TEST REPORT

for the

Airport Express

Model # A1084

Apple Computer, Inc.

May 28, 2004

Engineering contact:

Mike Kriege Apple Computers, Inc. 1 Infinite Loop M/S 26A Cupertino, California 95014 (408) 974-0560 Voice, (408) 862-5061 Fax E-Mail: kriege@apple.com

EMC NVLAP Technical Manager: Robert Steinfeld Date: MAY 28, 2004 EMC Test Engineer: Mike Kriege Date: 5-28-2004

This document may not be reproduced without written permission from Apple Computer, 1 Infinite Loop, Cupertino, CA 95014.

Page 1 of 55

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

TABLE OF CONTENTS

1	Test Report Summary	3
2	EUT Description	4
3	Test Methodology	4
4	Facilities and Accreditation	5
5	Calibration and Uncertainty	6
6	Setup of Equipment Under Test	7
7	Applicable Limits and Test Results	11
7.1	6 dB Bandwidth	11
7.2	99% Bandwidth	15
7.3	Maximum Peak Output Power	19
7.4	Average Power	23
7.5	Peak Power Spectral Density	24
7.6	-20 dBc Conducted Spurious Emissions	28
7.7	Radiated Emissions	35
7.8	AC Power Line Conducted Emissions	52

1 Test Report Summary

Specification	Test or Requirement	Result	Comment
CFR 15.247(a)(2)	6 dB Bandwidth greater than 500 kHz	Pass	Section 7.1
CFR 15.247(b)(3)	Maximum Peak Output Power Requirement: Less then 1 Watt	Pass	Section 7.3
CFR 15.247(d)	Peak Power Spectral Density Requirement: Less then +8 dBm in any 3 kHz bandwidth	Pass	Section 7.5
CFR 15.247(c)	-20 dBc Spurious Emissions	Pass	Section 7.6
CFR 15.209(a)	Radiated Emissions 30 MHz to 25 GHz	Pass	Section 7.7
CFR 15.207(a)	AC Power Line	Pass	Section 7.8

2 EUT Description

The Apple Wireless LAN access point, code named Q61, operates in the 2.4 GHz unlicensed Industrial, Scientific and Medical band and uses Direct Sequence Spread Spectrum and OFDM communication techniques. This device uses the Broadcom BCM2050 radio and the Broadcom BCM4712 Integrated Network Processor and is compliant with IEEE Std 802.11 g/b. The BCM2050 provides wireless data communications at rates up to 54 Mbps, depending on the coding techniques employed and the range of the system. Technical Information on the Apple Airport Express is provided in the table below.

Apple Airport Express Information	
Product	Wireless LAN Access Point
Trade Name	Apple Airport Express
Model Number	A1084
Power Supply	Integrated 100-240V AC Power Supply
Frequency Range	IEEE 802.11b, g 2412 - 2462 MHz
Transmit Power	15 dBm
Modulation Technique	IEEE 802.11b: DSSS, DQPSK, DBPSK IEEE 802.11g: OFDM
Antenna Gain	+0.94 dBi
Antenna Description	Diversity, Integrated PCB PIFA (Planar Inverted-F Antenna)
Emission Designator	22MOF7D

3 Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 Part 2 and Part 15.

4 Facilities and Accreditation

4.1 Facilities and Equipment

The ac power line and RF conducted emissions measurements were performed at the Apple Computer, Inc. facility located at 20650 Valley Green Drive, Cupertino, California 95014. The radiated emissions measurements were performed at the Apple Computer, Inc. Evelyn 1, 10 meter semi-anechoic chamber located at 123 East Evelyn Ave., Mountain View, California 94041. Both of these facilities are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

All Receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

4.2 Laboratory Accreditation

The test facilities at Apple Computer, Inc. used to perform radiated and conducted emissions measurements are accredited by National Voluntary Laboratory Accreditation Program to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22. Apple Computer, Inc. NVLAP Lab Code is 20071-0 and is effective through September 30, 2004-05-28. No part of this report may be used to claim or endorsement by NVLAP or any agency of the US Government.

The Apple Computer, Inc Evelyn 1 10 meter Semi-anechoic chamber is currently listed with the FCC. The FCC Registration Number is 90450 and is effective throuth Jan 5, 2007.

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

5 Calibration and Uncertainty

5.1 Measurement Instrument Calibration

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations and are traceable to national standards.

5.2 Measurement Uncertainty

The Apple measurement uncertainty policy, available upon request under Apple File Number EMC20, ensures uncertainty has been calculated using the proper procedure. Apple will use this measurement uncertainty knowledge in determining the pass / fail criteria from the test data. The measurement uncertainty has been determined to be the following:

Conducted Emissions = +/- 2.3 dBRadiated Emissions = +/- 4.1 dB

5.3 Test Equipment

The following test equipment was used

Description	Manufacturer	Model No.	Identification No.	Last Cal	Next Cal
Spectrum Analyzer	R&S	ESIB 40	100105	Aug, 2003	Aug, 2004
Spectrum Analyzer	R&S	ESIB 26	1088.7490	Oct, 2003	Oct, 2004
Spectrum Analyzer	HP	4404B	US41441488	Aug 2003	Aug, 2004
Receiver	R & S	ESCS 30	1102.4500.30	Jan 2004	Jan 2005
Antenna	Sunol	JB1	A122302-1	Dec 2003	Dec 2004
Antenna	Sunol	JB1	A122302-2	Dec 2003	Dec 2004
Amplifier	Amplifier Research	AR	Amp 16	Nov 2003	Nov 2004
Amplifier	Amplifier Research	AR	Amp 17	Nov 2003	Nov 2004
Amplifier	HP	8449	3008A00713	March, 2004	March 2005
Horn Antenna	ЕМСО	3117	34197	March 2004	March 2009
Horn Antenna	ЕМСО	3160-09	011269-0041264	Sept 2001	Sept 2005
Power Meter	Boonton	4532	165201	May 2004	May 2005
Power Meter Sensor	Boonton	57318	3890	May 2004	May 2005

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

6 Setup of Equipment Under Test

EUT Support Equipment

	Peripheral Support Equipment						
Description	Manufacturer	Model	Serial Number	FCC ID			
Laptop	Apple	M8407	PT318199	DoC			
Wireless G Adapter	Linksys	WPC54G	BDH03839693	PKW-WPC54G-2			
USB Printer	Epson	Stylus 41UX	EFFY005769	DoC			
Amplified Speakers	Cyber Acoustics	CA2014	E124946	DoC			

I/O Cable List						
Port	Manufacturer	Shielded?	Ferrite?	Length		
AC Power	Apple	No	No	1.8 meters		
USB	Copartner	Yes	No	1.5 meters		
Ethernet	CMG	Yes	No	2.2 meters		
Audio	Cyber Acoustics	No	No	1 Meter		

EUT Operating Conditions

All of the equipment and cables were placed in the worst-case configuration to maximize the emissions during the tests. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

For scans below 1 GHz, the EUT transceiver and all the EUT I/O ports were activated. A large file from a remote server was transferred via the EUT's Ethernet port to a wireless client from the EUT's transmitter. The EUT' USB port was activated by connecting a USB printer. The EUT's audio port was activated by using an application called "AirPlay" launched from a wireless client and playing music through the EUT from a shared itunes library.

For measurements above 1 GHz, a special program called iperf was used to setup a continuous transmit mode. The iperf software was used with EUT firmware called "Q61_6.0a11_FullROM_DEBUG.bin" which allows telnet access to the EUT. The channel was set using an OS X terminal window from a wired (Ethernet) client. For example, setting the channel to be channel 1, the following commands were used with an EUT SSID of "Apple". An application called "MacStumbler" was used to identify the EUT SSID and confirm the channel.

telnet base-station.local 24 #> wl antdiv 0 #> wl txant 0 #> wl disassoc #> wl channel 1 #> wl join Apple

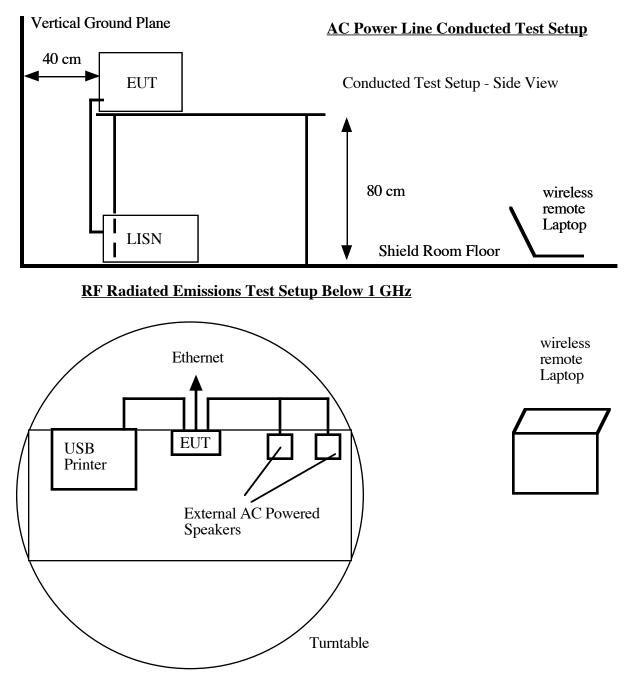
The data rates of 1, 6, and 54 Mbps were set using the same terminal window and the following commands:

#> wl rate 1 #> wl rate 6 #> wl rate 5

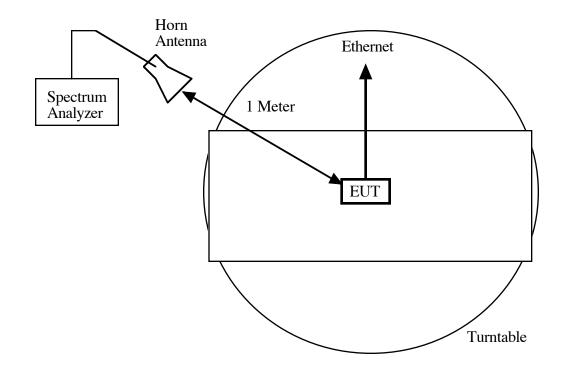
In order to establish a routing path, ping from a new terminal window in both the wired and wireless clients by typing the following:

ping -c 5 <ip address of basestation>

In order to put the transmitter into a continuous transmit mode, both a wired (Ethernet) and wireless client are needed. From a new OS X terminal window, the wireless client which has been associated to the EUT and which has the ip address of <wireless client ip address>, the following commands were entered into a terminal window


From the wireless client: cd iperf folder ./iperf -s

From a wired client: cd iperf folder ./iperf -t 100000 -i 2 -c <wireless client ip address>


Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

Test Setup Block Diagrams

For AC Power Line conducted and RF Radiated Emissions, the EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered ac mains supply.

