

FCC OET BULLETIN 65 SUPPLEMENT C CLASS II PERMISSIVE CHANGE IC RSS-102 ISSUE 2

SAR EVALUATION REPORT

FOR

Handheld touch screen iPod music device with 802.11b/g and Bluetooth radio functions

MODEL: A1288

FCC ID: BCGA1288 IC: 579C-A1288

REPORT NUMBER: 08U11969-19A

ISSUE DATE: SEPTEMBER 2, 2008

Prepared for

APPLE INC. 1 INFINITE LOOP MAIL STOP 26A CUPERTINO, CA 95014, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

REPORT	NO: 08U11969-19A	DATE: September 2, 2008	FCC ID: BCGA1288
Revision	History		
Rev.	Issued date	Revisions	Revised By
	August 21, 2008	Initial issue	
А	September 2, 2008	1. Added Section 6 Test Equipment List	Sunny Shih
		2. Updated section 11 Output Power Verification	

TABLE OF CONTENTS

1	ATTESTA	TION OF TEST RESULTS	4
2	TEST ME	THODOLOGY	5
3	FACILITIE	ES AND ACCREDITATION	5
4	CALIBRA	TION AND UNCERTAINTY	5
	4.1 MEA	SURING INSTRUMENT CALIBRATION	5
5	MEASUR	EMENT UNCERTAINTY	5
6	TEST EQ	UIPMENT LIST	3
7	DEVICE L	JNDER TEST (DUT) DESCRIPTION	7
8	SYSTEM	DESCRIPTION	3
	8.1 CON	IPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	9
9	SIMULAT	ING LIQUID PARAMETERS CHECK)
	9.1 SIMU	ULATING LIQUID PARAMETER CHECK RESULT1	1
10	SYSTEM	PERFORMANCE CHECK	2
	10.1 SYS	TEM PERFORMANCE CHECK RESULTS1	3
11	OUTPUT	POWER VERIFICATION14	4
	11.1.1 \$	SAR TEST RESULTS	5
	11.2 SAR	TEST RESULT FOR THE BAND 2400 – 2483.5 MHZ1	5
12	ATTACHN	16NTS	3
13	SETUP PI	HOTOS	7

1 ATTESTATION OF TEST RESULTS

COMPANY NAME:	COMPANY NAME: APPLE INC. 1 INFINITE LOOP MAIL STOP 26A CUPERTINO, CA 95014, USA						
EUT DESCRIPTION: Handheld touch screen iPod music device with 802.11b/g and Bluetooth radio functions							
MODEL:	A1288						
DEVICE CATEGORY:	Portable	Portable					
EXPOSURE CATEGOR	Y: General Population/Unco	General Population/Uncontrolled Exposure					
DATE TESTED:	August 20, 2008	August 20, 2008					
THE HIGHEST SAR VALUES:	See Table below						
FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)				
15.247 / RSS-102	2400 – 2483.5	2400 – 2483.5 1.3 1					

APPLICABLE STANDARDS								
STANDARD	TEST RESULTS							
FCC OET BULLETIN 65 SUPPLEMENT C	Pass							
RSS-102 ISSUE 2	Pass							

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Sunay Shih

SUNNY SHIH EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

Carol Baumann

CAROL BAUMANN SAR ENGINEER COMPLIANCE CERTIFICATION SERVICES

2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters, KDB 648474 SAR Evaluation for Handsets that Contain Multiple Transmitters and Antennas and IC RSS 102 Issue 2: NOVEMBER 2005.

3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4 CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz – 3000 MHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	C: (10 m)	Std. Unc.(±%)		
Uncertainty component	10I. (±%)	Dist.			Ci (10g)	Ui (1g)	Ui(10g)	
leasurement System								
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80	
xial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
lemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
inearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
ntegration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92	
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
xtrapolation, interpolation, and integration algorithms for								
nax. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
est sample Related								
est Sample Positioning	1.10	Ν	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
iquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
iquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70	
iquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
iquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.44	10.49	
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98	

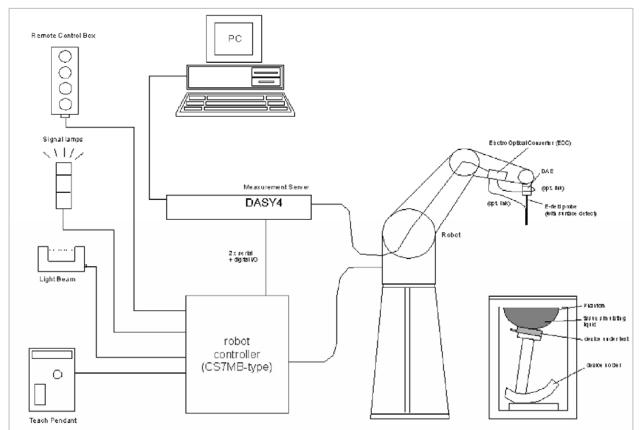
1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


