

FCC Test Report FCC Part 15.247 for FHSS systems

Model #: A1303 FCC ID: BCGA1303B

Apple Inc.
1 Infinite Loop Mail Stop26A
Cupertino, California 95014
U.S.A

TEST REPORT #: EMC_APPLE_047_09001_15.247FHSS_ BCGA1303B DATE: 2009-05-27

FCC listed: A2LA accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com

CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Date of Report : 2009-05-27 Page 2 of 65

TABLE OF CONTENTS

1	Asse	essment	4
2	Adm	inistrative Data	5
	2.1	Identification of the Testing Laboratory Issuing the EMC Test Report	5
	2.2	Identification of the Client	
	2.3	Identification of the Manufacturer	
3	Equ	ipment Under Test (EUT)	
	3.1	Specification of the Equipment under Test	
	3.2	Identification of the Equipment under Test (EUT)	
	3.3	Identification of Accessory equipment	
4	Subi	ect Of Investigation	
5		surements (RADIATED)	
	5.1 5.1.1 5.1.2	MAXIMUM PEAK OUTPUT POWER § 15.247 (RADIATED) LIMIT SUB CLAUSE § 15.247 (b) (1) (2) (3) (4)	8
	5.2 5.2.1	RESTRICTED BAND EDGE COMPLIANCE RADIATED §15.247/15.205LIMITS	9
	5.2.2 5.2.3 5.2.4	RESULTS: GFSK	10 14
	5.3 5.3.1 5.3.2		
	5.4 5.4.1 5.4.2	RECEIVER SPURIOUS RADIATION RSS-Gen(4.10)LIMITS	32
6	Mea	surements (CONDUCTED)	
	6.1.1 6.1.2 6.1.3 6.1.4	RESULTS: GFSK_ RESULTS: π / 4 DQPSK_	36 36 36
	6.2 6.2.1 6.2.2	RESULTS: GFSK	46
	6.3 6.3.1 6.3.2	CARRIER FREQUENCY SEPARATION LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (iii)	56
	6.4 6.4.1 6.4.2	NUMBER OF HOPPING CHANNELS LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)	57

EMC_APPLE_047_09001_FHSS_BCGA1303B Test Report #: **CETECOM** Date of Report : 2009-05-27 Page 3 of 65 6.5.1 TIME OF OCCUPANCY (DWELL TIME)
6.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii) 6.5.2 RESULTS: 59
 6.6
 CONDUCTED SPURIOUS EMISSION
 60

 6.6.1
 LIMIT SUB CLAUSE § 15.247 (d)
 60
 RESULTS: Tnom(23)°C VnomVDC ______60 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS _____ 7 63 8 BLOCK DIAGRAMS 64

Test Report #:

EMC_APPLE_047_09001_FHSS_BCGA1303B

Date of Report:

2009-05-27

Page 4 of 65

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Part 15.247 of the Code of Federal Regulations.

Company	Description	Model #
Apple Inc.	This device is a GSM and WCDMA smart handset with WiFi, Bluetooth +EDR and iPod and application functions	A1303

Technical responsibility for area of testing:

		Heiko Strehlow	
		(Director Antenna &	
2009-05-27	EMC & Radio	Regulatory Services)	
Date	Section	Name	Signature
This report is	prepared by:		
2009-05-27	EMC & Radio	Marc Douat (Test Lab Manager)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Date of Report: 2009-05-27 Page 5 of 65

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.	
Department:	EMC	
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.	
Telephone:	+1 (408) 586 6200	
Fax:	+1 (408) 586 6299	
Responsible Test Lab Manager:	Heiko Strehlow	
Responsible Project Leader:	Marc Douat	
Date of test:	2009-04-21 to 2009-04-24	

2.2 Identification of the Client

APPLICANT				
Applicant (Company Name)	Apple Inc.			
Street Address	1 Infinite Loop Mail Stop26A			
City/Zip Code	Cupertino, California 95014			
Country	USA			
Contact Person	Robert Steinfeld			
Telephone	408-974-2618			
Fax	408-862-5061			
e-mail	steinfel@apple.com			

2.3 Identification of the Manufacturer

Same as above applicant.

Date of Report : 2009-05-27 Page 6 of 65

3 Equipment Under Test (EUT)

3.1 Specification of the Equipment under Test

EUT			
Marketing Name of EUT (if	iPhone 3G		
not same as Model No.)	II holic 3G		
Description	This device is a GSM and WCDMA smart handset with WiFi,		
Description	Bluetooth +EDR and iPod and application functions		
Model No.	A1303		
H/W	REV4-16GB		
	04.24.02 (7A290)		
FCC-ID:	BCGA1303B		

Frequency Range:	2400MHz – 2483.5MHz	
Type(s) of Modulation:	GFSK, DQPSK, 8PSK	
Number of Channels:	79	
Antenna Type/gain:	IFA - inverted F Antenna 1.2dBi gain	
Output Power:	Conducted GFSK: 8.1 dBm, 6.46 mW Conducted DQPSK: 9.8 dBm, 9.55 mW Conducted 8DPSK: 10 dBm, 10 mW Radiated GFSK: 9.3 dBm, 8.51 mW Radiated DQPSK: 11 dBm, 12.59 mW Radiated 8DPSK: 11.2 dBm, 13.18 mW	

3.2 Identification of the Equipment under Test (EUT)

EUT#	ТҮРЕ	MANF.	MODEL
1	Radiated Sample	Apple Inc.	A1303
2	Condcuted Sample	Apple Inc.	A1303

3.3 Identification of Accessory equipment

Date of Report: 2009-05-27 Page 7 of 65

AE#	TYPE	MANF.	MODEL
1	AC/DC ADAPTER	Flextronics	A1265

4 Subject Of Investigation

All testing was performed on the product referred to in Section 3 as EUT. This test report contains full radiated and contacted testing as per FCC15.247 on the EUT with the Bluetooth module.

During the testing process the EUT was tested on low, mid, and high channels using PRBS9 payload using DH5, 2DH5, and 3DH5 packets, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations. The maximization of portable equipment is conducted in accordance with ANSI C63.4.

Test Report #:

EMC_APPLE_047_09001_FHSS_BCGA1303B

Date of Report:

2009-05-27

Page 8 of 65

5 Measurements (RADIATED)

5.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (RADIATED)

5.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1) (2) (3) (4)

Frequency range	RF power output
2400-2483.5 MHz	36dBm EIRP

^{*}limit is based upon antenna gain of less than or equal to 6dBi.

5.1.2 Test Results

EIRP = Conducted Peak Power + Antenna Gain (1.2dBi)

EIRP: GFSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	9.1	9.2	9.3
Measurement uncertainty		±0.5dBm		

EIRP: π / 4 DQPSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	10.4	11	11
Measurement uncertainty		±0.5dBm		

EIRP: 8DPSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402	2441	2480
T _{nom} (23)°C	V _{nom} VDC	10.6	11.2	11.2
Measurement uncertainty			±0.5dBm	

Date of Report: 2009-05-27 Page 9 of 65

5.2 RESTRICTED BAND EDGE COMPLIANCE RADIATED §15.247/15.205

5.2.1 LIMITS

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any

of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

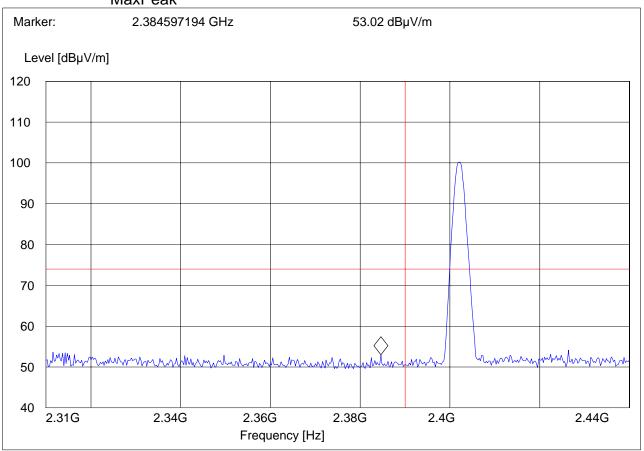
^{*}PEAK LIMIT= 74dBuV/m

^{*}AVG. LIMIT= 54dBuV/m

Date of Report : **2009-05-27** Page 10 of 65

5.2.2 RESULTS: GFSK

(2402MHz) LOWER BAND EDGE PEAK –GFSK MODULATION


EUT: A1303
Customer:: Apple
Test Mode: BT Ch.0
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 LBE_PK"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert
MaxPeak

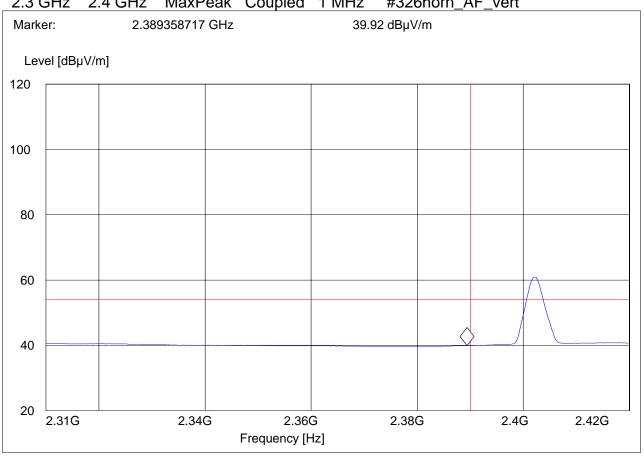
Date of Report : 2009-05-27 Page 11 of 65

(2402MHz) LOWER BAND EDGE AVERAGE -GFSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.0 ANT Orientation: H **EUT Orientation: V**

Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

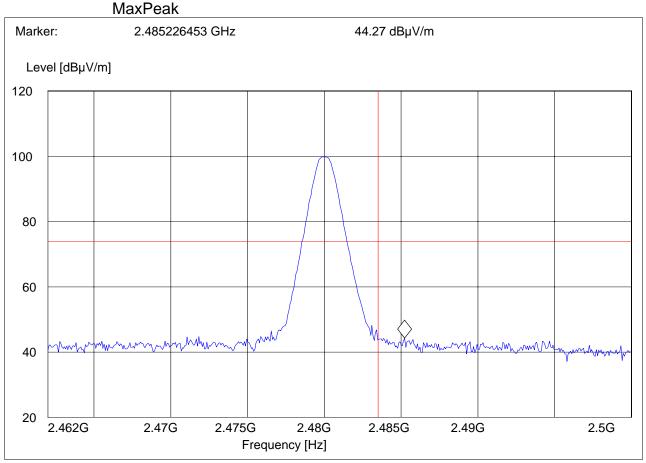
2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report : 2009-05-27 Page 12 of 65

(2480MHz) HIGHER BAND EDGE PEAK -GFSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78

ANT Orientation: H EUT Orientation: V Test Engineer: Chris


Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 HBE PK"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

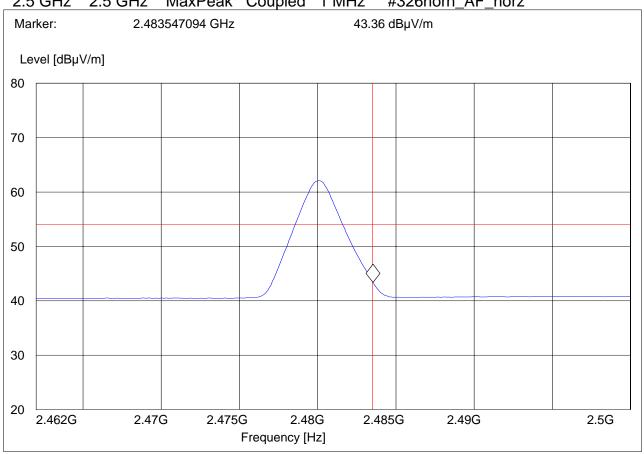
Date of Report : 2009-05-27 Page 13 of 65

HIGHER BAND EDGE AVERAGE-GFSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

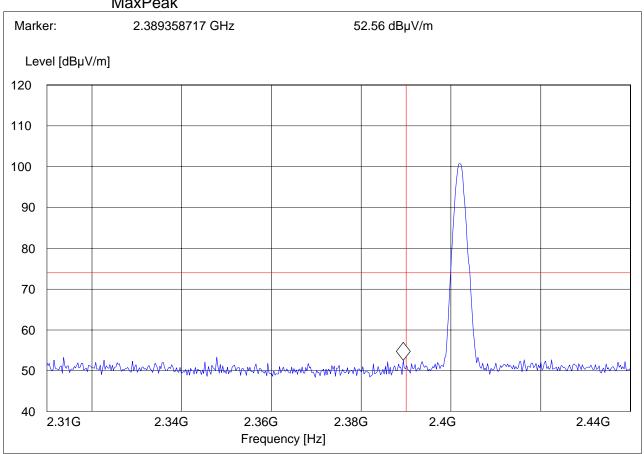
Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

Date of Report : 2009-05-27 Page 14 of 65

5.2.3 RESULTS: $\pi/4$ DQPSK

(2402MHz) LOWER BAND EDGE PEAK – $\pi/4$ DQPSK MODULATION


EUT: A1303
Customer:: Apple
Test Mode: BT Ch.0
ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter

Comments:

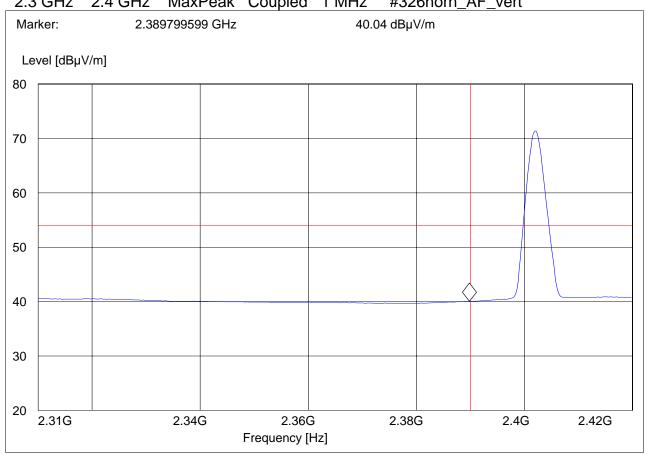
SWEEP TABLE: "FCC15.247 LBE PK"

Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert
MaxPeak

Date of Report: 2009-05-27 Page 15 of 65

(2402MHz) LOWER BAND EDGE AVERAGE $-\pi/4$ DQPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.0 ANT Orientation: H **EUT Orientation: V** Test Engineer: Chris


Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

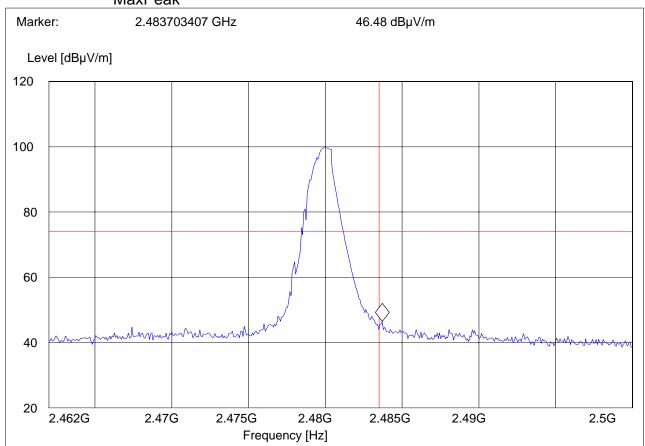
Start Stop Detector Meas. ΙF Transducer Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report: 2009-05-27 Page 16 of 65

(2480MHz) HIGHER BAND EDGE PEAK $-\pi/4$ DQPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78


ANT Orientation: H EUT Orientation: V Test Engineer: Chris

Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 HBE_PK"

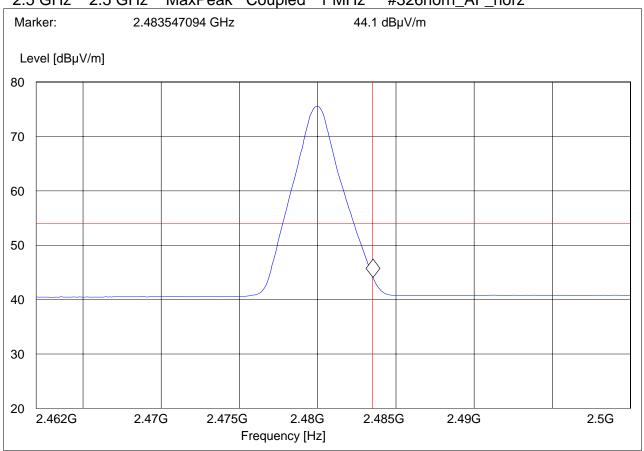
Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert MaxPeak

Date of Report : **2009-05-27** Page 17 of 65

HIGHER BAND EDGE AVERAGE- $\pi/4$ DQPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78

ANT Orientation: H EUT Orientation: V Test Engineer: Chris


Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

Date of Report: 2009-05-27 Page 18 of 65

5.2.4 RESULTS: 8DPSK

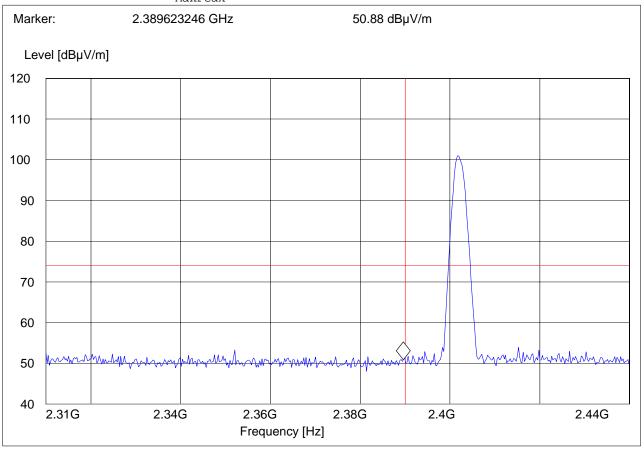
(2402MHz) LOWER BAND EDGE PEAK – 8DPSK MODULATION

EUT: A1303 Customer:: Apple
Test Mode: BT Ch.0

ANT Orientation: H EUT Orientation: V

Test Engineer: Chris Voltage: FCC AC Adapter

Comments:


SWEEP TABLE: "FCC15.247 LBE_PK"

Detector Meas. Time Start Stop IF Transducer

Frequency Frequency Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

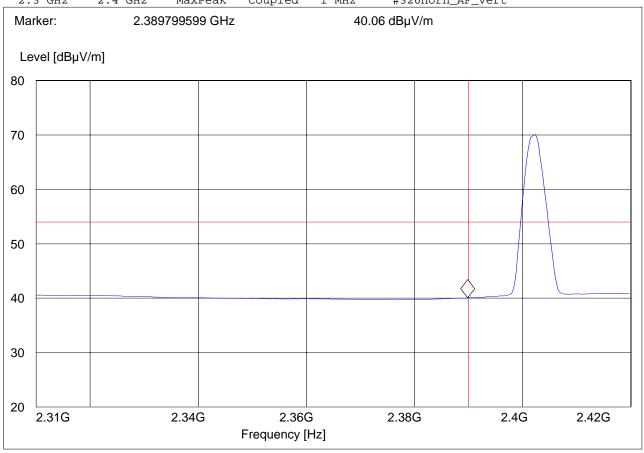
Date of Report: 2009-05-27 Page 19 of 65