RF Radiated Emissions Test Setup Above 1 GHz

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

7 Applicable Limits and Test Results

7.1 6 dB Bandwidth

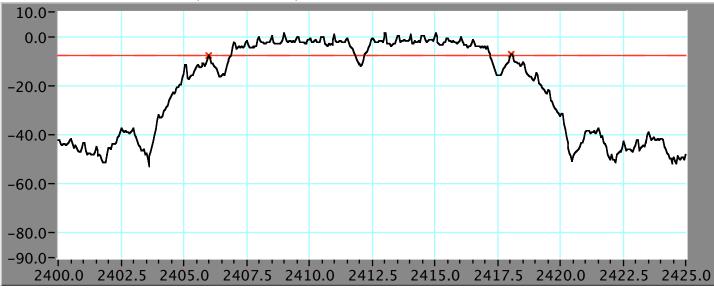
<u>Limit</u>

The Minimum 6 dB bandwidth shall be greater than 500 kHz.

Test Procedure

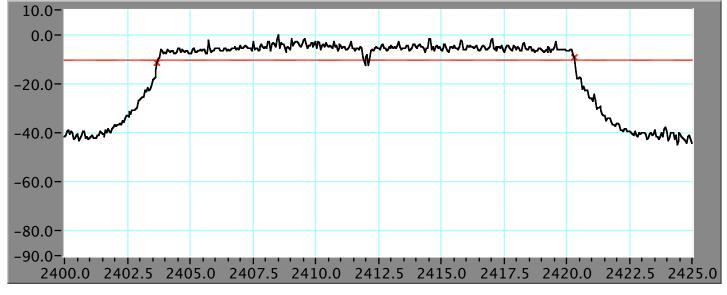
The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

6 dB Bandwidth Results

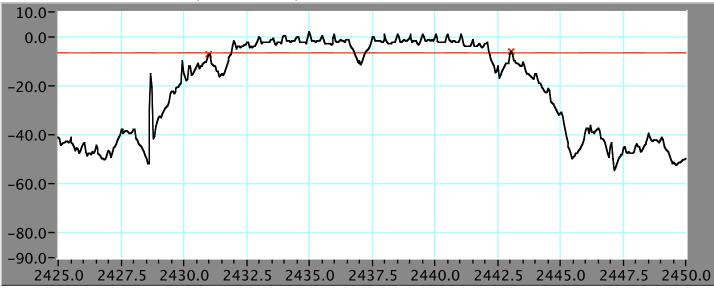

No non-compliance was found.

802.11b Mode

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	12,000	500	11,500
Mid	2437	12,030	500	11,530
High	2462	12,000	500	15,500

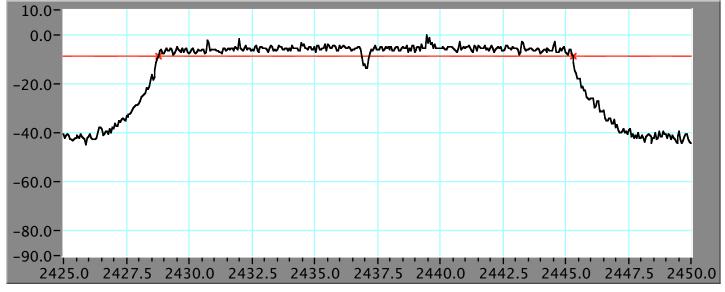

802.11g Mode

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	16,600	500	16,100
Mid	2437	16,480	500	15,980
High	2462	16,430	500	15,930

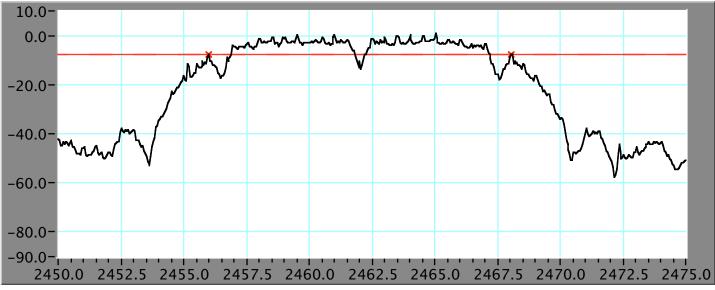


6 dB Bandwidth Channel 1 (802.11b mode)

6 dB Bandwidth Channel 1 (802.11g mode)

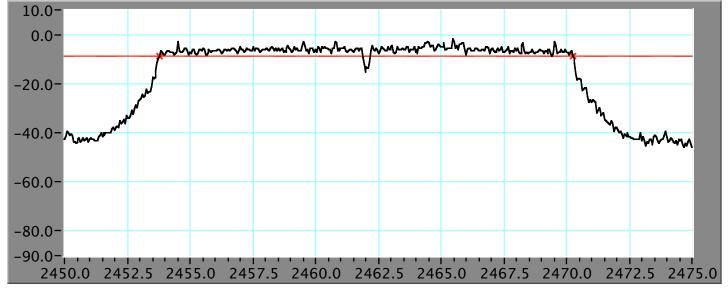


Date of Test: May 25, 2004



6 dB Bandwidth Channel 6 (802.11b mode)

6 dB Bandwidth Channel 6 (802.11g mode)



Date of Test: May 25, 2004

6 dB Bandwidth Channel 11 (802.11b mode)

6 dB Bandwidth Channel 11 (802.11g mode)

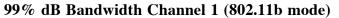
Date of Test: May 25, 2004

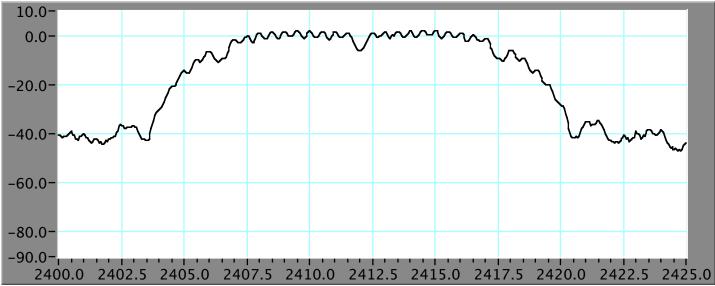
7.2 99% dB Bandwidth

<u>Limit</u>

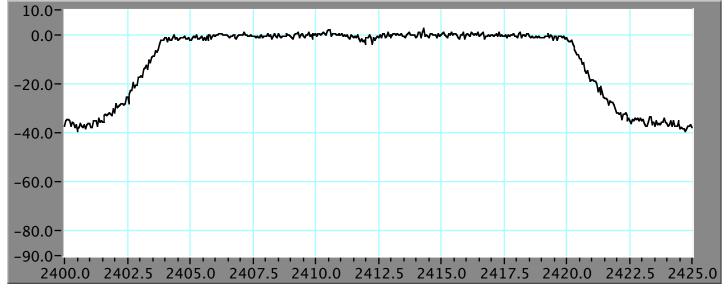
None; for reporting purposes only.

Test Procedure

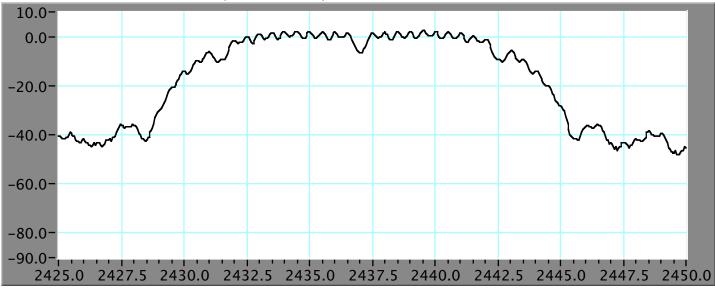

The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmitter output is connected to a spectrum analyzer. The RBW is set to 1 to 3% of the 99% BW and the VBW is set to at least 3 times the RBW. RBW = 300 kHz, VBW = 1000 kHz. The Spectrum Analyzer 99% Bandwidth built-in function is enabled. This is done by selecting the marker function NORMAL, then selecting the OCCUPIED PWR BANDW softkey. In the spectrum display mode, the % POWER BW is set to 99% from the POWER MEAS SETTINGS sub-menu.


