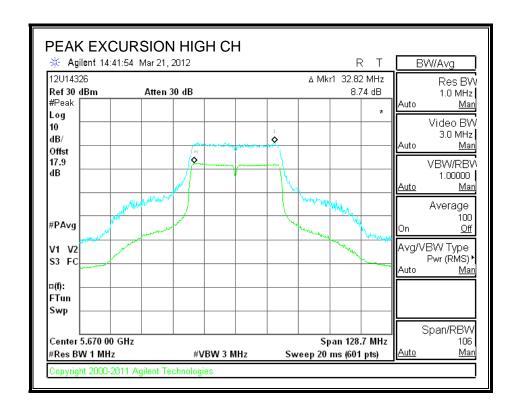

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	Pk Exc	Pk Exc	Limit	Worst-Case
		Chain 0	Chain 1		Margin
	(MHz)	(dB)	(dB)	(dB)	(dB)
Low	5510	9.00	9.48	13	-3.5
Mid	5550	8.76	9.18	13	-3.8
High	5670	8.59	8.74	13	-4.3


PEAK EXCURSION CHAIN 0





PEAK EXCURSION CHAIN 1

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

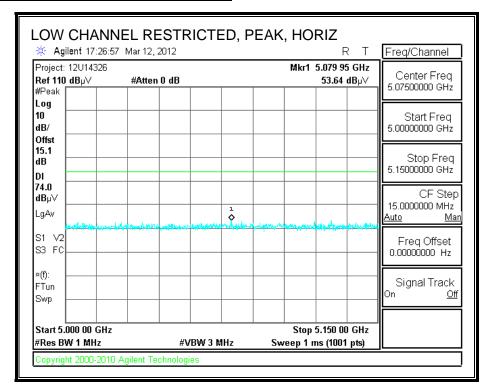
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

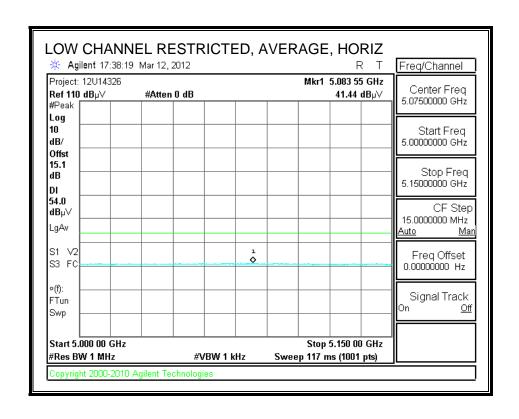
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

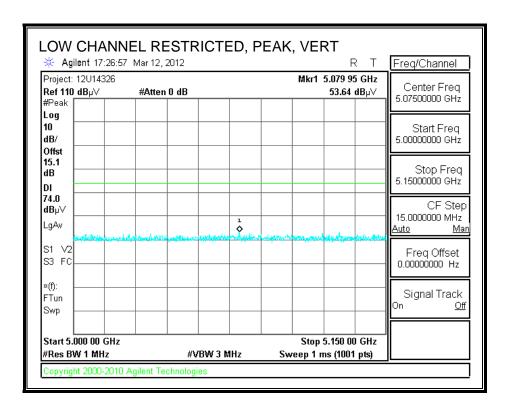
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

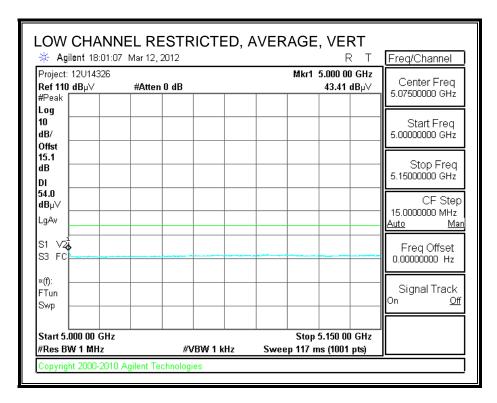
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.


The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.


8.2. TRANSMITTER ABOVE 1 GHz


8.2.1. TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL)

IC: 579C-A1392

HARMONICS AND SPURIOUS EMISSIONS

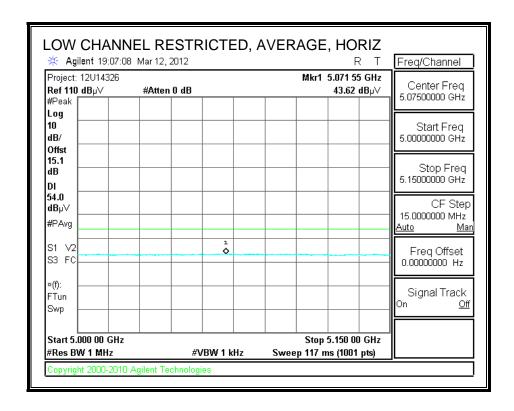
High Frequency Measurement

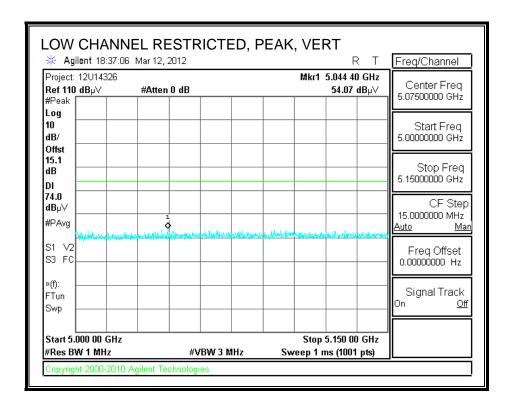
Compliance Certification Services, Fremont 5m Chamber

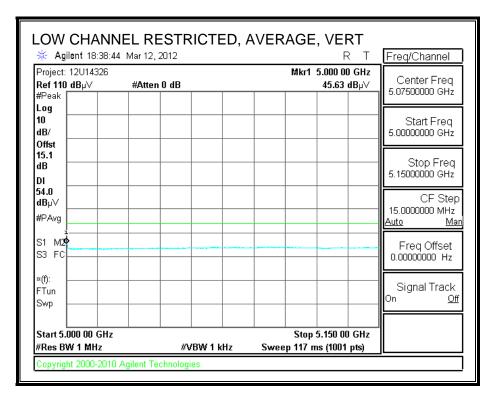
Test Engr: Tom Chen 03/22/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target: Mode Oper: 802.11a, W52 TX mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dΒ	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
5180MHz	lla												
15.540	3.0	35.1	39.1	12.5	-32.3	0.0	0.7	55.1	74.0	-18.9	V	P	
15.540	3.0	22.8	39.1	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	V	A	
15.540	3.0	35.7	39.1	12.5	-32.3	0.0	0.7	55.7	74.0	-18.3	H	P	
15.540	3.0	22.8	39.1	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	H	A	
5200 MHz	lla												
15.540	3.0	34.9	39.1	12.5	-32.3	0.0	0.7	54.9	74.0	-19.1	H	P	
15.540	3.0	22.8	39.1	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	H	A	
15.600	3.0	35.3	38.9	12.5	-32.3	0.0	0.7	55.2	74.0	-18.8	V	P	
15.600	3.0	22.9	38.9	12.5	-32.3	0.0	0.7	42.7	54.0	-11.3	V	A	
5240MHz	lla												
15.720	3.0	34.5	38.5	12.6	-32.2	0.0	0.7	54.0	74.0	-20.0	V	P	
15.720	3.0	22.7	38.5	12.6	-32.2	0.0	0.7	42.2	54.0	-11.8	V	A	
15.720	3.0	35.4	38.5	12.6	-32.2	0.0	0.7	54.9	74.0	-19.1	H	P	
15.720	3.0	22.7	38.5	12.6	-32.2	0.0	0.7	42.2	54.0	-11.8	H	A	


Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.


8.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

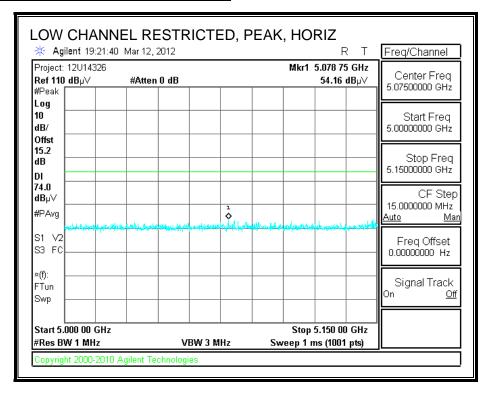
High Frequency Measurement

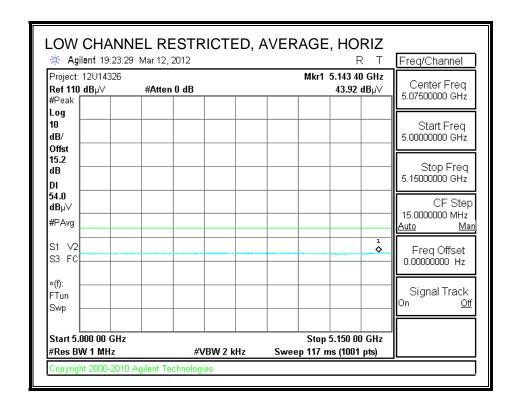
Compliance Certification Services, Fremont 5m Chamber

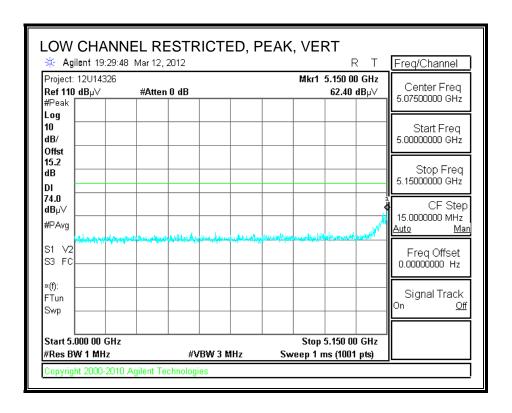
Tom Chen Test Engr: Date: 03/22/12 Project #: 12U14326 Apple Company: Test Target: FCC Class B

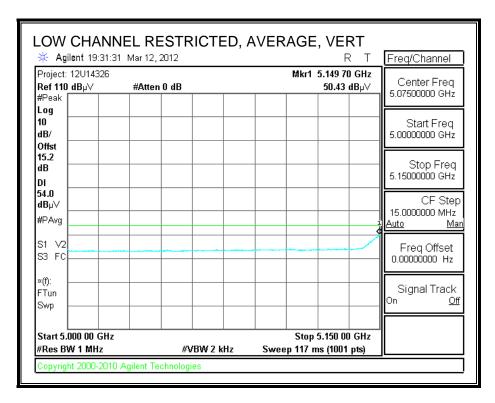
Mode Oper: 802.HT20, W52 TX mode

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB			dBuV/m		V/H	P/A/QP	
5180MHz	HT20												
15.540	3.0	35.2	39.1	12.5	-32.3	0.0	0.7	55.2	74.0	-18.8	H	P	
15.540	3.0	22.7	39.1	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	H	A	
15.540	3.0	35.9	39.1	12.5	-32.3	0.0	0.7	55.9	74.0	-18.1	V	P	
15.540	3.0	22.7	39.1	12.5	-32.3	0.0	0.7	42.7	54.0	-11.3	V	A	
5200MHz	HT20												
15.600	3.0	35.6	38.9	12.5	-32.3	0.0	0.7	55.4	74.0	-18.6	V	P	
15.600	3.0	22.9	38.9	12.5	-32.3	0.0	0.7	42.7	54.0	-11.3	V	A	
15.600	3.0	35.1	38.9	12.5	-32.3	0.0	0.7	55.0	74.0	-19.0	H	P	
15.600	3.0	22.9	38.9	12.5	-32.3	0.0	0.7	42.7	54.0	-11.3	H	A	
5240MHz	HT20				, , , , , , , , , , , , , , , , , , , ,								
15.720	3.0	35.0	38.5	12.6	-32.2	0.0	0.7	54.5	74.0	-19.5	H	P	
15.720	3.0	22.7	38.5	12.6	-32.2	0.0	0.7	42.3	54.0	-11.7	H	A	
15.720	3.0	35.2	38.5	12.6	-32.2	0.0	0.7	54.7	74.0	-19.3	V	P	•
15.720	3.0	22.7	38.5	12.6	-32.2	0.0	0.7	42.3	54.0	-11.7	V	A	


Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.