(2402MHz) LOWER BAND EDGE AVERAGE -8DPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.0

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247 LBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.3 GHz 2.4 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

Date of Report : **2009-05-27** Page 20 of 65

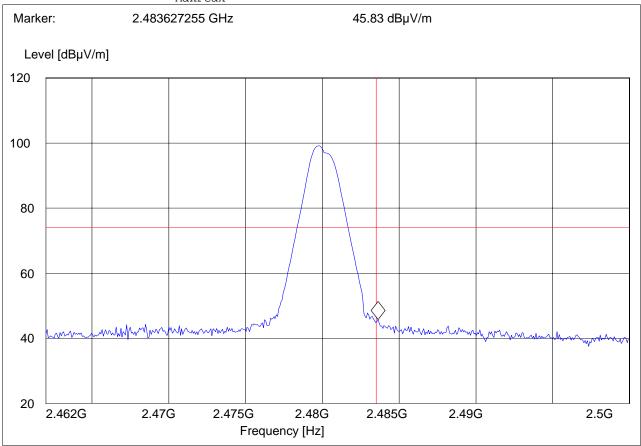
(2480MHz) HIGHER BAND EDGE PEAK – 8DPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter

Comments:


SWEEP TABLE: "FCC15.247 HBE_PK"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert

MaxPeak

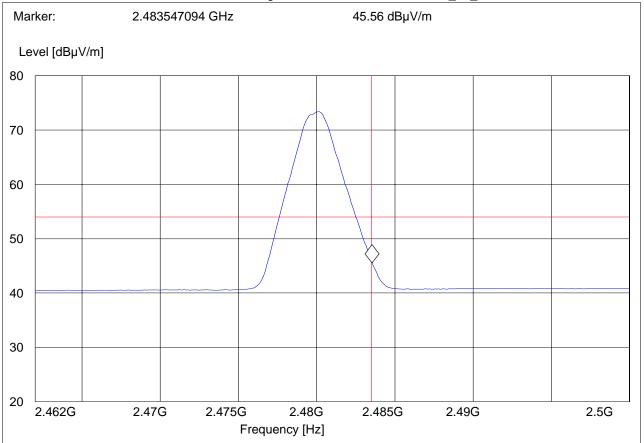
Date of Report : 2009-05-27 Page 21 of 65

HIGHER BAND EDGE AVERAGE-8DPSK MODULATION

EUT: A1303 Customer:: Apple Test Mode: BT Ch.78

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247 HBE_AVG"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

2.5 GHz 2.5 GHz MaxPeak Coupled 1 MHz #326horn_AF_horz

Date of Report: 2009-05-27 Page 22 of 65

5.3 TRANSMITTER SPURIOUS EMISSIONS RADIATED § 15.247/15.205/15.209

5.3.1 LIMITS

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

^{*}PEAK LIMIT= 74dBuV/m

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Results for the radiated measurements below 30MHz according § 15.33

Frequency	Measured values	Remarks
9KHz – 30MHz	No emissions found, caused by the EUT	This is valid for all the tested channels

All Spurious Emission measurements are done in GFSK mode and represents the worse case emission from the device.

^{*}AVG. LIMIT= 54dBuV/m

Page 23 of 65 2009-05-27 Date of Report:

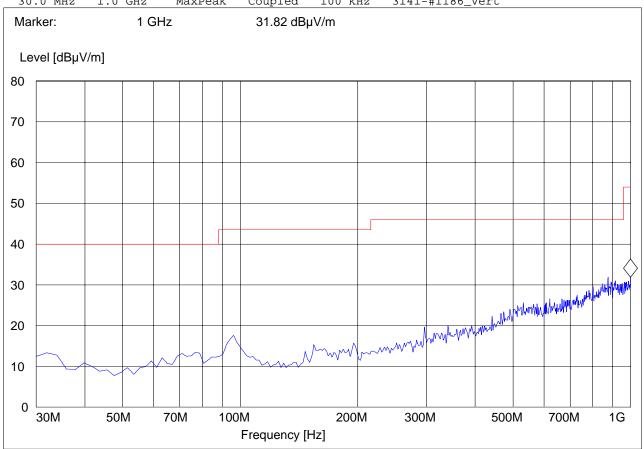
5.3.2 RESULTS

30MHz – 1GHz Antenna: vertical.

EUT: A1303
Customer:: Apple
Test Mode: BT DQPSK

ANT Orientation: V EUT Orientation: V Test Engineer: Chris

FCC AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

IF Start Stop Detector Meas. Transducer

Frequency Frequency Time Bandw.

MaxPeak Coupled 30.0 MHz 1.0 GHz 100 kHz 3141-#1186_Vert

Date of Report: 2009-05-27 Page 24 of 65

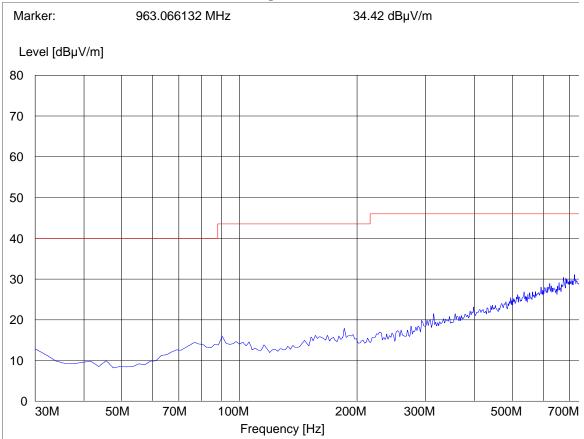
30MHz – 1GHz Antenna: horizontal

Note: This plot is valid for low, mid, high channels (worst-case plot)

EUT: A1303
Customer:: Apple
Test Mode: BT DQPSK

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: Page 25 of 65 2009-05-27

1-3GHz (2402MHz)

Note: The peak above the limit line is the carrier freq.

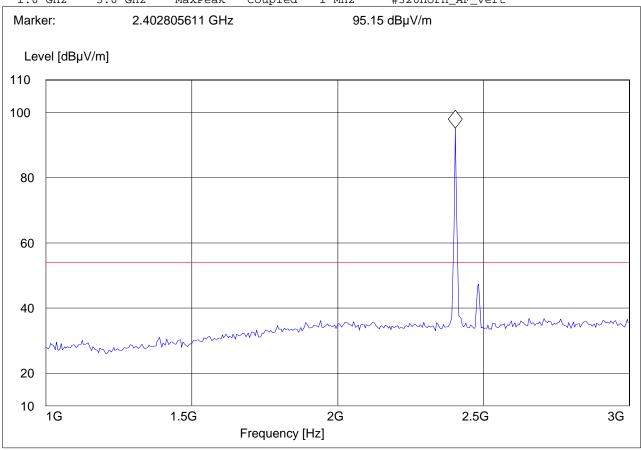
Note: Peak Reading vs. Average limit

A1303 EUT:

Customer:: Apple
Test Mode: BT Ch.0 DQPSK

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

#326horn_AF_vert 1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz

2009-05-27 Date of Report: Page 26 of 65

1-3GHz (2441MHz)

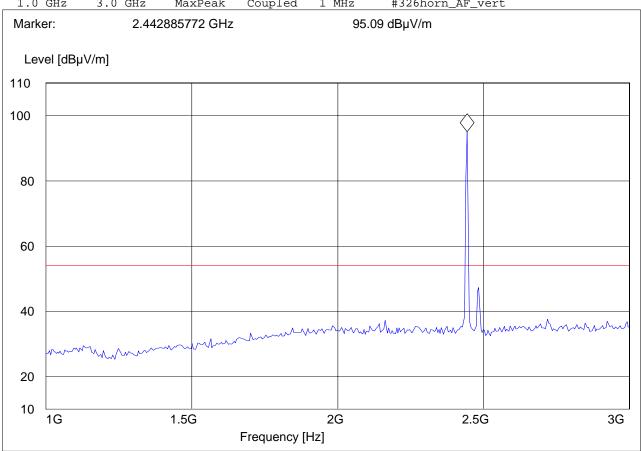
Note: The peak above the limit line is the carrier freq.

EUT: A1303

Customer:: Apple
Test Mode: BT Ch.39 DQPSK

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

Voltage: FCC AC Adapter


Comments:

SWEEP TABLE: "FCC15.247_1-3G"

Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz Coupled #326horn_AF_vert 3.0 GHz MaxPeak 1 MHz

Date of Report: 2009-05-27 Page 27 of 65

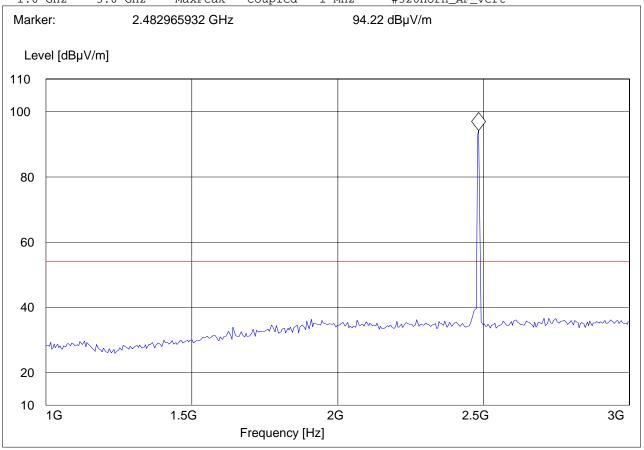
1-3GHz (2480MHz)

Note: The peak above the limit line is the carrier freq.