99% dB Bandwidth Results (802.11b mode

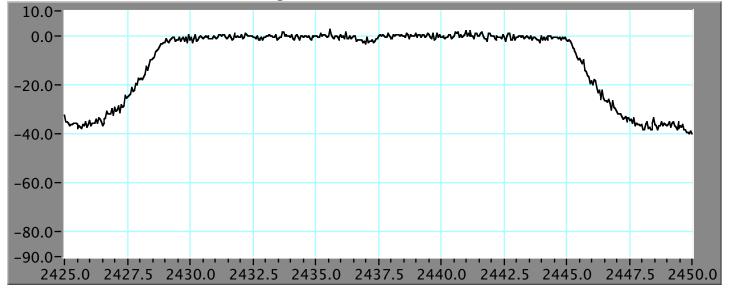
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	12.775
Mid	2437	12.725
High	2462	12.775

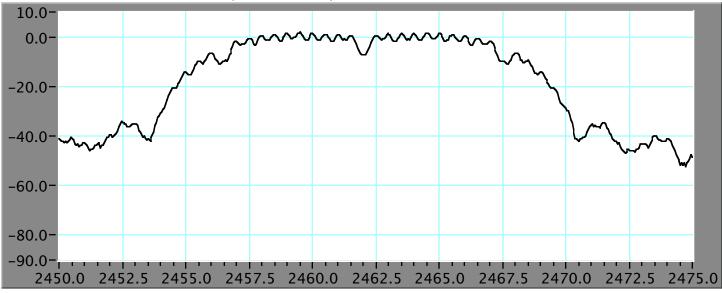

99% dB Bandwidth Results (802.11g mode)

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	16.583
Mid	2437	16.583
High	2462	16.585

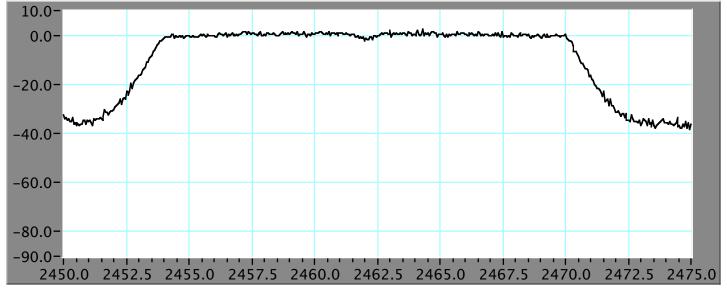


99% dB Bandwidth Channel 1 (802.11g mode)




Date of Test: May 25, 2004

99% dB Bandwidth Channel 6 (802.11b mode)


99% dB Bandwidth Channel 6 (802.11g mode)

99% dB Bandwidth Channel 11 (802.11b mode)

99% dB Bandwidth Channel 11 (802.11g mode)

Date of Test: May 25, 2004

7.3 Maximum Peak Power Output

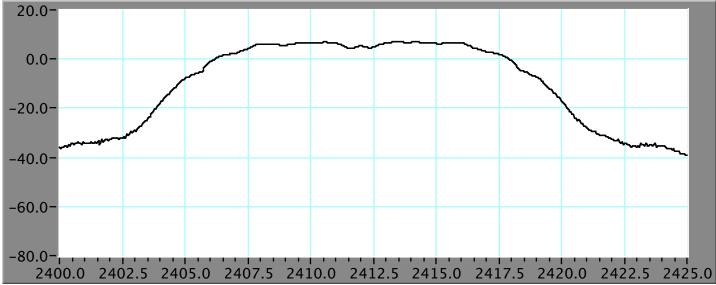
<u>Limit</u>

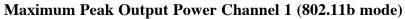
The maximum Peak Output Power for systems using digital modulation and employing an antenna with a gain not greater than 6 dBi shall not exceed 1 Watt (30 dBm).

<u>Test Setup</u>

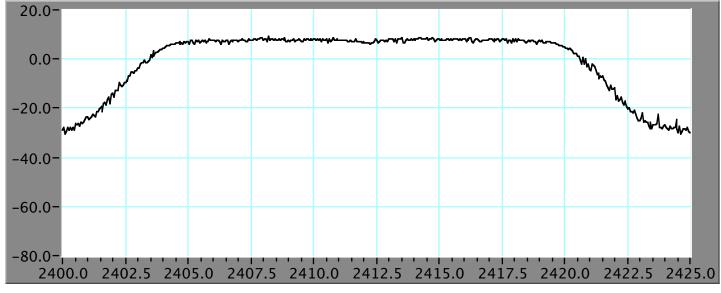
The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmitter output is connected to a spectrum analyzer. The maximum peak power output was found using the Spectrum Analyzer's built-in channel power integration function which integrates the power over a bandwidth greater than or equal to the 99% bandwidth. This is done by selecting the Spectrum Analyzer's Marker NORMAL button. The channel bandwidth was set to a bandwidth greater than or equal to the 99% bandwidth. Then the CHANNEL POWER button was selected and the reading were recorded. The RBW =1 MHz and the VBW = 3 MHz.

Maximum Peak Output Power Test Results

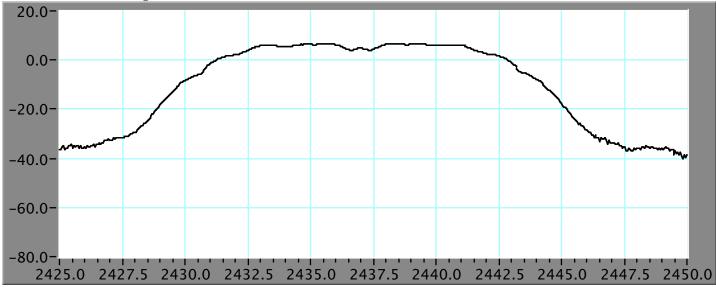

No non-compliance were found.


802.11b mode

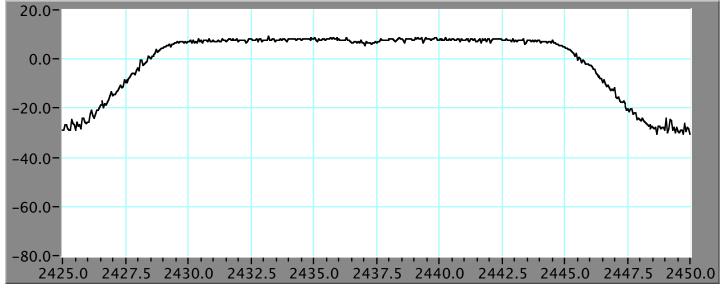
Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	14.6	30	-15.4
Mid	2437	14.35	30	-15.65
High	2462	14.26	30	-15.74


802.11g mode

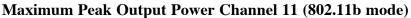
Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	17.9	30	-12.1
Mid	2437	18.04	30	-11.96
High	2462	18.08	30	-11.92

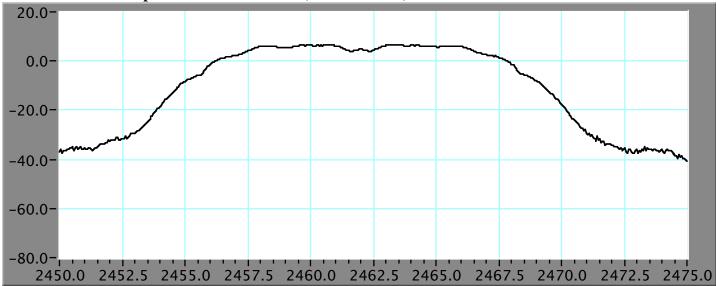


Maximum Peak Output Power Channel 11 (802.11g mode)

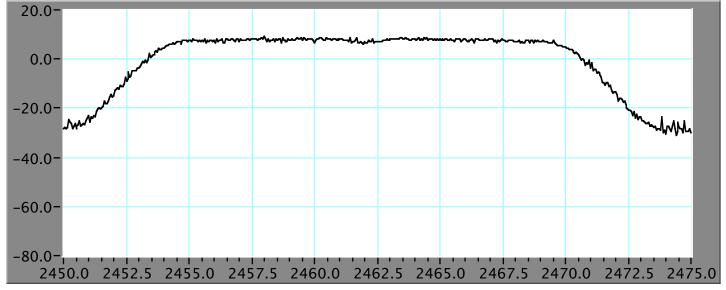


Date of Test: May 25, 2004




Maximum Peak Output Power Channel 6 (802.11b mode)

Maximum Peak Output Power Channel 6 (802.11g mode)



Date of Test: May 25, 2004

Maximum Peak Output Power Channel 11 (802.11g mode)

Date of Test: May 25, 2004

7.4 Average Power

Average Power Limit

None; for reporting purposes only

Test Procedure

The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmitter is connected directly to a power meter.

Average Power Test Results

The cable assembly insertion loss (including 12 dB pad and 0.7 dB cable) was entered directly into the power meter as an offset. The readings were read directly from the power meter.

802.11b Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	13.4
Mid	2437	13.1
High	2462	13.3

802.11g Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	12.5
Mid	2437	12.2
High	2462	12.3

Date of Test: May 25, 2004

7.5 Peak Power Spectral Density

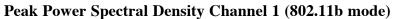
<u>Limit</u>

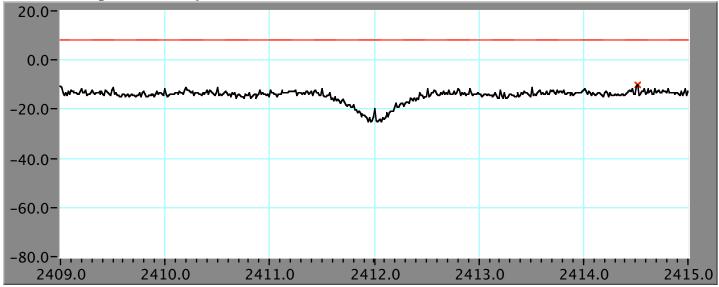
For Direct Sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

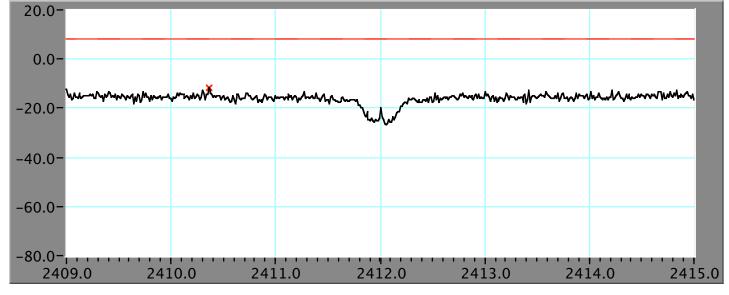
The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmit output is connected to a spectrum analyzer. The maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW = 10 kHz, sweep time = span / 3 kHz. A span of 6 MHz was used and the sweep time was 1000 Seconds.