8.2.3. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND

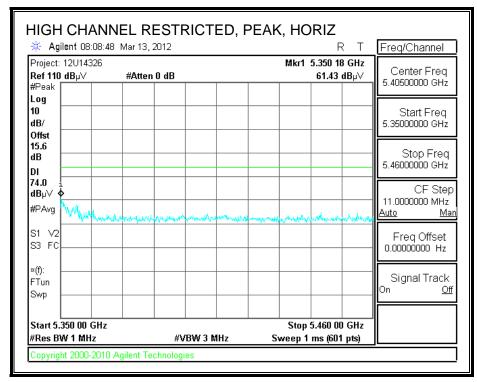
RESTRICTED BANDEDGE (LOW CHANNEL)

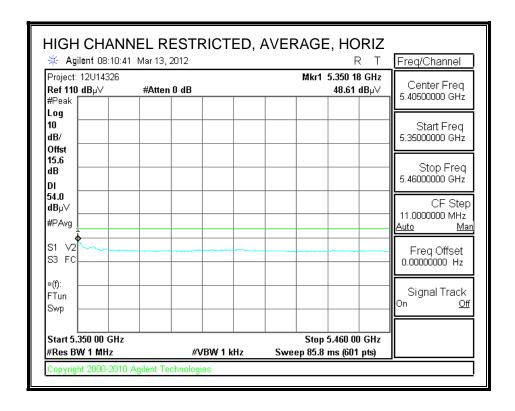
HARMONICS AND SPURIOUS EMISSIONS

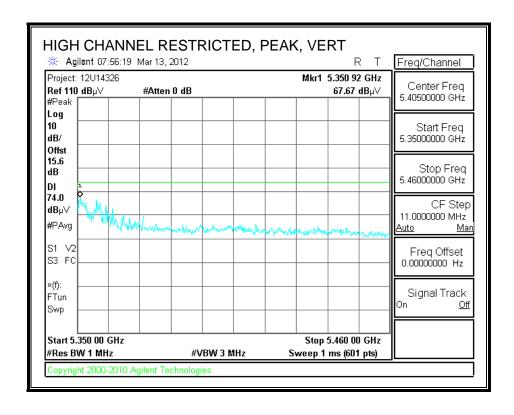
High Frequency Measurement

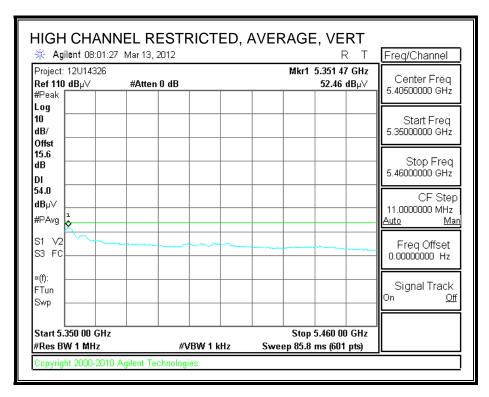
Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: 03/22/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target:


Mode Oper: 802.HT40, W52 TX mode


f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dΒ	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
5190MHz	HT40												
15.570	3.0	35.6	39.0	12.5	-32.3	0.0	0.7	55.6	74.0	-18.4	H	P	
15.570	3.0	22.8	39.0	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	H	A	
5190MHz	HT40												
15.570	3.0	34.6	39.0	12.5	-32.3	0.0	0.7	54.5	74.0	-19.5	V	P	
15.570	3.0	22.8	39.0	12.5	-32.3	0.0	0.7	42.8	54.0	-11.2	V	A	
5230MHz	HT40												
15.690	3.0	35.8	38.6	12.6	-32.3	0.0	0.7	55.5	74.0	-18.5	V	P	
15.690	3.0	22.7	38.6	12.6	-32.3	0.0	0.7	42.4	54.0	-11.6	V	A	
5230MHz	HT40												
15.690	3.0	35.2	38.6	12.6	-32.3	0.0	0.7	54.9	74.0	-19.1	H	P	
15.690	3.0	22.8	38.6	12.6	-32.3	0.0	0.7	42.4	54.0	-11.6	H	A	

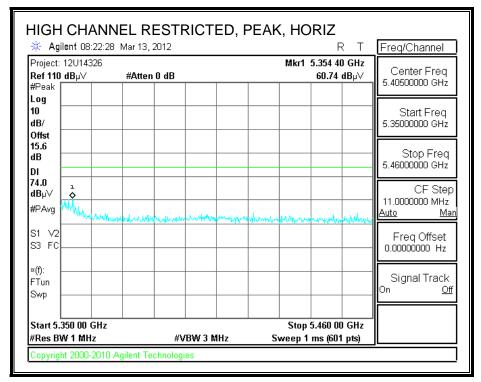

Note: No other emissions were detected above the system noise floor.

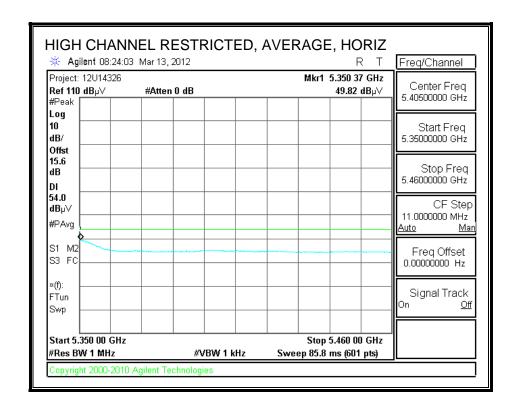
8.2.4. TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND RESTRICTED BANDEDGE (HIGH CHANNEL)

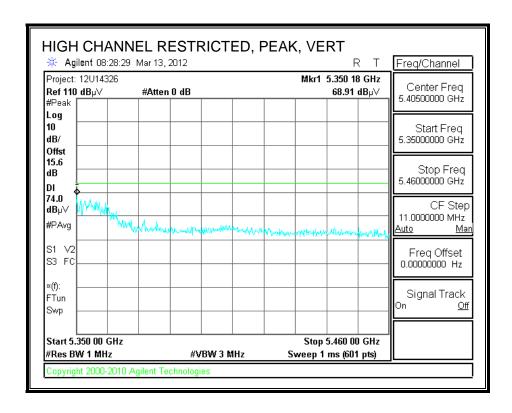
HARMONICS AND SPURIOUS EMISSIONS

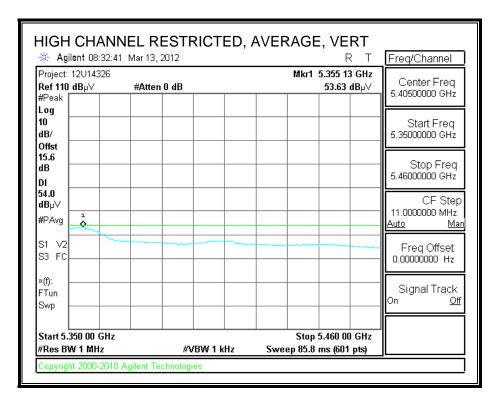
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber


Test Engr: Tom Chen 03/20/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target: Mode Oper: 802.11a, W53 TX mode


> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	$dBuV/\mathbf{m}$	dB	V/H	P/A/QP	
5260 MH ₂	lla												
15.780	3.0	35.1	38.3	12.6	-32.2	0.0	0.7	54.5	74.0	-19.5	V	P	
15.780	3.0	22.5	38.3	12.6	-32.2	0.0	0.7	41.9	54.0	-12.1	V	A	
5260 MH ₂	lla												
15.780	3.0	36.7	38.3	12.6	-32.2	0.0	0.7	56.1	74.0	-17.9	H	P	
15.780	3.0	22.6	38.3	12.6	-32.2	0.0	0.7	42.0	54.0	-12.0	H	A	
5300 MH ₂	lla												
10.600	3.0	38.6	38.1	9.7	-33.9	0.0	0.8	53.2	74.0	-20.8	H	P	
10.600	3.0	25.9	38.1	9.7	-33.9	0.0	0.8	40.5	54.0	-13.5	H	A	
15.900	3.0	35.5	37.9	12.7	-32.2	0.0	0.7	54.6	74.0	-19.4	H	P	
15.900	3.0	22.9	37.9	12.7	-32.2	0.0	0.7	42.1	54.0	-11.9	H	A	
5300 MH ₂	lla												
10.600	3.0	46.0	38.1	9.7	-33.9	0.0	0.8	60.6	74.0	-13.4	V	P	
10.600	3.0	31.5	38.1	9.7	-33.9	0.0	0.8	46.2	54.0	-7.8	V	A	
15.900	3.0	36.2	37.9	12.7	-32.2	0.0	0.7	55.3	74.0	-18.7	V	P	
15.900	3.0	23.7	37.9	12.7	-32.2	0.0	0.7	42.8	54.0	-11.2	V	A	
5320 MH ₂	lla				•								
10.640	3.0	44.9	38.2	9.7	-33.9	0.0	0.8	59.6	74.0	-14.4	V	P	
10.640	3.0	30.7	38.2	9.7	-33.9	0.0	0.8	45.4	54.0	-8.6	V	A	
10.640	3.0	39.4	38.2	9.7	-33.9	0.0	0.8	54.2	74.0	-19.8	H	P	
10.640	3.0	26.4	38.2	9.7	-33.9	0.0	0.8	41.1	54.0	-12.9	H	A	


Note: No other emissions were detected above the system noise floor.

8.2.5. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND RESTRICTED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

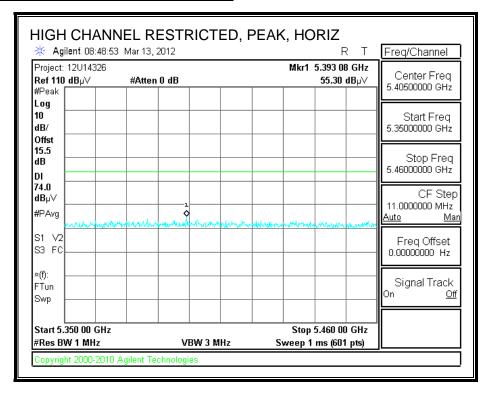
High Frequency Measurement

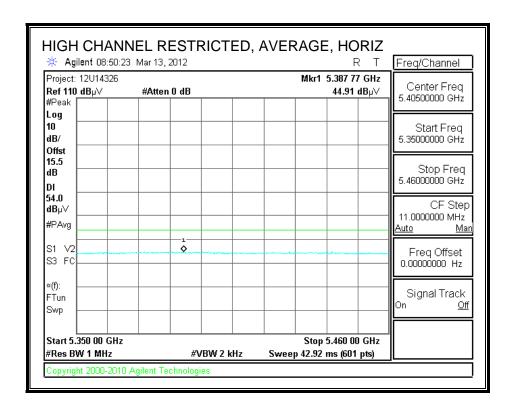
Compliance Certification Services, Fremont 5m Chamber

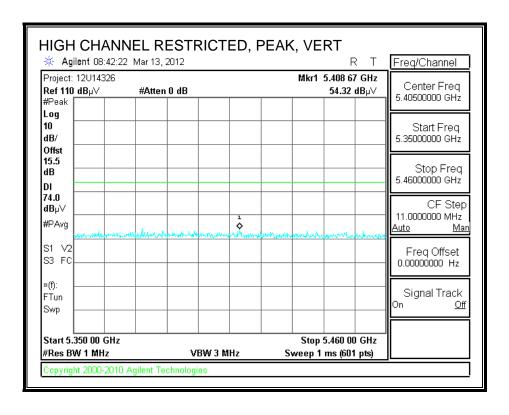
Test Engr: Tom Chen 03/20/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target:

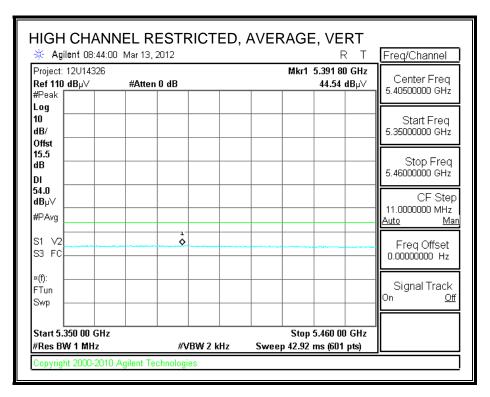
Mode Oper: 802.11n HT20, W53 TX mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
260 MHz	HT20												
15.780	3.0	35.9	38.3	12.6	-32.2	0.0	0.7	55.3	74.0	-18.7	V	P	
15.780	3.0	23.3	38.3	12.6	-32.2	0.0	0.7	42.8	54.0	-11.2	V	A	
5260 MHz	HT20												
15.780	3.0	35.8	38.3	12.6	-32.2	0.0	0.7	55.2	74.0	-18.8	H	P	
15.780	3.0	23.2	38.3	12.6	-32.2	0.0	0.7	42.6	54.0	-11.4	H	A	
5300 MHz	HT20						•••••						
10.600	3.0	49.3	38.1	9.7	-33.9	0.0	0.8	63.9	74.0	-10.1	V	P	
10.600	3.0	35.7	38.1	9.7	-33.9	0.0	0.8	50.3	54.0	-3.7	V	A	
15.900	3.0	35.3	37.9	12.7	-32.2	0.0	0.7	54.4	74.0	-19.6	V	P	
15.900	3.0	23.2	37.9	12.7	-32.2	0.0	0.7	42.3	54.0	-11.7	V	A	
5300 MHz	HT20						•••••						
10.600	3.0	45.7	38.1	9.7	-33.9	0.0	0.8	60.3	74.0	-13.7	H	P	
10.600	3.0	30.8	38.1	9.7	-33.9	0.0	0.8	45.5	54.0	-8.5	H	A	
15.900	3.0	34.8	37.9	12.7	-32.2	0.0	0.7	53.9	74.0	-20.1	H	P	
15.900	3.0	22.9	37.9	12.7	-32.2	0.0	0.7	42.0	54.0	-12.0	H	A	
5320 MHz	HT20												
10.640	3.0	43.5	38.2	9.7	-33.9	0.0	0.8	58.2	74.0	-15.8	H	P	
10.640	3.0	29.8	38.2	9.7	-33.9	0.0	0.8	44.5	54.0	-9.5	H	A	
15.960	3.0	34.5	37.7	12.7	-32.2	0.0	0.7	53.4	74.0	-20.6	H	P	
15.960	3.0	22.9	37.7	12.7	-32.2	0.0	0.7	41.9	54.0	-12.1	H	A	
5320 MHz	۸												
10.640	3.0	49.7	38.2	9.7	-33.9	0.0	0.8	64.5	74.0	-9.6	V	P	
10.640	3.0	34.7	38.2	9.7	-33.9	0.0	0.8	49.4	54.0	-4.6	V	A	
15.960	3.0	34.7	37.7	12.7	-32.2	0.0	0.7	53.6	74.0	-20.4	V	P	
15.960	3.0	23.0	37.7	12.7	-32.2	0.0	0.7	42.0	54.0	-12.0	V	A	


Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.


8.2.6. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND

RESTRICTED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

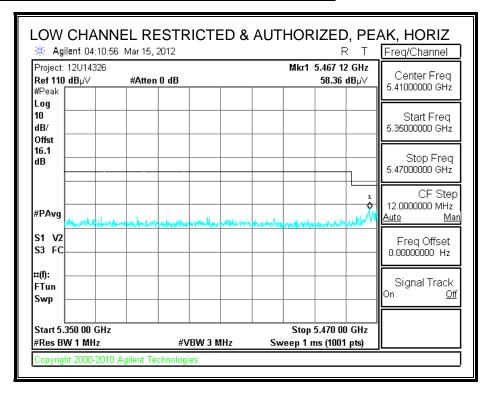
High Frequency Measurement

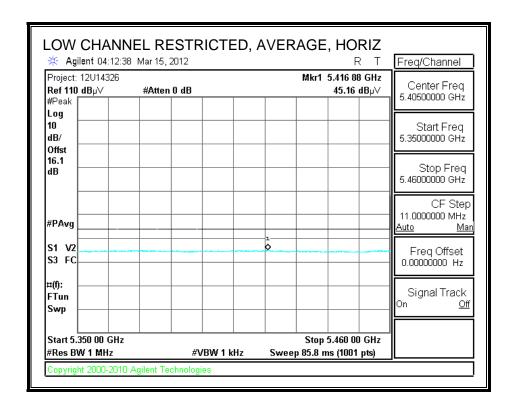
Compliance Certification Services, Fremont 5m Chamber

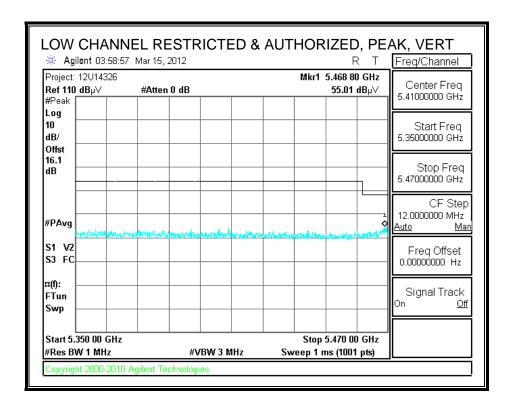
Test Engr: Tom Chen 03/20/12 Date: 12U14326 Project #: Company: Apple Test Target: FCC Class B

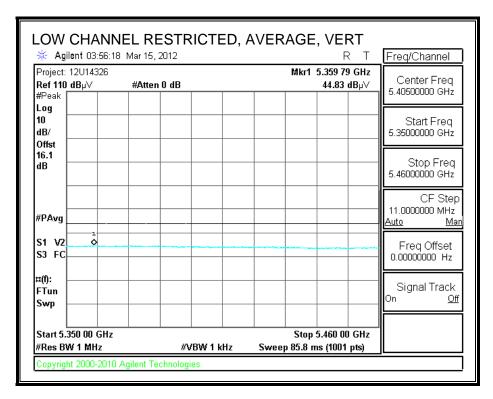
Mode Oper: 802.11n HT40, W53 TX mode

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

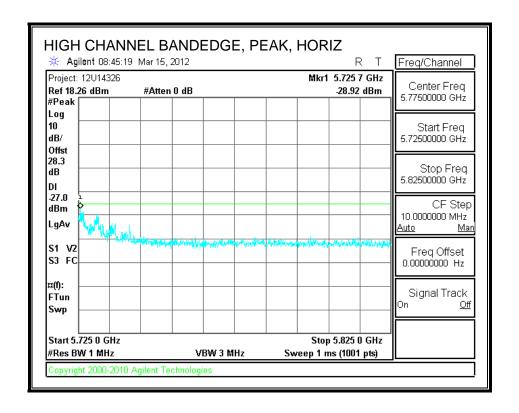

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
5270 MHz HT40													
15.810	3.0	35.7	38.2	12.6	-32.2	0.0	0.7	55.0	74.0	-19.0	V	P	
15.810	3.0	23.7	38.2	12.6	-32.2	0.0	0.7	43.0	54.0	-11.0	V	A	
5270 MHz	HT40												
15.810	3.0	35.8	38.2	12.6	-32.2	0.0	0.7	55.1	74.0	-18.9	H	P	
15.810	3.0	23.0	38.2	12.6	-32.2	0.0	0.7	42.3	54.0	-11.7	H	A	
5310 MHz HT40													
10.620	3.0	36.3	38.1	9.7	-33.9	0.0	0.8	51.0	74.0	-23.0	H	P	
10.620	3.0	23.9	38.1	9.7	-33.9	0.0	0.8	38.6	54.0	-15.4	H	A	
5310 MHz HT40													
10.620	3.0	37.3	38.1	9.7	-33.9	0.0	0.8	52.0	74.0	-22.0	V	P	
10.620	3.0	24.9	38.1	9.7	-33.9	0.0	0.8	39.6	54.0	-14.4	V	A	

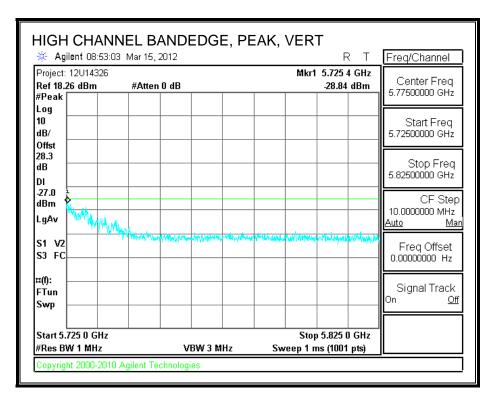

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.


8.2.7. TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND

RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)





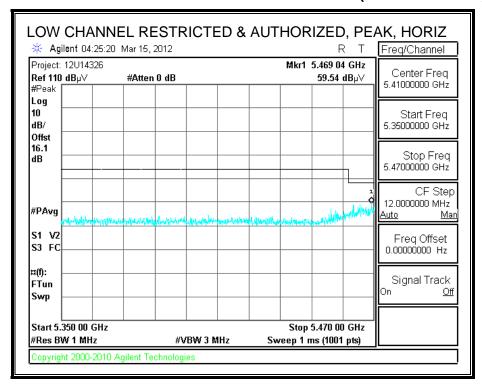
AUTHORIZED BANDEDGE (HIGH CHANNEL)

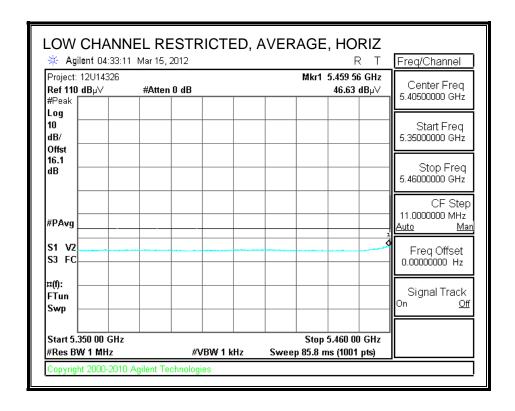
HARMONICS AND SPURIOUS EMISSIONS

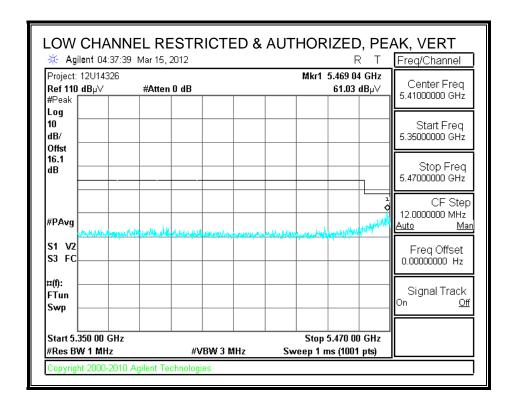
High Frequency Measurement

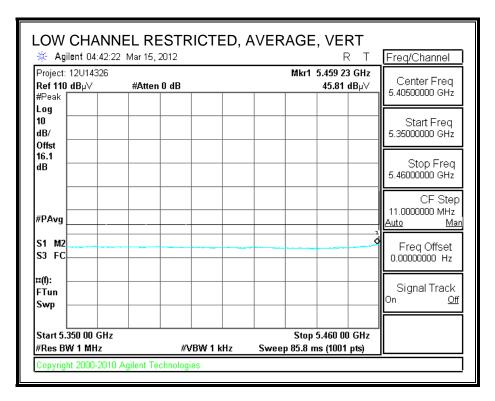
Compliance Certification Services, Fremont 5m Chamber

Tom Chen 03/21/12 Date: Project #: 12U14326 Company: Apple Test Target: FCC Class B Mode Oper: 802.11a, W56 TX mode

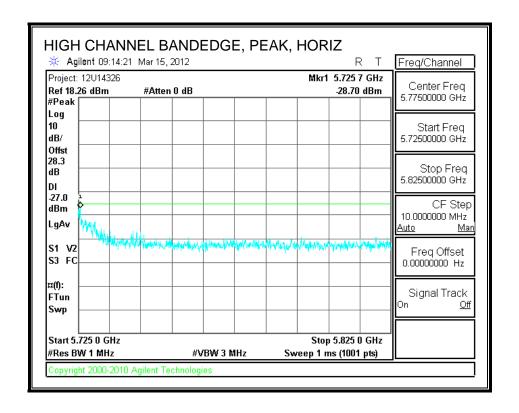

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

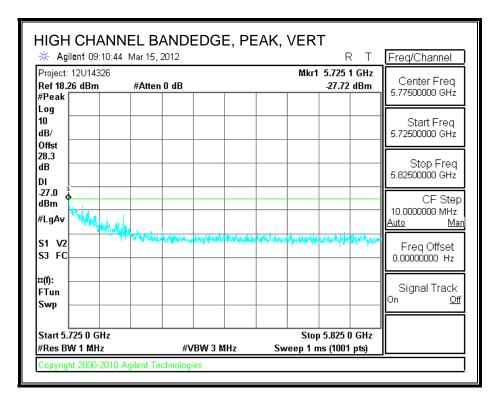

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
5500MHz	lla												
11.000	3.0	44.8	38.3	10.1	-35.6	0.0	0.7	58.2	74.0	-15.8	V	P	
11.000	3.0	29.4	38.3	10.1	-35.6	0.0	0.7	42.9	54.0	-11.1	V	A	
5500MHz	lla												
11.000	3.0	38.5	38.3	10.1	-35.6	0.0	0.7	52.0	74.0	-22.0	H	P	
11.000	3.0	24.9	38.3	10.1	-35.6	0.0	0.7	38.4	54.0	-15.6	H	A	
5580MHz	lla												
11.160	3.0	38.7	38.5	10.2	-35.6	0.0	0.7	52.5	74.0	-21.5	H	P	
11.160	3.0	26.8		10.2	-35.6	0.0	0.7	40.6	54.0	-13.4	H	A	
5580MHz	lla												
11.160	3.0	44.8	38.5	10.2	-35.6	0.0	0.7	58.6	74.0	-15.4	V	P	
11.160	3.0	30.6	38.5	10.2	-35.6	0.0	0.7	44.4	54.0	-9.6	V	A	
5700MHz	lla												
11.400	3.0	42.7	38.7	10.4	-35.6	0.0	0.7	57.0	74.0	-17.0	V	P	
11.400	3.0	26.0	38.7	10.4	-35.6	0.0	0.7	40.4	54.0	-13.6	V	A	
5700MHz	lla												
11.400	3.0	35.6	38.7	10.4	-35.6	0.0	0.7	49.9	74.0	-24.1	H	P	
11.400	3.0	23.6	38.7	10.4		0.0	0.7	37.9	54.0	-16.1	Н	A	


Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

8.2.8. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)





AUTHORIZED BANDEDGE (HIGH CHANNEL)

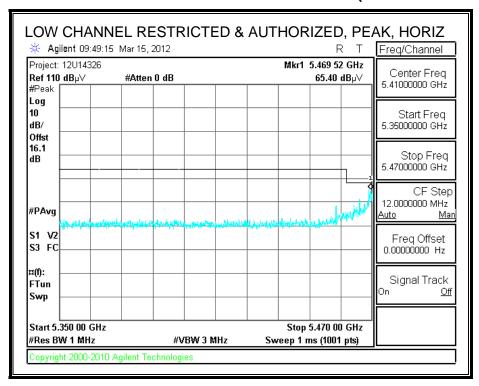
HARMONICS AND SPURIOUS EMISSIONS

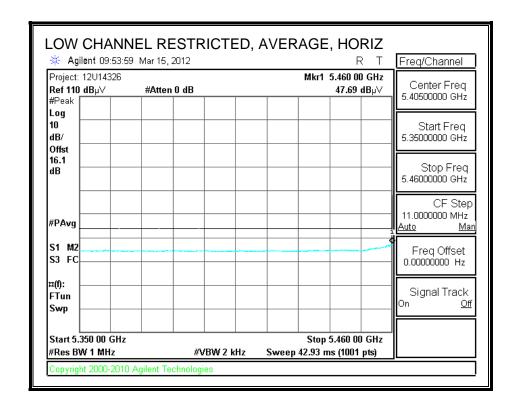
High Frequency Measurement

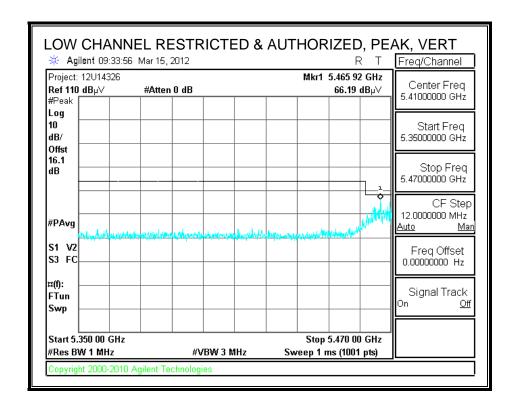
Compliance Certification Services, Fremont 5m Chamber

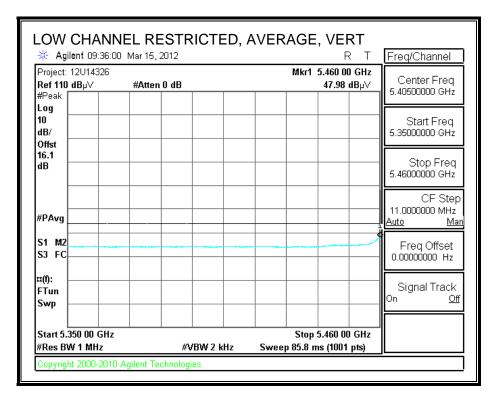
Test Engr: Tom Chen 03/21/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target:

Mode Oper: 802.11n HT20, W56 TX mode

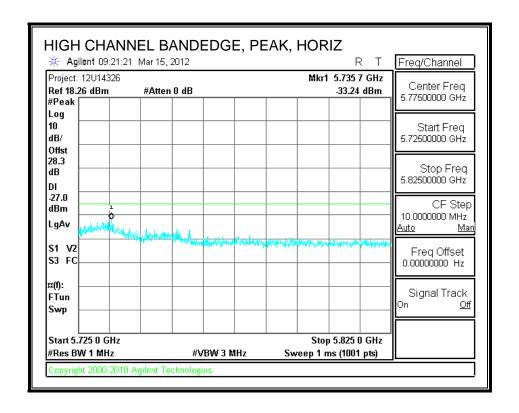

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m		dB	dB			dBuV/m		V/H	P/A/QP	.,,,,,
5500MHz	HT20												
11.000	3.0	46.1	38.3	10.1	-35.6	0.0	0.7	59.5	74.0	-14.5	V	P	
11.000	3.0	32.2	38.3	10.1	-35.6	0.0	0.7	45.6	54.0	-8.4	V	A	
5500MHz	HT20												
11.000	3.0	36.9	38.3	10.1	-35.6	0.0	0.7	50.3	74.0	-23.7	H	P	
11.000	3.0	24.0	38.3	10.1	-35.6	0.0	0.7	37.4	54.0	-16.6	H	A	
5580MHz	HT20												
11.160	3.0	40.9	38.5	10.2	-35.6	0.0	0.7	54.7	74.0	-19.3	H	P	
11.160	3.0	27.8	38.5	10.2	-35.6	0.0	0.7	41.6	54.0	-12.4	H	A	
5580MHz	HT20												
11.160	3.0	44.2	38.5	10.2	-35.6	0.0	0.7	58.0	74.0	-16.0	V	P	
11.160	3.0	29.9	38.5	10.2	-35.6	0.0	0.7	43.7	54.0	-10.3	V	A	
5700MHz	HT20												
11.400	3.0	35.5	38.7	10.4	-35.6	0.0	0.7	49.8	74.0	-24.2	H	P	
11.400	3.0	23.5	38.7	10.4	-35.6	0.0	0.7	37.8	54.0	-16.2	H	A	
5700MHz	HT20												
11.400	3.0	41.1	38.7	10.4	-35.6	0.0	0.7	55.4	74.0	-18.6	V	P	
11.400	3.0	26.2	38.7	10.4	-35.6	0.0	0.7	40.5	54.0	-13.5	V	A	


Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

8.2.9. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BAND RESTRICTED & AUTHORIZED BANDEDGE (LOW CHANNEL)



AUTHORIZED BANDEDGE (HIGH CHANNEL)

HARMONICS AND SPURIOUS EMISSIONS

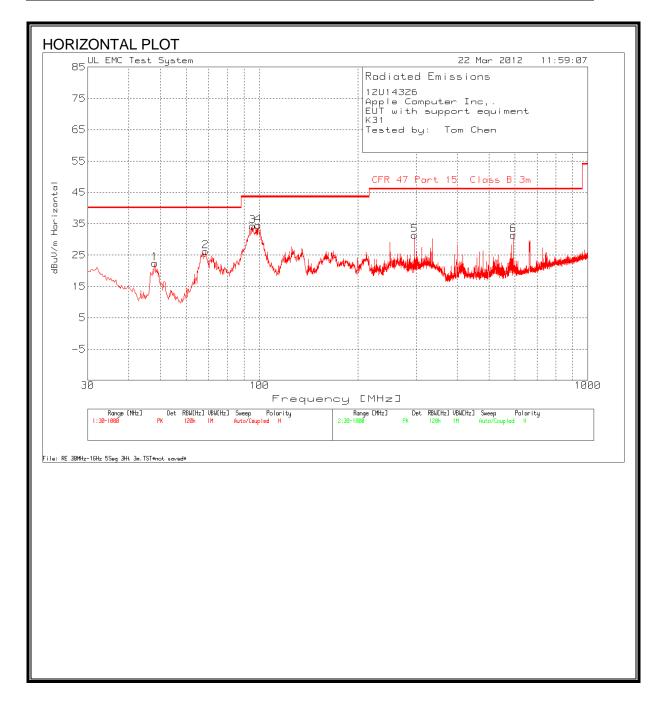
High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

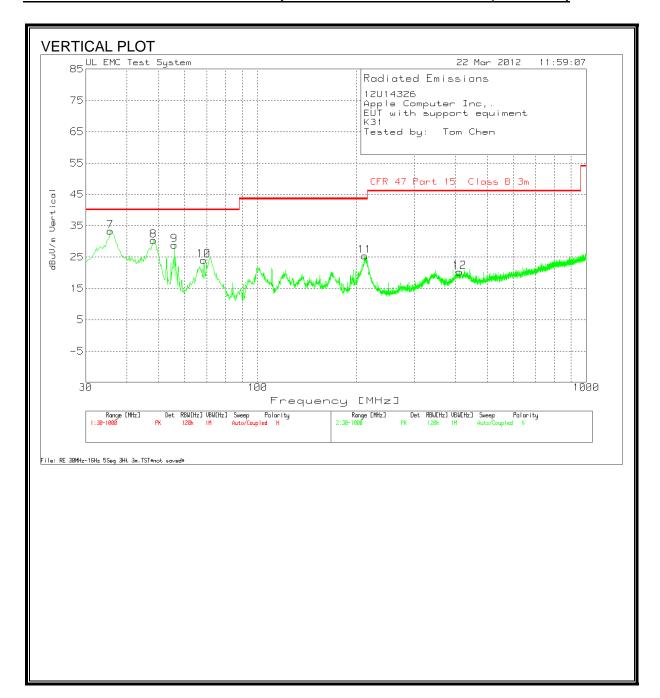
Test Engr: Tom Chen 03/21/12 Date: Project #: 12U14326 Company: Apple FCC Class B Test Target:

Mode Oper: 802.11n HT40, W56 TX mode

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
> Read Analyzer Reading Avg Average Field Strength @ 3 m
>
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter


f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
5510MHz	HT40												
11.020	3.0	40.0	38.3	10.1	-35.6	0.0	0.7	53.5	74.0	-20.5	V	P	
11.020	3.0	25.2	38.3	10.1	-35.6	0.0	0.7	38.7	54.0	-15.3	V	A	
5510MHz	HT40												
11.020	3.0	35.5	38.3	10.1	-35.6	0.0	0.7	49.0	74.0	-25.0	H	P	
11.020	3.0	23.1	38.3	10.1	-35.6	0.0	0.7	36.6	54.0	-17.4	H	A	
5550MHz	HT40				•			•					
11.100	3.0	35.8	38.4	10.1	-35.6	0.0	0.7	49.5	74.0	-24.5	H	P	
11.100	3.0	23.0	38.4	10.1	-35.6	0.0	0.7	36.7	54.0	-17.3	H	A	
5550MHz	HT40												
11.100	3.0	34.8	38.4	10.1	-35.6	0.0	0.7	48.5	74.0	-25.5	V	P	
11.100	3.0	23.1	38.4	10.1	-35.6	0.0	0.7	36.8	54.0	-17.2	V	A	
5670MHz	HT40				•••••								
11.340	3.0	41.9	38.7	10.4	-35.6	0.0	0.7	56.0	74.0	-18.0	V	P	
11.340	3.0	26.9	38.7	10.4	-35.6	0.0	0.7	41.1	54.0	-12.9	V	A	
5670MHz	HT40												
11.340	3.0	36.0	38.7	10.4	-35.6	0.0	0.7	50.2	74.0	-23.8	H	P	
11.340	3.0	24.1	38.7	10.4	-35.6	0.0	0.7	38.3	54.0	-15.7	H	A	

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

12U14326							
Apple Comp							
EUT with su	pport equin	nent					
K31							
Tested by:	Tom Chen						
Range 1 30 -	- 1000MHz						
· · · · · · · · · · · · · · · · · · ·			25MHz-1Ghz	T130 Bilog		CFR 47	
Test	Meter		ChmbrB	Factors.TX		Part 15	
Frequency	Reading	Detector	Amp [dB]	T [dB]	dBuV/m	Class B 3m	Polarity
48.0276	42.3	PK	-29.1	9.2			Horz
68.5751	46.92	PK	-28.9	8.2	26.22	40	Horz
95.3257			-28.6				Horz
99.2026			-28.6				Horz
296.9245			-26.9				Horz
593.8949	39.97	PK	-26.7	18.2	31.47	46	Horz
Range 2 30 -	1000MHz						
Natige 2 30	1000IVII IZ		25MHz-1Ghz	T130 Bilon		CFR 47	
Test	Meter		ChmbrB	Factors.TX		Part 15	
Frequency		Detector	Amp [dB]	T [dB]	dBuV/m	Class B 3m	Polarity
35.6215			-29.2	_			Vert
48.2214			-29.1				Vert
55.7814			-29				Vert
68.5751			-28.9				Vert
211.6327	40.88	PK	-27.5	12	25.38	43.5	Vert
411.4868	20	PK	-26.9	15.2	20.3	46	Vert