Note: Peak Reading vs. Average limit

EUT: A1303 Customer:: Apple Test Mode: BT Ch

BT Ch.78 DQPSK Test Mode:


ANT Orientation: H EUT Orientation: V Test Engineer: Chris

FCC AC Adapter Voltage:

Comments:

SWEEP TABLE: "FCC15.247_1-3G"

IF Transducer Start Stop Detector Meas. Frequency Frequency Time Bandw. 1.0 GHz 3.0 GHz Coupled 1 MHz #326horn_AF_vert MaxPeak

Date of Report: 2009-05-27 Page 28 of 65

3-18GHz (2402MHz)

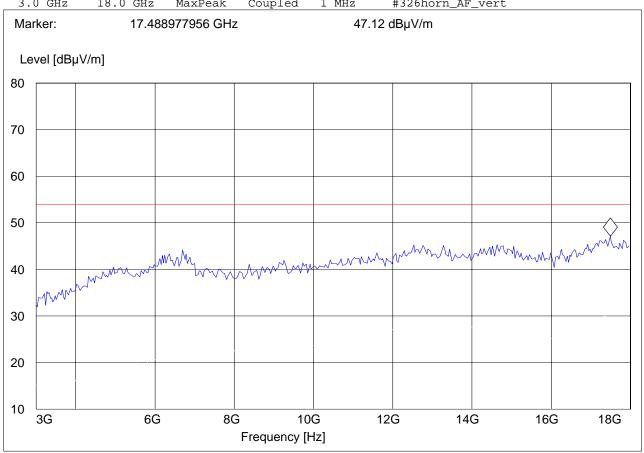
Note: Peak Reading vs. Average limit

EUT: A1303

Customer:: Apple
Test Mode: BT Ch.0 DQPSK

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

FCC AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC15.247_3-18G"

IF Transducer Start Stop Detector Meas.

Frequency Frequency Time Bandw.

Coupled 3.0 GHz 18.0 GHz MaxPeak 1 MHz #326horn_AF_vert

Date of Report: Page 29 of 65 2009-05-27

3-18GHz (2441MHz)

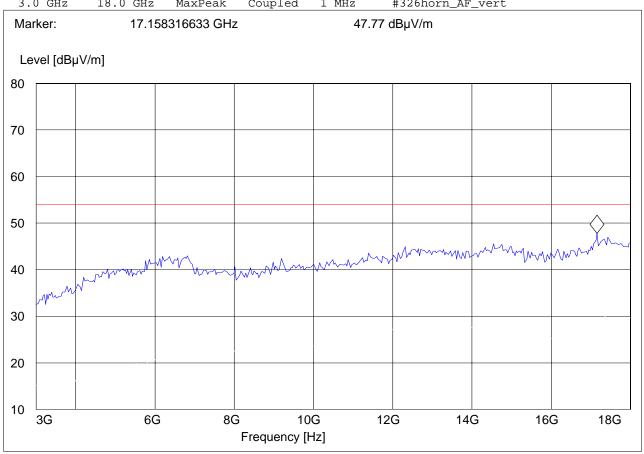
Note: Peak Reading vs. Average limit

A1303 EUT: Apple Customer::

BT Ch.39 DQPSK Test Mode:

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

FCC AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Detector Meas. Start Stop IF Transducer

Frequency Frequency Time Bandw.

#326horn_AF_vert 3.0 GHz 18.0 GHz Coupled MaxPeak 1 MHz

Date of Report: Page 30 of 65 2009-05-27

3-18GHz (2480MHz)

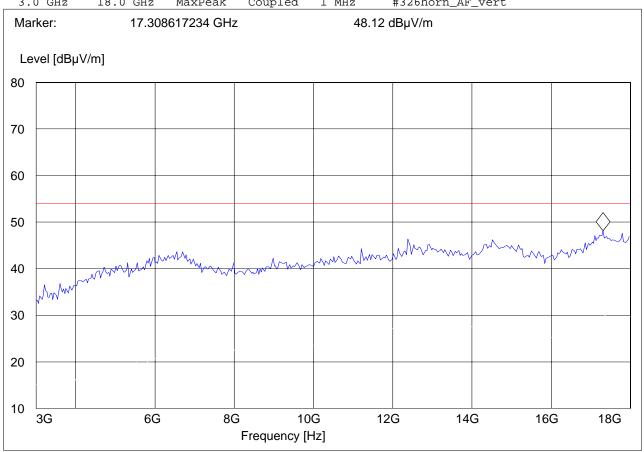
Note: Peak Reading vs. Average limit

A1303 EUT: Apple Customer::

BT Ch.78 DQPSK Test Mode:

ANT Orientation: H EUT Orientation: V Test Engineer: Chris

FCC AC Adapter Voltage:


Comments:

SWEEP TABLE: "FCC15.247_3-18G"

Detector Meas. Start Stop IF Transducer

Frequency Frequency Time Bandw.

#326horn_AF_vert 3.0 GHz 18.0 GHz Coupled MaxPeak 1 MHz

Date of Report: 2009-05-27 Page 31 of 65

18-25GHz

Note: This plot is valid for low, mid, high channels (worst-case plot)

Note: Peak Reading vs. Average limit

EUT: A1303
Customer:: Apple
Test Mode: BT DQPSK

ANT Orientation: H EUT Orientation: V

Test Engineer: Chris
Voltage: FCC AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_18-26.5G"

Start Stop Detector Meas. IF Transducer Frequency Frequency 26.5 GHz MaxPeak Coupled 100 kHz Horn # 3116_18-40G

MaxPeak

Ма	rker:	22.7184	36874 GHz		44.71	dBμV/m		
Le	vel [dBµV/m]	I						
60								
50								
					\Diamond			
				1.	M M	J., M.,	1	
40	mmymmm	MWMM	MM MM	HWW W	, / ₄ / ₄ / ₁	W W \	<u> </u>	
	The state of the s							
30								
20	18G 19	G 20				G 24	G 25	G 2
	Frequency [Hz]							

Date of Report : 2009-05-27 Page 32 of 65

5.4 RECEIVER SPURIOUS RADIATION RSS-Gen(4.10)

5.4.1 LIMITS

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3 and 25 GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. All measurements are done in peak mode using an average limit, unless specified with the plots.

Date of Report: 2009-05-27 Page 33 of 65

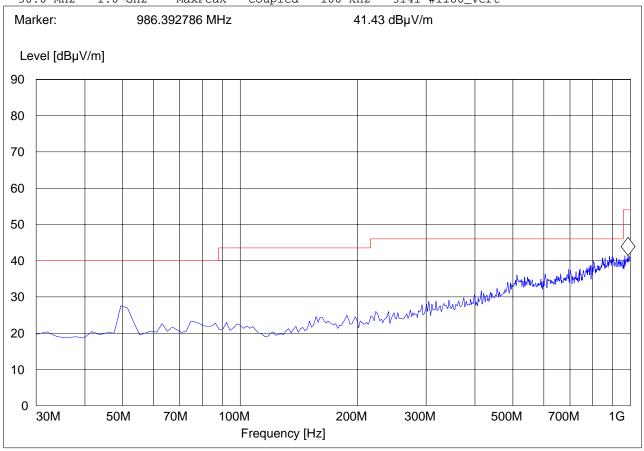
5.4.2 Results

30MHz – 1GHz Antenna: Vertical.

Note: This plot is valid for low, mid, high channels (worst-case plot)

A1303 EUT:

Customer:: Apple
Test Mode: BT CH.39; GFSK


ANT Orientation: V EUT Orientation: V Test Engineer: Chris Voltage: AC Adapter

Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Ver"

Detector Meas. IF Start Stop Transducer Frequency Frequency Time Bandw.

30.0 MHz 3141-#1186_Vert 1.0 GHz ${\tt MaxPeak}$ Coupled 100 kHz

Date of Report: 2009-05-27 Page 34 of 65

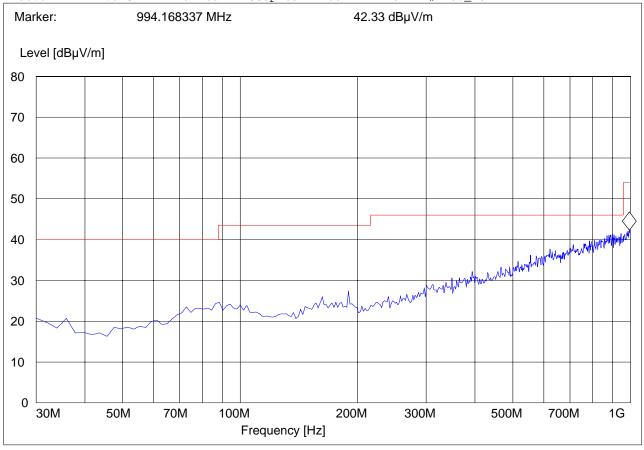
30MHz - 1GHz Antenna: horizontal.

Note: This plot is valid for low, mid, high channels (worst-case plot)

EUT: A1303 Customer:: Apple

Test Mode: BT CH.39; GFSK

ANT Orientation: H
EUT Orientation: V
Test Engineer: Chris
Voltage: AC Adapter


Comments:

SWEEP TABLE: "FCC15.247_30M-1G_Hor"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 3141-#1186_Horz

Date of Report: 2009-05-27 Page 35 of 65

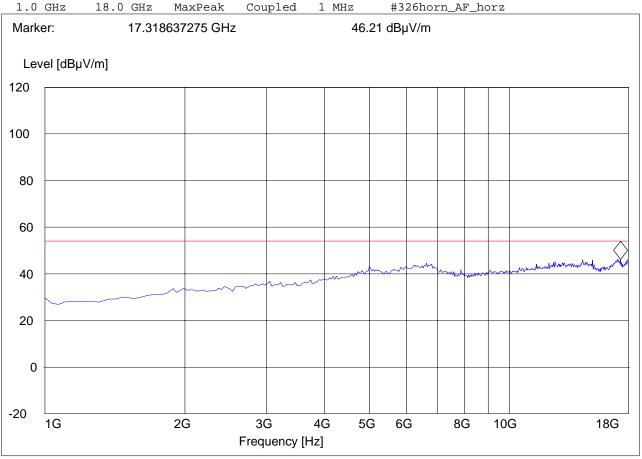
1-18GHz

CETECOM Inc.