Peak Power Spectral Density Test Results

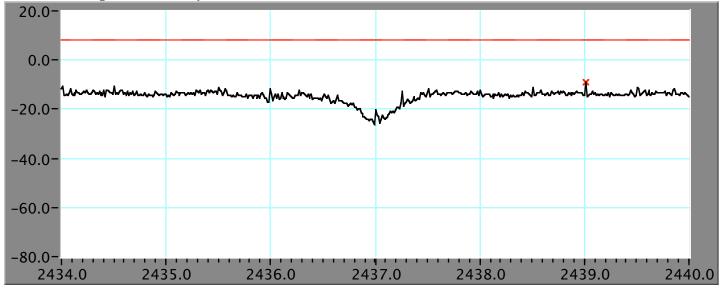

No non-compliance was found.


802.11b Mode

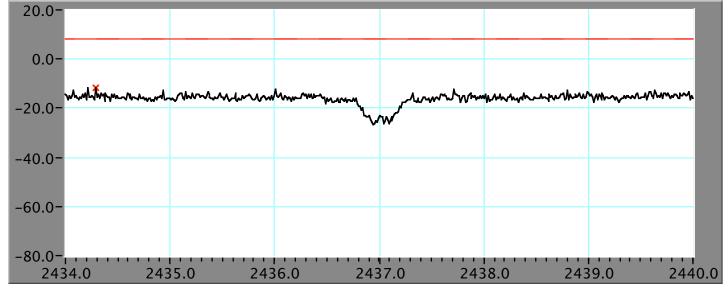
Channel	Frequency (MHz)	Peak Power Spectral Density (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-9.9	8	-17.9
Mid	2437	-9.1	8	-17.1
High	2462	-10.1	8	-18.1


802.11g Mode

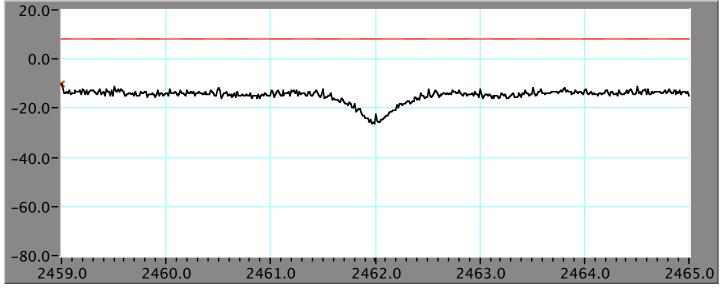
Channel	Frequency (MHz)	Peak Power Spectral Density (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-11.5	8	-19.5
Mid	2437	-11.5	8	-19.5
High	2462	-11.9	8	-19.9



Peak Power Spectral Density Channel 1 (802.11g mode)

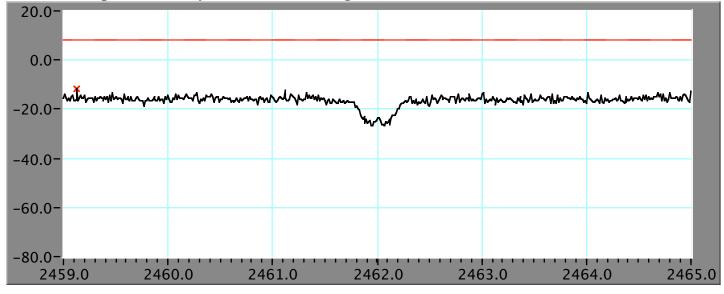


Date of Test: May 26, 2004



Peak Power Spectral Density Channel 6 (802.11b mode)

Peak Power Spectral Density Channel 6 (802.11g mode)



Date of Test: May 26, 2004

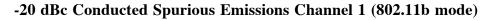
Peak Power Spectral Density Channel 11 (802.11b mode)

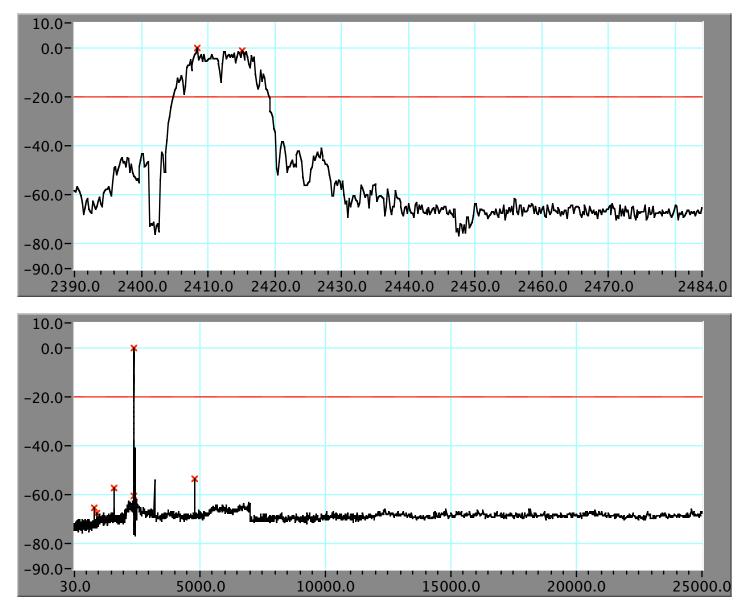
Peak Power Spectral Density Channel 11 (802.11g mode)

Date of Test: May 26, 2004

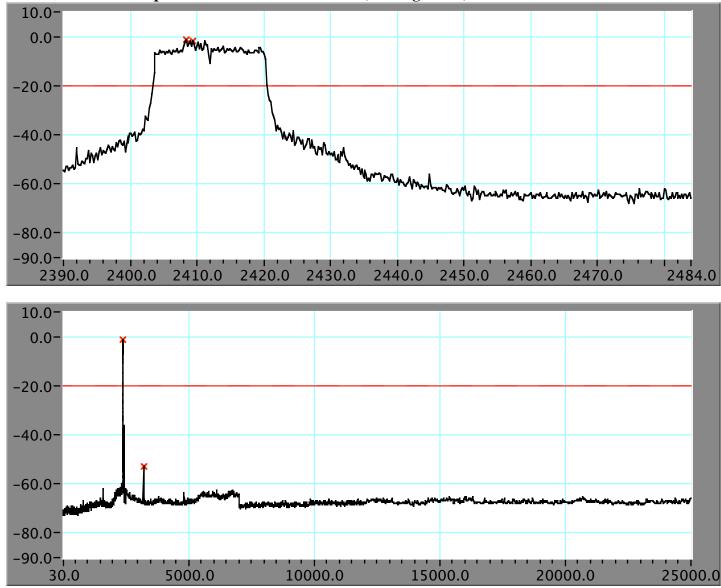
7.6 -20 dBc Conducted Spurious Emissions

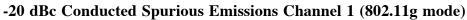
<u>Limit</u>

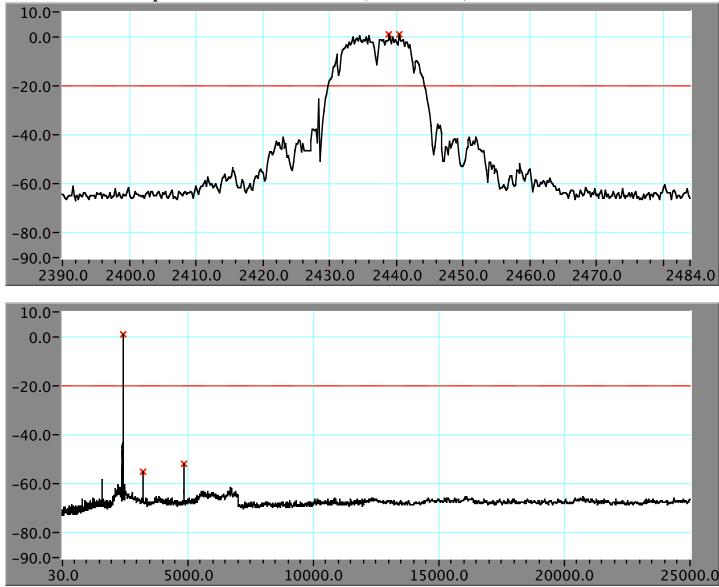

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either an RF conducted or a radiated measurement.


Test Procedure

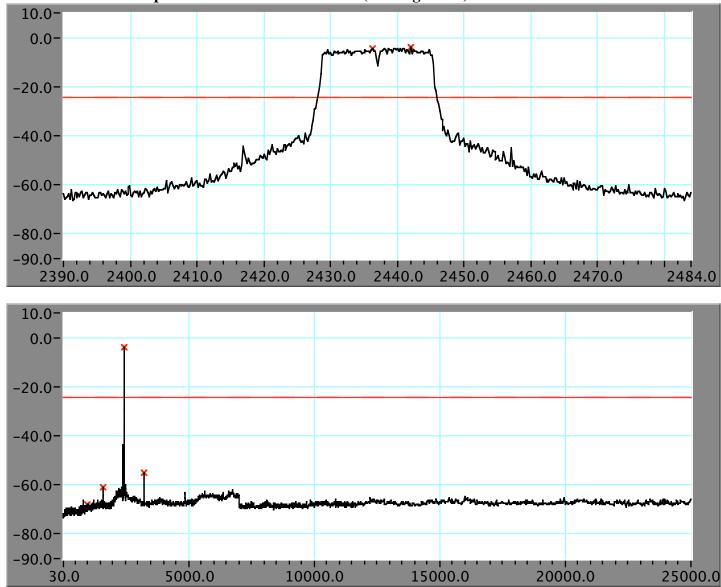
The transmitter is set to continuously transmit using iperf as described in Section 6 and the transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The spectrum from 30 MHz to 25 GHz is investigated when transmitting on the low, mid and high channels for 802.11b and 802.11g mode.