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

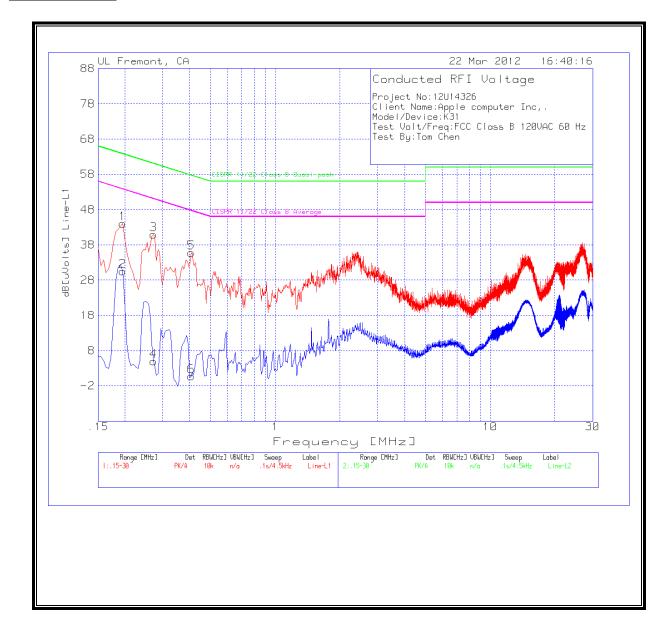
Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

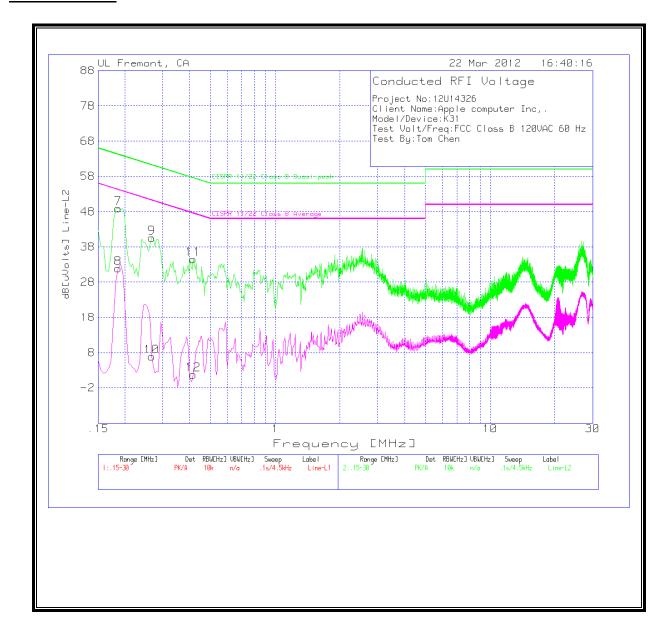
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

6 WORST EMISSIONS


Project No:1									
Client Name	:Apple cor	nputer Inc	,.						
Model/Devi	ce:K31								
Test Volt/Fre	eq:FCC Cla	ss B 120VA	C 60 Hz						
Test By:Tom	Chen								
Line-L1 .15 -	30MHz								
						CISPR 11/22		CISPR	
Test	Meter		T24 IL	LC Cables		Class B		11/22 Class	
Frequency	Reading	Detector		1&3.TXT [dB]	dB[uVolts]		Margin	B Average	Margin
0.195	43.93		0.1			63.8			Wiaigiii
0.195	30.38		0.1	0			-13.77	53.8	-23.32
				_			- 20.2		-23.32
0.2715			0.1				-20.2		-
0.2715	4.93		0.1	0			-	51.1	-46.07
0.4065	35.72		0.1				-21.88		-
0.4065	0.6	Av	0.1	0	0.7	-	-	47.7	-47
Line-L2 .15 -	30MHz								
						CISPR 11/22		CISPR	
Test	Meter		T24 IL	LC Cables		Class B		11/22 Class	
Frequency	Reading	Detector	L2.TXT [dB]	2&3.TXT [dB]	dB[uVolts]	Quasi-peak	Margin	B Average	Margin
0.186	48.81	PK	0.1	0	48.91	64.2	-15.29	-	-
0.186	31.81	Av	0.1	0	31.91	-	-	54.2	-22.29
0.267	40.45	PK	0.1	0	40.55	61.2	-20.65	-	-
0.267	6.75	Av	0.1	0	6.85	-	-	51.2	-44.35
0.4155	34.38	PK	0.1	0	34.48	57.5	-23.02	-	-
0.4155	1.64	Av	0.1	0	1.74	-	-	47.5	-45.76

LINE 1 RESULTS

IC: 579C-A1392

LINE 2 RESULTS

DATE: SEPTEMBER 25, 2012

IC: 579C-A1392

MAXIMUM PERMISSIBLE EXPOSURE 10.

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

exposure or can not exercise control over their exposure.

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003-1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

S = EIRP / (4 * Pi * D^2)
where
S = Power density in W/m^2
EIRP = Equivalent Isotropic Radiated Power in W
D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

DATE: SEPTEMBER 25, 2012

IC: 579C-A1392

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))
where
D = Separation distance in m
EIRP = Equivalent Isotropic Radiated Power in W
S = Power density in W/m^2

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RSS-102 Clause 2.5.2 RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

•below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W; •at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

RESULTS

Multiple c	Multiple chain or colocated transmitters							
Band	Mode	Chain	Separation	Output	Antenna	Duty	IC Power	FCC Power
		for	Distance	AV Power	Gain	Cycle	Density	Density
		MIMO	(m)	(dBm)	(dBi)	(%)	(W/m^2)	(mW/cm^2)
5.2 GHz	WLAN	1		13.60	0.93	96.7		
5.2 GHz	WLAN	2		13.50	1.88	96.7		
	Combined		0.20				0.12	0.012

Multiple c	hain or colo	cated tran	nsmitters						
Band	Mode	Chain	Separation	Output	Antenna	EIRP	EIRP	IC Power	FCC Power
		for	Distance	Power	Gain			Density	Density
		МІМО	(m)	(dBm)	(dBi)	(dBm)	(W)	(W/m^2)	(mW/cm^2)
2.4 GHz	WLAN	1		20.50	1.49	21.99	0.16		
2.4 GHz	WLAN	2		20.65	1.82	22.47	0.18		
5.2 GHz	WLAN	1		13.60	0.93	14.53	0.03		
5.2 GHz	WLAN	2		13.50	1.88	15.38	0.03		
	Combined		0.20				0.40	0.79	0.079

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operatio	nal Mode	
	Master	Client (without radar detection)	Client (with radar detection)
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required

Table 2: Applicability of DFS requirements during normal operation

rabio 21 Applicability of 51 o requirements during normal operation							
Requirement	Operational Mode						
	Master Client Client						
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Type	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	80%	120			

Table 6 - Long Pulse Radar Test Signal

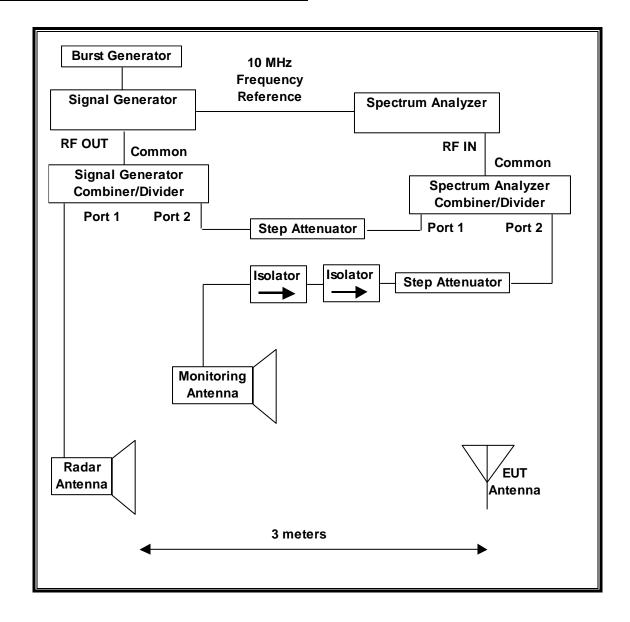

Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage	Trials
		Burst	(µsec)	(MHz)		of Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

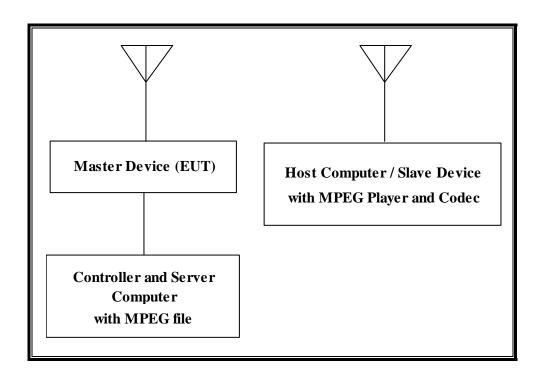
A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description Manufacturer Model Serial Number Cal Du						
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/18/13		
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	11/17/12		
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	09/16/12		

11.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	FCC ID				
Notebook PC	Apple	MacBook Pro	W89350HD8YA	DoC				
(Controller/Server)		A1297						
AC Adapter	Delta Electronics	A1343	C0415060MCADJ92AR	DoC				
(Controller/Server PC)								
Notebook PC (Host/Slave Apple		MacBook	C02GM2BLDV13	QDS-BRCM1055				
Radio)		A1278						
AC Adapter (Host PC)	Delta Electronics	A1222	MV8100WD2Z8VA	DoC				

11.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding operation in the 5600 to 5650 MHz band.

The EUT is a Master Device.

The highest power level within these bands is 24.28 dBm EIRP in the 5250-5350 MHz band and 25.36 dBm EIRP in the 5470-5725 MHz band.

The highest gain antenna assembly utilized with the EUT has a gain of 2.07 dBi in the 5250-5350 MHz band and 3.28 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of 1.54 dBi in the 5250-5350 MHz band and 3.09 dBi in the 5470-5725 MHz band.

Two antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using VLC version 2.0.1 media player.

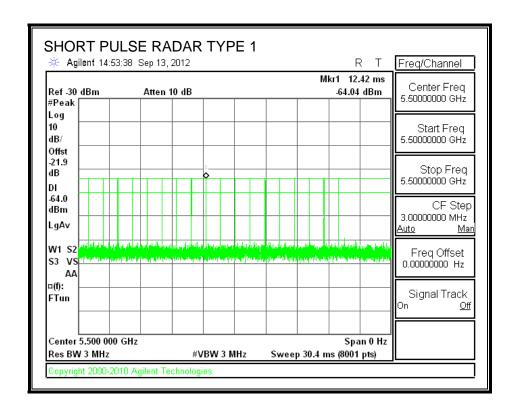
TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

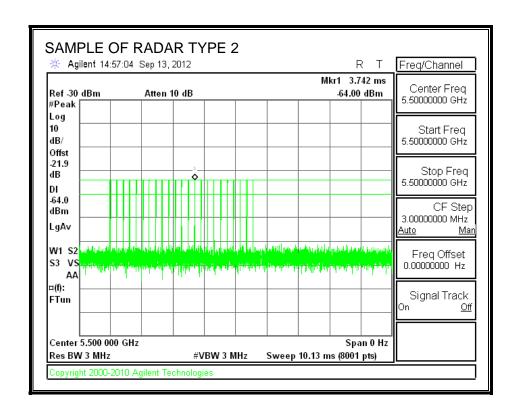
The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

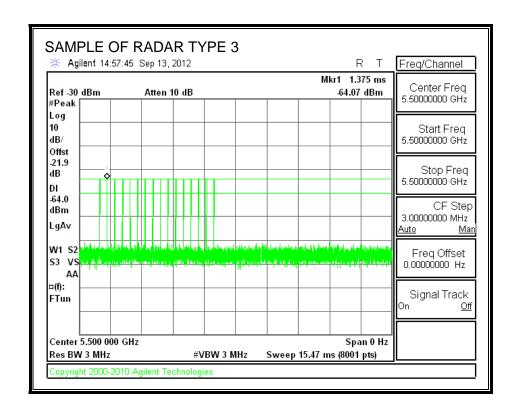
The software installed in the access point is version 7.6.3d1 dev (09/11/12 Build).