411 Dixon Landing Road; Milpitas, CA 95035

EUT: A1303 Customer:: Apple

Operation Mode: BT CH.39; GFSK


ANT Orientation: : H
EUT Orientation:: V
Test Engineer: Chris
Voltage: AC Adapter

Comments::

SWEEP TABLE: "FCC15.247_1-18G"

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

Test Report #:

EMC_APPLE_047_09001_FHSS_BCGA1303B

Date of Report:

2009-05-27

Page 36 of 65

6 Measurements (CONDUCTED)

6.1 MAXIMUM PEAK OUTPUT POWER § 15.247 (CONDUCTED)

6.1.1 LIMIT SUB CLAUSE § 15.247 (b) (1)

Frequency range	RF power output
2400-2483.5 MHz	30dBm

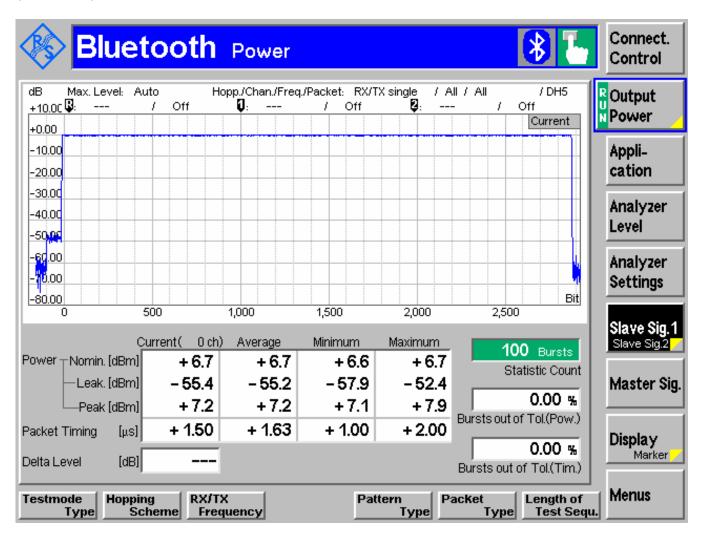
^{*}limit is based upon antenna gain of less than or equal to 6dBi.

6.1.2 RESULTS: GFSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	7.9	8	8.1

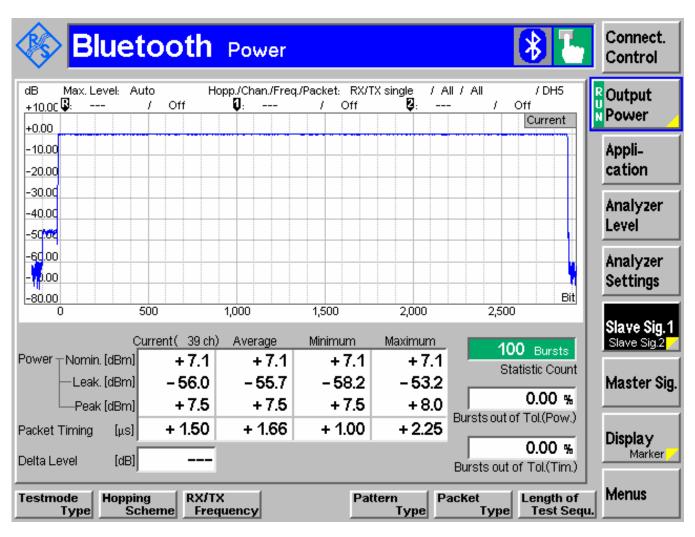
6.1.3 RESULTS: $\pi/4$ DQPSK

TEST CONDITIONS		MAXIMUM	I PEAK OUTPUT PO	OWER (dBm)
Frequency (MHz)		2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	9.2	9.8	9.8

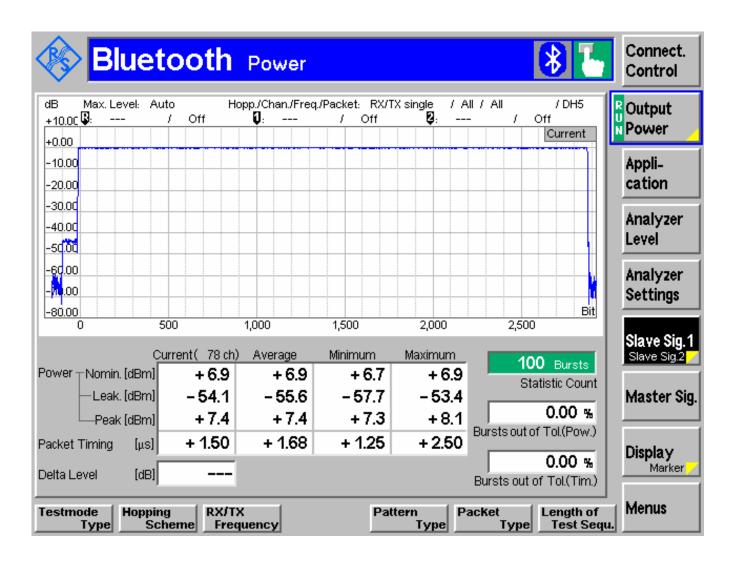

6.1.4 RESULTS: 8DPSK

TEST CONDITIONS		MAXIMUM PEAK OUTPUT POWER (dBm)		
Frequency (MHz)		2402 MHz	2441 MHz	2480 MHz
T _{nom} (23)°C	V _{nom} VDC	9.4	10	10

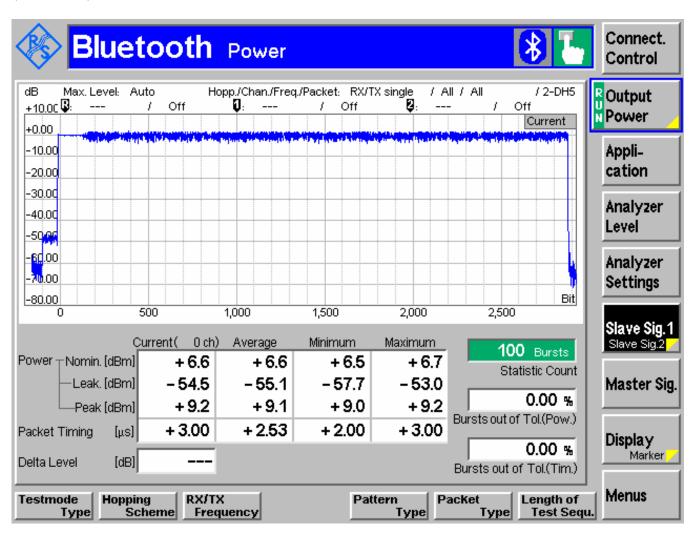
Date of Report : 2009-05-27 Page 37 of 65


(2402 MHz) GFSK

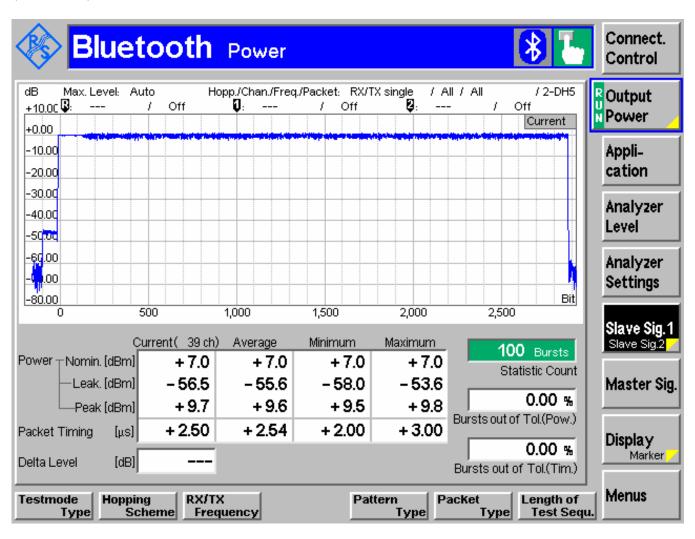
Date of Report : 2009-05-27 Page 38 of 65


(2441 MHz) **GFSK**

Date of Report : 2009-05-27 Page 39 of 65


(2480 MHz) **GFSK**

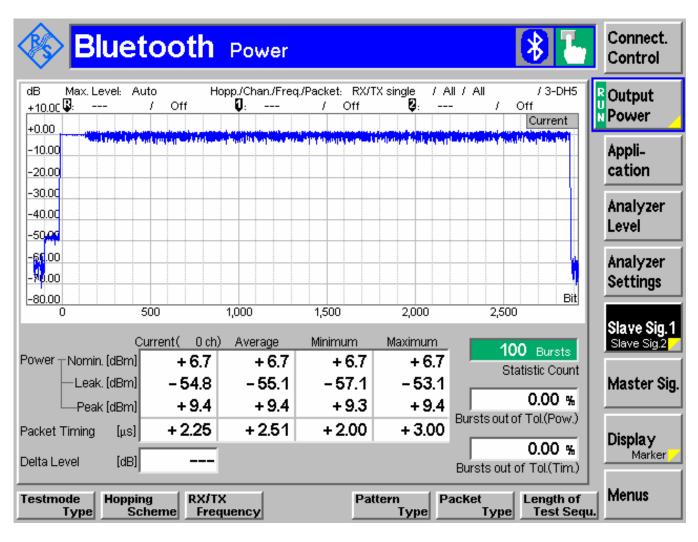
Date of Report : 2009-05-27 Page 40 of 65