6 TEST EQUIPMENT LIST

Name of Equipment	Manufacturer	Type/Model	Serial Number		Cal. Due date			
Name of Equipment	Wanulacturer	i ype/wodei	Serial Number	MM	DD	Year		
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A		
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A		
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A		
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A		
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A		
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A		
Electronic Probe kit	HP	85070C	N/A			N/A		
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2008		
E-Field Probe	SPEAG	EX3DV3	3531	4	23	2009		
Thermometer	ERTCO	639-1S	1718	8	30	2008		
Data Acquisition Electronics	SPEAG	DAE3 V1	500	11	16	2008		
System Validation Dipole	SPEAG	D2450V2	748	4	14	2009		
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009		
Signal Generator	R&S	SMP 04	DE34210	2	16	2009		
Power Meter	Giga-tronics	8651A	8651404	1	11	2010		
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010		
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A		
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A		
Simulating Liquid	CCS	M2450	N/A	Withir	n 24 h	nrs of first test		
Simulating Liquid	SPEAG	M5200-5800	N/A	Withir	n 24 h	nrs of first test		

7 DEVICE UNDER TEST (DUT) DESCRIPTION

Handheld touch screen iPod music device with 802.11b/g and Bluetooth radio functions.						
Normal operation:	Body-worn only Note: SAR was test with back and front of the EUT against the Flat phantom.					
Power supply:	Power supplied through host device					

8 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

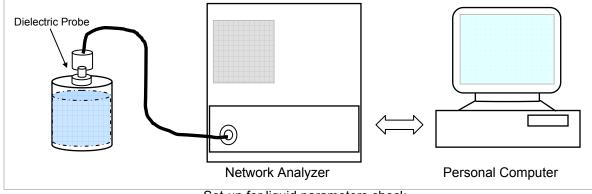
8.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	4	50	83		. 91			00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

9 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
raiget requency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

9.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 40%

Measured by: Carol Baumann

Simulating Liquid						Parameters	Measured	Target	Deviation (%)	Limit (%)		
	f (MHz)	Temp. (°C)	Depth (cm)			Falameters	Measureu	raiget	Deviation (70)			
	2450	24	15	e'	52.1488	Relative Permittivity (ε_r):	52.1488	52.7	-1.05	± 5		
	2450	24	15	e"	14.1863	Conductivity (σ):	1.93354	1.95	-0.84	± 5		
Lie	_iquid Check											
	Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C											
	0), 2008 09										
	equency	,	e'			e"						
	000000		52.			13.8927						
	050000		52.			14.0219						
	100000		52.			13.9511						
24	150000	00.	52.	33	42	13.9739						
24	200000	00.	52.	34	51	14.0796						
24	250000	00.	52.	22	90	14.1091						
24	300000	00.	52.	35	35	14.1040						
24	350000	00.	52.	.2186		14.1627						
24	400000	00.	52.	2.2993		14.1908						
24	450000	00.	52.	2.1320		14.1440						
24	500000	00.	52.	.1488 14.1863								
24	550000	00.	52.	17	22	14.2281						
24	600000	00.	52.	13	90	14.2140						
24	650000	00.	52.	.1180 14.2147								
24	700000	00.	52.	16	19	14.2796						
24	750000	00.	52.	07	42	14.3105						
24	800000	00.	52.	05	22	14.2863						
24	850000	00.	52.	05	62	14.3923						
24	900000	00.	52.	05	11	14.3691						
24	950000	00.	52.	01	37	14.4194						
25	5000000	00.	51.	95	41	14.4035						
T٢	ne condu	uctivity (o) can be g	jive	en as:							
σ	$=\omega\varepsilon_{\theta}$ e	$=2\pi f$	έ θ e ″									
wł		= target f										
	<i>€</i> 0 =	= 8.854 *	10 ⁻¹²									

10 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

450 to 2450 MHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5 GHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head 1	Fissue	Body Tissue				
(((((((((((((((((((SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	71.8	20.1	284.7		
5500	83.3	23.4	79.1	22.0	326.3		
5800	78.0	21.9	74.1	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

10.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

The dipole input power (forward power): 250 mW

<u>Results</u>

Date: August 20, 2008

Ambient Temperature = 25°C; Relative humidity = 40%

Measured by: Carol Baumann

Body Simulating Liquid		SAR (mW/g)	Normalize	Target	Deviation	Lim it	
f(MHz)	Temp.(°C)	Depth (cm)		d	Taryet	(%)	(%)
2450	24	15	1 g	49.8	51.2	-2.73	± 10
2450	24	10	10g	23.5	23.7	-0.84	± 10

11 OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, w1_tools, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.1	1b	Mode
-------	----	------

Channel	Frequency	Power	
	(MHz)	(dBm)	
Low	2412	16.66	
Middle	2437	16.36	
High	2462	16.18	

802.11g Mode

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	16.40
Middle	2437	16.50
High	2462	15.30

11.1.1 SAR TEST RESULTS

11.2 SAR TEST RESULT FOR THE BAND 2400 – 2483.5 MHZ

Test Configuration - LCD Up

Mode	Channel	f (MHz)	Measured SAR 1g (mW/g)	Limit
	1	2412 (L)	1.28	1.6
802.11b	6	2437 (M)	1.30	1.6
	11	2462 (H)	1.30	1.6

Test Configuration - LCD Down

Mode	Channel	f (MHz)	Measured SAR 1g (mW/g)	Limit
	1	2412 (L)	1.15	1.6
802.11b	6	2437 (M)	1.12	1.6
	11	2462 (H)	1.00	1.6

Notes:

1) SAR is not required for 802.11g channels since the maximum average output power is less than $\frac{1}{4}$ dB higher than that measured on the corresponding 802.11b channels.

2) Test configuration: Body worn with back (LCD down) and front (LCD up) of the EUT against the flat phantom. Please see setup photos for details.

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	2
2	SAR Test Plots for 2.4 GHz Band	7
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6