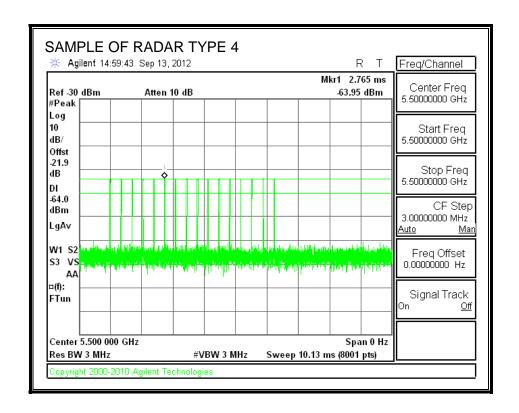
UNIFORM CHANNEL SPREADING

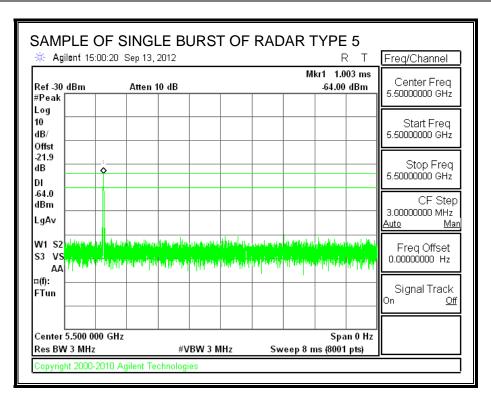
See Manufacturer's Attestation.

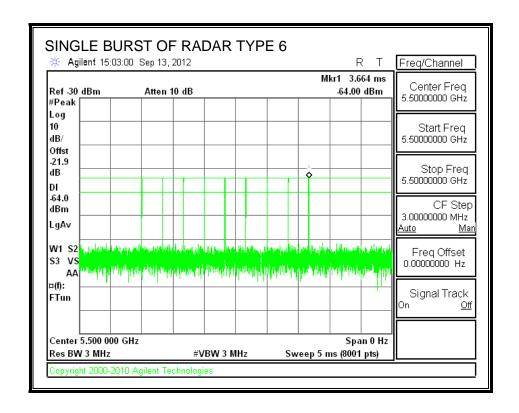

11.2. RESULTS FOR 20 MHz BANDWIDTH

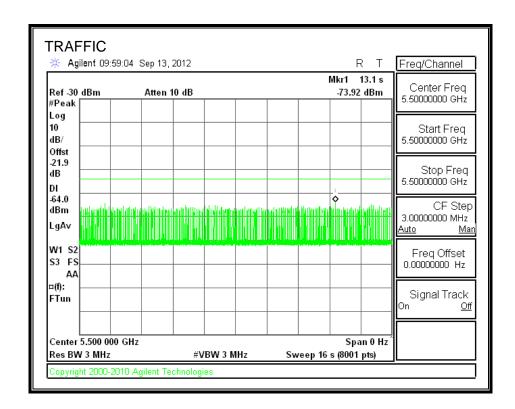

11.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz.


11.2.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS





TRAFFIC

11.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

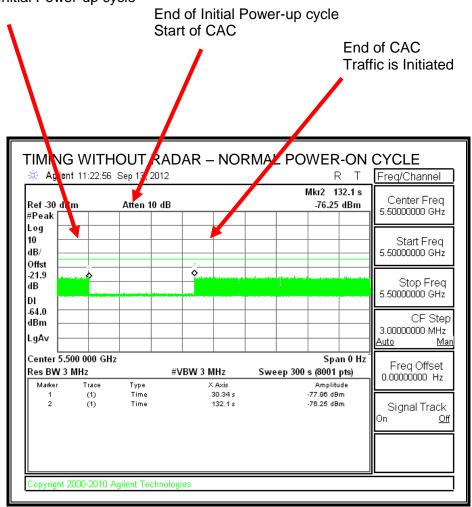
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.34	132.1	101.8	41.8

Radar Near Beginning of CAC

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.93	72.6	42.7	1.0

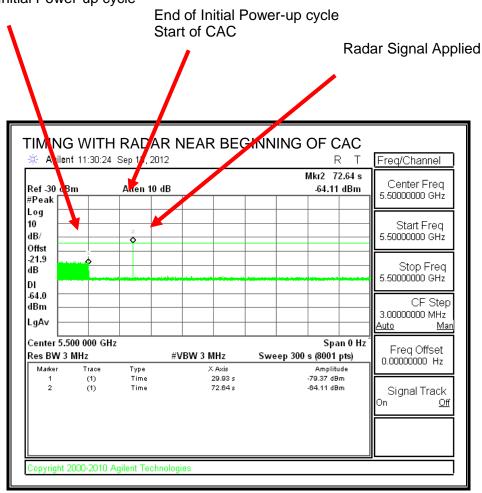
Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.04	130.0	100.0	58.2

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT does not display any radar parameter values	No transmissions on channel

TIMING WITHOUT RADAR DURING CAC


AP is rebooted Traffic ceases Start of Initial Power-up cycle

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

dBm

LgA∨

Center 5.500 000 GHz

(1)

(1)

opyright 2000-2010 Agilent Technolog

Res BW 3 MHz

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMNG PLOT WITH RADAR NEAR FND OF CAC 8, 2012 A lent 11:46:02 Sep 1 R Freq/Channel Mkr2 130 s Center Freq Ref -30 dBm Atten 10 dB -64.25 dBm 5.50000000 GHz #Peak Log 10 Start Freq dB/ 5.50000000 GHz Offst -21.9 dB Stop Freq 5.50000000 GHz DΙ -64.0

#VBW 3 MHz

30.04 s

CF Step

3.00000000 MHz

Freq Offset

Signal Track

Off

0.000000000 Hz

Span 0 Hz

Amplitude -79.82 dBm

Sweep 300 s (8001 pts)

No EUT transmissions were observed after the radar signal.

Туре

Time

11.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

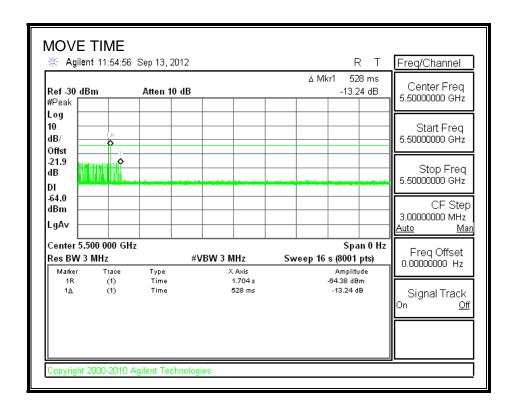
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

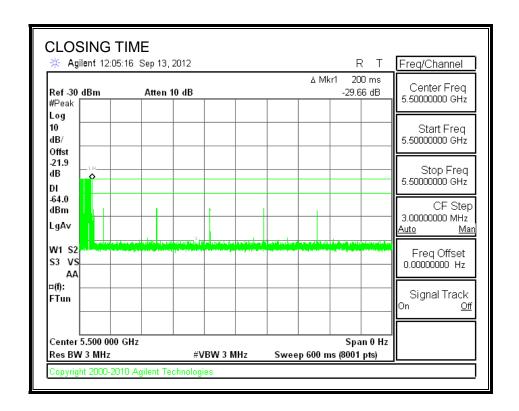
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

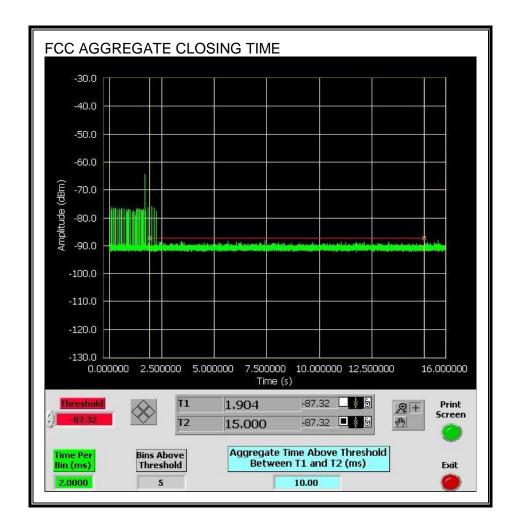

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

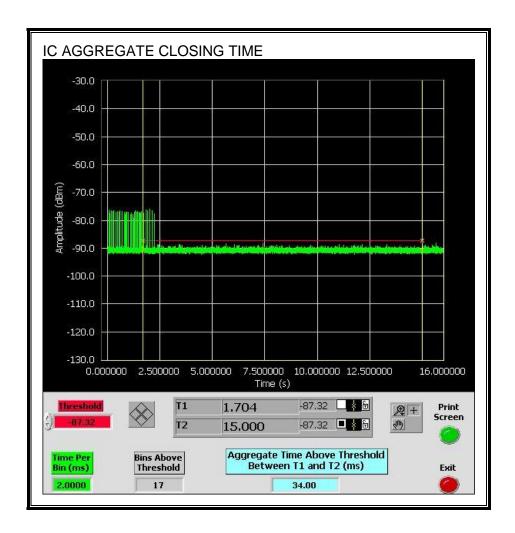

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.528	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	10.0	60
IC	34.0	260

MOVE TIME

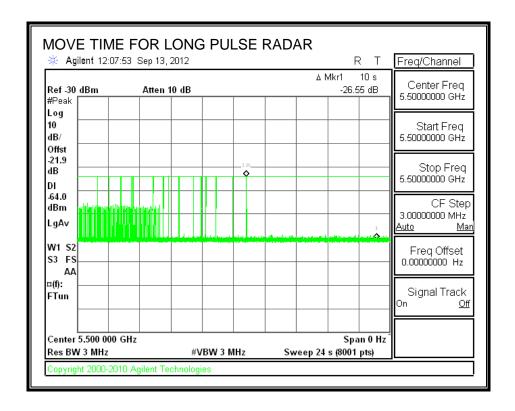


CHANNEL CLOSING TIME

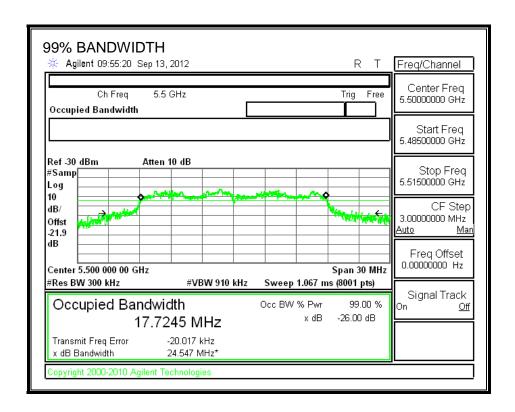


AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.


LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

11.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5508	16	17.725	90.3	80

DETECTION BANDWIDTH PROBABILITY

	width Test Results			
CC Type 1 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	9	90	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	FH

11.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ				
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	90.00	60	Pass
FCC Short Pulse Type 3	30	96.67	60	Pass
FCC Short Pulse Type 4	30	96.67	60	Pass
Aggregate		95.83	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	34	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

Waveform	or FCC Short Pu Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	2.8	211.00	23	Yes
2002	1.9	222.00	26	Yes
2003	3.6	201.00	29	Yes
2004	4	157.00	27	Yes
2005	2.3	222.00	25	Yes
2006	1.4	208.00	29	Yes
2007	2.5	157.00	26	Yes
2008	1.2	183.00	27	Yes
2009	3.3	168.00	26	Yes
2010	3.1	152.00	29	Yes
2011	1.5	187.00	23	Yes
2012	1.8	177.00	29	Yes
2013	4	155.00	23	Yes
2014	1.9	179.00	25	No
2015	1.7	172.00	26	Yes
2016	3	176.00	24	Yes
2017	4	201.00	26	Yes
2018	3.3	178.00	26	Yes
2019	2.8	177.00	26	Yes
2020	3.5	206.00	29	Yes
2021	2.7	176.00	29	Yes
2022	1	161.00	25	Yes
2023	1.6	224.00	24	Yes
2024	2.7	208.00	28	Yes
2025	3.5	156.00	28	Yes
2026	2.9	182.00	28	Yes
2027	4.8	194.00	27	Yes
2028	1	155.00	23	No
2029	4.5	157.00	28	Yes