$(2402 \text{ MHz}) \pi / 4 \text{ DQPSK}$

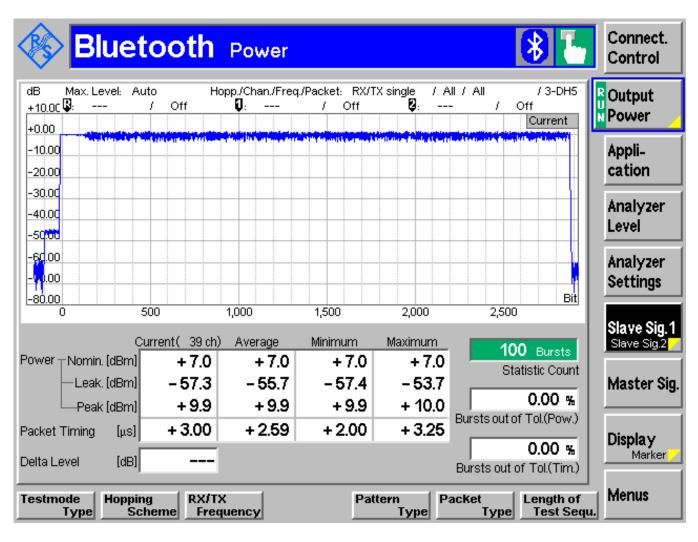
Date of Report : 2009-05-27 Page 41 of 65

$(2441 \text{ MHz}) \pi / 4 \text{ DQPSK}$

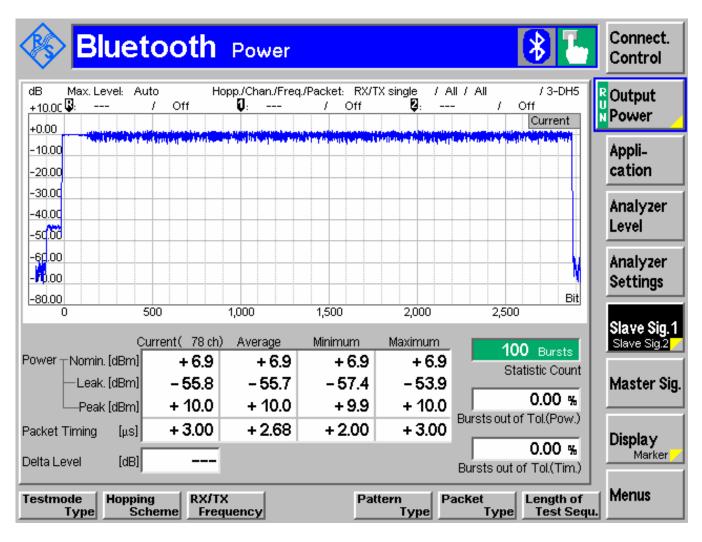
Date of Report : 2009-05-27 Page 42 of 65


$(2480 \text{ MHz}) \pi / 4 \text{ DQPSK}$

Date of Report : 2009-05-27 Page 43 of 65


(2402 MHz) 8DPSK

Date of Report : 2009-05-27 Page 44 of 65


(2441 MHz) 8DPSK

Date of Report : 2009-05-27 Page 45 of 65

(2480 MHz) 8DPSK

Date of Report : 2009-05-27 Page 46 of 65

6.2 20dB BANDWIDTH

6.2.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

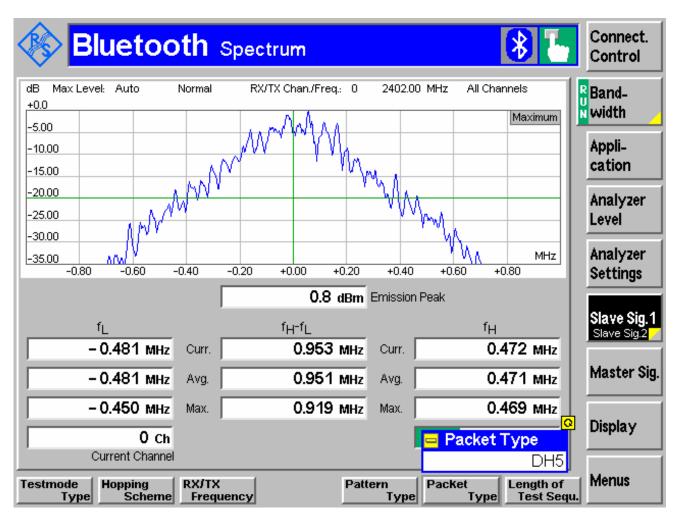
6.2.2 RESULTS: GFSK

GFSK

Channel No.	Frequency (MHz)	20dB BW (kHz)	Result (Fail/Pass)	
0	2402	0.919	PASS	
39	2441	0.917	PASS	
78	2480	0.918	PASS	

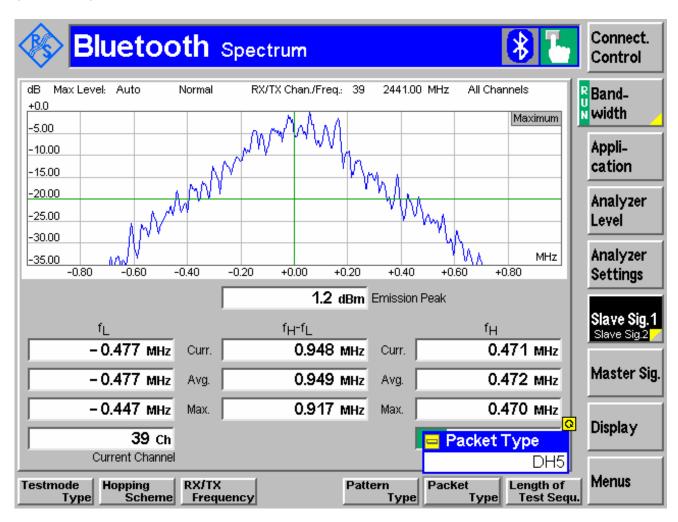
Pi/4 DQPSK (If EDR supported)

Channel No.	Frequency (MHz)	20dB BW (kHz)	Result (Fail/Pass)
0	2402	1.310	PASS
39	2441	1.309	PASS
78	2480	1.308	PASS

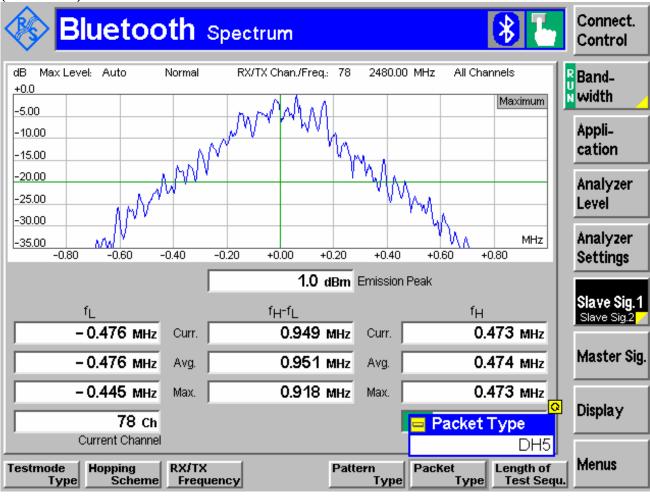

8DPSK (If EDR supported)

Channel No.	Frequency (MHz)	20dB BW (kHz)	Result (Fail/Pass)
0	2402	1.263	PASS
39	2441	1.264	PASS
78	2480	1.264	PASS

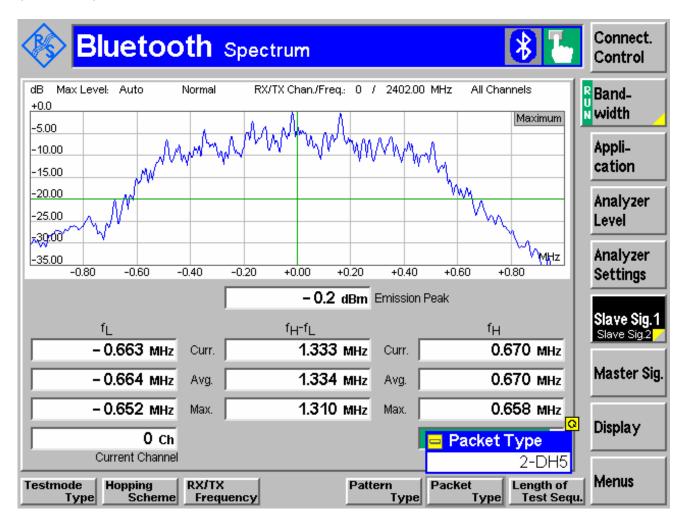
Date of Report : **2009-05-27** Page 47 of 65


(2402 MHz) **GFSK**

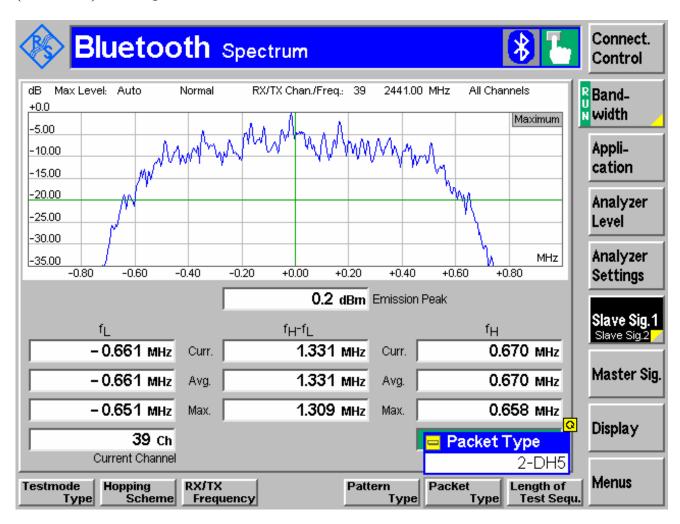
Date of Report : 2009-05-27 Page 48 of 65