Test Results

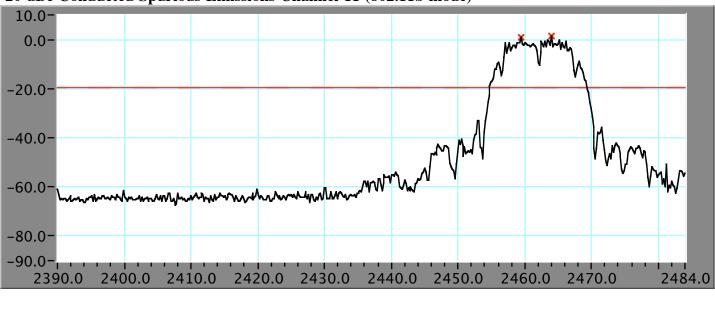

No non-compliance was found.



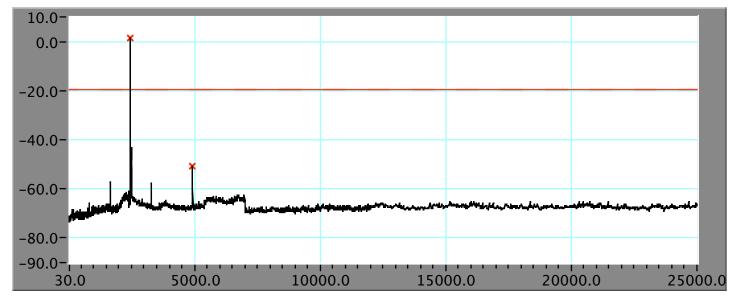
Date of Test: May 26, 2004



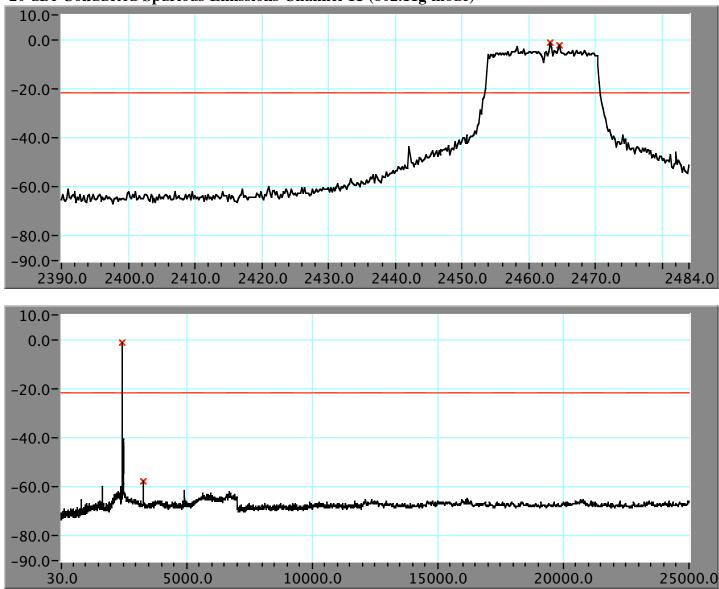
Date of Test: May 26, 2004


-20 dBc Conducted Spurious Emissions Channel 6 (802.11b mode)

Date of Test: May 26, 2004



-20 dBc Conducted Spurious Emissions Channel 6 (802.11g mode)


Date of Test: May 26, 2004

-20 dBc Conducted Spurious Emissions Channel 11 (802.11b mode)

Date of Test: May 26, 2004

-20 dBc Conducted Spurious Emissions Channel 11 (802.11g mode)

Date of Test: May 26, 2004

7.7 Radiated Emissions

<u>Limits</u>

Per CFR 47 Section 15.209(a), Radiated Emissions shall be investigated up to the 10 harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. The emissions from an intentional radiator shall not exceed the specified field-strength levels.

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Procedures

Radiated Emission measurements were performed at the Apple Computer Evelyn 1, 10 meter semi-anechoic chamber located at 123 East Evelyn Avenue, Mountain View, California. The EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered main supply.

The frequency spectrum from 30 MHz to 25 GHz was scanned and the emission levels maximized at each frequency. The antenna was varied in height and the system was rotated 360 degrees while scanning for maximum emission amplitudes. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

For measurements above 1 GHz, the transmitter is set to continuously transmit using iperf as described in Section 6 and scans were performed with the transmitter frequency set to the low, mid and high channels. For scans below 1 GHz, all the EUT I/O ports were activated. A large file from a remote server was transferred via the EUT's Ethernet port to a wireless client from the EUT's transmitter. The EUT' USB port was activated by connecting a USB printer. The EUT's audio port was activated by using an Application called "AirPlay" and playing music.

- low (channel 1) 2.412 GHz
- mid (channel 6) 2.437 GHz
- high (channel 11) 2.462 GHz

For measurements below 1 GHz, the RBW is set to 100 kHz and the VBW is set to 100 kHz. Peak detection was used unless otherwise noted as Quasi-Peak. For peak measurements above 1 GHz, the RBW is set to 1 MHz and the VBW is set to 1 MHz. For Average measurements the RBW is set to 1 MHz and the VBW is set to 10 Hz. Radiated Emission measurements below 1 GHz were performed at an EUT to antenna distance of 3 meters and measurements above 1 GHz were performed at an EUT to antenna distance of 1 meter. Pre scans of the Airport Express transmitter above 1 GHz were performed using several data rates including 1 Mbps (802.11b mode), 6 Mbps and 54 Mbps (802.11g mode). During these pre-scans, it was determined that the worst case mode was with 1 Mbps and so this data rate was activated throughout the testing.

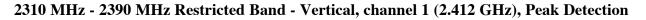
Test Results

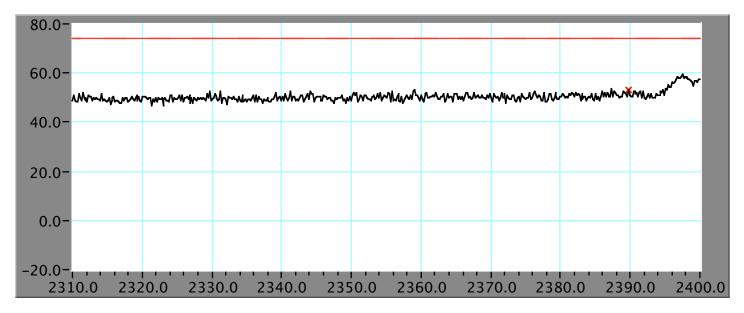
No non-compliance was found.

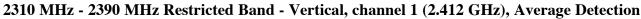
Restricted Bands

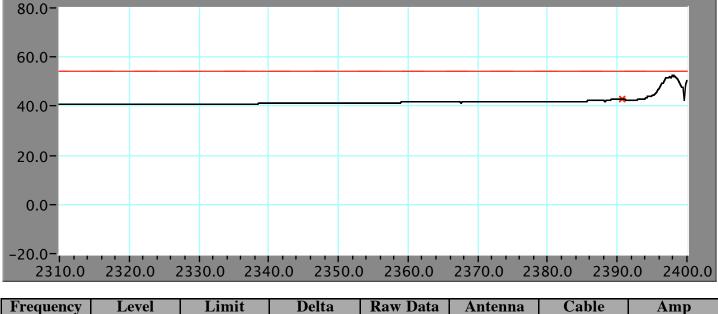
The restricted bands at the lower and upper edges of the ISM band were scanned for the maximum emissions with the transmitter set to continuously transmit at corresponding low and highest channels. During pre-scans, it was found that using a 1 Mbps data rate represented the worst case and so this data rate was used.

The actual frequency range of the adjacent restricted bands is from 2310 MHz to 2390 MHz and from 2483.5 MHz to 2500 MHz. However, for testing purposes, the range was extended to allow maximizing on the intentional transmitter emissions.

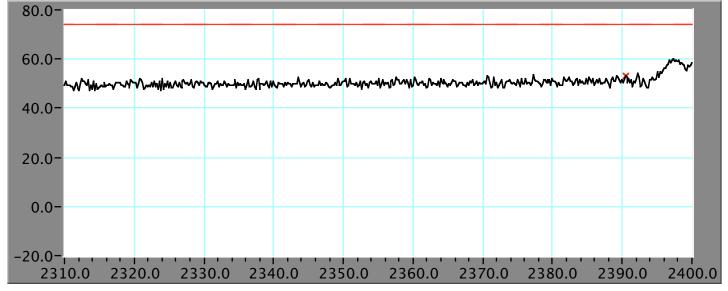

Restricted Bands Instrument Settings

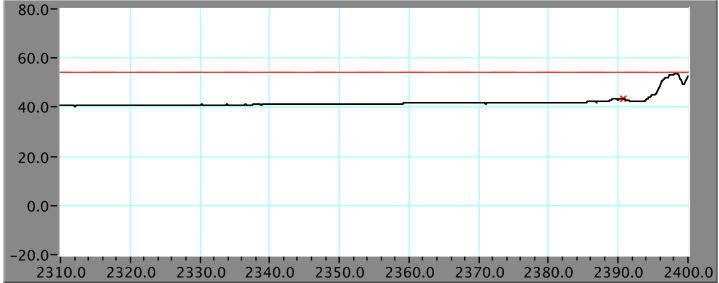

Peak Measurements


Frequency Range	Reference Level	Attenuation	Resolution BW	Video BW	Sweep Rate
2310-2400 MHz	80 dBuV/m	10 dB	1 MHz	1 MHz	5 mS
2475-2500 MHz	80 dBuV/m	10 dB	1 MHz	1 MHz	5 mS