TYPE 3 DETECTION PROBABILITY

	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	9.1	377.00	16	Yes
3002	9.3	310.00	17	Yes
3003	7	378.00	18	Yes
3004	7.7	482.00	17	Yes
3005	5.5	268.00	17	Yes
3006	5.6	494.00	16	Yes
3007	6.6	377.00	17	Yes
3008	9.5	441.00	18	Yes
3009	5.2	274.00	16	Yes
3010	8.4	253.00	17	Yes
3011	9	335.00	16	Yes
3012	5.5	287.00	18	Yes
3013	8.2	271.00	18	Yes
3014	9	496.00	18	Yes
3015	6.4	457.00	18	Yes
3016	9.7	487.00	17	Yes
3017	8.7	321.00	18	Yes
3018	7.1	462.00	18	Yes
3019	9.1	451.00	18	Yes
3020	8.9	358.00	17	Yes
3021	7.9	258.00	16	Yes
3022	9.3	381.00	18	No
3023	7.2	428.00	17	Yes
3024	7.3	396.00	18	Yes
3025	7	353.00	17	Yes
3026	9.7	338.00	17	Yes
3027	9.1	257.00	18	Yes
3028	9.5	437.00	18	Yes
3029	6.5	448	17	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	15.2	353.00	16	Yes
4002	14.6	423.00	16	Yes
4003	17.5	322.00	16	Yes
4004	16.2	265.00	15	Yes
4005	16.1	407.00	15	Yes
4006	18.8	499.00	15	Yes
4007	13.4	316.00	16	Yes
4008	13	298.00	12	Yes
4009	18.4	350.00	16	Yes
4010	15.8	446.00	12	Yes
4011	15.8	349.00	14	Yes
4012	17.3	385.00	14	Yes
4013	10.1	337.00	13	Yes
4014	16.2	376.00	13	Yes
4015	12.9	475.00	16	Yes
4016	12.8	490.00	12	Yes
4017	20	304.00	13	Yes
4018	10.2	319.00	12	Yes
4019	16.3	428.00	16	Yes
4020	14.4	261.00	12	Yes
4021	19.2	306.00	16	Yes
4022	10	392.00	14	Yes
4023	19.9	281.00	16	Yes
4024	10.9	326.00	12	Yes
4025	15.3	451.00	15	No
4026	13.2	450.00	16	Yes
4027	19.4	426.00	14	Yes
4028	14.6	445.00	12	Yes
4029	13.3	445.00	15	Yes

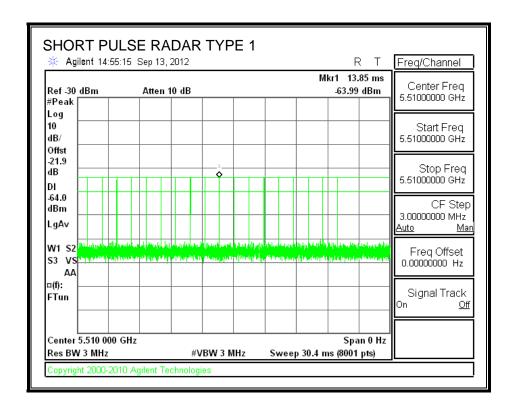
TYPE 5 DETECTION PROBABILITY

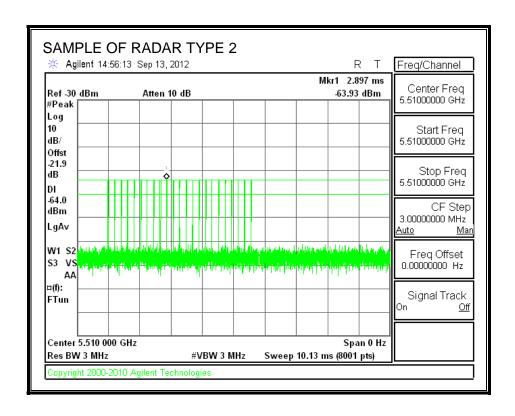
Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

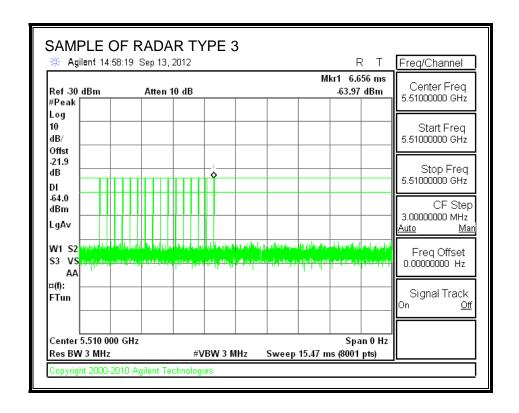
Note: The Type 5 randomized parameters are shown in a separate document.

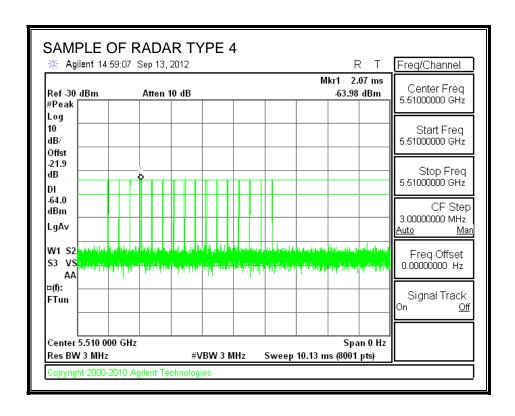
TYPE 6 DETECTION PROBABILITY

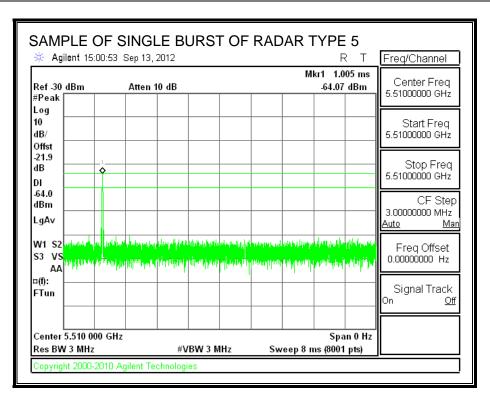
	us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop ITIA August 2005 Hopping Sequence				
Trial	Starting Index Within Sequence	Signal Generator Frequency (MHz)	Hops within Detection BW	Successfu Detection (Yes/No)	
1	174	5492	4	Yes	
2	649	5493	4	Yes	
3	1124	5494	2	Yes	
4	1599	5495	1	Yes	
5	2549	5496	5	Yes	
6	3024	5497	2	Yes	
7	3499	5498	2	Yes	
8	3974	5499	4	Yes	
9	4449	5500	1	Yes	
10	4924	5501	5	Yes	
11	5399	5502	5	Yes	
12	5874	5503	5	Yes	
13	6349	5504	3	Yes	
14	6824	5505	4	Yes	
15	7299	5506	4	Yes	
16	7774	5507	5	Yes	
17	8249	5508	6	Yes	
18	8724	5492	4	Yes	
19	9199	5493	4	Yes	
20	9674	5494	5	Yes	
21	10149	5495	2	Yes	
22	10624	5496	3	Yes	
23	11099	5497	3	Yes	
24	11574	5498	4	Yes	
25	12049	5499	2	Yes	
26	12524	5500	5	Yes	
27	12999	5501	4	Yes	
28	13474	5502	4	Yes	
29	13949	5503	1	Yes	
30	14424	5504	2	Yes	
31	14899	5505	3	Yes	
32	15374	5506	4	Yes	
33	15849	5507	3	Yes	
34	16324	5508	3	Yes	

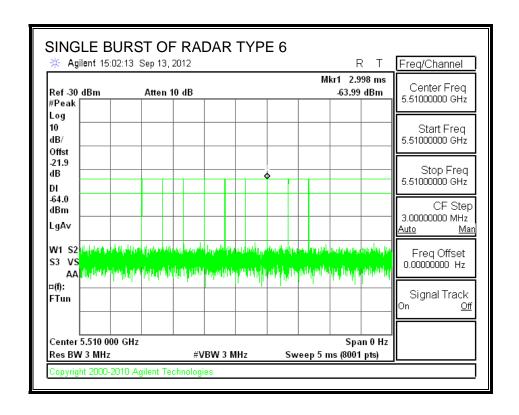

11.3. RESULTS FOR 40 MHz BANDWIDTH

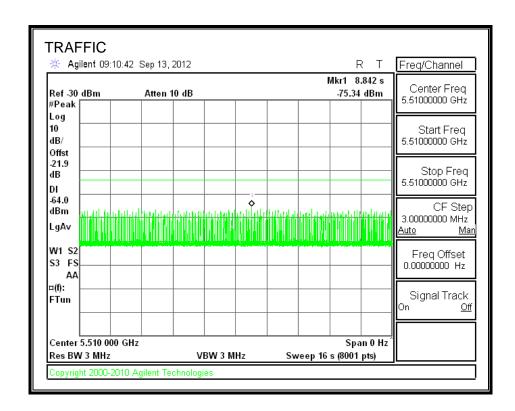

11.3.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5510 MHz.


11.3.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS





TRAFFIC

11.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

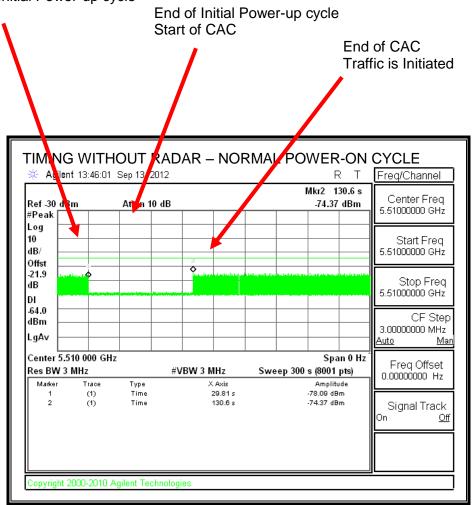
No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
29.81	130.6	100.8	40.8

Radar Near Beginning of CAC

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.7	71.1	41.4	0.6

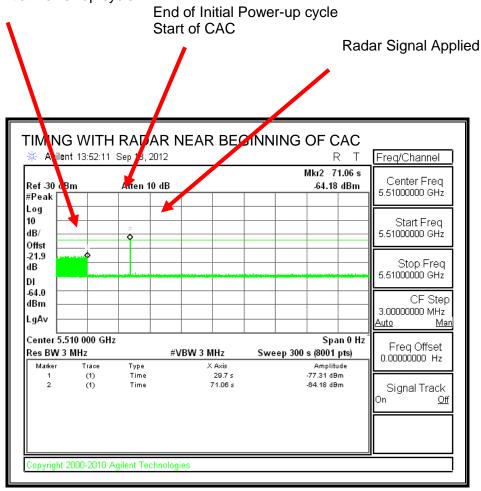
Radar Near End of CAC


Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.62	129.3	99.7	58.9

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
	•	
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT does not display any	No transmissions on channel
second window	radar parameter values	
Within 54 to 60	EUT does not display any	No transmissions on channel
second window	radar parameter values	

TIMING WITHOUT RADAR DURING CAC


AP is rebooted Traffic ceases Start of Initial Power-up cycle

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR END OF CAC Aglent 14:01:58 Sep 1 , 2012 R Freq/Channel Mkr2 129.3 s Center Freq Ref -30 dl m Atten 10 dB -64.02 dBm 5.51000000 GHz #Peak Log 10 Start Freq dB/ 5.51000000 GHz Offst -21.9 dB Stop Freq 5.51000000 GHz DΙ -64.0 CF Step dBm 3.00000000 MHz LgA∨ Auto Center 5.510 000 GHz Span 0 Hz

#VBW 3 MHz

29.62 s

Freq Offset

Signal Track

Off

0.000000000 Hz

Sweep 300 s (8001 pts)

Amplitude -76.54 dBm

-64.02 dBm

No EUT transmissions were observed after the radar signal.