(2441 MHz) **GFSK**

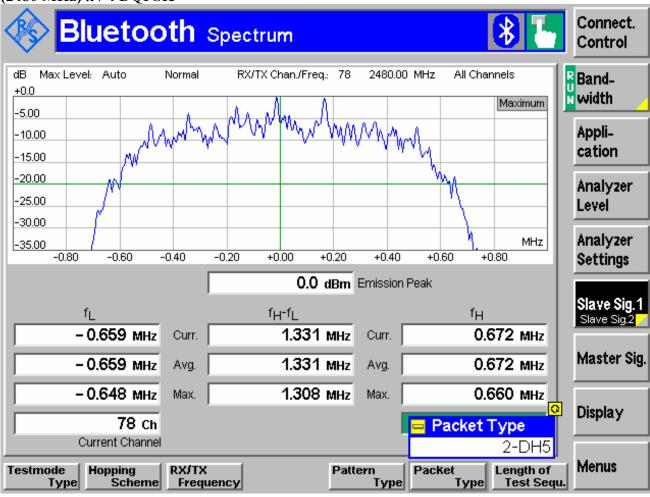
Date of Report: 2009-05-27 Page 49 of 65


(2480 MHz) **GFSK**

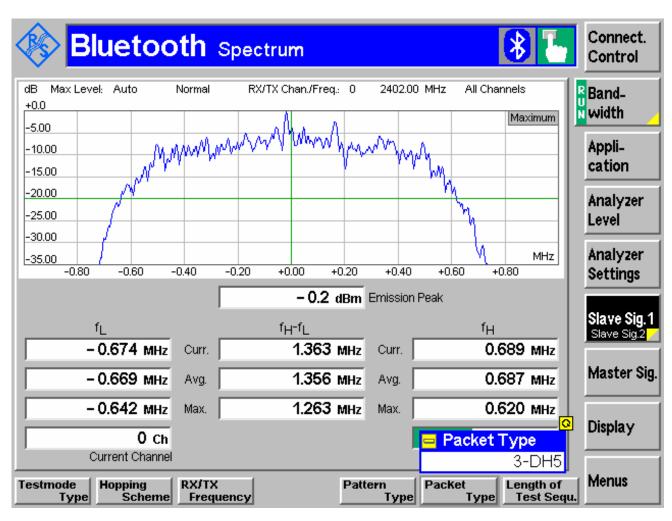
Date of Report : 2009-05-27 Page 50 of 65


$(2402 \text{ MHz}) \pi / 4 \text{ DQPSK}$

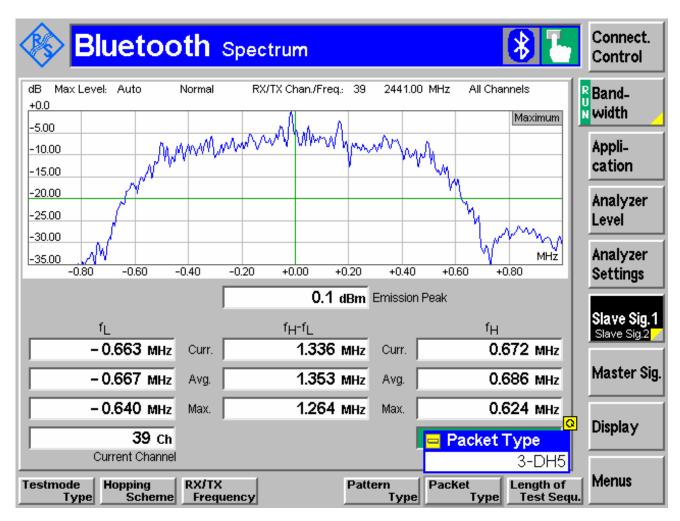
Date of Report: 2009-05-27 Page 51 of 65


$(2441 \text{ MHz}) \pi / 4 \text{ DQPSK}$

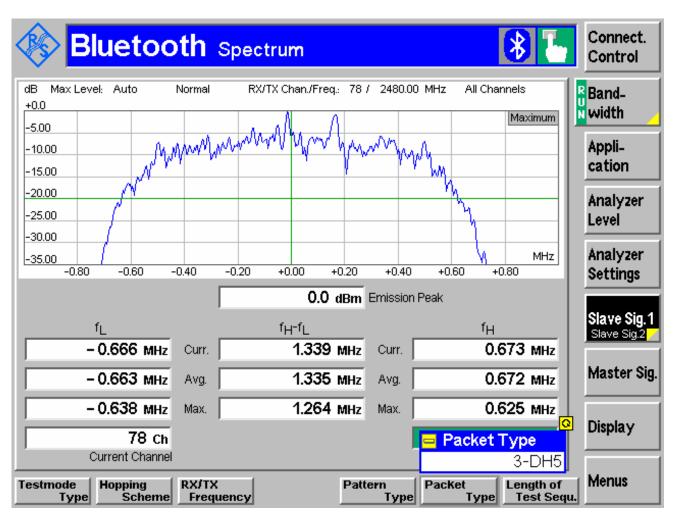
Date of Report : 2009-05-27 Page 52 of 65


 $(2480 \text{ MHz}) \pi / 4 \text{ DQPSK}$

Date of Report : 2009-05-27 Page 53 of 65


(2402 MHz) 8DPSK

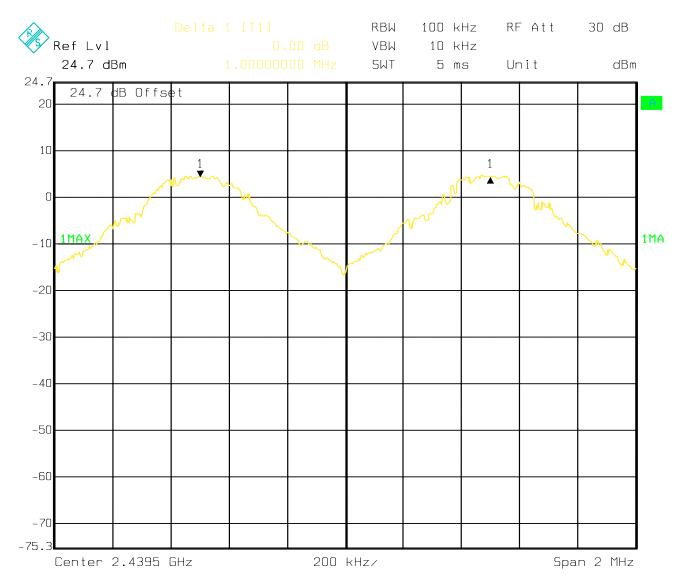
Date of Report : 2009-05-27 Page 54 of 65


(2441 MHz) 8DPSK

Date of Report : 2009-05-27 Page 55 of 65

(2480 MHz) 8DPSK

Date of Report : 2009-05-27 Page 56 of 65


6.3 CARRIER FREQUENCY SEPARATION

6.3.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

SEPARATION		
> 25 KHz or > 20 dB BANDWIDTH		

6.3.2 RESULTS:

TEST CONDITIONS		SEPARATION(MHz)
T _{nom} (23)°C V _{nom} VDC		1

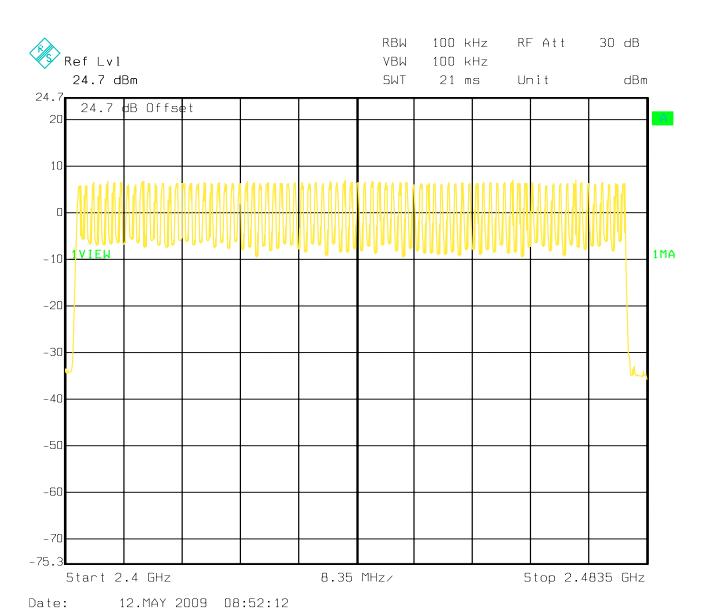
Date: 12.MAY 2009 08:58:21

Date of Report: 2009-05-27 Page 57 of 65

6.4 NUMBER OF HOPPING CHANNELS

6.4.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (iii)

NUMBER OF CHANNELS	
> 15	


6.4.2 RESULTS:

TEST CONDITIONS		NUMBER OF CHANNELS	
T _{nom} (23)°C	V _{nom} VDC	79	

Date of Report : 2009-05-27 Page 58 of 65

PLOT 1

Date of Report: 2009-05-27 Page 59 of 65

6.5 TIME OF OCCUPANCY (DWELL TIME)

6.5.1 LIMIT SUB CLAUSE § 15.247 (a) (1) (i) (ii) (iii)

FREQUENCY RANGE	AVERAGE TIME OF OCCUPANCY
	PER
	31.6 SECONDS (LIMIT)
2400-2483.5	< 0.4 Seconds

6.5.2 RESULTS:

T _{nom} (23)°C	V _{nom} VDC
-------------------------	----------------------

For Bluetooth devices:

The dwell time of 0.4 s within a 31.6 second period in data mode is independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Dwell time = time slot length * hop rate / number of hopping channels *31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \mu s * 1600 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots) Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

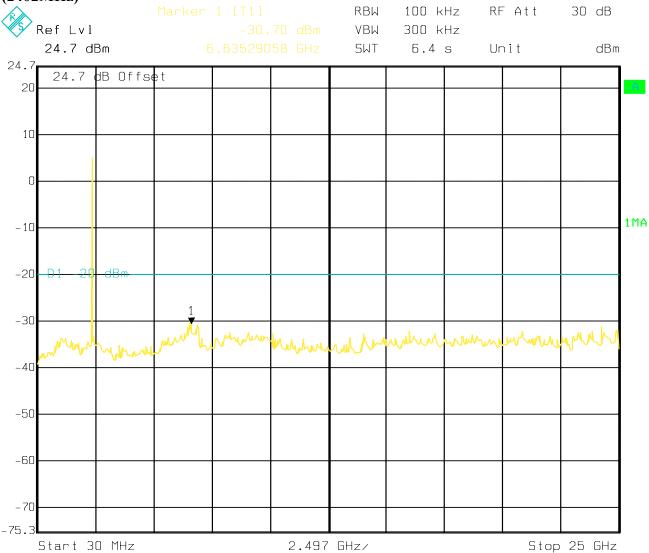
This is the same for all BT devices and therefore all BT devices satisfy FCC requirement on time of occupancy (dwell time).

EMC_APPLE_047_09001_FHSS_BCGA1303B

Date of Report : 2009-05-27 Page 60 of 65

6.6 CONDUCTED SPURIOUS EMISSION

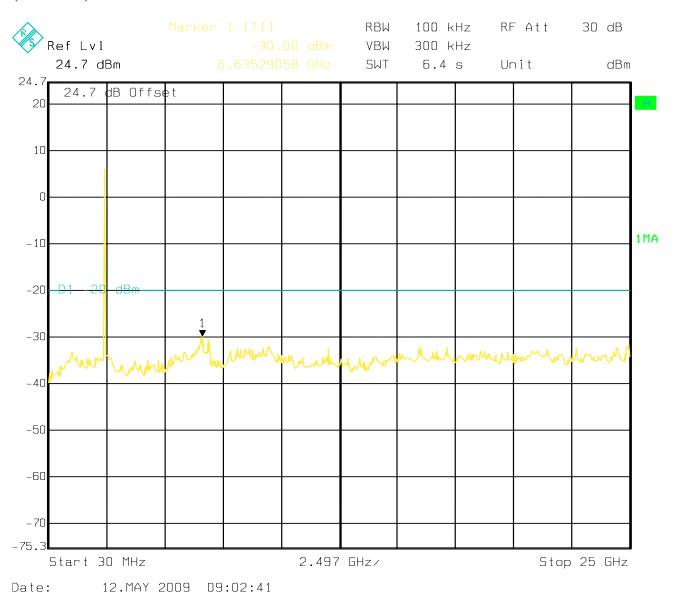
6.6.1 LIMIT SUB CLAUSE § 15.247 (d)


FREQUENCY RANGE	limit	
30M-25GHz	-20dBc	

6.6.2 RESULTS: Tnom(23)°C VnomVDC

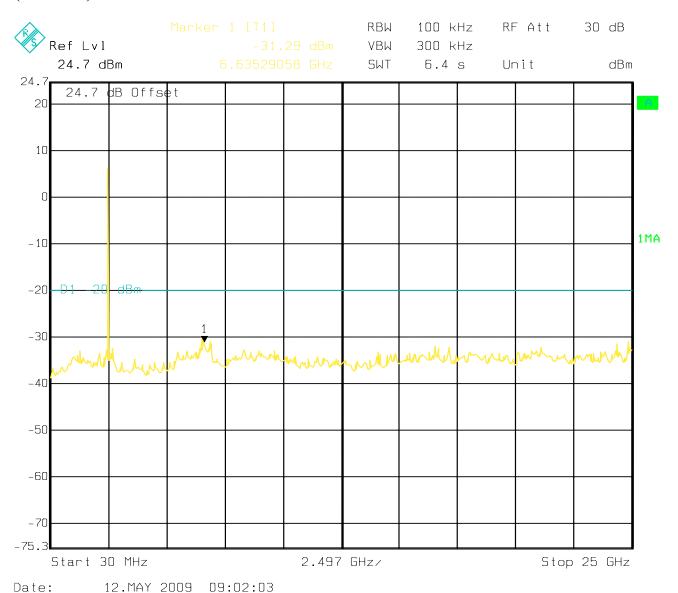
Plot shows worse case emission for all modulations on each channel.

Test Report #:



Date: 12.MAY 2009 09:03:17

Date of Report : 2009-05-27 Page 61 of 65

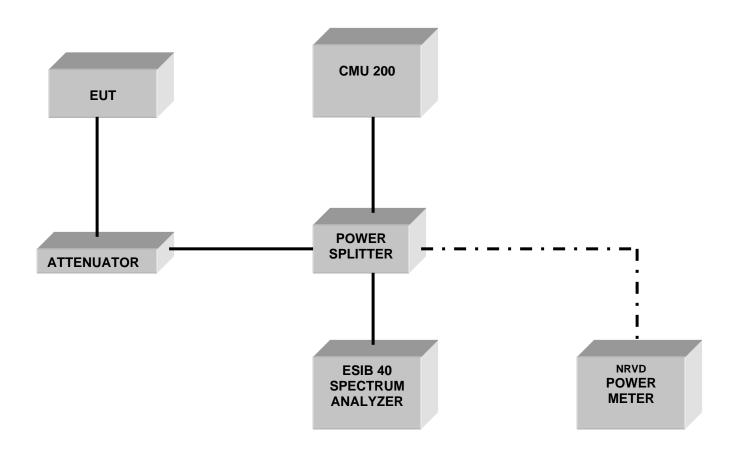

(2441MHz)

Date of Report : 2009-05-27 Page 62 of 65

(2480MHz)

Date of Report : 2009-05-27 Page 63 of 65

7 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS


No	Instrument/Ancillar	Type	Manufacturer	Serial No.	Cal Due	Interva
	y					l
01	Spectrum Analyzer	ESIB 40	Rohde &	100107	May 2010	1 year
			Schwarz			
02	Spectrum Analyzer	FSEM 30	Rohde &	100017	August	1 year
	g: 1.g	G) (710 a	Schwarz	00.60=0.1044	2010	
03	Signal Generator	SMY02	Rohde &	836878/011	May 2010	1 year
0.4	D 3.6.) IDI ID	Schwarz	0055 0000 00	2010	4
04	Power-Meter	NRVD	Rohde &	0857.8008.02	May 2010	1 year
0.5	D: '1 A /	21.41	Schwarz	0005 1106	7 2010	1
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2010	1 year
06	Horn Antenna (1- 18GHz)	SAS- 200/571	AH Systems	325	June 2010	1 year
07	Horn Antenna (18-	3160-09	EMCO	1240	June 2010	1 year
07	26.5GHz)	3100 07	LIVICO	1240	June 2010	1 year
08	Power Splitter	11667B	Hewlett	645348	n/a	n/a
	1		Packard			
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2010	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-	Miteq	00616	May 2010	1 year
		00102600				
13	Power Sensor	URV5-Z2	Rohde &	DE30807	May 2010	1 year
13			Schwarz			
14	Digital Radio Comm.	CMD-55	Rohde &	847958/008	May 2010	1 year
	Tester	CIVID-33	Schwarz	07//20/000	1v1ay 2010	
15	Universal Radio	CMU 200	Rohde &	832221/06	May 2010	1 year
	Comm. Tester	CIVIC 200	Schwarz	032221/00	141ay 2010	
16	LISN	ESH3-Z5	Rohde &	836679/003	May 2010	1 year
			Schwarz		-	
17	Loop Antenna	6512	EMCO	00049838	July 2010	2 years

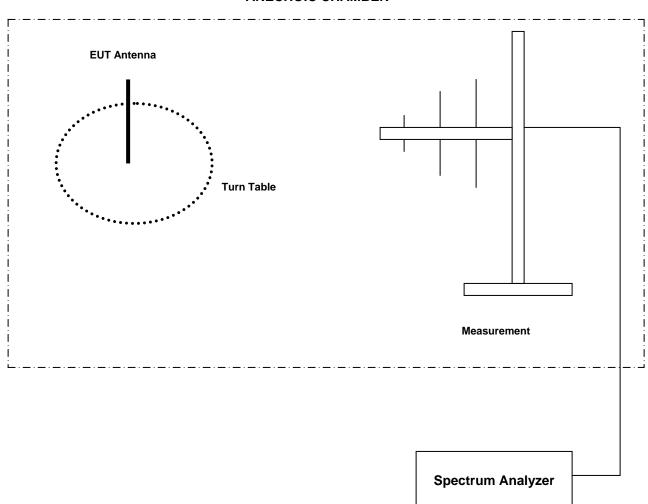
Date of Report : 2009-05-27 Page 64 of 65

8 BLOCK DIAGRAMS

Conducted Testing

Test Report #:
Date of Report :

EMC_APPLE_047_09001_FHSS_BCGA1303B


2009-05-27

Page 65 of 65

Radiated Testing

ANECHOIC CHAMBER