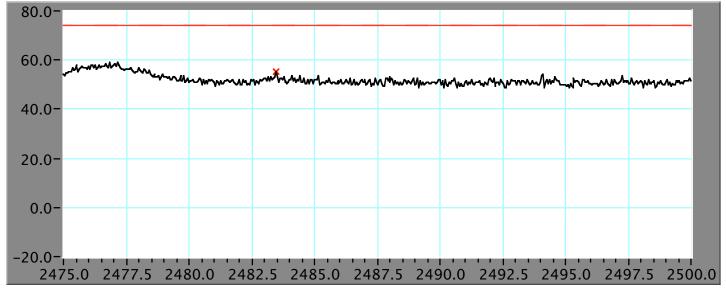

Average Measurements

Frequency Range	Reference Level	Attenuation	Resolution BW	Video BW	Sweep Rate
2310-2400 MHz	80 dBuV/m	10 dB	1 MHz	10 Hz	22.5 Seconds
2475-2500 MHz	80 dBuV/m	10 dB	1 MHz	10 Hz	6.4 Seconds

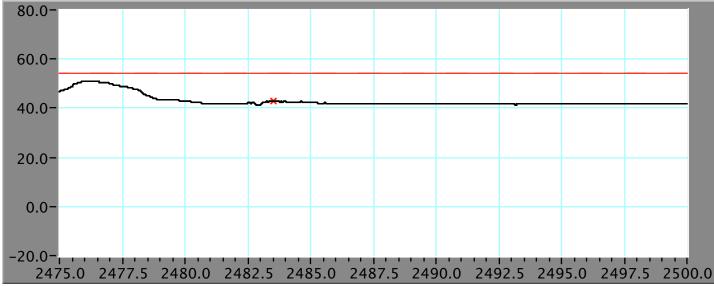




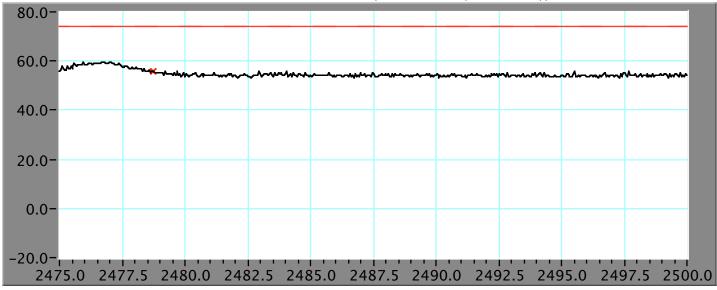
Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB
2389.72	53.1	74	-20.9	26.52	32.9	3.82	9.5
2390.8	43.1	54	-10.9	16.48	32.9	3.82	9.5



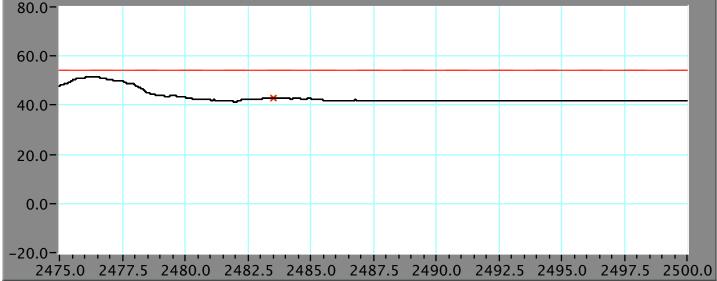
2310 MHz - 2390 MHz Restricted Band - Horizontal, channel 1 (2.412 GHz), Peak Detection



Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB
2390.44	53.3	74	-20.7	26.66	32.9	3.82	9.5
2390.8	43.7	54	-10.3	17.08	32.9	3.82	9.5

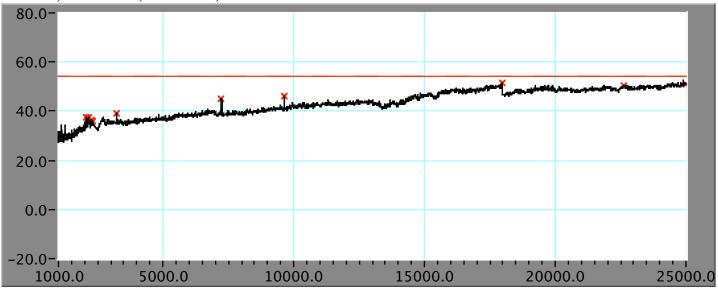


2483.5 MHz - 2500 MHz Restricted Band - Vertical, channel 11 (2.462 GHz), Peak Detection


2483.5 MHz - 2500 MHz Restricted Band - Vertical, channel 11 (2.462 GHz), Average Detection

Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB
2483.47	53.3	74	-18.7	28.5	32.38	3.96	9.5
2483.52	43	54	-11	16.11	32.38	3.82	9.5

2483.5 MHz - 2500 MHz Restricted Band - Horizontal, channel 11 (2.462 GHz), Peak Detection

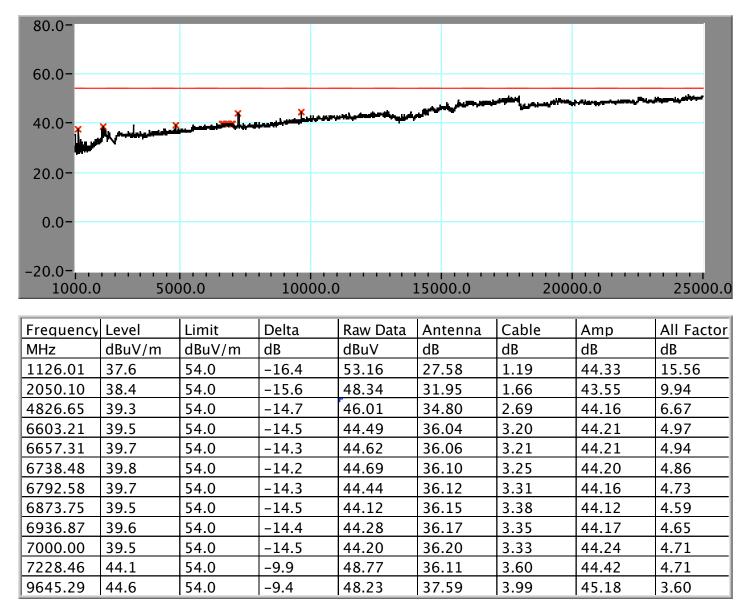


Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB
2478.76	56	74	-18	29.17	32.38	3.96	9.5
2483.52	42.9	54	-11.1	16.04	32.38	3.82	9.5

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

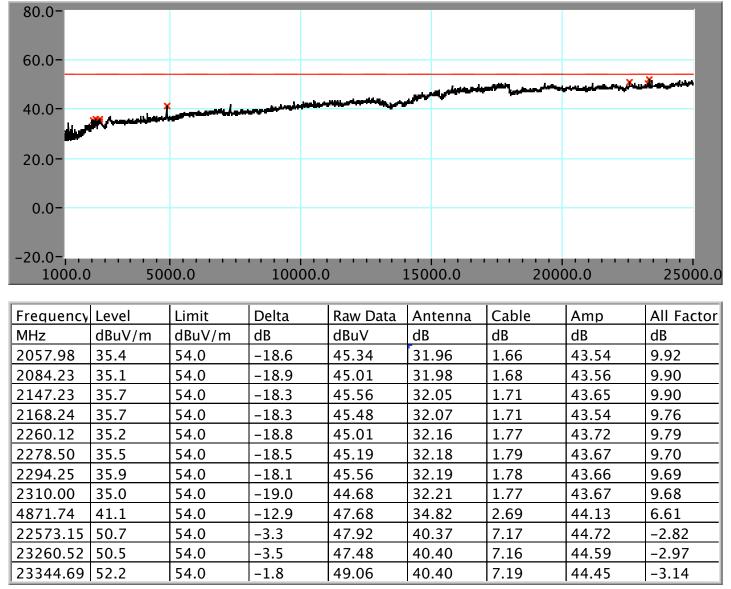
Spurious Radiated Emissions above 1 GHz

Radiated Emissions scans from 1 to 25 GHz for the low, mid and high channels were performed to demonstrate compliance with the restricted bands in CFR 47 Section 205(a). During pre-scans, it was found that using a 1 Mbps data rate represented the worst case and so this data rate was used throughout the spurious emissions scans above 1 GHz. The data from the Radiated Emissions scans are presented in the following pages.

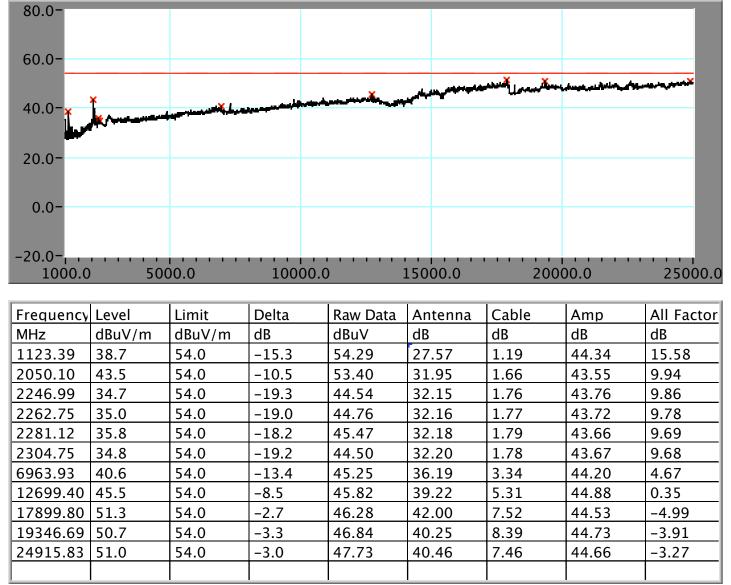


Vertical, channel 1 (2.412 GHz)