Туре

Time

Res BW 3 MHz

(1)

(1)

opyright 2000-2010 Agilent Technolog

11.3.4. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.3.5. MOVE AND CLOSING TIME

REPORTING NOTES

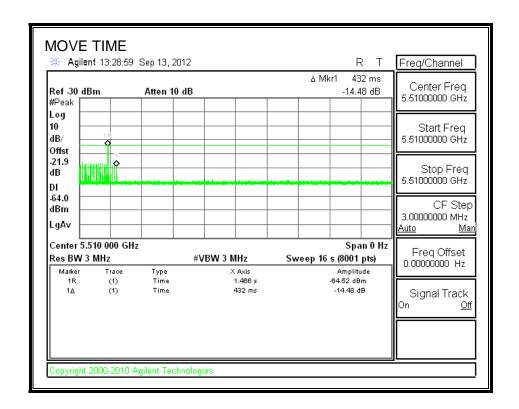
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

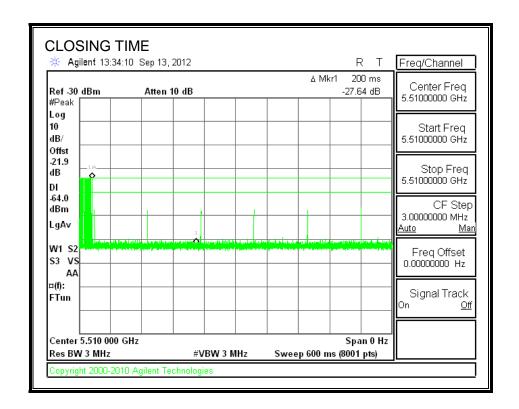
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

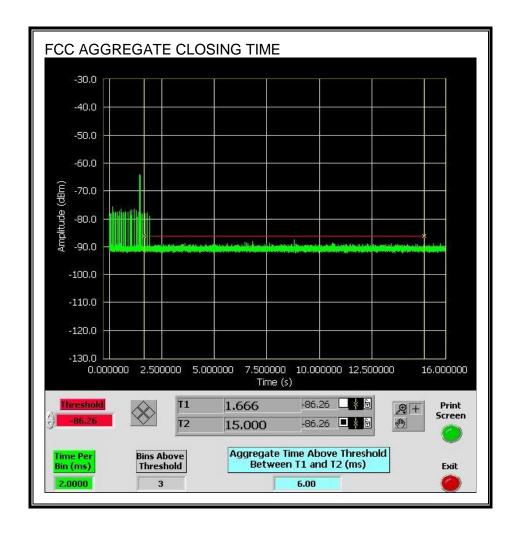

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

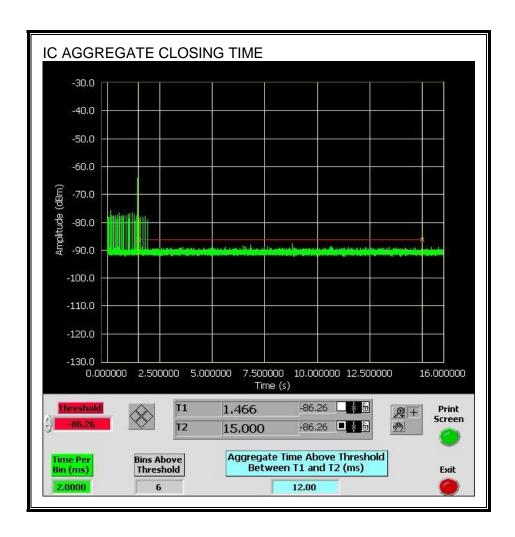

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.432	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	6.0	60
IC	12.0	260

MOVE TIME

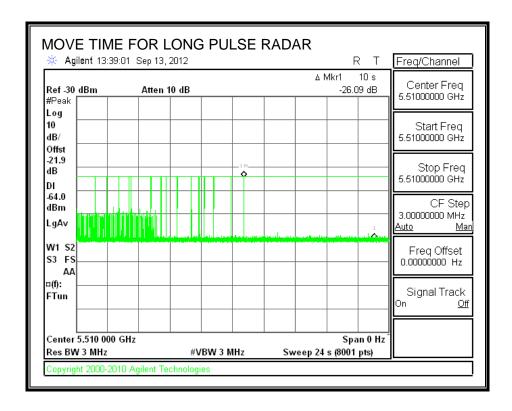


CHANNEL CLOSING TIME



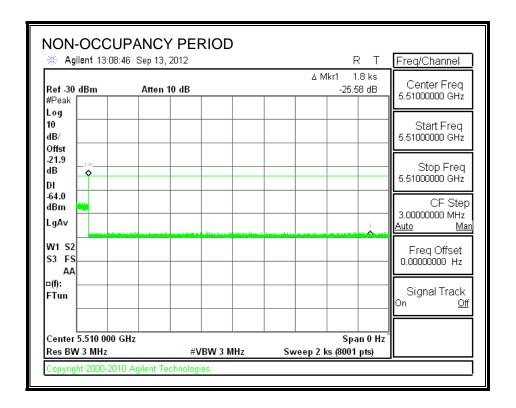
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

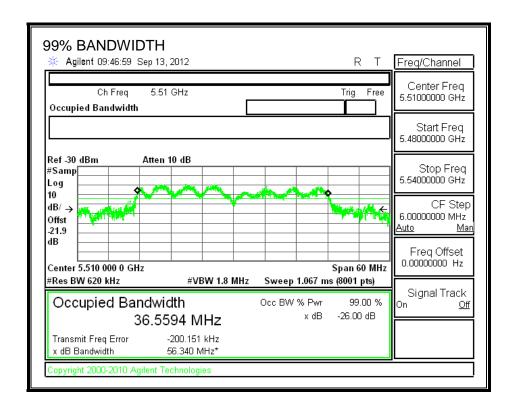


Only intermittent transmissions are observed during the IC aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

11.3.6. NON-OCCUPANCY PERIOD


RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

11.3.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5492	5528	36	36.559	98.5	80

FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS

Detection Bandwidth Test Results

Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)	40	40	(%)	
5492	10	10	100	FL
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	

FΗ

11.3.8. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summ Signal Type	Number of Trials	Detection	Limit	Pass/Fail
Signal Type	Number of finals	(%)	(%)	i assiran
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	93.33	60	Pass
FCC Short Pulse Type 3	30	96.67	60	Pass
FCC Short Pulse Type 4	30	93.33	60	Pass
Aggregate		95.83	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Hopping Type 6	37	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

l us Pulse Width, 1428 us PRI, 18 Pulses per Burst					
Trial	Successful Detection (Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

TYPE 2 DETECTION PROBABILITY

2002 1.9 222.00 26 2003 3.6 201.00 29 2004 4 157.00 27 2005 2.3 222.00 25 2006 1.4 208.00 29 2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021	es/No)	Successful (Yes/	Pulses Per Burst	PRI (us)	Pulse Width (us)	Waveform
2003 3.6 201.00 29 2004 4 157.00 27 2005 2.3 222.00 25 2006 1.4 208.00 29 2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2021	Yes	Ye	23	211.00	2.8	2001
2004 4 157.00 27 2005 2.3 222.00 25 2006 1.4 208.00 29 2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2021 2.7 176.00 29 2022	Yes	Ye	26	222.00	1.9	2002
2005 2.3 222.00 25 2006 1.4 208.00 29 2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024	Yes	Ye	29	201.00	3.6	2003
2006 1.4 208.00 29 2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	27	157.00	4	2004
2007 2.5 157.00 26 2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	25	222.00	2.3	2005
2008 1.2 183.00 27 2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	29	208.00	1.4	2006
2009 3.3 168.00 26 2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	26	157.00	2.5	2007
2010 3.1 152.00 29 2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	27	183.00	1.2	2008
2011 1.5 187.00 23 2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	26	168.00	3.3	2009
2012 1.8 177.00 29 2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	29	152.00	3.1	2010
2013 4 155.00 23 2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	No	Ne	23	187.00	1.5	2011
2014 1.9 179.00 25 2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	29	177.00	1.8	2012
2015 1.7 172.00 26 2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	23	155.00	4	2013
2016 3 176.00 24 2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	25	179.00	1.9	2014
2017 4 201.00 26 2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	26	172.00	1.7	2015
2018 3.3 178.00 26 2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	24	176.00	3	2016
2019 2.8 177.00 26 2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	26	201.00	4	2017
2020 3.5 206.00 29 2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	No	Ne	26	178.00	3.3	2018
2021 2.7 176.00 29 2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	26	177.00	2.8	2019
2022 1 161.00 25 2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	29	206.00	3.5	2020
2023 1.6 224.00 24 2024 2.7 208.00 28	Yes	Ye	29	176.00	2.7	2021
2024 2.7 208.00 28	Yes	Ye	25	161.00	1	2022
	Yes	Ye	24	224.00	1.6	2023
2025 3.5 456.00 29	Yes	Ye	28	208.00	2.7	2024
2025 3.5 150.00 26	Yes	Ye	28	156.00	3.5	2025
2026 2.9 182.00 28	Yes	Ye	28	182.00	2.9	2026
2027 4.8 194.00 27	Yes	Ye	27	194.00	4.8	2027
2028 1 155.00 23	Yes	Ye	23	155.00	1	2028
2029 4.5 157.00 28	Yes	Ye	28	157.00	4.5	2029

TYPE 3 DETECTION PROBABILITY

3001	(us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
	9.1	377.00	16	Yes
3002	9.3	310.00	17	No
3003	7	378.00	18	Yes
3004	7.7	482.00	17	Yes
3005	5.5	268.00	17	Yes
3006	5.6	494.00	16	Yes
3007	6.6	377.00	17	Yes
3008	9.5	441.00	18	Yes
3009	5.2	274.00	16	Yes
3010	8.4	253.00	17	Yes
3011	9	335.00	16	Yes
3012	5.5	287.00	18	Yes
3013	8.2	271.00	18	Yes
3014	9	496.00	18	Yes
3015	6.4	457.00	18	Yes
3016	9.7	487.00	17	Yes
3017	8.7	321.00	18	Yes
3018	7.1	462.00	18	Yes
3019	9.1	451.00	18	Yes
3020	8.9	358.00	17	Yes
3021	7.9	258.00	16	Yes
3022	9.3	381.00	18	Yes
3023	7.2	428.00	17	Yes
3024	7.3	396.00	18	Yes
3025	7	353.00	17	Yes
3026	9.7	338.00	17	Yes
3027	9.1	257.00	18	Yes
3028	9.5	437.00	18	Yes
3029	6.5	448	17	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	15.2	353.00	16	Yes
4002	14.6	423.00	16	Yes
4003	17.5	322.00	16	Yes
4004	16.2	265.00	15	Yes
4005	16.1	407.00	15	Yes
4006	18.8	499.00	15	Yes
4007	13.4	316.00	16	Yes
4008	13	298.00	12	Yes
4009	18.4	350.00	16	Yes
4010	15.8	446.00	12	Yes
4011	15.8	349.00	14	Yes
4012	17.3	385.00	14	No
4013	10.1	337.00	13	Yes
4014	16.2	376.00	13	Yes
4015	12.9	475.00	16	Yes
4016	12.8	490.00	12	Yes
4017	20	304.00	13	Yes
4018	10.2	319.00	12	Yes
4019	16.3	428.00	16	Yes
4020	14.4	261.00	12	Yes
4021	19.2	306.00	16	Yes
4022	10	392.00	14	Yes
4023	19.9	281.00	16	Yes
4024	10.9	326.00	12	Yes
4025	15.3	451.00	15	Yes
4026	13.2	450.00	16	Yes
4027	19.4	426.00	14	Yes
4028	14.6	445.00	12	Yes
4029	13.3	445.00	15	Yes

TYPE 5 DETECTION PROBABILITY

Trial Successful De (Yes/No) 1 Yes 2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes	
2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
8 Yes 9 Yes 10 Yes 11 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
9 Yes 10 Yes 11 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
17 Yes 18 Yes 19 Yes 20 Yes 21 Yes	
18 Yes 19 Yes 20 Yes 21 Yes	
19 Yes 20 Yes 21 Yes	
20 Yes 21 Yes	
21 Yes	
22 Yes	
22	
23 Yes	
24 Yes	
25 Yes	
26 Yes	
27 Yes	
28 Yes	
29 Yes	

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

	e Width, 333 us PRI,		1 Burst per Hop)	
ITIA Aug	just 2005 Hopping Se	quence			
Trial	Starting Index	Signal Generator	Hops within	Successful	
IIIai	Within Sequence	Frequency	Detection BW	Detection	
		(MHz)		(Yes/No)	
1	112	5492	5	Yes	
2	587	5493	8	Yes	
3	1062	5494	7	Yes	
4	1537	5495	8	Yes	
5	2012	5496	8	Yes	
6	2487	5497	8	Yes	
7	2962	5498	9	Yes	
8	3437	5499	7	Yes	
9	3912	5500	5	Yes	
10	4387	5501	8	Yes	
11	4862	5502	8	Yes	
12	5337	5503	6	Yes	
13	5812	5504	8	Yes	
14	6287	5505	7	Yes	
15	6762	5506	7	Yes	
16	7237	5507	7	Yes	
17	7712	5508	7	Yes	
18	8187	5509	11	Yes	
19	8662	5510	6	Yes	
20	9137	5511	12	Yes	
21	9612	5512	9	Yes	
22	10087	5513	7	Yes	
23	10562	5514	7	Yes	
24	11037	5515	8	Yes	
25	11512	5516	8	Yes	
26	11987	5517	13	Yes	
27	12462	5518	8	Yes	
28	12937	5519	14	Yes	
29	13412	5520	14	Yes	
30	13887	5521	3	Yes	
31	14362	5522	9	Yes	
32	14837	5523	7	Yes	
33	15312	5524	9	Yes	
34	15787	5525	7	Yes	
35	16262	5526	2	Yes	
36	16737	5527	7	Yes	