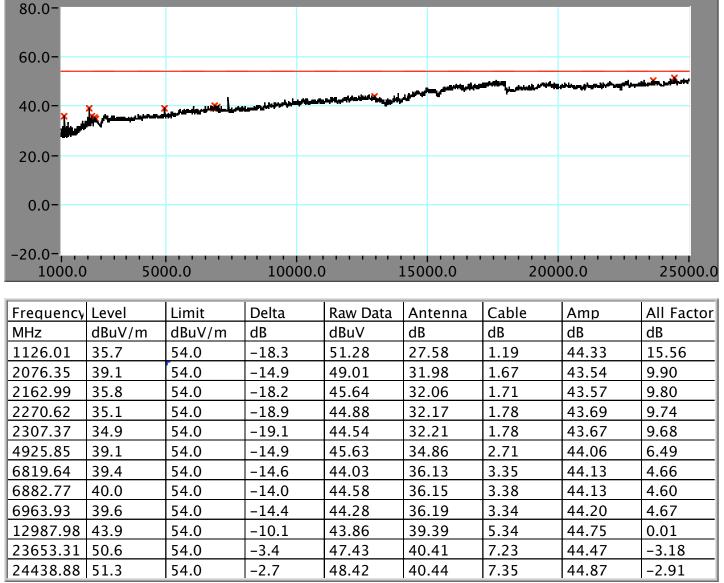
Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp	All Factor
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
2057.98	37.3	54.0	-16.7	47.22	31.96	1.66	43.54	9.92
2102.61	36.8	54.0	-17.2	46.72	32.00	1.70	43.62	9.92
2136.73	36.3	54.0	-17.7	46.22	32.04	1.71	43.70	9.95
2181.36	37.7	54.0	-16.3	47.45	32.08	1.71	43.54	9.74
2278.50	36.5	54.0	-17.5	46.23	32.18	1.79	43.67	9.70
2296.87	36.0	54.0	-18.0	45.66	32.20	1.78	43.66	9.69
3212.42	39.1	54.0	-14.9	47.74	33.36	2.15	44.12	8.61
7228.46	45.2	54.0	-8.8	49.87	36.11	3.60	44.42	4.71
9645.29	46.1	54.0	-7.9	49.67	37.59	3.99	45.18	3.60
18000.00	51.4	54.0	-2.6	46.36	41.90	7.66	44.55	-5.01
22615.23	50.6	54.0	-3.4	47.66	40.37	7.20	44.68	-2.89
25000.00	50.9	54.0	-3.1	47.50	40.46	7.48	44.56	-3.38


All levels are with a peak detector unless otherwise indicated.

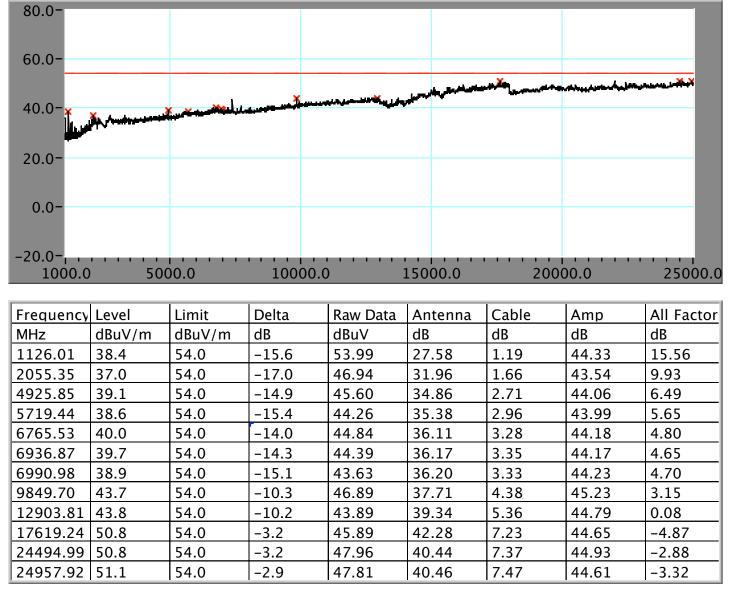
Horizontal, channel 1 (2.412 GHz)


All levels are with a peak detector unless otherwise indicated.

Vertical Channel 6 (2.437 GHz)


All levels are with a peak detector unless otherwise indicated.

Horizontal Channel 6 (2.437 GHz)


All levels are with a peak detector unless otherwise indicated.

Vertical Channel 11 (2.462 GHz)

All levels are with a peak detector unless otherwise indicated.

Horizontal Channel 11 (2.462 GHz)

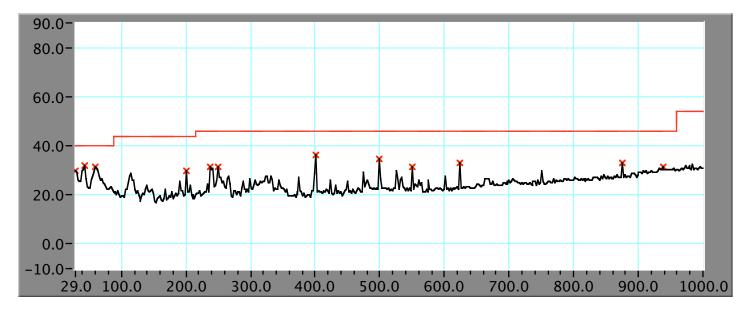
All levels are with a peak detector unless otherwise indicated.

Radiated Emissions less than 1 GHz Test Procedure

The frequency spectrum from 30 MHz to 1 GHz was scanned and the emission levels maximized at each frequency recorded. The antenna was varied in height between 1.0 and 4.0 meters and the system was rotated 360 degrees while scanning for maximum emission amplitudes. This procedure was performed for both horizontal and vertical polarization of the receiving antenna. During maximization the position of the cables was varied and the scanning repeated until the worst case emission was found. The data recorded in this report are the maximum emission levels measured. Pre scans were performed using the low, mid and high channel. No difference in the emissions was found. The data presented is with channel 1.

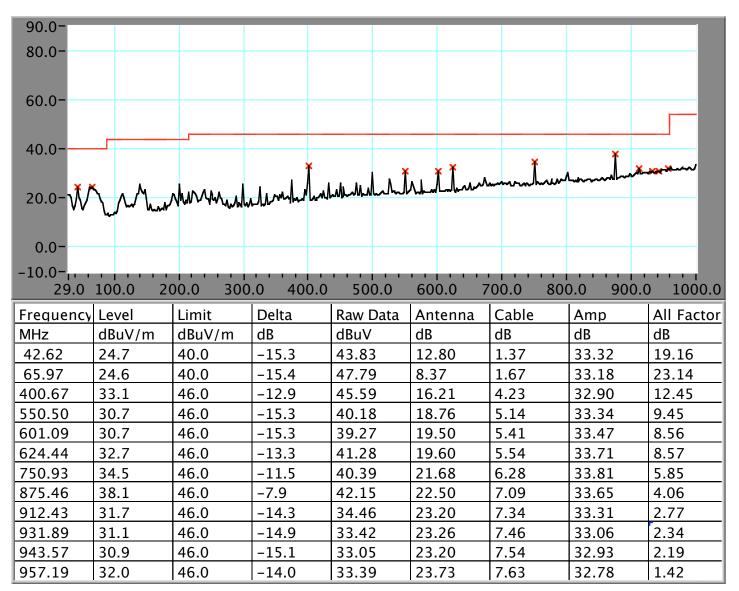
Radiated Emission measurements at or below 1 GHz were performed at an EUT to antenna distance of 3 meters.

Radiated Emissions less than 1 GHz Instrument Settings:


Instrument Settings				
Frequency Range	Reference Level	Attenuation	Resolution BW	Video BW
30 MHz - 1 GHz	90 dBuV	10	100 kHz	100 kHz

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

Radiated Emissions less than 1 GHz


The data below was collected with a transmitter frequency of 2.412 GHz which is the lowest channel.

Radiated Emissions Data less than 1 GHz. Vertical 802.11b mode Channel 1

Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp	All Factor
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
29.00	29.6	40.0	-10.4	40.25	21.55	1.17	33.42	10.70
42.62	32.0	40.0	-8.0	52.43	11.55	1.37	33.32	20.41
60.13	31.2	40.0	-8.8	56.08	6.70	1.60	33.19	24.89
200.24	30.0	43.5	-13.5	47.88	12.07	2.88	32.84	17.89
237.21	31.4	46.0	-14.6	48.91	12.20	3.15	32.88	17.53
248.89	31.4	46.0	-14.6	48.72	12.31	3.23	32.89	17.35
400.67	36.3	46.0	-9.7	49.22	15.73	4.23	32.90	12.93
499.91	34.4	46.0	-11.6	44.84	18.00	4.84	33.25	10.41
550.50	31.2	46.0	-14.8	41.41	18.00	5.14	33.34	10.21
624.44	33.1	46.0	-12.9	41.92	19.34	5.54	33.71	8.83
875.46	33.0	46.0	-13.0	37.87	21.70	7.09	33.65	4.86
937.73	31.2	46.0	-14.8	33.91	22.80	7.50	32.99	2.69

Radiated Emissions Data less than 1 GHz. Horizontal 802.11b mode. Channel 1

20.41

24.89

24.25

17.89

17.53

12.93

10.41

10.43

8.83

4.86

3.04

33.32

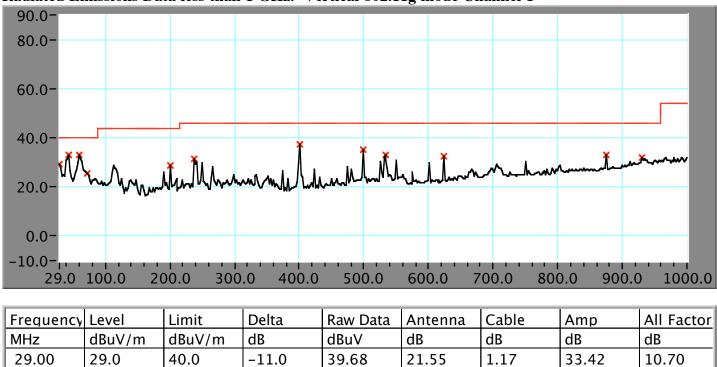
33.19

33.15

32.84

32.88

32.90


33.25

33.33

33.71

33.65

33.09

53.35

57.77

49.82

46.73

49.14

50.49

45.31

43.33

41.32

37.71

35.03

11.55

6.70

7.18

12.07

12.20

15.73

18.00

17.87

19.34

21.70

22.60

1.37

1.60

1.72

2.88

3.15

4.23

4.84

5.03

5.54

7.09

7.45

Radiated Emissions Data less than 1 GHz. Vertical 802.11g mode Channel 1

Date of Test: May 26, 2004

32.9

32.9

25.6

28.8

31.6

37.6

34.9

32.9

32.5

32.8

32.0

40.0

40.0

40.0

43.5

46.0

46.0

46.0

46.0

46.0

46.0

46.0

-7.1

-7.1

-14.4

-14.7

-14.4

-11.1

-13.1

-13.5

-13.2

-14.0

-8.4

42.62

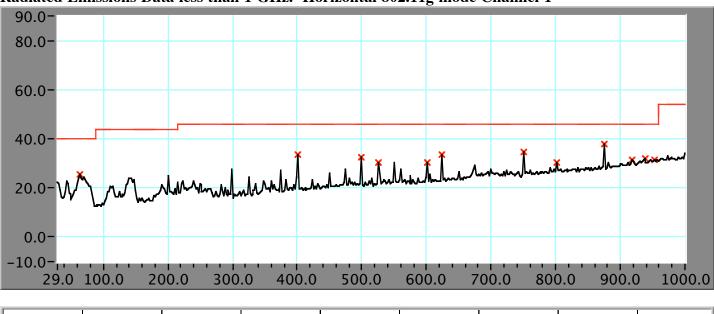
60.13

71.81

200.24

237.21

400.67


499.91

532.99

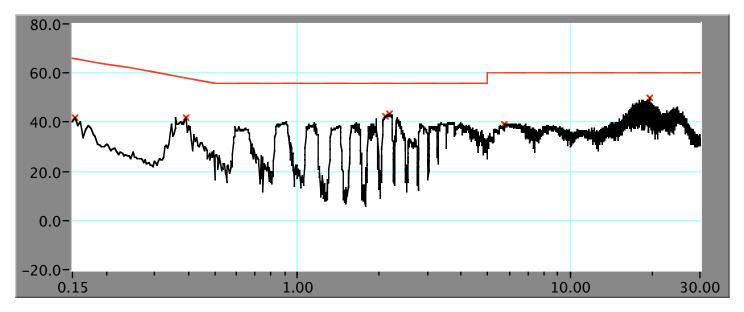
624.44

875.46

929.95

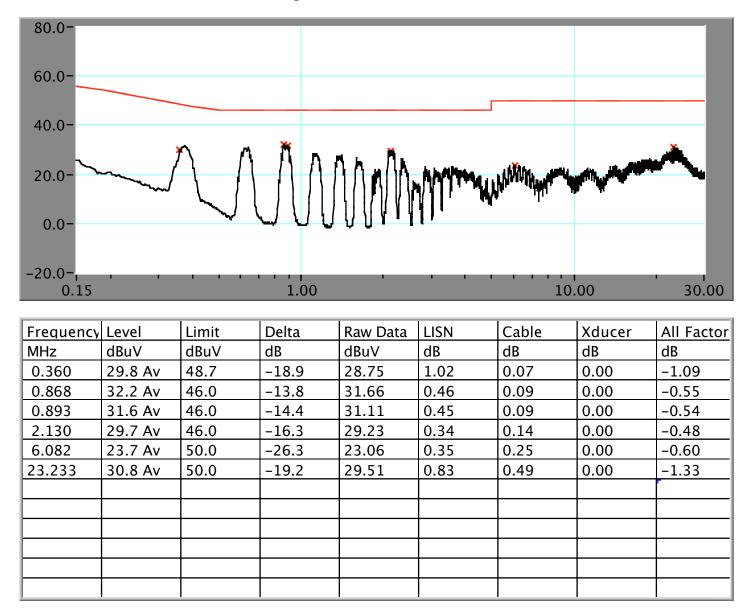
Radiated Emissions Data less than 1 GHz. Horizontal 802.11g mode Channel 1

		1	1 -	1	1	1	1	
Frequency	Level	Limit	Delta	Raw Data	Antenna	Cable	Amp	All Factor
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB	dB
64.03	25.3	40.0	-14.7	48.62	8.20	1.64	33.19	23.35
400.67	33.4	46.0	-12.6	45.87	16.21	4.23	32.90	12.45
499.91	32.3	46.0	-13.7	42.49	18.22	4.84	33.25	10.19
525.20	30.4	46.0	-15.6	40.15	18.60	4.99	33.30	9.71
601.09	30.4	46.0	-15.6	38.93	19.50	5.41	33.47	8.56
624.44	33.4	46.0	-12.6	41.93	19.60	5.54	33.71	8.57
750.93	34.8	46.0	-11.2	40.64	21.68	6.28	33.81	5.85
801.52	30.4	46.0	-15.6	35.91	21.80	6.60	33.88	5.49
875.46	38.0	46.0	-8.0	42.07	22.50	7.09	33.65	4.06
918.27	31.3	46.0	-14.7	33.82	23.30	7.37	33.23	2.56
937.73	31.9	46.0	-14.1	34.15	23.20	7.50	32.99	2.29
953.30	31.6	46.0	-14.4	33.36	23.48	7.61	32.82	1.74

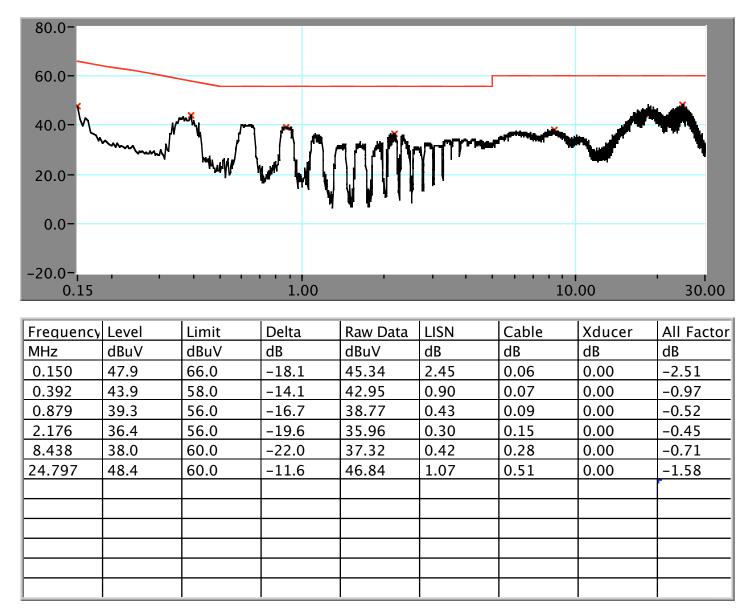

Apple Airport Express EUT: 802.11b/g Wireless LAN Access Point

7.8 AC Power Line Conducted Emissions

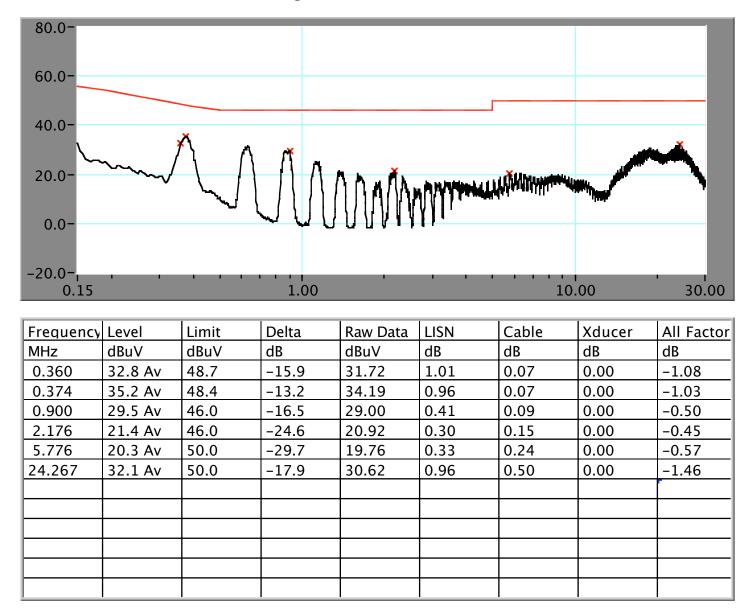
AC Power Line Emissions Test Procedure


The frequency spectrum from 150 kHz to 30 Hz was scanned on the ac power mains on both line 1 and line 2. Both peak and average detectors were employed. Because none of the peak emissions exceeded the Quasi-Peak emissions were not recorded. The data presented is with channel 1.

AC Power Line Emissions Line 1 Peak Detector


Frequency	Level	Limit	Delta	Raw Data	LISN	Cable	Xducer	All Factor
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB	dB
0.154	42.0	65.8	-23.8	39.42	2.48	0.06	0.00	-2.54
0.392	41.7	58.0	-16.3	40.69	0.92	0.07	0.00	-0.99
2.119	42.3	56.0	-13.7	41.83	0.34	0.14	0.00	-0.48
2.179	43.2	56.0	-12.8	42.74	0.34	0.15	0.00	-0.48
5.765	39.3	60.0	-20.7	38.76	0.33	0.24	0.00	-0.57
19.587	49.9	60.0	-10.1	48.78	0.66	0.45	0.00	-1.11

AC Power Line Emissions Line 1 Average Detector



AC Power Line Emissions Line 2 Peak Detector

AC Power Line Emissions Line 2 Average Detector

